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Asymptotics of classical spin networks

STAVROS GAROUFALIDIS
ROLAND VAN DER VEEN
APPENDIX BY DON ZAGIER

A spin network is a cubic ribbon graph labeled by representations of SU(2). Spin
networks are important in various areas of Mathematics (3—dimensional Quantum
Topology), Physics (Angular Momentum, Classical and Quantum Gravity) and Chem-
istry (Atomic Spectroscopy). The evaluation of a spin network is an integer number.
The main results of our paper are: (a) an existence theorem for the asymptotics of
evaluations of arbitrary spin networks (using the theory of G —functions), (b) a ratio-
nality property of the generating series of all evaluations with a fixed underlying graph
(using the combinatorics of the chromatic evaluation of a spin network), (c) rigorous
effective computations of our results for some 6; —symbols using the Wilf—Zeilberger
theory and (d) a complete analysis of the regular Cube 12 spin network (including a
nonrigorous guess of its Stokes constants), in the appendix.

57N10; 57M25

1 Introduction

1.1 Spin networks in mathematics, physics and chemistry

A (classical) spin network (I", y) consists of a cubic ribbon graph T (ie, an abstract
trivalent graph with a cyclic ordering of the edges at each vertex) and a coloring y of
its set of edges by natural numbers. According to Penrose, spin networks correspond to
a diagrammatic description of tensors of representations of SU(2). Here a color k on
an edge indicates the k + 1 dimensional irreducible representation of SU(2), and their
evaluation is a contraction of the above tensors. Spin networks originated in work by
Racah and Wigner in atomic spectroscopy in the late forties [38; 39; 40; 41; 52]. Exact
or asymptotic evaluations of spin networks is a useful and interesting topic studied by
Ponzano and Regge [37], Biedenharn and Louck [6; 7] and Varshalovich, Moskalev and
Khersonskii [48]. In the past three decades, spin networks have been used in relation
to classical and quantum gravity and angular momentum in 3 dimensions; see Engle,
Pereira and Rovelli [14], Penrose [35; 36] and Rovelli and Smolin [44]. In mathematics,
g—deformations of spin networks (so called quantum spin networks) appeared in the
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eighties in the work of Kirillov and Reshetikhin [28]. Quantum spin networks are
knotted framed trivalent graphs embedded in 3—space with a cyclic ordering of the
edges near every vertex, and their evaluations are rational functions of a variable ¢g. The
quantum theta and 6 j —symbols are the building blocks for topological invariants of
closed 3—manifolds in the work of Turaev and Viro [47; 46]. Quantum spin networks are
closely related to a famous invariant of knotted 3—dimensional objects, the celebrated
Jones polynomial; see [23]. A thorough discussion of quantum spin networks and
their relation to the Jones polynomial and the Kauffinan bracket is given by Kauffman
and Lins [27] and Carter, Flath and Saito [10]. Recent papers on asymptotics of spin
networks in physics and mathematics include Aquilanti, Haggard and Hedeman [4],
Littlejohn and Yu [29] and Costantino and Marché [12]. Aside from the appearances
of spin networks in the above mentioned areas, their evaluations and their asymptotics
lead to challenging questions even for simple networks such as the cube, discussed in
detail in the appendix. Some examples of spin networks that will be discussed in the

paper are shown in Figure 1.
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Figure 1: From left to right: The theta, the tetrahedron or 6 j —symbol, the
Cube, the 5—sided prism and the complete bipartite graph K3 3 or 9/ —symbol.
The cyclic order of the edges around each vertex is counterclockwise. The
left three spin networks are admissible, and the right two are not.

1.2 The evaluation of a spin network

Definition 1.1 (1) We say a spin network is admissible when the sum of the three
colors a, b, ¢ around every vertex is even and a, b, ¢ satisfy the triangle inequal-
ities l[a—b| <c<a+b.

(2) The Penrose evaluation (T, ) of a spin network (T, y) is defined to be zero
if it is not admissible. If it is admissible, its evaluation is given by the following
algorithm:

e Use the cyclic ordering to thicken the vertices into disks and the edges into
untwisted bands.
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Asymptotics of classical spin networks 3

e Replace the vertices and edges by the linear combinations of arcs as follows:

4
c\/\/b @

e Finally the resulting linear combination of closed loops is evaluated by
assigning the value (—2)" to a term containing n loops.

In the above definition the summation is over all permutations o of the a arcs at an
edge colored a. The Penrose evaluation (I, ) ® of a spin network is always an integer.
Note that the admissibility condition is equivalent to saying that the strands can be
connected at each vertex as in (1). Note also that cubic ribbon graphs I" are allowed to
have multiple edges, loops and several connected components including components
that contain no vertices. In addition, I' is allowed to be nonplanar (contrary to the
requirement of many authors such as Westbury [50], Moussouris [31] and Kauffman
and Lins [27]), as long as one fixes a cyclic ordering of the edges at each vertex. The
latter condition is implicit in [35]. It turns out that changing the cyclic ordering at a
vertex of a spin network changes its evaluation by a single sign; see Lemma 2.1 below.

1.3 Three fundamental problems

It is easy to see that if (I, ) is an admissible spin network and # is a natural number,
then (I',ny) is also admissible. A fundamental problem is to study the asymptotic
behavior of the sequence of evaluations (I',ny)f when n is large. This problem
actually consists of separate parts. Fix an admissible spin network (T, ).
Problem 1.2 Prove the existence of an asymptotic expansion of the sequence (I, ny )P
when 7 is large.

Problem 1.3 Compute the asymptotic expansion of the sequence (I',ny)¥ to all
orders in n effectively.

Problem 1.4 Identify the terms in the asymptotic expansion of (I, ny)¥ with geo-
metric invariants of the spin network.

These problems are motivated by the belief that the quantum mechanics of particles
with large spin will approximate the classical theory. To the best of our knowledge,
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4 Stavros Garoufalidis and Roland van der Veen

the literature for Problem 1.2 is relatively new and short and concerns only thetas
and 6j—symbols with certain labelings. For Problem 1.3, it should be noted that even
for the 6 —symbols not much is known about the subleading terms in the asymptotic
expansion. Some terms are found by Dupuis and Livine in [13] but no general algorithm
is given. As for the geometric interpretation in Problem 1.4 there is a well known
conjecture in the case of the 6j—symbol [37]. Roberts used geometric quantization
techniques to prove this conjecture on the leading asymptotic behavior of 6;—symbols
in the so-called Euclidean case; see [42; 43]. Some results on the 97 —symbol have been
found by Haggard and Littlejohn [22]. Finally a more general interpretation for the
leading order asymptotics appears in [12], however this assumes a hypothesis that has
not been shown to hold in cases other than the 6 —symbol. Problems 1.2-1.4 can also
be viewed as the classical analogue of the problem of understanding the asymptotics of
quantum spin networks and quantum invariants. Even less is known in the quantum
case, but see the authors’ earlier work [20]. A well known conjecture in this context is
the volume conjecture; see Kashaev [24] and Murakami and Murakami [32].

1.4 A solution to Problem 1.2

In this paper we give a complete solution to Problem 1.2 in full generality. A convenient
role is played by the following normalization of the spin network evaluation. This
normalization was introduced independently by Costantino [11] in the g—deformed case.

Definition 1.5 We define the standard normalization of a spin network evaluation by
1

()’

2 (Cy)=

where 7! is defined to be the product

. —dy +by +cy\, say—by +cy\, say +by —cy
3 I!_vel;!m( 2 )'( 2 )'( 2 )!’

where ay, by, ¢, are the colors of the edges adjacent to vertex v, and V(I") is the set
of vertices of T".

