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1. The finite-dimenSional complex semi-simple Lie algebras. 

To start with, let us recall the classification, due to W. Killing 

and E. Cartan, of all complex semi-simple Lie algebras. (The presen- 

tation we adopt, for later purpose, is of course not that of those 

authors.) The isomorphism classes of such algebras are in one-to-one 

correspondence with the systems 

(1.1) H , (ei)1~iSZ , (hi) 1~i$ Z , 

where H is a finite-dimensional complex vector space (a Cartan 

subalgebra of a representative G of the isomorphism class in question), 

(~i) i~i$~ is a basis of the dual H* of H (a basis of the root system 

of @ relative to H ) and (hi) i$i~ ~ is a basis of H indexed by the 

same set {I ..... i} (h i is the coroot associated with di )' such 

that the matrix ~ = (Aij) = (~j(hi)) is a Cartan matrix, which means 

that the following conditions are satisfied: 

(C1) 

(C2) 

(C3) 

(C4) 

the A.. are integers ; 1] 

A.. = 2 or ~ 0 according as i = or ~ j ; 
13 

A. ~ = 0 if and only if A.. = 0 ; 
13 31 

is the product of a positive definite symmetric matrix 

and a diagonal matrix (by abuse of language, we shall 

simply say that ~ is positive definite). 

More correctly: two such data correspond to the same isomorphism class 

of algebras if and only if they differ only by a permutation of the 

indices I,...,~ . Following C. Chevalley, Harish-Chandra and J.-P. 

Serre, one can give a simple presentation of the algebra corresponding 
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to the system (1.1): it is generated by H and a set of 2Z elements 

e I .... ,ez, f1' .... fz subject to the following relations (besides the 

vector space structure of H ) : 

[H,H] 

[h,e i ] 

[h,f i ] 

[ei,f i ] 

[ei,f.] 
3 

(ad e i) 

(ad fj) 

: {0} ; 

= ei(h) .e i (hE H) ; 

= -~i(h) .fi (h6 H) ; 

= -h ; 
1 

= 0 if i ~ j ; 

-A. +I 
13 (ej) = 0 if i ~ j ; 

-A. +I 
13 (fj) = 0 if i ~ j 

If one does no longer assume that the e and the h generate H* 
l 1 

and H respectively, one obtains in that same way all complex reductive 

Lie algebras.At this point, the generalization is rather harmless 

(reductive = semi-simple × commutative), but it becomes more signifi- 

cant at the group level and will turn out to be quite essential in 

the Kac-Moody situation. 

2. Reductive algebraic groups and Chevalley schemes. 

It is well known that a complex Lie algebra determines a Lie group 

only up to local isomorphism. Thus, in order to characterize a reductive 

algebraic group, over ~ , say, an extra-information, besides the data 

(1.1), is needed. It is provided by a lattice i in H (i.e. a 

-submodule of R generated by a basis of H ) such that h. 6 A 
1 

and e. 6 A* (the Z -dual of A ) namely the lattice of rational co- 

characters of a maximal torus of the group one considers. To summarize: 

the isomorphism classes of complex reductive groups are in one-to-one 

correspondence (again up to permutation of the indices) with the systems 
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(2.1) S = (A, (~i) i$i~ £ , (hi)1$i~Z) , 

where i is a finitely generated free Z -module, ~ C A* i , h.E i 

and ~ = (ej(hi)) is a Cartan matrix. 

A remarkable result of C. Chevalley [Ch2] is that the same classi- 

fication holds when one replaces ~ by any algebraically closed field. 

Furthermore, to any system (2.1), Chevalley [Ch3] and Demazure [De2] 

associate a group-scheme over ~ , hence, in particular, a group 

functor G S on the category of rings. Thus, the main result of [Ch2] 

asserts that the reductive algebraic groups over an algebraically 

closed field K are precisely the groups Gs(K ) , where S runs over 

the systems (2.1) described above. 

Question: what happens if, in the above considerations, one drops 

Condition (C4) (in which case, the matrix ~ is called a generalize_dd 

Cartan matrix, or GCM )? This is what the Kac-Moody theory is about. 

3. Kac-Mood~ Lie algebras. 

From now on, when talking about a system (1.1), we only assume 

that ~. 6 H* , h. 6 H (the ~. and h. need not generate H* and 
i i l 1 

H ) and that ~ = (~j(hi)) is a GCM. To such a system, the presentation 

(1.2) associates a Lie algebra which is infinite-dimensional whenever 

is not a Cartan matrix. The Lie algebras one obtains that way are 

called Kac-Moody algebras. A large part of the classical theory - root 

systems, linear representations etc. - extends to them, with a bonus: 

the study of root multiplicities (roots do have multiplicities in the 

general case) and of character formulas for linear representations 

with highest weights have a number-theoretic flavour which is not 

apparent in the finite-dimensional situation. For those questions, which 

are outside the subject of the present survey, see [Ka3] and its 

bibliography. 

In general, Kac-Moody algebras are entirely new objects, but there 

is a case, besides the positive definite one, where they are still 

closely related to finite-dimensional simple Lie algebras, namely the 

"semi-definite" case: by the same abuse of language as above, we say 

that the matrix ~ is semi-definite if it is the product of a 
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semi-definite symmetric matrix and a diagonal matrix. 

The simplest example of Kac-Moody algebras of semi-definite type 

is provided by the so-called loop al@ebr@ 9. Let @ be a complex semi- 

simple Lie algebra, H a Cartan subalgebra of @ , (~i) 1~iS £ a basis 

of the root system of @ relative to H , e0 the opposite of the 

dominant root and h. , for 0$j~ , the coroot corresponding to ~. . 
3 3 

Then, the system 

H , (~j)0$jSZ ' {hj)0$j~£ 

satisfies our conditions and the corresponding Kac-Moody algebra turns 

out to be the "loop algebra" @ ~[z,z -I] . In this case, the GCM 

= (ek(hj))1$j,k$1 is described by the well-known extended Dynkin 

diagram ("graphe de Dynkin compl&t&" in [Bo]) of @ ; we shall call it 

the extended Cartan matrix of @ 

Let us modify the previous example slightly: instead of H , we 

take a direct sum H = 0_-<~_<I[ C.~j , where the ~.3 's are "copies" of the 

h.'s , and we choose the elements ~ of H* in such a way that the 
3 3 

matrix (~k(~j)) be the same ~ as before. Then, ~ is the extension 

of H by a one-dimensional subspace c = _C" (Zdj~j) (where the d.'s] 

are nonzero coefficients such that Zd.h. = 0 ), and it is readily 
3 3 

seen that the Kac-Moody algebra defined by the system (H, (~j), (~j)) 

is a perfect central extension of @ ®C[z,z -I] by the one-dimensior{al 

algebra c . In fact, it is the universal central extension Of 

6®C[z,z -I] : this is a special case of the following, rather easy 

proposition, proved independently by Kac ([Ka3], exercise 3.14) , Moody 

(unpublished) and the author ([Ti4]) : 

PROPOSITION 1. - If the h. 's form a basis of H , the Kac-Moody 
1 

algebra defined by (1.2) (for (~j(hi)) a__nn arbitrary GCM) has no 

nontrivial central extension. 

