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A Converse to Cauchy’s Inequality

D. Zagier

Denote by I the set of monotone decreasing functions f: [0, %) — [0, 1] for which
I(f) = [5f(x) dx converges. For f, g € M the scalar product (f, g) = I(fg) con-
verges, and the Cauchy-Schwarz inequality and the inequalities 0 < f(x) < 1 imply
the estimate

(f.8) <min(I(),1(g),(f.£)"*(8.8)"*) (frgeM). (1)

An inequality for (f, g) in terms of the same data but in the other direction,
namely

(f, )&, 8)
max(I(f),I(g))

was proved in an earlier article with the same title (up to translation) by a trick
involving a quadruple integral [2]. We give here a more general result with a much
simpler proof.

(f.8) = (f, g €M), (2

Theorem. Let f and g be monotone decreasing nonnegative functions on [0, «). Then

(1, F)(8,6)
(1:8) 2 Sl I0F), () @

for any integrable (but not necessarily monotone) functions F,G: [0,%) — [0, 1].

Proof: For all x > 0 we have

(F.F) = I(P)f(x) + [T1£(0) = FF (o) de

X
<I(F)f(x) + ['IF(6) = f(x)] de,
and hence, since [§G(t)dt is bounded from above by both x and I(G),

(£, F) [[6(1) di < I(F)xf(x) + 1(G) [ [f(2) = f()] e

< max(I(F), I(G)) [0 “#(t) dt.

Now multiply by —dg(x) and integrate by parts from 0 to «. The left-hand side
gives (f, F)(g, G), the right-hand side gives max(I(F), I(G))(f, g), and the inequal-
ity remains true because the measure —dg(x) is nonnegative. [ ]

Remarks. 1. Another proof of (3) can be obtained as follows. It is geometrically
clear (and easily proved) that for f monotone decreasing the largest value of (f, F)
as F ranges over integrable functions [0, =) — [0, 1] with a given value of I(F) is
attained by taking F to be “as far left as possible,” i.e., equal to 1 for 0 < x < I(F)
and to 0 otherwise. Therefore the maximum of (f, FXg,G)/A as F and G range
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over functions [0, ) — [0, 1] with max(I(F), I(G)) < A is equal to A1z f(x) dx -
/i'g(x) dx, and this is < (f,g) because the average of the product of two
decreasing functions on an interval is at least equal to the product of their
averages.

2. A further generalization of (2) is the inequality

W) » PURIE0)
% max(W(F), W(G))
valid for any positive linear functional W(f) = [5f(x)w(x) dx (w(x) > 0), mono-
tone decreasing functions f and g, and functions F,G: [0, %) — [0, 1] with W(F)
and W(G) finite. To prove it, apply (3) to the functions fewv, gowv, Fov and
G o v, where v(x) = [fw(x')dx'. The case F = f, G = g is the weighted general-
ization of (2) proved in [1].

3. As pointed out in [1], both bounds (1) and (2) are best possible in terms of the
four parameters I(f), (f, f), I(g), and (g, g). The bound (2) cannot be attained
for generic values of these parameters but can be approached arbitrarily closely by
taking f and g to be step functions with only two non-zero values (i.e. equal to 1
for x <xy, to C for x; <x <x;, and to 0 for x > x;, where 0 <x, <x, and
0 < C < 1). Such functions with given values of I(f) and (f, f) form a one-param-
eter family (the numbers x,, x; and C determine each other). If I(g) < I(f) and
we let f move to the left (x, = 0) and g to the right (C — 0) in their respective
families, then [7f(x)g(x) dx tends to (f, fXg, g)/I(f).

4. Monotone decreasing functions f: [0,%) — [0,1] can be interpreted as the
integrals of probability measures (f(x) = [ du where du is a nonnegative mea-
sure with integral 1). Hence (2) can be interpreted as a statement about correla-
tions of statistical distributions. One such result, which was the original motivation
for the inequality, is an estimate of the possible values of the “Gini coefficient” for
a population consisting of two sub-populations, when the size, average income, and
Gini coefficients of each of these is given [3]. (The Gini coefficient is a measure of
the inequity of distributions of income in a large population which is used widely in
mathematical economics.) Since the inequalities (2) and (3) are very general, they
should have other applications, perhaps also in pure mathematics.
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