The standard normalization has a number of useful properties (see Theorem 1.7 below)
that can be stated conveniently in terms of a generating function that we now define. If
we fix a cubic ribbon graph I' one can consider many spin network evaluations, one
for each admissible labeling y of I'. We organize these in a generating function by
taking a formal variable for every edge and encoding y in the exponents of monomials
in these variables.
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Asymptotics of classical spin networks 5

Definition 1.6 Given a cubic ribbon graph I' define a formal power series in the
variables z = (z¢)ceE(T) by

Fr(z)=) (T.y)z",

y=0
Yy — y(e)
where zV = ]_[eeE(F) zg’,and E(I") denotes the set of edges of T".

By virtue of our use of the standard normalization we can prove the following theorem
about our generating function Fr.

Theorem 1.7 (1) For all spin networks (I, y), the standard evaluation (I, y) is an
integer.
(2) The sequence (I',ny) is exponentially bounded.

(3) For any cubic ribbon graph I the generating series Fr is a rational function
explicitly defined in terms of T".

To illustrate the last part of the theorem let us mention the special case in which I" is
planar with the counterclockwise orientation. In this case a result from [50] states

1
Pr(z)*’
where Pr(z)=)_ ceCr z¢ and Cr is the set of 2—regular subgraphs of I'. Our theorem
generalizes this result to arbitrary I'; the precise statement can be found in Theorem 2.9.

The next result gives a complete answer to Problem 1.2. To state it, we need to recall a
useful type of sequence; see the first author’s works [16; 17].

Fr(z) =

Definition 1.8 We say that a sequence (ay) is of Nilsson type if it has an asymptotic
expansion of the form

@ an~ Yy N'n®(logm)PS) o phy a,p(1/n).
AP
where
e the summation is over a finite set of triples (A, «, B);
 the growth rates )\ are algebraic numbers of equal magnitude;
o the exponents « are rational and the nilpotency exponents 8 are natural numbers;
e the Stokes constants S), 4 p are complex numbers;

 the /1y 4 g(x) are formal power series with coefficients in a number field K
such that the coefficient of x” is bounded by C"n! for some C > 0 and the
constant coefficient is 1.
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Note that a sequence of Nilsson type uniquely determines its asymptotic expansion
(see (4)) as was explained in detail in [17]. Using the theory of G —functions, (discussed
in Section 3.2), we prove the following theorem.

Theorem 1.9 For any spin network (I, y) the sequence (I', ny) is of Nilsson type.

1.5 A partial solution to Problem 1.3

Regarding Problem 1.3, we introduce a new method (the Wilf—Zeilberger theory) which

e computes a linear recursion for the sequence (I, ny);

e given a linear recursion for the sequence (I",ny), effectively computes the
corresponding triples (A, @, B), number field K and any number of terms of the
power series /1) 4 5(x) € 1 + xK[x] in Definition 1.8;

e numerically computes the Stokes constants Sy o 5.

Given this information, one may guess exact values of the Stokes constants. In some
cases, we obtain an alternative exact computation of the Stokes constants, too. As an
illustration of the theorem we will present computations of the asymptotic expansions
of three representative 6j—symbols up to high order using the Wilf—Zeilberger method
in Section 4.1. In the Appendix we will present additional numerical results on the
asymptotic expansion of the case of the cube spin network. About 20 more examples
of spin network evaluations (including the s—sided prisms for s = 2,...,7 and the
twisted s—sided prisms for s =2,...,5) have been computed, and the data is available
from the first author upon request.

1.6 A conjecture regarding Problem 1.4

The example of the cube spin network also provides evidence for the following conjec-
ture on the growth rates A in the Nilsson type expansion. The conjecture connects the
growth rates of suitable spin networks to the total mean curvature of a related Euclidean
polyhedron. Let P be a convex polyhedron in three dimensional Euclidean space.
Denote by M (P) the total mean curvature of P. Recall that M (P) = % Yoo lete,
where ¢, is the exterior dihedral angle at edge e and £, is the length of the edge.

Conjecture 1.10 Let (T', y) be a planar spin network such that the dual of T" is
realized as the 1—skeleton of a convex Euclidean polyhedron P with edge lengths
given by y . The numbers e=™M(P) are growth rates in the asymptotic expansion of the
unitary evaluations of (I',ny)Y .

Geometry & Topology, Volume 17 (2013)



Asymptotics of classical spin networks 7

In the conjecture we are using the so called unitary evaluation of a spin network defined
in Section 4. This evaluation is still of Nilsson type since it differs from the standard
one by an explicit factor.

After this work was completed, an approach to Problems 1.2—1.4 was proposed by
Costantino and Marche in [12] using generating functions. Their approach requires cer-
tain nondegeneracy conditions, and in particular does not give a solution to Problem 1.2
or 1.3 for the regular cube spin network; see the Appendix.
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2 Evaluation of spin networks

In this section we treat two ways of calculating the evaluation of a spin network. The
first is by recoupling theory and leads to practical but noncanonical formulas for the
evaluations as multisums. The second way is the method of chromatic evaluation. This
leads to the proof of the generating function result, Theorem 1.7 announced above.

We start by recording some elementary facts about spin network evaluations. First of all
our definition of the standard evaluation assumes that there are no edges without vertices.
By definition we will add an (a, a, 0) colored vertex to any a—colored component that
has none. This makes sense because of part (a) of the following.

Lemma 2.1 Let (I', y) be a spin network and consider the standard evaluation.

(a) Inserting a vertex colored (0, a, a) in the interior of an edge of " colored a does
not change the standard evaluation of the spin network.

(b) Changing the cyclic ordering at a vertex whose edges are colored a, b, ¢ changes
the evaluation by a sign (—1)@@=D+bb=1+c(c=1))/2

Proof (a) The chosen normalization introduces an extra factor 1/a! for the new
vertex labeled (0, a, @), while it follows from the definition that one also inserts an
extraneous summation over permutations in the pre-existing edge labeled a. Since

Z Z sgn(o)o sgn(t)t = al Z sgn(o)o,

0€S, T€ES, 0€ES,

the evaluation is unchanged.
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8 Stavros Garoufalidis and Roland van der Veen

(b) Changing the cyclic order at a vertex with edge labels a, b, ¢ has the following
effect. The alternating sum at each of the adjacent edges is multiplied by the permutation
that turns the arcs in the edge 180 degrees. This element has sign a(a—1)/2 in S,. O

As a consequence of part (a) of the above lemma, an edge labeled 0 in a spin network
can be removed without affecting the evaluation. There is an alternative bracket
normalization (T, y)® of the evaluation of a spin network (T, ) which agrees with a
specialization of the Jones polynomial or Kauffman bracket.

Definition 2.2 The bracket normalization of a spin network (I, y) is defined by

B __ 1 P
(%) (T, 7) —5<F,V> ,
where
(6) &l = 1_[ y(e)!.
ecE)

This normalization has the property that it coincides with the Kauffman bracket (Jones
polynomial) of a quantum spin network evaluated at 4 = —1; see [27]. However,
(T, )8 is not necessarily an integer number, and the analogous generating series does
not satisfy the rationality property of Theorem 1.7.

2.1 Evaluation of spin networks by recoupling

In this subsection we describe a way of evaluating spin networks by recoupling. We
will reduce the evaluation of spin networks to multidimensional sums of 6;— and
theta-symbols. The value of the 67— and theta-symbols is given by the following
lemma from [27; 50], using our normalization. The choice of letters in coloring the
67 —symbol is traditional following for example [27].