The existence of a nontrivial central extension of G ®~[z,z -I] 

by ~ plays an important role in the applications of the Kac-Moody 

theory for instance to physics and to the theory of differential 
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equations (cf. e. g. [Vel], [SW] and the literature cited in those 

papers). It is worth noting that the Kac-Moody presentation provides 

a natural approach to that extension and a very simple proof of its 

universal property, which is much less evident when one uses direct 

(e. g. cohomological) methods (cf. [Ga], [Wi]) . (NB. In the literature, 

the expression "Kac-Moody algebras" is frequently used to designate 

merely the loop algebras and/or their universal central extension; 

this unduly restrictive usage explains itself by the importance of 

those special cases for the applications.) 

Here, a GCM will be called "of affine t_~" if it is semi-definite, 

nondefinite and indecomposable; we say that it is of standard (resp. 

twisted) affine type if it is (resp. is not) the extended Cartan matrix 

of a finite-dimensional simple Lie algebra. (In the literature, one 

often finds the words "affine" and "euclidean" to mean "standard affine" 

and "twisted affine" in our terminology.) In rank 2, there are two GCM 

of affine type, one standard (22 -22)and one twisted (_24 -~)(up 

to permutation of the indices). When the rank is > 3 , the coefficients 

<3 of a GCM (Aij) of affine type always satisfy the relation AijAji = 

(for i ~ j ), so that the matrix can be represented by a Dynkin diagram 

~n the usual way (cf. e. g. [BT3], 1.4.4 or [Bo], p. 195); then, it turns 

out that the diagrams representing the twisted types are obtained by 

reversing arrows in the diagrams representing standard types (i.e. in 

extended Dynkin diagrams of finite-dimensional simple Lie algebras). 

For instance, 

(Z41 I ~ i ..... I 

is standard, whereas 

is twisted. 

The most general Kac-Moody algebra of standard affine type is a 

semi-direct product of an abelian algebra by a central extension of a 

loop algebra. There is a similar description for the algebras of 

twisted affine type, in which the loop algebras must be replaced by 

suitable twisted forms. For instance, if @ is a complex Lie algebra 
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of type E 6 and if J denotes an involutory automorphism of the 

loop algebra @ ® ~[z,z -I] operating on the first factor by an outer 

automorphism and on the second by z I > -z , then the fixed point 

z -I )d 2E 6 algebra (@®~[z, ] is a Kac-Moody algebra of type above 

(hence the notation !) . The connection between Kac-Moody algebras 

of affine type and the loop algebras and their twisted analogues was 

first made explicit in [Ka2], but the corresponding relation at the 

group level had been known for some time: cf. [IM] and [BT2] (where, 

however, a local field - such as ~((z)) - replaces ~[z,z-1]). 

4. Associated groups: introductory remarks. 

In the classical, finite-dimensional theory, the Lie algebras 

often appear as intermediate step in the study of Lie groups. It is 

therefore natural to try similarly to "integrate" Kac-Moody Lie algebras 

and to define "Kac-Moody groups". More precisely, let S be as in (2.1) 

except that, now, the matrix (~j (hi)) is only assumed to be a GCM. 

" . . . . .  1 To such a system S , one wishes to associate an inflnmte-dlmenslona 

group over C " , let us call it Gs(C) , or, more ambitiously, a 

group functor G S on the category of rings. 

Before passing in quick review the methods that have been used to 

define such groups, let us make a preliminary comment. As may be expec- 

ted, since the groups in question are "infinite-dimensional", one is 

led, for a given S , to define not one but several groups which are 

various completions of a smallest one (those completions corresponding 

usually to various completions of the Kac-Moody Lie algebra). Thus, 

the group theory can be developed at different levels (or, if one 

prefers, in different categories); roughly speaking, one may distinguish 

a minimal (or purely algebraic) level, a formal level and an analytic 

level, with many subdivisons. 

Instead of trying to define those terms formally, I shall just 

illustrate them with one example. Let @ be a complex, quasi-simple 

s.±mply connected algebraic group (Lie algebras will now play a minor 

role, and we are free to use gothic letters for other purposes !), 

A* the lattice of rational characters of a maximal torus of G , 

i its ~ -dual, (~i)]~i~ i a basis of the root system of @ with 

respect to the torus in question, ~0 the opposite of the dominant 
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root, hj (for 0~j5£) the coroot corresponding to ~j and 

S : (i, ((zj)0~j~ £ , (hj)0~j~ £) . In § 3, we have seen that the Lie algebra 

associated with S (in which i is replaced by ~® i) is Lie @ ®~[z,z-1]. 

Clearly, the group most naturally associated with S over 
-I 

must - and will - be the group @(~[z,z ]) of all "polynomial maps" 
× 

--> @ . In that special case, this is the answer to our question at 

the minimal level. At the formal level, we find @(~((z))) . Now, the 

points of @(C[z,z-1]) can also be viewed as certain special loops 

S I --> @ (by restricting x --> @ to the complex numbers of absolute 

value one) and this opens the way to a great variety of completions of 

~(~(z,z-1)) , leading to groups of loops S I --> @ in various cate- 

(L 2 gories , continuous, C , etc.): this is the analytic level. 

In the case of the above system S , there is no difficulty in 

guessing what should be the group functor G S : at the minimal level, 

we shall have Gs(R) = @(R[z,z-1]) , where @ now denotes the 

Chevalley scheme corresponding to the system (£, (~i) 1~is£ , (hi)1~i~ £) , 

and the corresponding formal group will be @(R((z))) . (In this 

generality, I do not know what "analytic" should mean.) As one sees, 

all those groups can be described with elementary means, without re- 

ference to Kac-Moody algebras. But things change as soon as one slightly 

modifies the system S as in § 3 by taking for instance 

A = A~]0 ~j (and keeping the GCM unchanged, as before). The corres- 

J 

ponding group is then a central extension of the loop group (whichever 

category one is in) by ~× or, in the ring situation, by R × . As in 

the Lie algebra case, the existence of that extension comes out of 

the general theory quite formally, but in the loop group case, it 

reflects rather deep properties of those groups (cf. e. g. [SW]) , and 

direct existence proofs are not easy. Note that if R is a finite 

field k , one gets a central extension of @(k((z))) by k × which 

appears in the work of C. Moore [Mo2] and H. Matsumoto [Ma3]. 

Here, we shall most of the time adopt either the minimal or the 

formal viewpoint (the analytic ones are usually deeper and more impor- 

tant for the applications, but unfortunately less familiar to the 

speaker). Let us briefly mention some contrasting features of those. 

