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§I General remarks 

In this talk a loop group LG will mean the group of smooth maps 

from the circle S I to a compact Lie group G. One reason for study- 

ing such groups is that they are the simplest examples of infinite 

dimensional Lie groups. Thus LG has a Lie algebra L~ - the loops 

in the Lie algebra ~ of G - and the exponential map L~ ÷ LG is a 

local diffeomorphism. Furthermore LG has a complexification LG~, 

the loops in the complexification of G. Neither of these properties 

is to be expected of infinite dimensional groups: neither holds, for 

example, for the group of diffeomorphisms of the circle [17]. 

From this point of view the group Map(X;G) of smooth maps 

X ÷ G, where X is an arbitrary compact manifold, seems almost as 

simple as LG. Such groups are of great importance in quantum theory, 

where they occur as "gauge groups" and "current groups"; the manifold 

X is physical space. Thus loop groups arise in quantum field theory 

in two-dimensional space-time. In fact it is not much of an 

exaggeration to say that the mathematics of two-dimensional quantum 

field theory is almost the same thing as the representation theory 

of loop groups. 

If dim(X) > 1, however, surprisingly little is known about the 

group Map(X;G). Essentially only one irreducible representation of 

it is known - the representation of Vershik, Gelfand and Graev [9] - 

and that representation does not seem relevant to quantum field 

theory. For loop groups, in contrast, there is a rich and 

extensively developed theory. They first became popular because of 

their connection with the intriguing combinatorial identities of 

Macdonald [16]. They are the groups whose Lie 
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algebras are the "affine algebras" of Kac-Moody - roughly speaking, 

the algebras associated to positive-semidefinite Cartan matrices. 

From that point of view the groups have been discussed in Tits's talk 

In this talk I shall keep away from the Lie algebra theory, of which 

there is an excellent exposition in the recent book of Kac [11], and 

instead shall attempt to survey what is known about the global 

geometry and analysis connected with the groups. 

From any point of view the crucial property of loop groups is 

the existence of the one-parameter group of automorphisms which 

simply rotates the loops. It permits one to speak of representations 

of LG of positive energy. A representation of LG on a topological 

vector space H has positive energy if there is given a positive 

action of the circle group T on H which intertwines with the action 

of LG so at to provide a representation of the semidirect product 

T ~ LG, where T acts on LG by rotation. An action of T on H is 

positiv e if e i8 E T acts as e iAe, where A is an operator with 

positive spectrum. It turns out that representations of LG of 

positive energy are necessarily projective (cf. (4.3) below). 

The theory of the positive energy representations of LG (or, 

more accurately, of T ~ LG) is strikingly simple, and in strik- 

ingly close analogy with the representation theory of compact 

groups.(*) Thus the irreducible representations 

(i) are all unitary, 

(ii) all extend to holomorphic representations of LG{, and 

(iii) form a countable discrete set, parametrized by the points 

of a positive cone in the lattice of characters of a torus. 

None of these properties holds, for example, for the representations 

of SL2(~) • 

The positive energy condition is strongly motivated by quantum 

field theory: the circle action on H corresponds to the time 

evolution on the Hilbert space H of states. It would be very 

interesting if one could formulate an analogous condition for more 

general groups Map(X;G) . Certainly in quantum field theory one 

might expect such a gauge group to act on a state space on which 

time evolution was defined by a positive Hamiltonian operator, and 

(*) We are thinking of continuous representations on arbitrary 

complete locally convex topological vector spaces. But we do not 

distinguish between representations on H and ~ if there is an 

injective intertwining operator H ÷H with dense image. 
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the gauge transformations should intertwine in some perhaps com- 

licated way with the time evolution. But there has been no progress 

on this front, and the attempt may well be misconceived. (Cf. §3 

below.) 

To conclude these introductory remarks I should say that the 

material I am going to present is all essentially well-known, and 

has been worked out independently by many people in slightly different 

contexts. As representative treatments of various aspects of the 

subject from standpoints somewhat different from mine let me refer 

to Garland [8], Lepowsky [15], Kac and Peterson [12], Goodman and 

Wallach [10], Frenkel [5]. More details of my own approach can be 

found in [18], [19] and [20]. 

§2 The fundamental homogeneous space X 

In the study of LG the homogeneous space X = LG/G (where G is 

identified with the constant loops in LG) plays a central role. 

One can think of X as the space QG of based loops in G; but we 

prefer to regard it as a homogeneous space of LG. I shall list its 

most important properties. 

(i) X is a complex manifold, and in fact a homogeneous space of 

the complex group LG~: 

+ 
X = LG/G ~ LG~/L G~ . (2.1) 

+ S I Here L G~ is the group of smooth maps y : ÷ G~ which are the 

boundary values of holomorphic maps 

y : {z 6 • : Izl < I} ÷ G~ . 