Lemma 2.3 (1) Let (A, y) denote a tetrahedron colored and oriented as in Figure |
with y = (a,b,c,d, e, f). Its standard evaluation is given by

(Ay) =

min S;

( ) X k
( ) ( )(Sl—k,SZ—k,SS k,k—jl’k Z’k 3’k 4)

k=max T;
( a ) al
ai,d,...,dy ai!l---a,!
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Asymptotics of classical spin networks 9

denotes the multinomial coefficient when a1 +---+a, = a, and S; are the half
sums of the colors in the three quadrangular curves in the tetrahedron and Tj
are the half sums of the colors of the edges adjacent to a given vertex. In other
words, the S; and T} are given by
®B) Si=1a+d+b+c), Sy=ga+d+e+f), Sy=3(b+c+e+ [),
© leé(a+b+e), T2=%(a+c+f),
Ty=3(c+d+e), Ta=3(b+d+f).

(2) Let (®,y) denote the ® spin network of Figure | admissibly colored by
y = (a, b, c). Then we have

a+b+c
. (a+b+c)/2 a—+ b +c 2
(10) (©,y)= (D" ¢ (T +1 —a+b+c a—b+c atb—c |’
2 > 2 ’ 2

Finally note that the evaluation of an n—labeled unknot is equal to (—1)"(n 4 1).

Recoupling is a way to modify a spin network locally, while preserving its evaluation.
This is done as in Figure 2. The topmost formula is called the recoupling formula and
follows from the recoupling formula in [27], using our conventions. The other two
pictures in the figure show the bubble formula and the triangle formula.

N
k k a b
) ) ) .’ P
e - 2 f
k admissible
¢ d a C
G @ ¢ N

k a a
b= 8i” k B/N\C = “«L_ 4 by
O N a7

Cc

Figure 2: The recoupling formula (top), the bubble formula (left) and the
triangle formula (right). The sum is over all k for which the network is
admissible, and 8 ; is the Kronecker delta function.

The bubble formula shown on the left of Figure 2 serves to remove all bigon faces.
Likewise the triangle formula can be used to remove triangles. The recoupling and
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10 Stavros Garoufalidis and Roland van der Veen

bubble formulas suffice to write any spin network as a multisum of products of 6 —
symbols divided by thetas. To see why, we argue by induction on the number of edges.
Applying the recoupling formula to a cycle in the graph reduces its length by one and
preserves the number of edges. Keep going until you get a multiple edge which can
then be removed by the bubble formula.

Although the triangle formula follows quickly from the bubble formula and the re-
coupling formula it is important enough to state on its own. For example the triangle
formula shows that the evaluation of the class of triangular networks is especially
simple. The triangular networks are the planar graphs that can be obtained from the
tetrahedron by repeatedly replacing a vertex by a triangle. By the triangle formula the
evaluation of any triangular network is simply a product of 6 —symbols divided by
thetas. No extraneous summation will be introduced.

To illustrate how recoupling theory works, let us evaluate the regular s—sided prism
and K3 3. Consider the s—sided prism network as shown in (11) (for s = 5) where
every edge is colored by the integer n. In the figure we have left out most of the
labels n for clarity. By convention unlabeled edges are colored by n. Performing the
recoupling move on every inward pointing edge we transform the prism into a string of
bubbles that is readily evaluated.

n

s
@jo q @j k
(11) = o
k adm1551ble 9 6 Ps fh k ad%s:sible Gk O

Observing that if 7 is odd the network is not admissible (and thus evaluates to zero),
and denoting the tetrahedron and the theta with one edge colored by k& and the others
by n by S(n, k) and 6(n, k) we conclude the following formula for the n—colored
s—sided prism.

Proposition 2.4 If n = 2N is even we have

| 2N S(2N.2j)\*
(Prismg, 2N) :;(21 1 (m)

and if n is odd we have (Prismg,n) = 0.
For small values of s the prism can be evaluated in a more straightforward way, thus

providing some well known identities of 6j—symbols. Namely when s = 1 we get
zero, when s = 2 we find some thetas and when s = 3 we have by the triangle formula

Geometry & Topology, Volume 17 (2013)
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a product of two 6j—symbols thus giving a special case of the Biedenharn—Elliott
identity; see [27]. For s =4 we find a formula for the regular cube, that will be used in
the appendix. We know of no easier expression for the evaluation in this case. A similar
computation for K3 3 cyclically ordered as a plane hexagon with its three diagonals
gives the following.

Proposition 2.5 Ifn =2N is even we have

2N S@2N.2j)\°
(K33.2N) :;)(_1)1(21 1 (m)

and if n is odd we have (K3 3,n) =0.

Note the similarity between Prism; and K3 3. The only difference is the sign that
comes up in the calculation when one needs to change the cyclic order. The extra sign
makes (K3 3,2N) =0 for all odd N . This is because changing the cyclic ordering at
a vertex takes the graph into itself, while it produces a sign (—1)"V when all edges are
colored 2N .

2.2 Generating series and chromatic evaluation

Recall the generating function Fr(z) for all spin network evaluations with the same
underlying graph I' from Definition 1.6. We are using variables z = (z¢)ccE(T)>
one for each edge, and abbreviate monomials [ [, E(F)ZZ © as z¥. Our goal is to
express Fr explicitly in terms of I'". To do so we need a couple of definitions.

Definition 2.6 Given a cubic ribbon graph I' define a cycle to be a (possibly discon-
nected) 2-regular subgraph of I'. The set of all cycles is denoted by Cr.

In other words, a cycle is a subgraph such that at any vertex an even number of edges
meet. In terms of the cycles we define a polynomial and a quadratic form.

Definition 2.7 Given a cubic ribbon graph I' and X C Ct we define
(12) Prx(2) =Y ex©@]]z-
ceCr eec

where ex (c¢) =—1 (resp. 1) when ¢ € X (resp. ¢ € X'). Also define the function Ot on
the subsets of Cr as follows. Let O (X)) be the number of unordered pairs {c, ¢’} C X
with the property that ¢ and ¢’ intersect in an odd number of places when drawn on
the thickening of I".

Geometry & Topology, Volume 17 (2013)
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Note that the cyclic orientation of I" defines a unique thickening. We call Pr = Pr g
the cycle polynomial of T". It is independent of the cyclic orientation of I". Notice how
the other Pr x only differ from the cycle polynomial in the signs of the individual
monomials. In particular, the polynomials Pr x all have constant coefficient 1.

It is interesting to remark that the cycle polynomial determines the cubic graph, up to a
well-determined ambiguity. First of all we can restrict to connected graphs since the
cycle polynomial is multiplicative under disjoint union. For connected graphs we will
make use of a classic theorem of Whitney, which we quote for the benefit of the reader.
Recall that a connected graph I' is 2—connected (resp. 3—connected) if it remains
connected after removing any one (resp. any two) vertices of I'. A Whitney flip is the
following move on a graph (where R and L contain at least two edges):

A Whitney flip is the graph-theoretic analogue of a knot mutation (see Adams [2]) and
can only be applied to graphs which are not 3—connected.

Proposition 2.8 (Whitney [51]) (a) Let I';, ', be two 2—connected cubic graphs
with same cycle polynomial. Then I', is obtained from I'; by a sequence of Whitney
flips.

(b) Let I" be a 3—connected cubic graph. The cycle polynomial Pr uniquely deter-
mines I".

Proof Since I'; and I', have the same cycle polynomial we have a bijection on the sets
of edges preserving the set of cycles. We can extend this bijection to a bijection on the
set of vertices so that the result follows from a more general theorem of Whitney [51]
that states the following. Two finite 2—connected graphs with a bijection on the set
of vertices that preserves the set of cycles are related by a sequence of Whitney flips.
This also works for noncubic graphs if we define a cycle C of a finite graph I to be
a subgraph of I with the same vertex set as I" such that every vertex of C has even
valency. In case T is a cubic graph, a cycle of I" in the above sense exactly coincides
with Definition 2.6. Thus, part (a) follows.