The formal groups are usually simpler to handle (as are local fields 

compared to global ones !). This is due in particular to the fact that 
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they contain "large" proalgebraic subgroups (cf. e. g. [BT2], § 5, and 

[SZ], Kap. 5). Also, they seem to be the right category for simplicity 

theorems (cf. [Mol]; observe that if @ denotes a complex simple Lie 

group, then @(~((z))) is a simple group, which is far from true for 

@(~[z,z-1]). On the other hand, the minimal theory presents a certain 

symmetry (the symmetry between the e.'s and f.'s or, in the example 

of @(~[z,z-1]), the symmetry between z and z ), which gets lost 

in the formal completion. 

Let us mention an important aspect of that symmetry. All the groups 

G = GS(~) we are talking about (and, in fact, the groups Gs(K) , 

for K a field), whether minimal or formal, are equipped with a BN- 

pair (B,N) (or Tits system: cf. [Bo]) whose Weyl group W = N/B DN 

is the Coxeter group W(~) defined as follows: 

C.. 

W(A) = <ri [ 1<i<Z ; r 2 = I ; (rir j) 13 : I if i ~ j , 

A..A.. ~ 3 , and c . = 2,3,4 or 6 according 
53 31 13 

as A. A = 0, 1, 2 or 3 > 
13 ]l 

(cf. [MT], [Mal], [Ti3] and also, for the affine case, [IM], [BT2] and 

[Ga]) . In particular, G has a Bruhat decomposition G = U BwB , 
w 6 W 

leading to a"cell decomposition" of G/B : the quotients BwB/B have 

natural structures of finite-dimensional affine spaces. Now, in the 

minimal situation, the same N is the group N of another BN-pair 

(B-,N) , not conjugate to the previous one except in the finite-dimen- 

sional case (i.e. when ~ is positive-definite). Furthermore, one 

also has a partition G = U B wB , called the Birkhoff decomposition 
w 6 W 

of G (because of the special case considered in [Bi]; for the general 

result, cf. [Ti4]) . While the cells BwB/B are finite-dimensional, 

the "cells" B-wB are finite-codimensional in G , in a suitable 

sense, and, unlike the Bruhat decomposition, the Birkhoff decomposition 

always has a big cell, namely B-B if one chooses B- in its conjugacy 

class by N so that the intersection B N B is minimum with respect 

to the inclusion (we then say that B and B are opposite). In the 

formal situation, a Birkhoff decomposition (and hence a big cell) still 
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exists, but here, the groups B and B play completely asymmetric 

roles: B is much smaller than B in that, for instance, B-\G/B- 

is now highly uncountable (always excepting the case where ~ is 

positive-definite). We can be more explicit: if G = UB wB is the 
A 

Birkhoff decomposition of the minimal group G , and if G denotes 
A 

the formal completion of G , then the Birkhoff decomposition of G 

is U B wB , where B is the closure of B in ~ ; the group B 
A 

is closed (and even discrete) in G . 

Different methods have been used to attach groups to Kac-Moody 

data. Roughly, one can classify them into four types, according to 

which techniques they are based upon, namely: 

linear representations (cf. § 5 below); 

generators and relations (cf. § 6); 

Hilbert manifolds and line bundles; 

axiomatic (cf. [Ti4]) . 

About the third approach, which is handled in Graeme Segal's lecture 

at this Arbeitstagung, let us just say that it gives a deeper geometric 

insight in the situation than the other methods, but that, at present, 

it concerns only the affine case. Also the axiomatic approach has been 

used only in the affine case so far: we shall briefly indicate below 

(§ 6 and Appendix 2) to which purpose. 

5. Construction of the groups viarepresentation theory. 

One of the simplest way to prove the existence of a Lie group with 

a given (finite-dimensional) Lie algebra L consists in embedding L 

in the endomorphism algebra End V of a vector space V (by Ado's 

theorem) and then considering the group generated by exp L . 

If L is a Kac-Moody algebra, linear representations are infinite- 

dimensional and exp L is no longer defined in general. However, 

suppose that the linear representation L c_--> End V is such that the 

elements ei,f i , considered as endomorphisms of V , are locally 

nilpotent (an endomorphism ~ of V is said to be locally nilpotent 

if, for any vE V , ~n(v) = 0 for almost all n6~ ). Then, if the 
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ground field K has characteristic zero, say, exp Ke and exp Kf 
i l 

are well-defined "one-parameter" automorphism groups of V which 

generate the group Gs(K) one is looking for, at least if the h.'sl 

generate A . Otherwise, one must also require that, as a A-module 

(remember that AcL ), V is a direct sum ~V s of one-dimensional 

modules on which A operates through "integral characters" X s 6 A* ; 

then, one adds to the above generators the "one-parameter groups" 

I(K ×) , with ~6A , where, by definition, ~(k) operates on V 
s 

via the multiplication by k <l'Xs> . An L-module V is said to be 

integrable if it satisfies the above conditions (local nilpotency of 

ei,f i , plus the extra-requirement on A , which however follows from 

the first condition when the h's generate i ) . ± 

That method for integrating L , inspired by C. Chevalley's 

TohSku paper [Chl], was first devised by R. Moody and K. Teo [MT], 

who used the adjoint representation of L . In that way, of course, 

they only get the minimal a__djoint gro~. (More precisely, the group 

they construct is the analogue of Chevalley's simple group, namely the 

subgroup of the adjoint group generated by the exp Ke i and exp Kf i ; 

here, we say that the system S defines an adjoint group if the 

~i's generate A* and if =Q@ A is generated as a _n-vect°r space by 

the h's .) On the other hand, a suitable variation of the method 
i 

described above enables them to include the case of a ground field with 

sufficiently large characteristics. Later on, Moody [Mol] has applied 

the same ideas at the formal level, starting from a suitable completion 

of the Kac-Moody algebra. 

In [Mal ], R. Marcuson works with highest weight modules, at the 

formal level. His method requires the characteristic to be zero. 

In [Ga], H. Garland also uses highest weight representations. He 

restricts himself to the standard affine case - and makes heavy use 

of the relation between L and the loop algebra -, but in that special 

case, his results go much beyond those of Marcuson in that he essentially 

works over ~ (with ~--forms of the universal enveloping algebra of L 

and of the representation space), which enables him to define groups 

over arbitrary fields. 

One drawback of the approach by means of linear representations 

is that it is not clear, a priori, how the group one associates to a 
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given Kac-Moody algebra (over ~ , say) varies with the chosen repre- 

sentation. In [Mal], this question is ].eft open. Garland answers it 

by using the fact that the groups he constructs are central extensions 

of loop groups, and computing a cocycle which describes the extension. 

V. Kac and D. Peterson [KP] obviate that inconvenient of the 

method by considering all integrable modules simultaneously. They start 

from the free product G* of the additive groups Kei,Kf i for all i . 

