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This talk, instead of being a survey, will concentrate on a single 

example, using it to illustrate two themes, each of which has been a 

leitmotif of much recent work in number theory and of much of the work 

reported on at this Arbeitstagung (lectures of Faltings, Manin, Lang, 

Mazur-Soul6, Harder). These themes are: 

i) special values of L-series as reflecting geometrical relation- 

ships, and 

ii) the analogy and interplay between classical algebraic geometry 

over ~ and algebraic geometry (in one dimension lower) over 

Z, and more especially between the theory of complex surfaces 

and the theory of arithmetic surfaces ~ la Arakelov-Faltings. 

In particular, we will see that there is an intimate relation- 

ship between the positions of modular curves in the homology 

groups of modular surfaces and the positions of modular points 

in the Mordell-Weil groups of the Jacobians of modular curves. 

The particular example we will treat is the elliptic curve E 

defined by the diophantine equation 

y(y - i) = (x + l)x(x - i) ; (I) 

most of what we have to say applies in much greater generality, but 

by concentrating on one example we will be able to simplify or sharpen 

many statements and make the essential points emerge more clearly. 

The exposition has been divided into two parts. In the first 

(§§1-5), which is entirely expository, we describe various theorems 

and conjectures on elliptic and modular curves, always centering our 

discussion on the example (i). In particular, we explain how one can 

construct infinitely many rational solutions of (i) by a construction 

due to Heegner and Birch, and how a result of Gross and the author 

and one of Waldspurger lead one to surmise a relationship between 

these solutions and the coefficients of a modular form of half-integral 

weight. The second part (§§6-9) is devoted to a proof of this relation- 

ship. 

I would like to thank G. van der Geer and B. Gross for useful 

discussions on some of the material in this talk. 
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I. The elliptic curve E and its L-series. 

Multiplying bo~h sides of (i) by 4 and adding 1 we obtain the 

Weierstrass form 

2 
Yl = 4x3 4x + i (Yl = 2y - i); (2) 

from this one calculates that the curve E has discriminant A = 37 

and j-invariant j = 21233/37. Of course, (i) and (2) are affine 

equations and we should really work with the projective equations 

2 2 3 2 2 4x 3 4xz 2 + z 3 whose points are the y z - yz = x - xz and yl z = - 

points of (i) or (2) together with a "point at infinity" (0:i:0). The 

points of E over any field k form a group with the point at infinity 

being the origin and the group law defined by P + Q + R = 0 if P,Q,R 

are collinear; the negative of a point (x,y) of (i) or (x,y I) of 

(2) is (x,l-y) or (x,-Yl) , respectively. In accordance with the 

philosophy of modern geometry, we try to understand E by looking at 

the groups E(k) of k-rational points for various fields ~. 

k = ~ : The set of real solutions of (i) is easily sketched; it 

consists of two components, ~ ~ x ~ ~ and y f x, where ~ = -1.107..., 

= 0.2695 .... y = 0.8395... are the roots of 4x 3 - 4x + 1 = 0 (the 

group E(~ ) is isomorphic to S 1 x ~/2Z). We have the real period 

! S d x  d x  
~i = - 2 - 2.993458644...; (3) 

E ~ Yl /4x3_ 4x+ 1 Y 

the numerical value is obtained by using the formula ~i = ~/M(/7"i, 
Y/~-8), where M(a,b) denotes the arithmetic-geometric mean of Gauss 

= limb for a,b > 0, where {a0,b 0} = {a,b}, (M(a,b) = lira a n n 

a +b 

{an+ I, bn+ I} = {--~-~, n/~n}). 

As well as the real period we have the imaginary period k = ~: 

I Y dx 
~2 = 2 - 2.451389381...i (4) 

6 /4x3-4x+l 

(which can be calculated as i~/M( 8/~/~-~, /y-s)). The set of complex 

points of the (projective) curve E is isomorphic to the complex torus 

C/Z~ 1 + Z~ 2 via the Weierstrass p-function: 
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¢/Ze I + Z~ 2 * E({) 

! 

(Z 
m,n 

p(z) 

p ' (z) +i) , 
z , • (p (z) , 2 

1 ' 1 
= -~+ Z ( 2- 

z m,n (z-m~l-nw 2) 

i 

(m~l+n~02) 2) 

means [ ), which satisfies 
(m,n)~(0,0) 

p.2 = 4p3 - g2 p - P3' 

, ( g2 60 [ ........ 1 4~ 4 oo 
= 4 - ~ i + 240 

m,n (m~l+n~ 2) 3~ 2 n=l 

3 n ) 
.2zin~i/~ 2 : 4, 
e -i 

, ~ 5 
g3 = 140 [ 1 _ 8w6 ( n ) 

m,n (m~l+nw2)[ 27~J2~ 1 - 504 n=l~ e2Zin~i/e2-1 =-I. 

k = ~: The Mordell-Weil group E(~) is infinite cyclic with generator 

P0 = (0,0), the first few multiples being 

15 
2P 0 = (l,0), 3P 0 = (-i,i), 4P 0 = (2,3), 5P0=(~,~), 6P 0 = (6,-14) 

and their negatives -(x,y) = (x,l-y). If we write nP 0 as (Xn,Y n) 

and x n as Nn/D n with (Nn,D n) = i, then 

log max(INnl , IDnl ) r~ cn 2 (Inl _~ ~) 

with a certain positive constant c (in other words, the number of 

solutions of (i) for which x has numerator and denominator less than 

B is asymptotic to 2c-i/2(iog B) I/2 as B + co). This constant is 

called the height of P0 and denoted h(P0) ; it can be calculated via 

an algorithm of Tate (cf. [14], [ 2]) as 
co 

h(P 0) = [ 4-i-ilog(l+ 2t. 2- 2t.3+ t.4), 
i=l l 1 1 

where the t i (=l/x2i) are defined inductively by 

t I . . . .  i, ti+ 1 (I + 2ti 2 2ti 3 + ti4)/(4ti 4t'31 + t'4)'i 

and we find the numerical value 

h(P 0) = 0.0511114082... 

Similarly one can define h(P) for any P 6 E(~); clearly 

(5) 

h(nPo) = 
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n2h (P0) . 

k : Z/pZ: Finally, we can look at E over the finite field k = ~/pZ, 

p~37 prime. Here E(k) is a finite group of order N(p) + I, where 

N(p) = #{x,y(mod p) [y2 _ Y ~ x 3 _ x (mod p)}. 