Part (b) follows from (a) and the fact that 3—connected graphs cannot be Whitney
flipped. a

Geometry & Topology, Volume 17 (2013)
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With the definitions in place we can finally state the precise version of the last part of
Theorem 1.7.

Theorem 2.9 For every cubic ribbon graph I we have

(13) Fr)= Y X eZ[1n Q).

Xccr X

where the coefficients are given by

1

_ 3 (—neraHxny]

ax = 5icr =D '
YCCr

Corollary 2.10 For every spin network (I, y), the evaluation (', y) is an integer
number and (', ny) is exponentially bounded.

In particular Theorem 1.7 reduces to Theorem 2.9 above. To see how the particular
case of planar spin networks comes about we note the following.

Corollary 2.11 When I' is planar with the counterclockwise orientation, then all
cycles intersect an even number of times so (—1)Q(X ) = 1 and hence only ag is

nonzero. It follows that
1

Fr=——o
2
PI‘,@

’

recovering an earlier theorem by Westbury [50].

The proof of this theorem uses the chromatic evaluation method which goes back
to [36]. Our proof builds on earlier work in [50; 27] on planar spin networks and will
be given in the next subsection.

2.3 Chromatic evaluation

Definition 2.12 For N € Z define the evaluation (I, y) ]{), just as in Definition 1.1
except that the value of a loop is now N instead of —2.

Note that by definition (I, y)? , = (T, ¥) . However for positive N the evaluations
are easier to work with combinatorially. Also since the evaluations depend polynomially
on N, the values of the evaluations at positive N will together determine the original
evaluation at N = —2.

Geometry & Topology, Volume 17 (2013)



14 Stavros Garoufalidis and Roland van der Veen

Definition 2.13 Define a cycle configuration to be a function L: Cr — N such that
L(@) =0. A cycle configuration L defines a coloring y (L) as

y(L)e)= > L(o). |L|= > L(). L'=]] L)

ceCr:eec ceCr ceCr

Define the quadratic form Qr on cycle configurations as Qp (L) =) (e.dy L()L(d),
where {c,d} C C runs over the unordered pairs of cycles that intersect in an odd
number of places.

Viewing a (nonempty) subset X C Cr as the cycle configuration thatis 1 on X and 0
elsewhere, this definition of Qr coincides with the one given in Definition 2.7. We
can now state and prove the main lemma that expresses the evaluation for positive N
in terms of cycle configurations.

Lemma 2.14 For positive integers N we have

N
b= % (—I)QF(L)(L)I!.

L:y(L)=y

Here (]Z ) is defined as & o —1)..£1!V —ILI+1) and recall 7! is the normalization factor
from Definition 1.5.

Proof For convenience the proof is summarised in the following string of equalities.
We will comment on each step in turn, introducing new notation as it comes up.

(14) (C.y)h =Y sgn(@)NY/°
oeS,

(15) =Y sgn(0) Y (0. /f)
oesSy, f:U—->B

(16) = > ) sen(0)(o. f)
good f O

(17) = > > (=new

L:y(L)=y f:Ly=L
(18) = Y (—1)Q<L>(N)zz.
L:y(L)=y L
In (14) we have made precise the process of the evaluation of a spin network. Recall

that we replace each vertex by a system of arcs; see (1). Let U be the set of all such
arcs. Next these arcs are connected at the edges of the graph by permutations in the

Geometry & Topology, Volume 17 (2013)
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product of symmetric groups Sy = [[,c g) Sy(e)- An element o € S, gives rise to
an equivalence relation on the set of arcs U indicating which arcs are connected. We
used the notation U /o to mean the number of equivalence classes under this relation
(ie the number of closed loops).

The next equality, (15), is a reformulation of N Ulo in terms of maps f: U — B
where B is an abstract N —element set. Define (o, /) to be 1 if o only connects arcs
of U with the same value of f and define (o, f) = 0 otherwise. By definition we
then have NU/0 = Zf:U—>B<J’ 1.

The next step, (16), is merely an interchange of the two summations. This is important
because in the innermost sum all terms cancel out except for the good f that we
will define now. Let us call a function f: U — B good if there exists a o such that
(o, f) =1 and for every vertex of I it assigns distinct elements of B to all arcs at that
vertex. To see why only the good f contribute, suppose f is not good so there will be
an edge at which two arcs u, u’ satisfy f(u) = f(u’). If (0, f) = 1 then composing o
with a transposition exchanging u and u’ produces a term (o/, /) = 1 such that the
signs of o and o’ are opposite.

Notice that a good f determines a unique o such that (o, /) = 1, since the values of f
must all be distinct at each edge. f also determines uniquely a cycle configuration L ¢
defined for ¢ € Ct by

Le(c)=#{be B|f'(b)ec}.
Here f~!(b) € c means the arcs in the inverse image of b trace out the cycle ¢ of T'.

In (17) we have arranged all the good f according to what cycle configuration they
represent. Note that the sign of the permutation ¢ corresponding to the good f
only depends on L, and actually equals (—1)2&s) | This follows directly from the
interpretation of the sign as sgn(c) = (—1)¥crossings

The final step, (18), consists of counting the number of good f corresponding to a
given cycle configuration L. To obtain such an f from L we first assign disjoint
unordered L (c)—tuples of distinct elements of B to all cycles ¢ € Cr. This can be
done in (IZ ) ways. Finally we have to fix an ordering of the chosen elements of B at
the arcs at each side of every vertex. By the arcs at a side of a vertex we mean the arcs
that run between a fixed pair of half edges at the vertex. This ordering can be fixed

in Z! ways so the proof is complete. a

Since the evaluation (I", y) K, is a polynomial in N, the conclusion of Lemma 2.14
actually holds for all N, in particular N = —2. We record this for future use as the
following corollary, where we have switched back to the standard normalization.
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Corollary 2.15

= ¥ 0@ (),

L:y(L)=y

2.4 Proof of Theorem 2.9

To find a generating function for these evaluations, we first need to expand the sign
(—=1)2r@) in terms of characters. That is we use Fourier analysis on the group
(2)27)I€r!. We often write elements of this group as subsets of Cp. For every
fixed X C Cr we have a character (—1)X@) = (_1)erx L&) In case L is a
cycle configuration we extend the character to a Dirichlet character. So for some
coefficients ay we have

(_I)QI‘(L)Z Z aX(—l)X(L).
XcCr

Taking inner products, the coefficients are given by

1
_ _1\Or(M+|XnY]|
49X = Sier Z (=1 :
YCCr

To rewrite the generating function let us introduce a variable w = (w¢)cecy- for each
cycle and set we = [[,¢. ze. If ¥(L) = y then the color of an edge is the sum of the
number of cycles (with multiplicity) containing that edge, hence

(¥ P = )PPt = TT (ex ()we) ),
ceCr

where €y (¢) is the function that is 1 if ¢ € X and —1 if ¢ € X. Recall the cycle
polynomial Pr x(z) = Zcecr €x (c)w, so we can compute

Z Z (]Z)(_I)X(L)Zy - Z (]Z) 1—[ (ex ()we)E©

Y L:y(L)=y L ceCr
N
= (1 + Z EX(c)wc) = Pli\jX.
@#ceCr

Now setting N = —2 everywhere and applying Corollary 2.15 we have
Fr(z)=) (T.y)z = ) axPrk.

Y XcCr

which completes the proof. a
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3 Asymptotic expansions

The goal of this section is to prove Theorem 1.9 that provides a Nilsson type asymptotic
expansion for spin network evaluations. The general idea is to define the following
(single variable) generating function.