• --> exp te i , For any integrable module V , the maps te l 

tf i --> exp tfl extend to a representation eXPv : G* --> GL(V) , and 

the group they consider is G*/ ~ (Ker eXPv) , where V runs through 

all integrable representations. This is the minimal group, in the sense 

of § 4, and corresponds to the case where the h's form a basis of 
1 

i . (An other, earlier approach of that same group, but without this 

last restriction on the h.'s , can be found in [Ti3] : cf. § 6). 
1 

R. Goodman and N. Wallach [GW] are concerned with the standard 

affine case over ~ . Working within the theory of Banach Lie algebras 

and groups, they consider a large variety of Banach completions of the 

Kac-Moody algebras, and integrate them by using suitable topologizations 

of certain highest weight (so-called standard) modules. One of their 
× 

purposes is to define the central extension of loop groups by ~ at 

various analytic levels. An alternative, more elementary approach to 

that problem (not touching, however, the main body of results of [GW]) 

may possibly be suggested by the remark of Appendix I below. 

6. Generators and relations. 

In a course of lectures summarized in [Ti3] (cf. also [S£] and 

[Ma2]) , I gave another construction for groups associated with Kac- 

Moody data. In order to sketch the main idea, let us return to the 

case of a finite-dimensional complex semi-simple Lie group G . Such 

a group is known to be the amalgamated product of the normalizer N 

of a maximal torus T and the parabolic subgroups PI,...,P£ contai- 

ning properly a given Borel subgroup B containing T and minimal 

with that property, with amalgamation of the intersections P n P. = B 
l 3 

and P ~N. (cf.[Ti2],]3.3) . Furthermore, P. is the semi-direct product 
1 1 

of its Levi subgroup L i containing T by a unipotent group U i 

Thus, we have a presentation of G whose ingredients are the subgroups 
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N,Li,U i . The groups N and L1 can be reconstructed from the system 

S of ( 2 . 1 )  i n  a u n i f o r m  w a y ,  w i t h o u t  r e f e r e n c e  t o  t h e  p o s i t i v i t y  o f  

the matrix ~ : the group N is generated by T = Hom(A*,C ×) and 

£ elements m. (Igi$£) submitted to the relations 
1 

and 

(6.1) m. normalizes T , and the automorphism of T it 
l 

induces is the adjoint of the reflection 

l ~--> i- <l,h.>-@. of A* , 
i 1 

(6 2 ) m 2 • i = ~i 6 T = H°m(i*'C×) ' with 0i( 

for I E A* 

(6 .3) 

= (-1  < l , h i >  

if A, .A.. : 0 (resp. I;2;3), then m.m. = m m. 
13 3x 13 3 1 

(resp. mimjm i : mjmimj ; (mimj)2=(mjmi)2 " (mimj)3= (mjmi)3) , 

whereas L. is nothing else but the reductive group of semi-simple 
I 

I rank one corresponding to the system (A,hi,~i) . As for the U i s , 

being unipotent, they are easily described in terms of their Lie alge- 

bras Lie U. , either by means of the Campbell-Hausdorff formula or, 
1 

more conceptually, by exponentiating Lie U in the completion (for 
1 

the natural filtration) of its universal enveloping algebra U(Lie Ui) - 

All this can be carried over to an arbitrary system S , with the 

only difference that, now, Lie U is infinite-dimensional and no 
i 

longer nilpotent but only pro-nilpotent (more precisely, the Lie U.'s 
l 

are certain subalgebras of codimension I of the Lie algebra generated 

by the e.'s , and the latter has a pro-nilpotent completion). Moreover, 
3 

by using a suitable Z=-form of the universal enveloping algebra of the 

Kac-Moody algebra (generalizing the k-form used by H. Garland in the 

affine case: cf. § 5), one is able to do everything over ~ and, by 

reduction, over an arbitrary ring R . Thus, one is led to attach to 

S a group functor on the category of rings, call it E S . But this 

group functor E S is not the "good" functor G S one is looking for: 

indeed, if ~ is a Cartan matrix, that is, in the positive definite 

case, G S should of course be the Chevalley group-scheme corresponding 

to the Chevalley-Demazure data S , and one finds that the functor E S 
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coincides with that scheme only over the principal ideal domain. This 

suggests that, in general, E S may be the good functor when restricted 

to those rings. This is undoubtedly so in the affine case. Indeed, in 

that case, one can characterize the functor E S restricted to principal 

ideal domains - call it E (pid) - by a system of very natural axioms 

which, it seems, should be satisfied by the "good" functor G S (cf. 

[Ti4], 7.6 b)). Another application of those axioms is that they enable 

one to determine explicitly the functor E~ pid)- (whereas the more 

abstract definition by generators and relations is much less manageable), 

and that the result one obtains suggests (always in the affine case) 

what must be the functor G S for arbitrary rings. We shall come back 

to that question in the next section (and in Appendix 2), but let us 

first conclude the present one by two remarks. 

The above considerations can be developed both at the minimal and 

the formal level. In fact, the construction of [Ti3] depends on the 

choice of a certain subgroup X (subject to some simple conditions) 

of the multiplicative group of the completed universal enveloping 

algebra of the Lie algebra generated by the e's . Among the possible 
3 

X , there is a minimal one, leading to the minimal group GS(~) (and 

functor G S ), and a maximal one (which has been determined by 

O. Mathieu [Ma2]), leading to the formal group (and functor) associated 

with S . 

The groups we have been considering are the generalizations, in 

the Kac-Moody framework, of the s_]21it reductive groups but, as in the 

finite-dimensional case, one can define ~on-split forms of those groups. 

In particular, over ~ , there is a "compact" form (which is by no 

means compact in the topological sense !) : in the minimal set-up, it 

can be defined as the fixed-point group of the "anti-analytic" involu- 

tion of GS(~) induced by the semi-linear involution of the Kac-Moody 

algebra which permutes e. and f~ and inverts the elements of i 
l 1 

(Another definition, involving hermitian forms in representation 

spaces, also works at the formal level: cf. [Ga], [KP]) . Generalizing 

a result which was known in the finite-dimensional case [Kal], V. Kac 

[KDP] has observed that that compact form can be defined as the 

amalgamated product of its rank 2 subgroups corresponding to the pairs 

of indices i,j, 6 {I ..... ~} , with amalgamation of the rank I sub- 

groups (of type SU2) corresponding to the indices (here, one must 
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assume that the h.'s form a basis of A , or add a compact torus to 
1 

the amalgam). As for the rank 2 groups, which are the ingredients of 

that definition, they are known in case they are finite-dimensional 

(i.e. when ei(hj).~j(hi) $ 3) ; otherwise, they are shown to be amal- 

gamated products of two groups of type U 2 with suitable amalgamation 

of a two-dimensional torus. (N.B. A result similar to the above is 

known to hold for finite-dimensional split groups or, more generally, 

for groups having a BN-pair with finite Weyl group: cf. [Ti2], 13.32, 

and, for earlier versions and special cases, [Cu] and [Til], 2.12.) 

The fact that the definition by generators and relations does not 

provide the "good" functor G S for rings that are not principal ideal 

domains probably lies in the nature of things (as K-theory suggests). 