We combine the information contained in all these numbers into the 

L-series 

LE(S) = II 1 1 (6) 
pfi37 l+ N P)-P+~s i+ 

P P 

1 

37 s 

the special behavior of 37 is due to the fact that A ~ 0 (mod 37), 

so that the reduction of E over Z/37Z is singular. Multiplying 

out, we obtain LE(S) as a Dirichlet series 

LE(S ) = [ a(~), (7) 
n=l n 

the first few a(n) being given by 

n Ii~ 2 3 4 5 6 7 8 9 i0 ii 12 13 14 15 
a(n) Ii ~2 ................ -3 2 -2 6 -i 0 6 4 -5 -6 -2 2 

-Z (8) 

Since clearly N(p) S 2p, the product (6) and the sum (7) converge 

absolutely for Re(s) > 2; in fact, IN(p)-pl is less than 2/p 

(Hasse's theorem), so we have absolute convergence for Re(s) > 3/2. 

We will see in §3 that LE(S) extends to an entire function of s 

and satisfies the functional equation 

LE(S) := (2~)-s37s/2F(S)LE(S) = -LE(2-S); (9) 

in particular, LE(S) vanishes at s = i. The Birch-Swinnerton-Dyer 

conjecture relates the invariants of E over ~ , ~ and Z/p~ 

by predicting that 

ords= 1 LE(S) = rk E(~) = 1 

and that 

d 
d--s LE(S) [s=l = 2h(P0)'~I'S 

(i0) 

with a certain positive integer S which is supposed to be the order 

of the mysterious Shafarevich-Tate group ]]I. Since the finiteness of 
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iLL is not known (for E or any other elliptic curve), this last 

statement cannot be checked. However, L~(1) can be computed numer- 

ically (cf. §3), and its value 0.3059997738... strongly suggests 

(cf. (3), (5)) the equation 

L~(1) = 2h(P0)w I, (Ii) 

i.e. (i0) with S = I; the truth of this equation follows from equation 

(18) below. 

2. Twists of LE; the numbers A(d) . 

Let p be a prime congruent to 3 (mod 4) which is a quadratic 

residue of 37 and consider the "twisted" L-series 

L E p(S) = ~ (~) a(~) (12) 
' n=l n 

((~) = Legendre symbol). The proof of the analytic continuation of 

will also show that each LE, p continues analytically and has a L E 
functional equation under s ~ 2-s. Now, however, the sign of the 

functional equation is +, so we can consider the value (rather than 

the derivative) of L E at s = i, and here one can show that 
,P 

2w 2 
= ~ A(p) LE'p(1) i/p 

with ~2 as in (4) and some integer A(p). The value LE,p(1) can 

be calculated numerically by the rapidly convergent series LE,p(1) = 

2 [ (~) a(n) e -2~n/p 3/~ (cf. §4) so we can compute A(p) for small 
n=l P n 

p. The first few values turn out to be 

p } 3 7 ii 47 67 71 83 107 127 139 151 211 223 (13) 
A(p) 1 1 1 1 36 1 1 '0 1 0 4 9 9 " 

More generally, LE,d(S) can be defined for all d satisfying (~7)=I, 

-d = discriminant of an imaginary quadratic field K (just replace 

(~) in (12) by (~), the mirichlet character associated to K/~), 

and we still have 

2e2 A(d) (14) 
LE,d(1) - 

i/J 

for some A(d) 6 Z; the first few values not in (13) are 
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d 4 40 84 95 104 IiI 115 120 123 136 148 
A(d) 1 4 ................... 1 ..... 0 0 1 36 4 9 16 9 (15) 

The most striking thing about the values in (13) and (15) is that they 

are all squares. This is easily understood from the Birch-Swinnerton- 

Dyer conjecture: the Dirichlet series LE, d is just the L-series of 

the "twisted" elliptic curve 

E<d>: -dy 2 = 4x 3 - 4x + i, (16) 

E<d> has a rational point of so A(d) should be either 0 (if 

infinite order) or (if E<d>(~) is finite) the order of the Shafare- 

vich-Tate group of E<d> and hence a perfect square (since this group, 

if finite, has a non-degenerate (~/~)-valued alternating form). 

Surprisingly, even though we are far from knowing the Birch-Swinnerton- 

Dyer conjecture or the finiteness of lll(E<d>), we can prove that A(d) 

is a square for all d, and in fact prove it in two different ways: 

On the one hand, a theorem of Waldspurger leads to the formula 

2 
A(d) = c(d) , (17) 

is the d th Fourier coefficient of a certain modular 

On the other hand, a theorem of Gross and myself 

where c(d) (c Z) 
3 

form of weight ~. 

gives the formula 

4Wl~ 2 
, - h(Pd) (18) LE(1)LE'd(1) i/d 

for a certain explicitly constructed point ("Heegner point") Pd in 

E(Q); writing Pd as b(d) times the generator P0 of E(~) and 

comparing equation (18) with (14) and (ii), we obtain 

A(d) = b(d) 2 (19) 

We thus have two canonically given square roots b(d) and c(d) of 

the integer A(d), and the question arises whether they are equal. 

The object of this paper is to give a geometrical proof of the fact 

that this is so. First, however, we must define b(d) and c(d) more 

precisely, and for this we need the modular description of the elliptic 

curve E, to which we now turn. 

3. The modular curve E. 

The essential fact about the elliptic curve E is that it is a 

modular curve. More precisely, let F be the subgroup of SL2(~) 
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generated by the group 

F0(37 ) = {(2 ~)6 SL2(Z) Ic H 0 (mod 37)} 

0 -1/3/]7, 
and the matrix w37 = ( 3/~7 0 J" This group acts on the upper half- 

plane ~ in the usual way and the quotient ~/F can be compactified 

by the addition of a single cusp ~ to give a smooth complex 

curve of genus i. We claim that this curve is isomorphic to E({) ; 

more precisely, there is a (unique) isomorphism 

~/F O {~}  >~ E(C) (20) 

sending ~ to 0 (E(~) and such that the pull-back of the canonical 
dx dx 

differential ~ - Yl is -2~if(T)dT, where 

2~iT) f(T) = q-2q2-3q3+2q4-2q5+6g6-q7+6q9+... (q = e (21) 

is the unique normalized cusp form of weight 2 on F, i.e. the 

unique holomorphic function f on ~ satisfying 

.at+b. b 
ftc--~) = (cT+d) 2f(T) (T ~ ~,(~ d ) 6 F) (22) 

and f(T) = q + O(q 2) as Im(T) + ~. This claim is simply the asser- 

tion of the Weil-Taniyama conjecture for the elliptic curve under con- 

sideration, and it is well-known to specialists that the Weil-Taniyama 

conjecture can be checked by a finite computation for any given elliptic 

curve; moreover, the particular curve E was treated in detail by 

Mazur and Swinnerton-Dyer in [ii]. Nevertheless, for the benefit of 

the reader who has never seen an example of a modular parametrization 

worked out, we will give the details of the proof of (20); our treat- 

ment is somewhat different from that in [Ii] and may make it clearer 

that the algorithm used would apply equally well to any elliptic curve. 