Definition 3.1 Let (T, y) be a spin network. The single variable generating func-
tion Fr, is the formal power series

(19) Fry(z) =) (T.ny)z".

z

Our goal is to show this function is a G —function (defined in Section 3.2 below). It
then follows from the theory of G —functions the sequence (I, ny) is of Nilsson type.
Before doing so we first make some comments on Nilsson type sequences in general.

3.1 Sequences of Nilsson type

Recall from Definition 1.8 that a Nilsson type sequence (a,) has the following asymp-
totic expansion as n — o0

ap ~ Z k"n“(logn)ﬂS;ha,gh;\,a,B(l/n).
Ao, B

The meaning of this expansion is entirely analogous to the more familiar special case
where there is only one growth rate:

Mk

o0
an ~ N"n®(log n)? —
n

k=0

which goes back to Poincaré; see Olver [33]. In this case the meaning is that for every
r € N we have

r—1
lim n" (an)\_”n_“(logn)_ﬂ — Z 'Z_I]z) = iy

n—00
k=0

The general case is similar but to express it we would need more notation; see [17]. It
can be shown that a Nilsson type sequence has a unique asymptotic expansion [17].

An important source of Nilsson type sequences are G —functions that we will introduce
next.

Geometry & Topology, Volume 17 (2013)



18 Stavros Garoufalidis and Roland van der Veen

3.2 G —functions

In this section we recall the notion of a G—function, introduced by Siegel [45] in
relation to transcendence problems in number theory. Many of their arithmetic and
algebraic properties were established by André in [3]. G —functions appear naturally in
Geometry (as Variations of Mixed Hodge Structures), in Arithmetic and most recently
in Enumerative Combinatorics. For a detailed discussion, see [3; 16] and references
therein.

Definition 3.2 We say that a series G(z) = Y oo o anz" is a G—function if

the coefficients a, are algebraic numbers;

e there exists a constant C > 0 so that for every n > 1 the absolute value of every
conjugate of a is less than or equal to C”;

e the common denominator of the algebraic numbers ay, ..., ay is less than or
equal to C";

e ((z) is holonomic, ie, it satisfies a linear differential equation with coefficients
polynomials in z.

For the purposes of this paper the most important property of G —functions is expressed
in the following lemma.

Lemma 3.3 [16, Proposition 2.5; 17, Theorem 4.1] The sequence of Taylor coeffi-
cients of a G —function at z = 0 is a sequence of Nilsson type.

With the help of Lemma 3.3 we can now reduce the proof of Theorem 1.9 to the
following lemma.

Lemma 3.4 For any admissible spin network (I", y) the generating function Fr ,(z)
is a G —function.

In the next subsection we will give a proof of Lemma 3.4.

3.3 Hypergeometric terms

In this subsection we prove Lemma 3.4 (and hence Theorem 1.9) by showing that the
standard evaluations of spin networks are a certain type of hypergeometric multisums
that we will first describe in general.
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Definition 3.5 An r—dimensional balanced hypergeometric datum t (in short, bal-
anced datum) in variables (n,k), where n € N and k = (kq,....k;) e N, is

o afinite list {(¢j, Aj(n,k)) | j € J} where A;: N"T! — 7 is a linear form in
(n,k) and €; € {—1,1} forall j €J,

e avector (Cy,...,C,) of algebraic numbers,

e apolynomial p(n, k)€ Q[n, k],
that satisfies the balancing condition
J
(20) D ej4;=0
j=1

and moreover, the set
(21) Pi={xeR;|4;(l,x)>0forall j € J}
is a compact rational convex polytope.

A balanced datum t gives rise to a balanced term t(n, k) (defined for n € N and
k € Z" NnPy), to a sequence (a,) and to a generating series G(z) defined by:

r J

22) tn. k)= Q[T Cl T 45 k) p(n. k),
i=1 j=1
(23) an= Y  Hnk),
kEZ"ﬁnP‘
(o,]
(24) Gu(z) =) awnz".
n=0

We will call the sequences (a,) balanced multisums. The connection between
balanced multisum sequences and their asymptotics was given using the theory of
G —functions [16]. More precisely, we have the following lemma.

Lemma 3.6 [16, Theorem 2] If t is a balanced datum, then the corresponding
series G(z) is a G —function.

Using this, we can now easily prove Lemma 3.4.
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Proof of Lemma 3.4 Using the recoupling formulae from Section 2.1 we can write
(I, y) as a multidimensional sum of products of 6;—symbols, theta-symbols and
unknots (ie, 1j—symbols) with a denominator consisting of theta-symbols. It follows
from Equations (7) and (10) that the 6 —symbols (resp. theta-symbols) are balanced
1—-dimensional (resp. 0—dimensional) sums, thus the ratio of the product of the theta-
symbols by the product of the theta-symbols is a balanced multidimensional sum. The
unknots can be written as (—1)K (k 4 1)!/k! and are therefore balanced as well. It is
easy to check admissibility guarantees the multidimensional sum has finite range. O

Beware that the term t(n, k) constructed in the above proof is neither unique nor
canonical in any sense.

3.4 Integral representation of spin network evaluations

In this final subsection we comment on the connection between Lemma 3.4 and
Theorem 1.7 on the rationality of the multivariate generating function. The idea is that
the single variable generating function FT,, is a diagonal of the multivariate generating
function FT, where the diagonal is defined as follows.

Definition 3.7 Given a power series f(x1,...,X,) € Qxy,...,x,] and an exponent
J =(j1....,jr) € NI, we define the J—diagonal of f by

(25) (AN =) ¥1(N)=" € Q=

n=0

where [x"/](f) denotes the coefficient of x'llj ! ---xfj "in f.

For every spin network (T', y) we have
(26) Fr, = Ay Fr.

Consequently, the G—function Fr ,, (z) is the diagonal of a rational function, and thus
it comes from geometry in the following sense. Fix a power series f(xq,...,X,) €
Q[x1, ..., x,] convergent at the origin and an exponent J = (ji,..., jr) € N/ and
consider the diagonal (A f)(z) € Q[z] as in Definition 3.7. Let C denote a small
real r—dimensional torus around the origin. Then we have the following.

Lemma 3.8 With the above assumptions, we have

f(x1,...,xp)

(2mi)” Cx{l B

@27 (Arf)2) =

dxi A Ndx,.
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Proof With the notation of Equation (25), an application of Cauchy’s theorem gives
for every natural number 7,

1 f(x1,...,xp)

Q2ri)" Je (X{I ~--xf")"+1

dxi N~ ANdx,.

[x"71(f) =

Multiplying by z” and summing up for n and interchanging summation and integration
concludes the proof. a

If in addition f(xq,...,x,) is a rational function, then the singularities of the analytic
continuation of the right hand side of (27) can be analyzed by deforming the integration
cycle C and studying the corresponding variation of Mixed Hodge Structure; see Bloch
and Kreimer [8]. Such G —functions come from geometry; see [3; 8].

4 Examples and a conjecture on growth rates

In this section we illustrate the result of Theorem 1.9 on the asymptotic expansions in
the case of the 67 —symbol. We also review the well known geometric interpretation of
the leading asymptotics in this case. Finally we formulate a conjecture on the geometric
meaning of the growth rates in the asymptotic expansion of more general spin networks.
To discuss the geometric aspects of the asymptotics of spin networks it is convenient to
introduce one more normalization of spin network evaluations.

Definition 4.1 We define the unitary normalization (T, y)U of a spin network evalu-
ation (I', y) to be

where

O = ] VI(©.av by, )l

veV ()

and ay, by, ¢y are the colors of the edges at vertex v.