A more likely way to get at the "right" G S would consist in exhibi- 

ting a suitable Z--form of the affine algebra of GS(~) (cf. § 8 

below). 

7. An example: groupsof type 2E 6 

In this section, we adopt the formal viewpoint; to emphasize the 
^ 

fact, we shall use the notation GS , instead of G S as above. 

Let S be the system (i,(~j,hj)0~j$ 4) , where the matrix 
2~ 6 

(aj(hi)) is of type (ef. § 3), and where the ~i generate A* 

whereas the h. generate i : these properties characterize S . Our 
l 

A 
purpose is to describe the groups GS(K) when K is a field. We 

discuss only this special example for the sake of concreteness, but 

similar results hold for any other twisted type (the type 

~<I I... ~ i<J 

is briefly examined in [Ti4], 7.4 , and general statements, concerning 

all affine types and arbitrary rings, will be given in Appendix 2). 

From the explicit description of the Kac-Moody algebras of type 

2~ 6 A given in § 3, one readily guesses what must be the group Gs(K) 

when K is a field of characteristic not 2, namely 
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A 
GS(~) = ~(K((z))) , 

a quasi-split algebraic group of type 2E 6 , where G is defined 

over K((z)) and whose splitting field is K((/z)) If K : ~ , one 

proves this by straightforward "integration" (for arbitrary affine 

types, this part of the work is done in [Mo3]), and the general case 

ensues via the axiomatic method mentioned above (cf. § 6 and [Ti4], 

7.6 b)). 

Now, suppose that car K = 2 . The above description cannot hold 

in that case since the extension K((/z)/K((z)) is not separable, 

hence is improper for the definition of a quasi-split group. But there 

is a circumstance which enables one again to guess the result, at least 

when K is perfect. Indeed, one knows that, in the finite-dimensional 

theory, the arrows carried by the double bonds of Dynkin diagrams 

"disappear" over perfect fields of characteristic 2: more precisely, 

reversing such an arrow corresponds to an inseparable isogeny which is 

bijective on rational points. Here, the diagram becomes "the same as" 

F 4 = } ] I > I l , hence the (correct) guess 

Gs(K) = F4(K((z)) ) 

But how can it be that a 78-dimensional (quasi-split) group of 

type E 6 suddenly degenerates into a 52-dimensional (split) group of 

type F 4 ?! The answer is simple: F4(K((z))) must be viewed as the 

group of ratienal points of a suitable 78-dimensional group defined 

over K((z)) . The existince of such a group is not so surprising when 

one considers the isomorphism (a,b) I > a2+zb 2 of K((z))×K((z)) 

onto K((z)) , hence of a 2-dimensional group onto a l-dimensional 

group ( K perfect). 

To be more specific, set L : ~2((z)) , L' : ~((/~)) and denote 

by F a split group of type F 4 over L' , by o : F --> F a 

special isogeny of F into itself whose square is the Frobenius endo- 

morphism (cf. [BTI], 3.3), by RL,/L the restriction of scalars and 

by @ the image of RL,/L~ : RL,/L ~--> RL,/LF . Then 

thee algebraic group @ i ss 78-dimensional. For any (non necessarily 

perfec t ) field K o_ff characteristic 2, one has GS(K) = G (K((z))) ; 
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if K i_ss perfect, the ma~ RL,/L ~ : RL,/LF -->@ i_~s bijective on rati- 

onal points, therefore Gs(K ) ~ (RL,/LF) (K((z))) : F(K((/~) ) ~ F(K((z))). 

Let us explain briefly where the 78 dimensions of @ come from. 

The group F 4 has an open set ~ which is the product, in a suitable 

order, of 48 additive groups U a corresponding to the 48 roots a 

and a 4-dimensional torus T . The isogeny ~ induces a bijection 

a~--> c(a) of the root system into itself which maps short roots onto 

long roots and vice versa. The groups RL,/LU a are 2-dimensional and 

dim RL,/LT = 8 . Now, it is readily checked that: 

if a is short, RL,/LO maps 

onto RL,/LHo(a) 

RL,/LH a isomorphically 

if a is long, RL,/LO maps RL,/LU a onto a 

one-dimensional subgroup of RL,/LH (a) ; 

RL,/LO maps RL,/LT onto a six-dimensional subtorus of 

itself. 

Thus, dim (RL,/LO) (~) = 2.24 + 24 + 6 = 78. 

We propose the following exercise to the interested reader: for 

K perfect of characteristic 2, write SL2(K((z))) as the group of 

rational points on K((z)) of an 8-dimensional algebraic group. This 

arises when one studies the case of the GCM (_~-~) ; the 8-dimensional 

group in question appears as a characteristic 2 "degeneracy" of 

SU3(K((/z))) . Cf. [Ti4], 7.4, for more details. 

8. The algebro-geometric nature of the groups GS(~) 

What kind of algebro-geometric objects are the functors G S and, 

in particular, the groups GS(~) ? Little is known for G S is general, 

but something can be said about GS(~) (here, ~ could be replaced 

by any field of characteristic zero). 
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Set G = GS(~) . We have already mentioned the Bruhat decomposi- 

tion G = U BwB , where B is a certain subgroup of G , which we may 

call "Borel subgroup", and w runs over a Coxeter group W . Coxeter 

groups, endowed as usual with a distinguished generating set 

S = {r] ..... r~} (cf. § 4), have a natural ordering: for w,w' 6 W , 

one sets w ~ w' if there exists a reduced expression w : Sl...s n 

(s i 6 S) and a subsequence (ii, .... i m) of (1 ..... n) such that 

w' : s .... s. . Then: 
11 z m 

for any w6 W , the subset Schub w = w' ~ w (Bw'B)/B of G/B , 
= 

called the Schubert variety c__orresponding to w , has a natural struc- 

ture of projective manifold (ef. [Ti4]); thus, G/B is a direct 

limit of projective manifolds. 

(In [Ti4], the projective structure of Schub w is defined by means 

of a highest weight representation of G , and is then shown not to 

depend on the choice of that representation. It would be desirable to 

have a more intrinsic definition, using for instance the big cell of 

the Birkhoff decomposition, as was suggested to the speaker by 

G. Lusztig.) The set G/B , and its description as a limit of projective 

varieties, does not depend on whether one adopts the minimal or the 

formal viewpoint (more precisely, the formal group is the completion 

of the minimal one for a topology for which B is an open subgroup). 

Also, since B contains H = B A N , the quotient G/B and the varieties 

Schub w depend only on the GCM ~ , and not on A ; when the choice 

of ~ needs to be specified, we shall write SchUbA__W instead of 

Schub w . 

If we now take the formal viewpoint, the Borel subgroup, or rather, 

to remain consistent with the notation of the end of § 4, the closure 

B in ~ = GS(~) , is a proalgebraic group, semi-direct exten- g 
of 

sion of a torus by a prounipotent group (cf. [BT2], [Si]). 