The reader who is acquainted with the construction or who is willing 

to take (20) on faith can skip the rest of this section. 

We have two quite different descriptions of the isomorphism (20), 

depending whether we use the algebraic model (i) or the analytic 

model {/~i + Z~2 for E(f). We start with the algebraic model. The 

problem is then to show the existence of two 

phic functions ~(T) and n(T) satisfying 

2 3 
q(T) - ~(T) = ~(T) - ~(T), -2~if(T) 

F-invariant and holomor- 

~' (~) 
2q(T)-I 

(23) 

dx 
(this gives a map as in (20) with the right pull-back of 2--~L~; that 
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it is an isomorphism is then easily checked). Equations (23) imply 

that ~ and n have poles of order 2 and 3, respectively, at ~, 

and recursively determine all coefficients of their Laurent expansions. 

Calculating out to 9 terms, we see that these expansions must begin 

{(T) = q-2+2q-l+5+9q+18q2+29q3+51q4+82q5+131q 6+ .... 
(24) 

~(T) = q-3+3q-2+9g-t+21+46q+92q2+t80q3+329q4+593q 5+-.- 

So far we have not used the fact that f is a modular form on F; 

we could have taken any power series f(T) = q+... and uniquely solved 

(23) to get Laurent series ~(T) = q-2+..., ~(T) = q-3+... However, 

since ~ and ~ are supposed to be F-invariant functions with no 

poles in ~, and since f is a modular form of weight 2, the two 

functions f4 = f2~ and f6 = f3~ must be holomorphic modular forms 

on ? of weight 4 and 6, respectively. But the space Mk(F) of 

modular forms of weight k on F is finite-dimensional for any k 

and one can obtain a basis for it by an algorithmic procedure (e.g., 

using the Eichler-Selberg trace formulas, but we will find a shortcut 

here), so we can identify f4 and f6 from the beginnings of their 

Fourier expansions. Once one has candidates f4 and f6' one defines 

= f4/f 2 and ~ = f6/f3; these are then automatically modular func- 

tions on F, and the verification of (23) reduces to the verification 

of the two formulae 

_ , _ i ' ff~) (25) f62 f6f3 = f43 f4f4 f(2f 6 _ f3) 2~i(2f4f _ , 

which are identities between modular forms on F (of weights 12 and 

8, respectively) and hence can be proved by checking finitely many 

terms of the Fourier expansions. In our case the dimension of Mk(F) 

equals [5k] 6 + 3[ ] for k > 0, k even, so M2(F) is generated by 

f while M4(F) and M6(F) have dimension 6 and 8, respectively. 

However, we will be able to identify f4 and f6 without calculating 

bases for these spaces. The space M2(F0(37)) is the direct sum of 

M2(?) = ~f and the 2-dimensional space of modular forms F of weight 
1 2 on F0(37) satisfying F(-~-~) = -37T2F(T). AS a basis of this 

latter space we can choose the theta-series 

@(T) = [ qQ(a,b,c,d) = l+2q+2q2+4q3+2q4+4q5+Sq6+4q7+10qS+... , 

a,b,c,d6~ 

Q(a,b,c,d) = ~(4b+c-2d) + (2a+c+d) 2 2 

2 = a + 2b 2 + 5c 2 + 10d 2 + ac + ad+ bc- 2bd 
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and the cusp form 

1 - 
h(T) : ~@(~) - ~E2(T) 7 = q + q3 _ 2q4 _ q +... , 

3 dqnd where E2(T) = ~ + [ is an Eisenstein series. 
d,n>0 
3V}d 

tions f2, @2, @h and h 2 lie in the space 

The four func- 

U = {F 6 M4(F) lordT=A(F) c 2, ordT=B(F ~ 4}, 

where A and B are the fixed points in ~/F0(37) of order 2 and 3, 

respectively, because any function in M2(F0(37)) must vanish at A 

and vanish doubly at B. For the same reason, f4 = f2 lies in U 

(recall that ~ has no poles in ~) ; and since U has codimension 

2 in M4(F) (a general function in M4(F) satisfies OrdAF = 2r, 

OrdBF = 3s+l for some r,s a 0), these five functions must be linearly 

dependent. Looking at the first few Fourier coefficients, we find 

that f4 must be given by 

As to f6' we observe that the function 

@ (T) = ~(T)2/~(37T) 2 + 37~(37T)2/n(T) 

is F-invariant and holomorphic in ~' and has a triple pole at ~, 

so must be a linear combination of ~,~ and i; looking at the first 

few Fourier coefficients we find that ~ = ~ - 55 + 6, so f6 must 

be ~f3 + 5f4f _ 6f 3. As explained above, once we have our candidates 

f4 and f6 it is a finite computation to check (25) and thus establish 
2 

that T ~ (f4(T)f(T) : f6(T) : f(T) 3) maps ~/F U {~} to E(~) c ~ (~) 

as claimed. 

For the second description of the map (20), we define a function 

@:~ ÷ ~ by 

~(T) = 2~i f(~')dT' = _ q+ q2 + q3 -~ql 4 +5q2 5 - ... . (26) 

Y 

.aT+b. 
From @' = -2~if and (22) it follows that the difference ¢~c--~-~J-%(T) 

ab 
is a constant for all Y = (c d ) 6 F. Call this constant C(y); clearly 

C:F ÷ ¢ is a homomorphism. The theory of Eichler-Shimura implies 

that the image i = C(F) is a lattice in { with g2(i) and g3(A) 

rational integers. Since we can calculate @(T) and hence C(y) 
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numerically (the series in (26) converges rapidly), we can calculate a 

basis of i numerically and get g2 and g3 exactly. The result 

g2 = 4, g3 = -i shows that i is the lattice ~w I + Zw 2 of §i, and 

the identity ¢(yT) - ~(T) = C(Y) shows that ~ ~ {/i factors 

through F. We thus obtain a map ~/F-~E({) = f/i such that the 

pull-back ¢*(dz) equals -2zif(T)dT, as asserted. In practice, it 

is easier to calculate the image in E of a particular point T 6 

by using (26) and reducing modulo i than by using the first descrip- 

tion of the map (20). 