Since the asymptotics of the normalization factor ®(y) is of Nilsson type by Stirling’s
formula [33], we see that (I', ny)Y is still of Nilsson type.
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4.1 The 6j —symbol and the tetrahedron

The special case of the tetrahedral spin network or 6;j—symbol motivates much of
the questions we asked in the introduction. There is a well known interpretation of
the leading asymptotics in terms of a metric tetrahedron 7" dual to T" such that the
length of a (dual) edge e is given by y(e) [37]. Provided the 6 symbol is admissible,
such a tetrahedron 7 can always be found uniquely in either R, R? or Minkowski
space R2>!; see Blumenthal [9, Chapter 8]. We say the 6 j —symbol is Euclidean, Plane
or Minkowskian depending on the type of 7. The type is determined by the sign of
the Cayley—Menger determinant of 7. Let us be more specific in the Euclidean case.
Denote by ¢, is the exterior dihedral angle of T at edge e.

Theorem 4.2 Let (I, ) be a Euclidean 6 symbol. The sequence (I',ny)Y is of
Nilsson type where the growth rates, Stokes constants and powers of n and logn are

¢~ .
. ;) iy 4+
)\,i:elzjVJZd)]’ S:I::—e 2 4,
V6t Vol(T')
3
0625, ,8:0

These formulae have been proven in [42]. By analytically continuing the Euclidean
formula for dihedral angles in terms of edge lengths, the results can be extended to
the Minkowskian case. This will be postponed to a future publication. The Plane case
must be different since the volume vanishes in this case. Also any interpretation of the
terms in the asymptotic expansion of the 6 j —symbol beyond the ones just given is very
much an open problem; see [13]. This warrants a detailed and exact investigation of
the asymptotics of three representative 6j—symbols using the Wilf—Zeilberger method.
In this method we compute a recursion for the sequence from which all terms in the
asymptotic expansion except for the Stokes constants may be computed.

We have chosen the simplest examples of a Euclidean 6 —symbol, a Plane one and a
Minkowskian 6 —symbol. Their colorings are given by

VEuclidean = (27 2’ 27 2, 2’ 2)’
VPlane = (3941 4’ 37 51 5)1
YMinkowskian = (4, 4,4,4,6, 6)
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Using the unitary evaluation (Definition 4.1) we thus consider the sequences (ay), (by)
and (cp):

o DR+ !

n!®
= 2 _ 44y _ W3’
(Bn+1)! = (k —3n)!*(4n—k)!

an = (A, nYeuctidean) Y
y _nPenRen? CDME+ 1)

by = A? ane s
n 3= (A 1Y plane) 6nt D 2= (k—6m)*(Tn— k)l(8n— k)(9n — k)|

n2Gn)t & —Dk(k +1)!
Cp = <A’ nVMinkowskian>U # ( ) ( )

T (n+ )2 (k= Tm) (80— k)l(10n — k)12

In what follows we denote by det(C) the Cayley—Menger determinant and by K
the field generated by the coefficients of the power series /1 4 g in the asymptotic
expansion. The command

<< zb.m

loads the package of Paule and Riese [34] into Mathematica. The command

teucl[n_, k_] :=n!~6/(3n+1) 142 (-1)~k (k+1) 11/ ((4n-k) 143 (k-3n)!*4)

defines the summand of the sequence (a;), and the command

Zb[teucl[n, k], {k, 3n, 4n}, n, 2]

computes the following second order linear recursion relation for the sequence (ay):

-9 (1+n) (2+3n)” (4+3n)” (451+460n+115n%) a[n] +
(3+2n) (319212+1427658n+2578232n” +2423109n° +1255139n" +340515n° +37835n°) a[l+n] -
9 (2+n) (5+3n)° (7+3n)” (106+230n+115n%) a[2+n] =0

This linear recursion has two formal power series solutions of the form

—432+£31i4/2 109847 F22320i /2
576n 331776n2
—18649008 4 4914305i /2 14721750481 + 45578388960i /2
573308928n3 * 660451885056n4
—83614134803760 = 7532932167923i /2
380420285792256n°
n —31784729861796581 F 212040612888146640i /2 n 0( 1 ))
657366253849018368n° '

1
dip=——A" (1 +
+.,n }’13/2 4+
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where
_ w — e:Fi6aIccos(l/3)

+ 729

are two complex numbers of absolute value 1. Notice the growth rates indeed match
the interpretation in terms of dihedral angles of the regular tetrahedron predicted in
Theorem 4.2.

The coefficients of the formal power series a4 5 are in the number field K = Q(v/—2)
and the Cayley—Menger determinant is det(C) = 2°. More is actually true. Namely,
the sequence (a,) generates two new sequences (/4+,,) and (u— ) defined by

1 Ty
_ n 5
dt.n = n3/2Ai Z nl
=0

where 1+ o = 1. Each of the sequences (w4 ) are factorially divergent. However, the
generating series Z;:O:()Zn WU+ n+1/n! are G—functions (as follows from [3]), and the
sequences (/4+ ,+1/n!) are of Nilsson type, with exponential growth rates A4 — A .
The asymptotics of each sequence (it4 ,+1/n!) gives rise to finitely many new se-
quences, and so on. All those sequences span a finite dimensional vector space,
canonically attached to the sequence (a;). This is an instance of resurgence, and is
explained in detail by the first author and Marifio in [19, Section 4]. The second order
recursion relation for the Plane and the Minkowskian examples has lengthy coefficients,
and leads to the following sequences for (b+ ,) and (c4,,):

pe L pn ( _ 1, a7TI3 25427 9063361
M a3 T T 30 T 4665602 223948863 | 174142586881
109895165 1927530983327
 10448555212875 +'2437438960041984;76'Jr"')’
o (1__ 37 3883 13129 5700973

b= 5N\~ 560 T Ge6s6n2 ~ 3478976m3  §707129384n7

14855978561 2862335448661
©33435376680961° +'2437438960041984n6'+"')’
o= m/\’i( 336 F 136942 1769489 F 831792/2
n 4032n 1806336n2
67925105712 F 66827896993+/2
2184944025673
5075437500833257 F 2589265090380768 /2
+ 1761938862243847*
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100978405759997442992 F 98904713360431641651 /2
* 552544027199668224n5
685103512739058526758457  349782631602887151717776+/2
+ 247539724185451364352n5 '+"')’

where in the Plane case we have
A=Ay =—-1, K=Q, det(C)=0,
and in the Minkowskian case we have

696321931873 — 111529584108+/2

N =0.794127...,
678223072849
21931 111529584108+/2
A o 096321931873 + 111529584108v2 _ | o0\
678223072849

K =Q(2), det(C)=—-2%3%

Again as in the Euclidean case the growth rates may be interpreted in terms of dihedral
angles. Finally note that the growth rates A+ have norm 1 in Q(~/2).

4.2 A conjecture on growth rates

In the special case where (I", y) is an admissible tetrahedron, we have seen a geometric
interpretation for the growth rates of (I', ny)V . We can reformulate this more concisely
using mean curvature. Recall that for a convex Euclidean polyhedron P in R3 the mean
curvature is defined by M (P) = % Y o lepe, Where ¢, is the exterior dihedral angle at
edge e and ¢, is the length of the edge. So in the case of the tetrahedron Theorem 4.2
says that if there exists a Euclidean tetrahedron 7" whose 1—skeleton is dual to I" and
whose edge lengths are given by y, then the growth rates are given by {e*'M ™y,
We would like to conjecture that the growth rates of a spin network always include a
growth rate corresponding to the mean curvature of the dual polyhedron. For simplicity
we formulate the conjecture for planar spin networks only.