A -- 

Having thus described both G/B = G/B and B , we have gained 
^ 

some understanding of the algebro-geometric nature of G itself. But 

a more direct and promising picture is given by V. Kac and D. Peterson 

[KPI] who attach to G (the minimal group) a "coordinate ring", or 

rather two rings, the ring ~[G] of "strongly regular" functions, and 

the ring ~[G] r of "regular" functions. The first one is generated by 

the coefficients of all highest weight representations (in [KP1],this 
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is not chosen as definition of ~[G] but is proved to be a property of 

the ring, defined in a different way) and provides a Peter-Weyl type 

theorem. That ring is not invariant by the map i : g ~__> g-1 (under 

that map, highest weight representations become lowest weight represen- 

tations !); for a suitable topology, ~[G] r is topologically generated 

by C[G] and i*(C[G]) It is shown in [KP] that G is an affine 

(infinite-dimensional) algebraic group with coordinate ring C[G] , 
-- r 

in the sense of Shafarevitch [Sh] : this implies, in particular, that 

G can be identified with a subset of C= ~= in such a way that ~[G] r 

is the restriction to G of the ring ~[~---~]r-- of regular functions on 

C~ ~T (i.e. the ring of functions whose restriction to ~[0,n] is poly- 

nomial for all n ), and that G is the vanishing set of an ideal 

of ~[c_ m=] 
r 

9. Applications. 

"Kac-Moody groups" have been used in a variety of domains such as 

topology, differential and partial differential equations, singularity 

theory, etc. Those applications, a fast growing subject, are beyond both 

the scope of this survey and the competence of the speaker. Let me just 

unsystematically list a few basic references, which will give access to 

at least part of the literature on that topic: [SW] (cf. also the 

reference[5] of [SW]), [Vel], [Ve2] (these concern applications of Kac- 

Moody Lie algebras, rather than groups), [RS], [Si]. 

Most applications so far use only groups of affine type, and 

there may still be doubts about the usefulness of the general theory. 

To finish with, I would like to give an argument in favour of it. We 

have seen that to every GCM ~ = (~ij) and every element of the corres- 

ponding Coxeter group W(~) , the theory associates a certain complex 

projective variety SchUbAW . If w is one of the canonical generators 

r i of W , SchUbA__W is just a projective line. The next simple case 

= .r. ; then, SchUbA__W is a rational ruled surface, i.e. a sur- is W rl 3 

face fibered over ~i (~) wTth projective lines as fibers. It is well 

known that such a surface X is characterized up to isomorphism by a 

single invariant ~(X) which is a negative integer (if v(X) ~ 0 , X 

is obtained by blowing up the vertex of a cone of degree m(X) in a 

(~(X)+1)-dimensional projective space). Now, one shows that 

~(Schub~(rirj)) = Aij . This gives a geometric interpretation of the 
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matrix A . Moreover, observe that, if one accepts only to consider 

GCM of affine type, only the surfaces X with v(X) 6 [-4,0] , among 

the rational ruled surfaces, have the right to be called "Schubert 

varieties", which seems rather unnatural ! I should think that the class 

of all Schub~w , for all ~ and w , will turn out to be a very 

natural and interesting class of projective varieties to consider. 
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A_p_pendix I. Central extension. 

For arbitrary S , the "minimal group" GS(~) can be constructed 

by the methods described in §§ 5 and 6. In particular, those methods 

provide very simple, purely formal existence proofs for a nontrivial 

central extension of the "polynomial" loop groups by C x . The situation 

is quite different when one starts from loop groups defined by analytic 

conditions. However, the following rather trivial considerations may 

conceivably enable one to exploit the result known for polynomial loops 

in the analytic case. Here, all topological spaces are assumed to be 

Hausdorff. 

Let ~ : G' --> G be a central group extension and let U',H'_ ,U+' 

be three subgroups of G' such that Ker nc H' , that H' normalizes 

' and that the product mapping U' × H' x U' G' U± _ + --> is injective. 

Thus, ~+ = ~IU+' and ~_ = ~[U'_ are isomorphisms of U'+ and U'_ 

onto two subgroups U+ and U_ of G . We set H = z(H') 

A 

G and Now, let us embed G in a complete topological group 

suppose that, if U and U denote the closures of U and U+ 
A -- + A -- 

in G , the product mapping in G defines a homeomorphism of 
^ 

_ x H x ~+ onto a dense open subset ~ of G . Let us also endow 

H' with a topology making it into a complete topological group, such 

that Ker z is closed in H' and that the canonical algebraic iso- 

morphism H'/Ker ~--> H is an isomorphism of topological groups as 

well (observe that, by hypthesis, H is locally closed, hence closed 
^ 

in G , and is therefore a complete topological group). 

Set X = {(u,u')6 U+ x U_ I uu' 6 ~} . This is a dense open subset 

of U+ x U_ (endowed with the topology induced by that of U+ x U_ ). 

For (u,u') 6 X , there is a unique element ~(u,u') C H' such that 

-I -I ~+ lu) • ~_ (u') cu_' .~(u,u') .u~ 

A 

The topology of G induces a topology on U± which we lift to U~ 
-I 

by means of ~± , and we endow ~' = U'_ H' Ui with the product topology. 

The following proposition is easy. 
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PROPOSITION 2. If the function ~ :X --> H' is continuous, there is a 

unique topolo_s ~ on G' making G' into a topological group and 9' , 

topologized as above, into a dense open subset of G' . Suppose further 

that there is a neigborhood Xl of (1.1) i_nn U+ × U such that the 

restriction of ~ t_~o X n Xl extends to a continuous map X1 --> H' 
A 

Then, the to_gpolo~ical group G' admits a completion G' , Ker z is 
A 

a closed subgroup o_~f ~' and the homomorphism &' --> G extending 
A 

factors through a__nn isomorphism of topological ~roups ~'/Ker 7--> G . 

Note that the left (or right) translates of all open subsets of 

obviously form a basis of the topology of G' (hence the uniqueness 

assertion). 

In the application I have in mind, G would be a "polynomial" 
A 

loop group, G some other loop group, z : G' --> G the "natural" 
x 

central extension of G by Ker ~ ~ C (whose existence is easily 
; 

proved by any of the methods described in §§ 5 and 6), Ui and U+ 

the (non complete) "prounipotent radicals" of two opposite Borel sub- 

groups of G' (ef. § 4) and H' the intersection of those Borel sub- 
x 

groups, a direct product of copies of C which one endows with its 

natural topology. The main problem, which I have not investigated, is 

of course to prove (in the interesting cases) that ~ is continuous 

and extends to a neighborhood of (I,I) in U+ × U_ 

A 
Appendix 2. The group functor G S in the affine case. 