4. Modular forms attached to E 

The most important consequence of the modular description of the 

elliptic curve E is that the L-series of E equals the L-series of 

the modular form f, i.e. that the numbers a(n) in (7) are precisely 

the Fourier coefficients in (21). This follows from the Eichler- 

Shimura theory (cf. [13]). As a consequence, the function LE defined 

in (9) has the integral representation 

LE(S ) f tS-ldt f(it) (ts-i tl-S)dt, 
3~7 3~7 

0 1 

from which the analytic continuation and functional equation are obvi- 

ous. Differentiating and setting s = 1 we find 

foo oo 
/~7 L{(1) ~ (i) = 2 it) ~-~ = L~ f( log t dt = 2 [ a(n)G(2zn), 

3/77 n=l 3/~7 
1 

with 

I I i eiU d u G(x) = e-Xtlog t dt = ¢ 
U 

1 x 

and since there are well-known expansions for G(x), this can be used 
! 

to calculate LE(1) = 0.30599... to any desired degree of accuracy, 

as mentioned in §i. Similarly, if -d is the discriminant of an 

imaginary quadratic field in which 37 splits, then the "twisted" form 

f*(~) = [(--~d)a(n)qn-- is a cusp form of weight 2 and level 37d 2 satisfy- 
n 2 22, 

ing f*(-i/37d T) = -37d T f (T), so 

(.co . 

LE,d(S) := (2~)-s37s/2dSF(s)LE d(S) = ] f*(~) (ts-l+ tl-s) dt, 
' / 

1 

from which we deduce the functional equation LE,d(S) = LE,d(2-s and 
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the formula LE,d(1) = 2 ~ (~)a(n) e-2Zn/d 3/37 mentioned in §2. 
n=l 

In particular, we can calculate the numbers Aid) defined by (14) 

approximately and hence, since they are integers, exactly. 

The other modular form which will be important to us is the form 

of weight 3/2 associated to f under Shimura's correspondence. 

Around ten years ago, Shimura [12] discovered a relationship between 

modular forms of arbitrary even weight 2k and modular forms of half- 

integral weight k + 1/2. This was studied subsequently by many other 

authors. In particular, Kohnen (in [ 8] for forms of level 1 and in 

[ 9] for forms of odd squarefree level) showed how Shimura's theory 

could be refined by imposing congruence conditions modulo 4 on the 

Fourier expansion so as to get a perfect correspondence between appro- 

priate spaces of forms of weights 2k and k+ 1/2. The result in the 

case k = 1 and prime level is the following ([ 9], Theorem 2) : 

T h e o r e m  1 ( S h i m u r a ;  K o h n e n ) .  F o r  N p r i m e  a n d  s e { i l }  l e t  $ 3 / 2  

denote the space of all functions g(T) satisfying 
i) g(T)/8(T) 3 n2 , where @(T) is the standard theta-series [ q , 

n6Z 
is invariant under F0(4N) ; 

ii) g(T) has a Fourier development ~ c(d)q d with c(d) = 0 
d>0 

if -d - 2 o__rr 3 (rood 4) or (~) = -~. 

Let S2(F0(N) ) denote the space o_ff cusp forms o_~f weigh_______tt 2 o__nn F0(N) 

satisfying f(-I/NT) = sNT2f(T) . Then dim $3/2(N) = dim $2(0(N)) 

and for each Hecke eigenform f = [a(n)q n e S~(F0(N)) there is a l- 

dimensional space of g • S~/2(N) whose Fourier coefficients are re- 

lated to those of f b_yy 

~ _ _ 2  
a(n) c(d) = [ (~)c(~d 2 ) (ne~ , -d a fundamental disorim- ( 2 7 )  

rln r inant). 
r>0 

In our case N = 37, e = +i and the space $2(F0(37)) is one- 

dimensional, spanned by the function f of (21). Theorem 1 therefore 

asserts that there is a unique function 

2~idT 
g(~) = ~ c(d)e 

d>0 
-d ~ 0 or l(mod 4) 
(-d/37) = 0 or 1 

such that g(T)/e(T) 3 is F0(148)-invariant and the Fourier coeffi- 

cients c(d) (normalized, say, by c(3) = i) satisfy (27). It is not 

an entirely trivial matter to calculate these coefficients; a method 
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for doing so, and a table up to d = 250, were given in [ 3, pp. i18- 

120, 145] in connection with the theory of "Jacobi forms-" We give 

a short table: 

d 3 4 7 ii 12 16 27 28 36 40 44 47 48 63 64 67 71 75 83 ... 148 

c(d) 1 1 ~ 1 -i -2 -3 3 -2 2 -i -i 0 2 2 6 1 -i -i ... -3 
(28) 

We now come to the theorem of Waldspurger [15], mentioned in §2, 

which relates these coefficients to the values at s = 1 of the twisted 

L-series LE,d(S). Again we need a refinement due to Kohnen [i0, Theo- 

rem 3, Cor. i] which gives a precise and simple identity in the situa- 

tion of Theorem I: 

S(Fo(N)), g = Theorem 2 (Waldspurger; Kohnen). Let f = ~a(n)q n e S 2 

~c (d) qd t e $3/2(N) correspond as in Theorem i. Let -d be a funda- 

mental discriminant with (~) = 0 __°r s and let Lf,d(S) be the 

associated convolution L-series [(~)a(n)n -s. Then 

Lf,d(1) 3z I]flI2 Ic(d) 12 = (29) 
IIgJl 2 /~ 

where 

rlfJi = I If( )12dudv' NgH2 =I Lg( )12v-1/2dudv (3O) 

~/F0(N 1 ~/F0(4N) (T = u + iv) 

are the norms of f and g in the Petersson metric. (Note that the 

identity is independent of the choice of g, since replacing g by 

Ig (I e ~*) multiplies both l;glI* and Ic(d) I 2 by 11[ 2.) 