Conjecture 4.3 Let (I', y) be a planar spin network with the counterclockwise orien-
tation. Suppose that I" is 3—connected and that its dual can be viewed as the 1—skeleton
of a convex Euclidean polyhedron P whose edge lengths are given by y . The set of

growth rates of the Nilsson type sequence (I, ny )V contains e*'M ),

By Cauchy’s theorem the dual polyhedron P is determined up to isometry by its

1—skeleton and its edge lengths, ie by (I", y). This follows from the fact that P has
only triangular faces and is convex.
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As a first test of the conjecture we show that it behaves well under the triangle formula
on spin networks defined in Section 2.1. In particular this will verify the conjecture
for all triangular networks as defined in Section 2.1. Let (T, y) and (I'/, y’) be two
spin networks that both satisfy the hypotheses of Conjecture 4.3 and denote their dual
polyhedra by P and P’. Furthermore, suppose that (I'’, ') is obtained from (T, y)
by replacing a vertex v € I' by a triangle. Dually this implies that P’ can be produced
by attaching a tetrahedron to a (triangular) face of P.

Lemma 4.4 If Conjecture 4.3 is true for (T', y) then it is also true for (I'',y’).

Proof Let the labels around the vertex v be a, b, ¢ and call the labels of the edges of
new triangle 4, B, C as in Figure 2 (lower right) and denote by (A, 1) the tetrahedron
spin network with labels a, b, ¢, A, B, C that shows up in the triangle formula. This
formula shows that

(F/,n)/)U — (_1)(n(a+b+c))/2<A’ HW)U(F, l’l)/)U,

since the theta only contributes a sign in the unitary evaluation. We already know
Conjecture 4.3 holds for tetrahedra with Euclidean duals, including (A, ¥). Let us call
the dual Euclidean tetrahedron 7". Multiplying the asymptotic expansions on the right
hand side we see that the growth rates will include

(_1)(a+b+c)/26:|:i(M(P)+M(T)) — e:I:iM(P’).

To see why the equality holds note that we can dissect P’ into P and T along the
triangle with labels a, b, ¢ that is dual to the vertex v. The minus sign coming from
the theta accounts for the fact that we are working with exterior dihedral angles and
these add an additional factor of w when comparing the angles in a dissection. a

The Euclidean volume also appears in the asymptotic expansion of the tetrahedral
spin network, as part of the Stokes constants; see Section 4.1. However this does not
generalize well to larger networks since the volumes do not add under the triangle
formula. In the appendix we will see a less trivial confirmation of the above conjecture
for the cube spin network.

S Challenges and future directions

In this section we list some challenges and future directions. Our first problem concerns
a bound on the unitary evaluations.
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Problem 5.1 Show that the unitary evaluation of a spin network (I", y) satisfies

T,V <1

This problem may be solved using unitarity and locality in a way similar to the proof that
the Reshetikhin—Turaev invariants of a closed 3—manifold grow at most polynomially
with respect to the level; see the first author [15, Theorem 2.2]. Our next problem is a
version of the Volume Conjecture for classical spin networks with all edges colored
by 2. Problem 5.1 also suggests that the growth rates must be less than or equal to 1.
In the case y = 2n more seems to be true.

Problem 5.2 The growth rates of the sequence (I, 2n)Y are on the unit circle.

A positive solution to this problem is known for the following ribbon graphs: the ©,
the tetrahedron, the 3—faced prism and more generally for the infinite family of drums;
see Abdesselam [1]. More generally one may pose the following.

Problem 5.3 Give a geometric meaning to the set of growth rates of a spin network.

We have formulated Conjecture 4.3 as a partial answer to this question but that concerns
only a single special growth rate among many. Along the same lines one may ask
for an interpretation of the rest of the asymptotic expansion. Looking at the case of
the 6/ —symbol it seems reasonable to consider the number field K1, generated by
the coefficients of the power series /1 4 g in the Nilsson type asymptotic expansion
of (I, ny)V.

Problem 5.4 Give a geometric interpretation of the number field Kt of a spin
network (I, ).

Also the Stokes constant may have a geometric meaning as in the case of the tetrahedron.

Problem 5.5 Give a geometric meaning to the Stokes constants of the sequence
(C.ny)Y.

The next problem is a computational challenge to all the known asymptotic methods,
and shows their practical limitations.

Problem 5.6 Compute the asymptotics of the evaluation (K3 3,2n) (given explicitly
in Proposition 2.5) and (Cube, 2n).

The next problem is formulated by looking at the examples from Section 4.1.
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Problem 5.7 Prove that for every coloring y of the tetrahedron spin network (A, y),
the sequence (A, ny) satisfies a second order recursion relation with coefficients
polynomials in n. Can you compute the coefficients of this recursion from ) alone?

Let us end this section with a remark. The main results of our paper can be extended
to evaluations of spin networks corresponding to higher rank Lie groups. This will be
discussed in a later publication.

Appendix A: Asymptotics of the regular cube

We give the asymptotic expansion of the standard evaluation a, of the 1—skeleton of
the 3—dimensional cube, with all edges colored by 2n. Proposition 2.4 implies (a) is
given by

2n
(28) an =Y (2k + )y ,.
k=0

ok \*(2n—k 1
— S (1)
Onik ;( ) (j—3n) (4n—j)(2n+k+1)’

making it clear that the numbers (a,) are integral and positive. The first few values
of a, are given by

ag =1,

ay = 6144,

a; = 505197000,

az = 77414400000000,

ag = 13937620296600000000,

as = 3685480142898164744060928,

ag = 1038107879077276408534853271552,

a7 = 297223547548257752224492840550400000,

ag = 104193297934159421485149830847575156250000,

ag = 35577316035253000096415678610598379040000000000,

aio = 12357485751601160513255660198337121351402277161410240.

‘We first look for a recursion of the form

J
(29) Y cj()antj =0,

j=0
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with J not too large and ¢; () polynomials of 7 of some not too large degree d . Using
the first few hundred values of (a,), we find experimentally a recursion of this form
with J =4, d = 61 and with ¢;j(n) given by

com) =3%Cn+7Bn+2)2Gn+42Gn+5)"Gn+7)73n+8)(3n + 10)

-(4n +3)(4n +5)Py(n + 3),
c1(n)==2-33+1)°Cn+3)2n+7)Bn+5)"Bn+7)(3n +8)(3n + 10) Py (n),
c(n) =—=2-3*+ 1)’ +2)"2n + 5)(3n + 8)(3n + 10) Py (n),
c3(n)==2-n+1)°m+2)"(m+3)°2n+3)2n+7) P (—n—5),
cam)=m+1)°n+2)"m+3)°m+4H"Q2n+3)4n+ 15)(4n + 17) Py(n + 2),
where Py, Py and P, are irreducible polynomials (normalized to have integral coeffi-
cients with no common factor) with leading terms

Po(n) = 2'1375%7.23547(n 4+ 0(n?*)),
Pi(n) =213375%73235473 (038 4+ 94137 4+ O(n3%)),
Py(n) =213313557.19.23%47-71-73(n*® + 1150* + 0(n**)),

as n — oo, and with the polynomial Py being even. The full values are given at the
end of the appendix.