In this appendix, we shall use the techniques and terminology of 
A 

[BT4] t o  d e s c r i b e  t h e  f o r m a l  f u n c t o r s  G S f o r  a l l  s y s t e m s  

S = (A, (~i)0 < i < Z , (hi)0 < i< Z) 

satisfying the following conditions: 

(AI) 

(A2) 

(A3) 

the matrix ~ = (~j(hi)) is of irreducible, affine type; 

the set {hil0 ~ i S Z} generates i ; 

the set {~iI0 ~ i £ £} contains a ~- basis of ~® A* 
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More precisely, for any such S , we shall describe a topological 
A 

g r o u p  f u n c t o r  G S h a v i n g  t h e  f o l l o w i n g  p r o p e r t i e s .  

A 
(P0) There is a Lie algebra functor Lie G S defined as follows 

(compare [DG], pp. 209-210). For any ring R , set 

R(e,g') = R[t,t']/(t2,t '2) , where s,s' are the canonical images 

of t,t' in the quotient; in other words, R(e,e') is the tensor 

product of two algebras R(e), R(e') of dual numbers. For r 6 R , 

let ~ : R(S) --> R , 1 : R(e) --> R(E') , o : R(~) --> R(c,E') and 

~r : R(e) --> R(s) be the R-homomorphisms sending £ onto 0,s',ee' 
A 

and re respectively. Then, the additive group (Lie GS) (R) is the 

kernel of the homomorphism 

A A A 
GS(~n) : Gs(R(e)) ----> Gs(R) , 

the scalar multiplication by r is induced by the automorphism 
A A 
GS(~ r) of Gs(R(s)) and the commutator of two elements 

A A 
x,y £ (Lie GS} (R) EGs(R(~)) is the only element Ix,y] such that 

A A 
GS(O) ([x,y]) = (X,Gs(1) (y)) 

A 
where ( , ) stands for the usual commutator in the group Gs(R(£,e')). 

A 
(PI) (Lie GS) (~) is the Kac-Moody algebra associated to the system 

(~® A, (~i)0 ~ i ~ i' (hi)0 ~ i ~ i ) completed with respect to the natural 

gradation (deg e i = I, deg fi = -I, deg h i = 0) 

A 
(P2) The group Gs(C) coincides with the formal group over C 

attached to S by any one of the construction processes described in 

§§ 5 and 6; in particular, it contains (a canonical image of) 
w x 

Hom(A ,~ ) and its center consists of all ~6 Hom(A*,~ ×) such that 

~(~i ) = 0 for all i 

A 
(P3) Modulo its center, Gs(C) is the subgroup of Aut((Lie GS) (C)) 

generated by all converging exp ad g , with g E (Lie GS) (~) (this 

turns out to be identical with the adjoint group considered by 

R.V. Moody [Mol] and J.I. Morita [Mo3]; about this group, cf. also the 
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last sentence of this appendix). 

A 
(P4) The functor G S restricted to principal ideal domains, together 

w i t h  s u i t a b l y  d e f i n e d  f u n c t o r i a l  h o m o m o r p h i s m s  
A A 

~ i  : SL 2 - - >  G S ,  B : H o m ( A * , ?  x )  - - >  G S ( w h i c h  we l e a v e  a s  a n  e x e r c i s e  

to determine explicitly), satisfies the axioms (i') to (iv') of 
^ 

[Ti4], 7.5, and is characterized by them, once Gs(C),= ~i(~) , ~ (C)= 

are g i v e n .  

A 
Those properties clearly indicate that the functor G S which we 

are going to define is the "right one", at least when restricted to 

principal ideal domains but maybe also for general rings, considering 

its fairly simple and natural definition (though it is conceivable 

that some algebro-geometric invariants of the ring, such as Pic R , 

should be brought into play). 

Let e be an integer and let G be a quasi-split, simply 

connected absolutely almost simple group defined over the 

field K : Q(Z), whose splitting field over K is generated by 

the e-th roots of Z ; thus, e = I, 2 or 3 and, in the latter 

case, G is of type D 4 . Let S be a maximal split torus of G , 

the system of roots of G with respect to S , ~ the system of 

root rays ("rayons radiciels": cf. [BT4], 1.1.2), i.e. of half-lines 

R .a with a 6 • , T the centralizer of S in G and U (for 
~+ a 

a 6 ~ ) the root subgroup corresponding to a . We also denote by 

G,S,T,..., the groups of K-rational points of G,S,T, .... 

Let now S = (A'(~i)0 ! i Z z'(hi)0 ~ i ~ Z ) be defined as follows: 

A = X,(S) = Hom(Mult,S) is the group of cocharacters of S ; 

(~1,...,el) is a basis of © and -an v is the maximal root 

if e = I or if e = 2 and G is of type A2n , and it is the 

maximal "short" root in the remaining cases; h. is the coroot 
i 

associated ~. 
1 
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Varying e and the type of G , one gets all systems S satisfying 

the conditions (At) to (A3) above in this way. If G has type 

X , we say that S has type e~ . The Dynkin diagram representing 

the GCM (aj(hi)) is given by the following table: 

type of S diagra m 

I~ extended Dynkin diagram of 

2A2n ,~7--1 I - ' "  1 ~ ° , ~  

3D 4 I 

X 

(n+1 vertices) 

(n+1 vertices) 

(n vertices) 

We shall now choose a system of "&pinglages" of the Ua'S (cf. 

[BT4], 4.1). This is a system (Xa)a6 ~ where, for all a , x a is one 

of three things: 

(i) an isomorphism K --> U a ; 

(ii) an isomorphism K(Z I/e) --> U a (here Z I/e denotes any 

e-th root of Z and, when e = 3 , all cubic roots involved 

may be chosen equal); 

(iii) an isomorphism H --> U , where H is the product a 
K(Z I/2)" × ZI/2.K endowed with the group structure 

(*) ( u , v )  • ( u ' , v ' )  = ( u + u ' ,  v + v ' + ( u ° u  ' - u ' O u ) )  

in which o represents the nontrivial K-automorphism of K(Z I/2) 

(observe that H is nothing else but the group H i of [BT4], 4.1.15, 

for ~ = I/2 ,) transformed by the automorphism (x,y) ~> (x,2y) of 

the underlying variety). 

In all cases except 2A2n (i.e. when G is of type A2n and 
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e = 2), we take for (x a) a cohere[:t system of "&pinglages" deduced 

from a Chevalley-Steinberg system (cf. [BT4], 4.1.16). In order to 

2A2n describe the system (x a) in the case , let us choose an ortho- 

gonal basis (ai)1 ~ i ~ n of the (relative) root lattice: thus, 

© = {± a i, ± 2a i, ±a i ±aj with i ~ j] . For a E ~ , let @a denote the 

automorphism of the source of x defined as follows: if a contains a 

a l.+a3 (resp. a.-al 3 ; resp. -a.-a.l 3 )' Ca(k) = 2k (resp. k/2 ) and 

if a contains a i (resp. -ai), @a(U,V) = (2u,4v) (resp. (u,v)) 

= x' o @a ' where (Xa)a 6 9 is a coherent system Finally, we set x a a 

of "~pinglagles", as in loc. cit. 