Actually, the exact coefficient in (29) is not too relevant to us, 

for knowing that Lf,d(1) is a fixed multiple of c(d) 2//d implies 

that the numbers A(d) defined by (14) are proportional to c(d) 2, 
2 

and calculating A(3) = c(3) = 1 we deduce (17). Then going back 

and substituting (17) and (14) into (29) we deduce 3~]IfIl2/;]g]! 2 = 2~2/i. 

we now show (since the result will be needed later) that 

Ilfll 2 = ~i~2/2~2i, (31) 

it then follows that IIgl] 2 = 3~i/4~. To prove (31), we recall from 

§3 that there is an isomorphism @ from ~/F U {~} to E(~) = ~/A 

with @*(dz) = 2~if(T)dT. Since IF:F0(37)] = 2 we have 
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2~211f!I 2 = 4~ 2 / If(T) 12dudv = I l-2nif(T) 12dudv 
] 

dx dy = ~iw2/i 
J 

{/A 

as claimed. 

5. Heeqner points on E 

In this section we describe a construction which associates to 

each integer d > 0 a point Pd e E(~). These are the "modular 

points" of the title, since their construction depends on the modular 

description of E given in §3. 

We assume first that -d is a fundamental discriminant, i.e. the 

discriminant of an imaginary quadratic field K. We consider points 

b+i/d 
T e .]( of the form '< - with 

2a 

a,b { Z, a > 0, 371a, b °" - -d (mod 4a). (32) 

-d 
If (~7) = -i, there are no such T and we set Pd = 0; otherwise 

the set of ~ is invariant under F and there are h distinct points 

71,...,Th modulo the action of F, where h = h(-d) is the class 

number of K. The theory of complex multiplication shows that these 

points are individually defined over a finite extension H of 

(the Hilbert class field of K) and collectively over @ (i.e. their 

images in ~6/F are permuted by the action of the Galois group of H 

over ~). Hence the sum ~(T I) +...+ ~(Th) , where ~:~{/F ÷ E(~) is 

the map constructed in §3, is in E(~). Moreover this sum is divis- 
1 

ible by u, where u is ~ the number of units of K (= 1,2 or 3) 

if 37~d and u = 2 if 371d ; this is because each point 7j ~ 

is the fixed point of an element of F of order u. We define 

Pd e E(~) by 

h 
up d = [ ~(~j) ; (33) 

j=l 

this is well-defined because E(~) is torsion-free. If d is not 

0 the same way but with the extra condition fundamental, we define Pd 
, b2+d, 

(a,D,--~) = 1 in (32) (now h(-d) is the class number of a certain 

non-maximal order of K, and the points ~l,...,Th ~ ~/F are defined 

over the corresponding ring class field), and then set Pd = ~ dPd/e 2" 
el 

The definition of Pd just given is a special case of a construc- 
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tion due to Heegner and Birch (cf. [i]) and in general would yield 

rational points in the Jacobian of X0(N)/w N (X0(N) : XU(cusps)/F0(}~)). 

From a modular point of view, a point T e ~/F0(N)/w N classifies 

isomorphism classes of unordered pairs of N-isogenous elliptic curves 

{EI,E 2} over { (namely E 1 = {/~+ZT, E 2 = {/~+N2Z<, with the isogenies 

E 1 + E2, E 2 + E 1 induced by N.id~ and id{, respectively), and the 

points ~l,...,Th correspond to those with complex multiplication by 

an order @ of ~(_/L-~) (namely E 1 = ~/~, E 2 = ~/~, where ~ = ~+~< 

is a fractional @-ideal and n an intergral O-ideal of norm N). A 

general formula for the heights of these "Heegner points" was proved 

recently by B. Gross and myself [ 4]; the result in our special case 

becomes 

Theorem 3(Gross-Zagier) : Suppose -d is a fundamental discriminant 

with (~7) = 1 and let Pd c E(~) be the point defined by (32). Then 

the height of Pd is given by 

/£ 
- Li(1) (i) h(P d) LE, d • 

8~2prfH 2 

(To get this statement from [ 4], take X = 1 in Theorem 2 there, 

noting that vf, 1 = uP d and L(f,l,s) = LE(S)LE,d(S) ; the height 

in [ 4] is one-half that on E because it is calculated on X0(37) 

which is a double cover of E.) 

In view of equation (31), Theorem 3 is equivalent to the formula 

(18) given in §2. As explained there, this formula gives both equation 
! (i0) for LE(1) and the relationship (19) between A(d) and the 

integers b(d) defined by Pd = b(d)P0" The equality b(d) 2 = c(d) 2 

suggested comparing the values of b(d) and c(d). Note that the 

numbers b(d) are numerically calculable: one finds the h F-ineguiv- 

alent solutions of (32) by reduction theory, computes the corresponding 

.b+i/d. 
values %[--~---] by (26), adds the resulting complex numbers; modulo 

i = Z~I+Z~2 , the result must be a multiple of the point 
1 

P0 = -.92959... + 2~2" Thus for d : 67 we have h = 1 and 

P67 = % ( ~ )  = .40936... s 6P0(mod i), 

so b(67) = 6; for d = 83 we have h = 3, 

55+i8<~, 19+i~, ~) = (.5~i . + 1.225...i) 
P83 = 9[ 22-2----; + %( 7q~ ---) + %(55+ 

+ (.194... - .570...i) + (.194... + .570...i) ~ -Po(mod i), 
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so b(83) = -1; for d = 148 we have h = 2, 

2P148  = ~(  ) + <b( 7 + = . 1 9 1 8 9 . . .  - . 6 0 1 2 5 . . .  5 - 6 P 0 ( m o d  A ) ,  
/ 3 7  

s o  b ( 1 4 8 )  = - 3 .  I n  t h i s  w a y  o n e  c a n  m a k e  a t a b l e  o f  t h e  m u l t i p l e s  

b ( d ) .  S u c h  a t a b l e  ( u p  t o  d = 1 5 0 )  w a s  c o m p u t e d  b y  B.  G r o s s  a n d  

J .  B u h l e r ,  w h i l e  I w a s  i n d e p e n d e n t l y  c o m p u t i n g  t h e  F o u r i e r  c o e f f i c i e n t s  

c(d) by the method mentioned in §4; the letter with their data 

arrived in Germany on the very morning that I had completed my com- 

putations and drafted a letter to them, and the perfect agreement of 

the two tables gave ample reason to conjecture the followin~: 

Theorem 4. b(d) = c(d) for all d. 

The remainder of this paper is devoted to the proof of this result. 