To analyze the asymptotics of the solutions of the above recursion, we will use the
standard Frobenius theory; see for example Miller [30], Olver [33], Wasow [49] and
Wimp and Zeilberger [53]. If C; denotes the top coefficient of the polynomial ¢;(n),
then we find Z;zonAj factors as (A —312)2 (A — (14++/=2)2*) (A — (1—+/=2)*%)
and that the indicial equation of the root 3'2 has a double root at —9/2, while the
indicial equations of the roots (1 & +/—2)%* both have root —4. This implies that ()
has an asymptotic expansion

12n 1

((logn+c)M1 (%) +M2(r_z

))an(sn YD g ()

(30) an ~ So e :

n4
for some constants Sy, ¢ € R, S; € C and power series M;(x), M>(x) € Q[x],
M;3(x) € Q[v/=2][x], normalized by requiring that M; and M3 have constant term 1.
Notice that the three roots 312, (1 4+ «/—_2)24 have the same absolute value, so that the
different terms of this expansion all have the same order of magnitude up to powers
of n. Using the acceleration method! described by Zagier [54, page 954] and Griinberg
and Moree [21, Section 4], applied to the values of a, for n = 1000, ...,1050, we

I'This method is equivalent to the Richardson transform, explained in detail by the first author, Its,
Kapaev and Marifio in [18, Section 5.2], and also by Bender and Orszag in [5].
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find the numerical values of the constants S; and ¢ and the first few coefficients of the
power series M;. The former are then recognized as

33 7 1+i)(1++/=-2)1?
=m, C=Zlog2+log3+y, S1=( ) ) ,

GD So 231/4 1172

and the latter as

14 419 , 5659 , 84769 ,
Mi(x)=1—-—x+4+—x"——Xx X
9 324 8748 629856

1 4771 441
Mz(x):_x_@x2+lx3_ﬂx4 cee
2 864 7776 22394880
2080 —43+/ -2 1985023 — 114208/ -2 ,
X X

1152 * 1327104

The acceleration method can give many more terms, but it is easier to simply substi-
tute the Ansatz (30) into the recursion for the a,, thus obtaining as many terms as
desired. The approximation works very well in practice, eg, the maximal relative error
between a, and the right hand side of (30) with 50 terms of the power series M;(1/n)
is about one part in 101%° for n between 900 and 1000. To first order, the above
formulas say that the asymptotics of a, are given by

d 31285 log(2"/*3n) +y +0(1/ /1)
" 7% (2n)* ’

M3(X) =1-

We end by giving the complete values of the polynomials P;(n) that appear in the
recursion relation:

Py(n) = 2963901967608960000012% — 1506870906466822560001%*
+ 3066500228101048715401n22 — 331831776907297971277n>°
+219414205267920364521n'% — 968266965898029502267°
+29683042452642732342n'* — 6233837158945489065n 2
+ 868763697226715493n'0 — 77173811768742984n%

4 409415390468450415 — 111886799053248n* + 7970856256002
+ 17508556800,

P1(n) = 513305140601538302976000007>8
+ 4825068321654460047974400000137
+2199575529318734148240368640007>°
+ 64786940771956771719460400640007%°
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+ 138596018058877517667573746466240n>*

+ 2295022658488679405177615124025920133

+ 30614929984046498162519595722728508n>2

+ 338072087836667419737764233439922530n3!
+3151590998989517431768295237323718623n3°
+251690236058858195859321589127444149061%°

+ 174146716308878486922546565722791225448n%8

+ 1053195250756920493731804102357697945572n*7

+ 560636175051838124059499794695965640109512°

+ 26414736794861925209673962053754850002124723

+ 110642699366898526542975775645886257667832n*

+ 413447345600050228521136991970449404260966 12>

+ 1381980145537336658418260176761712507602933n%>

+ 4140268295003002172648827386155584658850114n>!

+ 11132423733718852590472537735822272877436592n2°
+ 268858495940245414216130602688095800686690167'°
+ 58334970199614352499186715966601305101299773n '8
+ 113675657006866049496120543251199160823538984n7
+ 198774677991170902825182509342222362759066932n 6
+ 311443610656870193242629490576780944439111836n'°
+ 436334419544283264503767964716530868856380648n 4
+ 545097336381579864877890591441121830311242864n'3
+ 605044458481431111735014250352650750979996544n 2
+ 594007313574579683774145689072368182659197376n!!
+ 512886129222805060276163096656047277821413760n'°
+ 386709368743514690018446501443764021880730368n°
+252342374226937131766477472379392715246649344n®
+ 140888462647571785365811030970706748098760704n
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+ 66312852042204808325857346405562441033596928n°
+ 25796733254687036537088890539848097231134720n°
+ 80699745953850746316056610613769091022848001*
4+ 19502513478432113195694636517862790881280007°

+ 34155515084482668330963040042798940160000072
+ 38554163497112285346472887524366745600000n
+2104728968892765569954334578933760000000,

P, (n) = 34044436942851501889228800000146
+391511024842792271726131200000014°
+2196627067915657828489263928320001**

+ 8013067972307054904678991211520000143
+213693214418431619419298087215485120n*?

+ 4441366173640824819720536004281937600n*!

+ 74894384718928871397218606262165524844n*°

+ 105330655787409726333439653437166568440013°

+ 12603933341218324699775023159567066766967n>8

+ 130270526199929371052793324163523141276865n>7

+ 117667876115760047748817718332180647926119513°
+9375125430920826953262133708501549064882175n°3

+ 66383537873561799570407105177080643368970738n*

+ 420307309950545627790271278025374052312931480n°3
+2391581100396727961084015883784259869439400176132

+ 12280714697778331715472758947513061657620945580n3"
+5710556141067718110971414789913029140929246105013°
+241147151880727945569092590718565623964677498750n>°
+926919151084739302148924528551196602048329414090,28
+ 3249130587428846232389342739110375794038903230050n>7
+ 10401395584522433137223729045847274251204938831280126
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+ 30443078183785042173235936392545801110737278600700n23

+ 81523471295041101121702148739822166982527381249680n2*

+ 199828567976168135158731196334605133971159536918300123

+ 448394647578816808473555576099796146381767002557015n22
+920880328621349858197546061838422939683875830250825n2!

+ 1730060383317082970163176773077295571528776228823811n>°
+2970768265449411986606322605605748766920711781281175n°
+ 46570496442722930811747133345390700135521168950700381 8
+ 6654448413726919814684796853369712557012807014275460n 1"
+ 8650083204510826813891208265741376798744454496660220n 1
+ 10204350936081623227151423121609083529329974289414800n1°
+ 10892578929911563608834673775127900025242488747892352n 4
+ 10483723584809889429623667272318319527058201296732320n 13
+9059104715506400545606048153659029802430897952414784n 12
+ 6992047378850409545281115023066707881078577900939520n 1!
+ 4790327226399433431900479655636468590589446522365440n'°
4 28910854358419741428243300055317257655420275960960007°
+ 152266361706802646755701852707329928464442556241920018
+ 6916040381466444171537278418706251077388810531840007"

4 2668225165203749016196216325546681927715633408000007°

+ 856973302467131529188643387533446683020450304000007°

4 222876630748787796483970281756768235011179520000007*

+ 45079262659423502275090231908269799028992000000007°

+ 6650458956249292938305985123626848419840000000007>
+ 636352825117478355992806735058766766080000000007
+2962949736504660768760707593463767040000000000.
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Appendix B: Further comments on the asymptotics of the
regular cube

The guessed recursion relation of the sequence (a,) from the previous section agrees
with the result of the independent guessing program Guess of Kauers [26; 25]. The
recursion for (a;) was verified for n =0, ...,2996, where the height (ie, the number of
digits) of a3ggp is 17162. On the other hand, the coefficients of the polynomials ¢y (1)
are integers with a much smaller height 73. In addition, the root A; of the characteristic
polynomial can be written in the form

)\1 — (1 +i\/§)24 — 312612iarccos(—1/3),

where e!2iarccos(—1/3) s the exponentiated total mean curvature of the regular Eu-
clidean octahedron (dual to the regular Euclidean cube) with unit sides. This confirms
Conjecture 4.3 on the asymptotics of evaluations of classical spin networks. The
factor 312 comes from the fact that we are considering the standard normalization and
not the unitary one as is done in Conjecture 4.3.

The asymptotic expansion (30) is clearly of Nilsson type, with the presence of loga-
rithms, and Stokes constants which are no longer algebraic, up to rational powers of 7.
This makes it unlikely that stationary phase type methods will be able to obtain the
asymptotic expansion for the regular cube.
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