Let us now describe a certain schematic root datum (T, (Ua)a 6 ~) 

in G over the ring K = ~[Z,Z -I] (cf. BT4 , 3.1.1). The scheme 

is the "canonical group-scheme associated with the torus T" , defined 

as in [BT4], 4.4.5 (as in [BT4], it can be shown that T does not 

depend on the way T is expressed as a product of tori of the form 

Mult ) and the scheme U is the "imaoe by x "of: 
L/K L a ~ a 

the additive group-scheme canonically associated with the module K 

(resp. K[Z1/e])" in case (i) (resp. (ii)) (cf. [BT4], 1.4.1); 

the group-scheme whose underlying scheme is canonically associated with 

the module H = K[Z I/2] x zl/2.K and whose product operation is oiven 

by (*) in case (iii) . 

It is readily verified, using the appendix of [BT4], that the system 

(T, (Ua)) is indeed a schematic root datum. By Section 3.8.4 of [BT4], 

there exists a unique smooth connected group-scheme G with generic 

fibre G containing the direct product 

77 
aE~_ Ua x T x a6=~ + Ha 

as an open subscheme ("big cell") (here, ~+ c~ denotes a system of 

positive root rays and ~_ = - ~+ ) . Finally, S being as above, the 

announced functor ~S is defined by 

A 
Gs(R) = @(R((Z))) , 

this group being given the natural topology, induced by that of R((Z)) 
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Suppose now that R is a perfect field of characteristic e 

(which implies that e = 2 or 3). There is a "natural" isomorphism of 

each Ua(R((Z))) onto R((Z)) , namely 

-I 
x in case (i) , 
a 

x (r) ~-> r e in case (ii) , 
a 

x (r,r') ~--> r'2+r 4 in case (iii) , 
a 

and T(R((Z))) , which is a product of groups of the form R((Z)) × and 

R((zl/e)) × , is clearly isomorphic to the group T' (R((Z))) of rational 

points of a split torus T' . It is then readily verified (using [BT3], 

§ 10, and the appendix of [BT4]), that, via those isomorphisms, the 

system (T(R((Z))), (Ua(R((Z))))a 6 ~) "is" the standard root datum of 

the group of rational points of an R((Z))-split simple group of type 

Cn if A= = (ej(hi)) has type 

B n if ~ has type 2~2n_1 , 

2~ 
Cn_ I if A has type Dn , 

F 4 if A has type 2E 6 , 

G 2 if A has type 334 

2A2n 

This is the phenomenon already mentioned in § 7 for the special case 

type 2E 6 . of 

Let us return to the group-scheme @ . In the classical cases 

2~ and 23 it can be given a more direct and more elementary des- 
m n' 

cription. Here, we shall only briefly treat the types 2~ (the case 
m 

of 23 is slightly more complicated because one must work with the 
n 

spin group). According as m = 2n-] or 2n , set I ={±],±2,...,±n} 

or I = {0,±I, .... ±n} . Let V be the K[Z1/2]-module (K[ZI/2]) I 

endowed with a coordinate system ~ = (zi)i 6 I ' let T denote the 

K-automorphism of K[Z I/2] defined by T(Z I/2) = -Z 1/2 and consider 

the hermitian form 

iT 
h(z;z') = Z(Z'i T Z i + Z i Z_i) , 
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where i runs from I to n or from 0 to n according as m = 2n-I 

or 2n . We represent by V K the module V considered as a K-module; 

in it, we use the coordinate system (~,Z) = (xi,Yi)i61 , where 

= + Yi ZI/2 Separating the "real and imaginary xi' Yi 6 K and z i x i . . 

parts" of h , we get h = s + Z I/2 • a , where s and a are a 

symmetric and an alternating bilinear form in V K respectively. Similar- 

ly , the determinant in End V can be written det 0 + Z I/2 • det I , 

where det 0 and det I are K-polynomials in End V considered as a 

I (~,y;x y) in V K K-module. Let q be the quadratic form q(~,y) = ~s _ _ , 

The multiplication by Z I/2 is an automorphism J of the K-module V K . 

Finally, the group-scheme @ (corresponding to the type 2~ ) can 
- m 

be described as the subgroup-scheme of GL(V K) defined by the equations 

g • a = a , g. q = q (hence g • s = s ), gJ=J, det0g = I, detlg = 0 

In other words, if R is a K-algebra, G(R) is the subgroup of all 

elements of SL(V®R[ZI/2]) preserving the (R-valued) "forms" a and 

q . (For the case m = 2n , see [Ti4], 7.4.) 

Now, consider again the case R : R((Z)) , where R is a perfect 

field of characteristic 2 (in fact, any ring R such that the map 

2 onto R would do) Let V' (resp. x F--> x is a bijection of R[Z I/2] 

V") denote the R[Z1/2]-module, product of 2n+I (resp. 2n ) factors 

R[Z I/2] indexed by {0,±I, .... +_n} (resp. {_+I, .... +-n ). In those modules, 

we use again coordinates z where i runs through the same index 
i n I/2 2 

sets . In V' , consider the quadratic form q' (_z)_ = i__Z1 Z_l.Z +ZI "z0 ' 

n 
and in V" , the alternating bilinear form a' (_z;_z') : i=E1 (z'izi-zlz_i) 

If m = 2n-I ,V®R[Z I/2] can be identified with V" , hence with a 

quotient of V' , the "bilinearization" and the "real part" (K-part) of 

q' are the inverse images in V' of the "forms" a R and qR (with 

obvious notational conventions), and it is easy to verify that the 

projection V' --> V" induces an isomorphism SO(q') ~> G(R) . If 

m = 2n , V@R[Z1/2]can be identified with V',the bilinear form h 
R[Z I/2 ] 

is the inverse image of a' by the projection V' --> V" and, this 

time, the latter induces an isomorphism @(R) -~> Sp(a') . Thus we have 

found again the two isomorphisms obtained earlier in a different way. 

A 
The description of the functor G S associated to an arbitrary 

system S of affine type, i.e. a system satisfying (At) but not 

necessarily (A2) and (A3) now amounts to a combination of extension 
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problems. In particular, when i :~Z.h i , one must define a central 
A 

extension of the above functor G by the multiplicative group-scheme 

mult (I)., this is related to work of C. Moore [Mo2], 

H. Matsumoto [Ma3] and P. Deligne [Dell. Note that if, with the notation 

used throughout this appendix, we assume e = I , we denote by Sad 

the system obtained in the same way as S but replacing A by the 

dual of the lattice of roots and by @ad the split adjoint group-scheme 
A 

of the same type as G , then the functor GSa d is not equal to 

R ~--> Gad(R((Z))) in general; for instance, ~Sad(~) is the image of 

the canonical map 

G(C((Z))) --> @ad(C((Z))) , 

whose cokernel is isomorphic to the center of G . 

(1)As P. Deligne pointed out to me, the word "extension" must be under- 
stood here in a "schematic sense"; one should not expect the extension 
map to be surjective for rational points over an arbitrary ring R . 
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