6. Curves on Hilbert modular surfaces 

In view of the uniqueness{ clause in Theorem i, what we need to do 

to prove Theorem 4 is simply to show that ~ b(d)q d belongs to 
+ 

S3/2(37), i.e. that the positions of the Heegner points in the Mordell- 

Weil group of E are the Fourier coefficients of a modular form of 

weight 3/2. This statement is reminiscent of a theorem of Hirzebruch 

and the author [ 7] according to which the positions of certain modular 

curves in the homology group of a modular surface are the Fourier co- 

efficients of a modular form of weight 2. Since this result is not only 

very analogous to the one we want, but will actually be used to prove 

it, we recall the exact statement. 

Let p be a prime congruent to 

be the ring of integers in ~(/p). 

group) acts on ~C × 7C bv 

(a~l+b a'T2+b' 
Mo(TI,<2) = c~1+d' c'<2+d ') 

1 (mod 4) 

The group 

and let 0 = ~ +~l+/P 
2 

PSL2(O) (Hilbert modular 

(M !(ca b) PSL2 = ~ ( ( 0 ) ,  ' ~ , ~ 2  ~ ~ ) ,  

where ' denotes conjugation in Q(/p)/~. The quotient ~ × ~/SL2(@) 

can be naturally compactified by the addition of finitely many points 

("cusps"), and when the singularities thus introduced are resolved by 

cyclic configurations of rational curves according to Hirzebruch's 

recipe [ 6] the resulting surface Y = Y is a nearly smooth compact 
P 

algebraic surface (it still has quotient singularities coming from the 

points in ~£ × ~' with a non-trivial isotropy group in PSL2(O), so 

it is a rational homology manifold or "V-manifold"). The middle homo- 

logy of Y splits as 
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c 
H2(Y ) = H2(Y ) ~ <Sl> ~...~ <Sr> , (34) 

where SI,...,S r are (the homology classes of) the curves used in the 

resolutions of the cusp singularities and H~(Y) consists of homology 

classes orthogonal to the Sj; the homology groups in (34) are taken 

with coefficients in Q. 

For each integer N > 0 there is an algebraic curve T N c y 

defined as follows. Consider all equations 

ATIT2 + % %' 

with A,B c Z, % e @, and %%' + ABp = N. Each one defines a curve in 

× ~ isomorphic to ~ and the union of these curves is invariant 

under SL2(O); T N is defined as closure in Y of the image of this 
N) = 

union in ~ x ~/SL2(O ) . If (~ -I, there are no solutions of 

%%' + ABp = N and T N is empty. If (~) = +i then T N is irreduc- 

ible (all equations (35) are equivalent under PSL2(e)) and isomorphic 

to the modular curve X0(N). The main result of [ 7] is 

Theorem 5 (Hirzebruch-Zagier). Let [T~] denote the projection t__oo 
c 

H2(Y) of the homology class of T N in the splitting (34). Then the 

power series ~ - c~ 2~iNT [TN]e is a modular form of weight 2, level p 
N=l 

and Nebentypus (~). 

Here "modular form of weight 2, level p and Nebentypus" means a 

F taT+b" = (~) (cT+d) 2F(T) for modular form F(T) satisfying ,c~) 

a b) (c d £ F0(p); when we say that a power series with coefficicents in 

H~(Y) is such a form we mean that each component (with respect to a 

basis of H~(Y) over ~) is. Alternatively, if [X] is any homology 

class in H2(Y) , then the power series [(XoT~)~ ~iNr , where (XoT~) 

denotes the intersection pairing of IX] and [T~], is a modular 

form of the specified type, now with ordinary numerical Fourier coeffic- 

ients. In particular, this is true for X = T M, one of our special 

curves on Y. In fact the proof of Theorem 5 in [ 7] consisted in 

calculating the intersection numbers (TMoT ~) explicitly and showing 

that they were the Fourier coefficients of a modular form. The formula 

obtained for (TMOT~), in the case when N and M are coprime, was 
2 

o c (4NM-x) (MN) (36) 
(T M T N) = [ H ---7--- + Ip 

X2<4NM 
2 

x ~4NM(mod p) 
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where 

H(d) = [ h' (-d/e 2) 

e 2 [d 

(h'(-d) = h(-d) for d > 4, h' (-3) = 1/3, h' (-4) = 1/2) and I (n) 
P 

is a certain arithmetical function whose definition we do not repeat. 

The proof of (36) was geometrical: the physical intersection points 

of T M and T N in X × ~/PSL2(~ ) are in i:I correspondence with 

certain equivalence classes of binary quadratic forms and are counted 

by the first term in (36), while the term Ip(MN) counts the inter- 

section points of T M and T N at infinity and the intersection of 

T M with the combination of cusp-resolution curves S. which was 
c 3 

removed from T N to get T N. 

7. Heegner points as intersection points of modular curves on modular 

surfaces 

Now suppose that p is a prime satisfying p H 1 (mod 4), (3~7) = i, 

and (for later purposes) p > 2"37, say p = i01. As already mentioned, 

the curve T37 on Yp is in this case isomorphic to X0(37) = 

~U{cusps}/r0(37). For instance, if p = i01 we can get an equation 

(35) for T37 by taking A = B = 0 and I = 21+2 I/~-i, an element of 

0 of norm 37; then the solution of (35) is given parametrically by 

{(IT,I'T), T e ~} and the matrices M e SL2(@) which preserve this 

a bl) with a b set are those of the form (c/l d (c d ) E r0(37), so we get 

a degree 1 map ~/r0(37) ÷ ~ × ~/SL2(@) and hence a map X0(37) ÷ YI01" 

On y we have an extra involution t which is induced by the invol- 
P 

ution (TI,T2) ~ (Tz,T~) of ~ × ~, and this induces the involution 

w37 on T37 = X0(37), so our curve E ~ ~U{cusps}/r can be found on 

the quotient surface Y/t. However, since all T N are invariant under 

t and there is no difference (except a factor of 2) between the inter- 

section theory of l-invariant curves on Y or of their images in 

Y/l, we will continue to work on the surface Y rather than the quo- 

tient surface Y/l, which has a one-dimensional singular locus. 

In §5 we constructed for each d > 0 a set of (i+ -d (~-7)) H (d) points 

in X0(37), namely the set of roots of quadratic equations aT2+bT+c=0 

with b2-4ac=-d and 371a. (If d is of the form 3n 2 or 4n 2 

then H(d) is not an integer and we are using the convention that a 

fixed point of an element of order u in r0(37) is to be counted 
1 

with multiplicity q in ~/r0(37); from now on we will ignore this 

technicality.) Call this set Pd" The point Pd { E(@) was (one- 

half of) the sum of the images of the points of Pd in E. If we 
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worked on X0(37), or on some other X0(M) of higher genus, we would 

have to take the sum in the Jacobian of the curve rather than on the 

curve itself, i.e. Pd would be the point of Jac(X0(M)) represented 

by the divisor Pd - deg(Pd)" (~) of degree 0. 

