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A Converse to Cauchy's Inequality 

D. Zagier 
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Denote by the set of monotone decreasing functions f: [O, oo) [O, 11 for which 

I(f ) = lof(x) dJC converges. For f, g E R the scalar product ( f, g) = I(fg) con- 
verges, and the Cauchy-Schwarz inequality and the inequalities O < f(x) < 1 imply 
the estimate 

(f,g) < min(I(t),I(g),(t t)l/2(g g)1/2) 't ') (1) 

An inequalibr for (f,g) in terms of the same data but in the other direction, 
namely 

max( I( f ) s I( g)) (2) 

was proved in an earlier article with the same title (up to translation) by a trick 
involving a quadruple integral [2]. We give here a more general result with a much 
simpler proof. 

Theorem. Let f and g be monotone decreasing nonnegative fixnctions on [O, oo). Then 

(f'g) > (f(I()( I(G)) (3) 

for any integrable (but not necessarily monotone) fionctions F, G: [O, oo) [O, 1]. 

Proof: For all x 2 0 we have 

(f, F) = I(F)f(x) + | [f(t)-f(x)]F(t) dt 
o 

< I(F) f (x) + | [ < (t) - f (x)] dt 
o 

and hence, since JO G(t) dt is bounded from above by both x and I(G), 

(f, F)| G(t) dt < I(F)xf(x) + I(G)| [f(t)-f(x)] dt 
o o 

< max(I( F), I(G))| f(t) dt 
o 

Now multiply by -dg(x) and integrate by parts from O to oc. The left-hand side 
gives ( f, F)(g, G), the right-hand side gives max(I(F), I(G))( f, g), and the inequal- 
ity remains true because the measure -dg(x) is nonnegative. i 

Remarks. 1. Another proof of (3) can be obtained as follows. It is geometrically 
clear (and easily proved) that for f monotone decreasing the largest value of (f, F) 

as F ranges over integrable functions [O, sc) [O, 1] with a given value of I(F) is 

attained by taking F to be "as far left as possible," i.e., equal to 1 for O < x < I(F) 
and to O otherwise. Therefore the maximum of (f, F)(g, G)/A as F and G range 
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over functions [0, Oc) [0, 1] with max(I(F), I(G)) < A is equal to A{-1}lo f(x) dx 

10 g(x) dx, and this is < (f, g) because the average of the product of two 
decreasing functions on an interval is at least equal to the product of their 
averages. 

2. A further generalization of (2) is the inequalit 

W(f ) > W(fF)W(gG) 
g max( W(F), W(G)) 

valid for any positive linear functional W(f) = lof(x)w(x)dx (w(x) > 0), mono- 

tone decreasing functions f and g, and functions F, G: [0, ot) [0,1] with W(F) 

and W(G) finite. To prove it, apply (3) to the functions fov, go v, F° v and 
G o v, where v(x) = J0 w(x') dx'. The case F = f, G = g is the weighted general- 
ization of (2) proved in [1]. 

3. As pointed out in [1], both bounds (1) and (2) are best possible in terms of the 
four parameters I(f ), (f, f ), I(g), and (g, g). The bound (2) cannot be attained 
for generic values of these parameters but can be approached arbitrarily closely by 
taking f and g to be step functions with only two non-zero values (i.e. equal to 1 
for x < x0, to C for XQ < x < X1, and to 0 for x > x1, where 0 < x0 < x1 and 
0 < C < 1). Such functions with given values of I(f ) and (f, f ) form a one-param- 
eter family (the numbers x0, x1 and C determine each other). If I(g) < I(f ) and 

we let f move to the left (x0 0) and g to the right (C 0) in their respective 

families, then Jot(x)g(x) h tends to ( f, f )(g, g)/I( f ). 
4. Monotone decreasing functions f: [0,oo) ) [0,1] can be interpreted as the 

integrals of probability measures (f(x) = lx d,u where d,u is a nonnegative mea- 
sure with integral 1). Hence (2) can be interpreted as a statement about correla- 
tions of statistical distributions. One such result, which was the original motivation 
for the inequality, is an estimate of the possible values of the "Gini coefficient" for 
a population consisting of two sub-populations, when the size, average income, and 
Gini coefficients of each of these is given [3]. (The Gini coefficient is a measure of 
the inequity of distributions of income in a large population which is used widely in 
mathematical economics.) Since the inequalities (2) and (3) are very general, they 
should have other applications, perhaps also in pure mathematics. 
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