The geometric content of (36) is that the intersection 

points of T N and T M in X × ~/PSL(0) are the points of Pd for 

148N-x 2 
certain d, namely those of the form - - ,  i.e. 

P 

T37 n T N = O P U D (37) 
txl< 14/Y~Z~ (14SN-x2)/P 

x2~148N (mod p) 

where D is contained in the part of Yp at infinity (resolutions 

of the cusp singularities); here when we write union we of course 

mean for the points to be counted with appropriate multiplicities, i.e. 

we are working with divisors rather than just sets of points. If we 

simply count the points in (37), i.e. replace each Pd by its 

degree, we obtain the numbers (36), and Theorem 5 tells us that these 

are the Fourier coefficients of a modular form of weight 2, level p, 

and Nebentypus (~). If instead we add the points in (37) in the 

Jacobian of T37, i.e. replace each Pd by Pd' then we will 

deduce from this that the corresponding statement holds: 

Proposition: For N > 0 define B(N) 

148N-x 2 
B(N) = ~ b ( - - )  

x2<148N P 

x2Z148N (mod p) 

N 
with b(d) as in §5. Then ZB(N)q 

level p and Nebentypus ( ~ . 

b z 

is a modular form of weight 2, 

Proof. Let M denote the set of all modular forms of the specified 

type, so that Theorem 5 asserts 

~(T~oX)q N ~ M for all [X] ~ H2(Y) . (38) 

The space M is finite-dimensional and has a basis consiting of mod- 

ular forms with rational Fourier coefficients. Hence there is an in- 

finite set R of finite relations over Z defining M, i.e. a set 

R whose elements are sequences 

R = (r0,rl,r 2 .... ), r N ~ Z, r N = 0 for all but finitely many N 
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and such that 

C(N)q N c M ~ ~ rNC(N) = 0 (VR c R). (39) 
N=0 N=0 

(For instance, one could find integers NI,...,N d with d = dim M 
th 

and such that the Nj Fourier coefficients of forms in ~4 are 
J 

linearly independent; then for each N we have a relation C(N) = 
d 

IjC(Nj) with rational numbers ll,...,ld, and we could take for 
j=l 

R the set of these relations, each multiplied by a common denominator.) 

Equation (38) now implies that 

rN(T~oX) = 0 
N=I 

for all R e R, and since this holds for all homology classes X, we 

N c is a linear combination must have [r N[T ] = 0 in H 2(Y,@) . Since T N 

of T and curves S. coming from the cusp resolutions, this means 
n 3 

r co 

[ rN[T N] + [ sj [S~] = 0 (40) 
N=I j =i 3 

in H2(Y,~) for some rational numbers Sl,...,s r. Multiplying by a 

further common denominator we can assume that the s. are also integers ] 
and that the relation (40) holds in integral homology. But the Hilbert 

modular surface Y is known to be simply connected, so the exact 

sequence 

0 = HI(y,0) ÷ HI(y,0 *) ÷ H2(y,z) (0 = structure sheaf of Y) 

induced from 0 ÷ ~ ÷ 0 + 0* + 0 shows that any divisor on Y which 

is homologous to 0 is linearly equivalent to 0. Hence the relation 

(39) implies that the divisor [rNT N + ~sjSj is the divisor of a 

meromorphic function on Y, i.e. there is a meromorphic function 

on Y which has a zero or pole of order r N on each T N (resp. sj 

on each Sj) and no other zeros or poles. If we restrict ¢ to T37, 

then it follows that the zeros and poles of # occur at the intersec- 

tion points of T37 with other T N and at the cusps, and in fact 

(by (3S~) that 

divisor of ¢ T37 = [ r N [ P + d 
N{I x2<148N (148N-x2/p) 

x2{148N (mod p) 
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where d is a divisor with support concentrated at the cusps. Take 

the image in E, observing that the cusps map to 0, and add the points 

obtained; since the points of a principal divisor sum to zero and the 

points of Pd sum to b(d)P0, we deduce [rNB(N) = 0 with B(N) as 

in the Proposition. The desired result now follows from equation (39). 

8. Completion of the proof 

We are now nearly done. For each N > 0 define 

C(N) = ~ c(148N-x2), 
P 

x2<148N 

x2~148N (mod p) 

where c(d) are the Fourier coefficients defined in §4. Then 

G(z) := ~ C(N)q N = [ c(d)q 
N>0 d>0 

xeZ 

pd+x2~0 (mod148) 

(pd+x2)/148 

= g(pz) @ (z)IU148, 

2 th 
where @ = [qX and U is the map which picks out every m coef- 

m 
ficient of a Fourier expansion, i.e. 

1 
%(z) IUm - m j(mod m) 

Since g is a modular form of weight 3/2 and 8 one of weight 1/2, 

and since U maps modular forms to modular forms of the same weight, 
m 

it is clear that G(z) is a modular form of weight 2; a routine cal- 

culation shows that it has level p and Nebentypus (~). Hence both 

G(z) and F(z) = [B(N)q N belong to the finite-dimensional space M. 

Moreover, since b(d) = c(d) for small d by the calculations men- 

tioned in §5, the first Fourier coefficients of F and G agree, and 

this suffices to show F = G. Specifically, with p = i01 the agree- 

ment of c(d) and b(d) for d < 150 implies the agreement of B(N) 

and C(N) for 1 Z N S i00, and this is more than enough to ensure 

that F = G (it would suffice to have agreement up to N = 9). Hence 

B(N) = C(N) for all N. We claim that this implies b(d) = c(d) for 

all d. Indeed, suppose inductively that b(d') = c(d') for all 
-d d' < d. If (7) = -i or -d ~ 2 or 3 (mod 4) then c(d) and b(d) 

are both zero and there is nothing to prove. Otherwise we can find an 
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integer n with 

2 
n E -pd (mod 148), InT ~ 37. 

pd+n 2 
Take N - 148 " Then in the equations 

B(N) = Z b(-148N-x2) , C(N) 
P 

x2<148N 

x2EI48N (mod p) 

148N-x 2 
Z c ( - - )  

P 
X2<I48N 

X2=-I48N (mod p) 

the numbers ±n occur as values of x and all other values of x 

are larger in absolute value because Inl S 37 < ½p by assumption. 

Thus B(N) equals 1 or 2 times b(d) plus a certain linear 

combination of b(d') with d' < d, and C(N) equals the same multiple 

of c(d) plus the same linear combination of lower c(d'), so the 

equality B(N) = C(N) and the inductive assumption b(d') = c(d') 

imply that b(d) = c(d) as desired. 

9. Generalization to other modular curves 

Our exposition so far was simplified by several special properties 

of the elliptic curve E: that it was actually isomorphic to a modular 

curve rather than just covered by one, that its Mordell-Weil group 

had rank one and no torsion, etc. We end the paper by discussing to 

what extent the results proved for E generalize to other curves. 

First, we could replace E by an arbitrary elliptic curve whose 

L-series coincides with the L-series of a modular form f of weight 

some (say, prime) level N, with f(-~)-- = NT2f(T). Then we 2 and 

would again have a covering map %:X0(N)/w N + E, Heegner points 

Pd E E(~) for all d > 0 (with Pd = 0 if -d ~ 0 (rood 4N) ) , and 

a relationship c(d) 2 ~ h(P d) for the Fourier coefficients c(d) of 
+ 

a modular form in S3/2(N ) corresponding to f as in Theorem i. We 

could then ask whether all the Pd belong to a one-dimensional sub- 

space <P0 > of E(~)/E(~)tor s and, if so, whether the coefficients 

b(d) defined by Pd = b(d)P0 '{ E(~) ® @ are proportional to the 

Fourier coefficients c(d). More generally, we could forget elliptic 

curves entirely and simply start with a modular curve X0(N) or 

X0(N)/w N (still, say, with N prime). The construction of §5 yields 

Heegner points Pd in the Jacobian of this curve over @. To avoid 

torsion we tensor with ~ and write V = Jac(X0(N)/WN) (~) ~2Z ~" The 

Hecke algebra acts on V the same way as it acts on cusp forms of 

weight 2, so V ~ ~ splits as @f Vf, where the f are Hecke eigen- 
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forms f = [ a(n) g n in M~(F0(N)) (normalized by a(1) = I) and Vf 

is the subs~ace of V ® ~ on which the n th Hecke operator acts as 

multiplication by a(n). For each f we define Pd,f as the compon- 

ent of Pd in Vf. The Fourier coefficients a(n) will be in Z if 

f corresponds to an elliptic curve E defined over @; in that case 

Vf is isomorphic to E(~) ®~ and we are back in the situation de- 

scribed before. In general the a(n) will be integers in an algebraic 

number field Kf c ~, the Fourier coefficients c(d) of the form in 
+ 

S3/2(N) corresponding to f can also be chosen to lie in Kf, and 

the main theorem of [4] combined with Theorem 2 tells us that h(P d f) 
2 

is proportional to c(d) This suggests that the right generalization 

of Theorem 4 is: 

Theorem 6. Let f, c(d) be as above. Then Pd,f = c(d)P0 for all 

d and some P0 ~ Vf. In particular, the projections Pd,f of the 

Heegner points all lie in a one-dimensional subspace o_~f Vf. 

Theorem 6 is equivalent (because of the uniqueness clause in Theorem 

1 and the way the Hecke operators act on Heegner points) to the follow- 

ing apparently weaker theorem: 

Theorem 6' The powe~ series d~0 pdqd __is _a modular form of weight 

3/2 and level N. 

(As with Theorem 5, this means that [ Pd qd ~ V[[q]] belongs to the 
+ 

subspace V ® $3/2(N) or, in more down-to-earth terms, that each 

component of this power series, with respect to a fixed basis of V 

is a modular form in S~/2(N).) over 

How can we prove these theorems? The argument of §§6-7 permits 

us to embed our modular curve in the Hilbert modular surface Y for 
P 

prime p H 1 (mod 4) with (~) = 1 and to prove that the power any 

series 

~ ( ~ P(4NM_x2)/p )q M 
M x2<4NM 

x2~4NM (mod p) 

is a modular form (with coefficients in V) of weight 2, level p and 

Nebentypus. To deduce Theorem 6' we would need the following asser- 

tion: 

Let h(T) b_~e a power series o_~f the form 
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b(d)q d 

d>0 
-d~square (mod 4N) 

with N ~rime, and suppose that the power series 

= ( (4NM-x2)) q M - ~  - 
h(pT) 8 (T){U N [ I b 

M>0 x2<4NM 

X2~4NM(mod p) 

is a modular for_~m of weight 2, level p and Nebentypus (~) for every 

p r i m e  p ~ 1 ( m o d  4) w i t h  ( ) = 1 .  T h e n  h b e l o n g s  t o  S 3 / 2 ( N ) .  

This assertion is extremely likely to be true. The argument of §8 

it -- even if the hypothesis on h(pT)8(T)IU N is made for only proves 

one prime p > 2N -- under the additional assumption that one possesses 

a candidate g = [ c(d)q d e S;/2(N) for h with c(d) = b(d) for 

sufficiently many Values of d. Thus the method of proof we used for 

N = 37 can be used for any other fixed value of N if we do a finite 

amount of computation. To get a general proof of Theorems 6 and 6' 

along these lines one would need either to prove the assertion above 

or else to generalize the geometric proof in some way (perhaps by 

using Hilbert modular surfaces of arbitrary discriminant, for which 

the intersection theory has been worked out by Hausmann [5]). 

In any case, however, we would like to have a proof of Theorem 6 

using only intrinsic properties of the modular curve, rather than its 

geometry as an embedded submanifold of an auxiliary modular surface. 

Such a proof .has been given by B. Gross, W. Kohnen and myself. It is 

a direct generalization of the main result of [4]: instead of a for- 

mula for the height h(P d) of a Heegner point, we give a formula for 

the height pairing (Pd,Pd,) of two Heegner points, where 

( , ) : V × V ÷ ~ is the bilinear form associated to the quadratic 
+ 

form h. The formula implies that ~ (Pd,Pd,)q- belongs to $3/2 (N) 
d>0 

for each discriminant d', and Theorem 6' follows. 

Finally, we mention that the correct generalization of Theorem 4 

to composite levels N should be formulated using the theory of 

"Jacobi forms" developed in [3] rather than the theory of modular 

forms of half-integral weight. This, too, will be carried out in the 

joint work with Kohnen and Gross mentioned above. 
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