The isomorphism (2.1) is equivalent to the assertion that any loop y 

in LG~ can be factorized 

y = y u . y +  

+ 
w i t h  ¥ u  6 LG a n d  Y+ 6 L G~.  T h i s  i s  a n a l o g o u s  t o  t h e  f a c t o r i z a t i o n  

o f  a n  e l e m e n t  o f  GL (~)  a s  ( u n i t a r y )  x ( u p p e r  t r i a n g u l a r ) .  
n 
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(ii) For each invariant inner product < , > on the Lie algebra 

of G there is an invariant closed 2-form ~ on X which makes it a 

symplectic manifold, and even fits together with the complex structure 

to make a Kahler manifold. The tangent space to X at its base-point 

is L~ /~ , and ~ is given there by 

2n 

(2.2) 

0 

(iii) The energy function ~ : X + ~+ defined by 

2~ 

0 

is the Hamiltonian function corresponding in terms of the symplectic 

structure to the circle-action on X which rotates loops. The critical 

points of ~ are the loops which are homomorphisms qr ÷ G. Downwards 

gradient trajectories of ~ emanate from every point of X, and travel 

to critical points of ~ . The gradient flow of ~ and the Hamiltonian 

circle action fit together to define a holomorphic action on X of the 

multiplicative semigroup ~I = {z 6 • : 0 < Iz[ ~ I}. 

The connected components C[l] of the critical set of ~ are the 

conjugacy classes of homomorphisms I : T ÷ G. They correspond to 

the orbits of the Weyl group W on the lattice z1(T), where T is a 

maximal torus of G. The gradient flow of ~ stratifies the manifold 

X into locally closed complex submanifolds X[I], where X[k] consists 

of the points which flow to C[I]. Each stratum X[I ] is of finite 

codimension. 

Proposition (2.3). The stratification coincides with the decomposi- 

tion of X into orbits of L-G~; i.e. X[l] = L-G~.k. 

Here L-G~ is the group of loops in G~ which are boundary values 

of holomorphic maps D ÷ G~, where D = {z 6 S 2 : Izl > I}. 

Proposition (2.3) is the classical Birkhoff factorization theorem: 

a loop y in G~ can be factorized 

y = y _ . l . T +  , 

+ S I with ¥± 6 L-G~, and I : ÷ G a homomorphism. This is the analogue 
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of factorizing an element of GLn(~) as 

(lower triangular)x(permutation matrix)×(upper triangular). 

There is one dense open stratum X 0 in X. 

and can be identified with the nilpotent group 

LoG~ = {y 6 L-G~ : y(~) = 1}. 

It is contractible, 

(iv) The complex structure of X can be characterized in another 

way, pointed out by Atiyah [I]. To give a holomorphic map Z ÷ X, 

where Z is an arbitrary complex manifold, is the same as to give a 

holomorphic principal G~-bundle on Z × S 2 together with a trivial- 

ization over Z × D . If Z is compact it follows that the space of 

based maps Z ÷ X in a given homotopy class is finite dimensional; for 

the moduli space of G~-bundles of a given topological type is finite 

dimensional. This is a rather striking fact, showing that X, although 

a rational variety, is quite unlike, say, an infinite dimensional 

complex projective space: for in X the set of points which can be 

joined to the base-point by holomorphic curves of a given degree is 

only finite dimensional. 

§3 The Grassmannian embedding of X 

Let us choose a finite dimensional unitary representation V of 

compact group G, and let H denote the Hilbert space L2(S I;V) . 

Evidently LG~ acts on H, and we have a homomorphism i : LG~ ÷ GL(H) 

an embedding if V is faithful. 

To make a more refined statement we write H = H+ (9 H_, where 
in@ 

H (resp. H ) consists of the functions of the form E v e 

(resp. Z v e In@) with v 6 V. The restricted 9eneral linear group 
n<0 n n . . . . . .  

GLres(H) is defined as the subgroup of GL(H) consisting of elements 

I a b ] (3.1) 
c d 

whose off-diagonal blocks b,c (with respect to the decomposition 

H+ @ H_) are Hilbert-Schmidt. The blocks a and d are then auto- 

matically Fredholm. 

Proposition (3.2!. i(LG~) c GLres(H ) . 
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The set of closed subspaces of H obtained from H+ by the action 

of GL = GL (H) will be called the Grassmannian Gr(H). It is 
res res 

naturally a Hilbert manifold, and has the homotopy type of the space 

known to topologists as ~ × BU. The homomorphism 

i : LG~ ÷ GLres(H) (3.3) 

induces a smooth map (again an embedding if V is faithful) 

i : X ÷ Gr(H) 

This map is closely connected with the Bott periodicity theorem. In 

fact Bott's theorem asserts that when G = U and V = {n the map is a 
n 

homotopy equivalence up to dimension 2n-2. 

It should be remarked that i(X) is far from being a closed sub- 

manfold of Gr(H) . Indeed it is so highly curved that its closure is 

not a submanifold of Gr(H). 

There is a holomorphic line bundle Det on Gr(H) whose fibre at 

W c H can be thought of as the renormalized "top exterior power" of 

W. Because of the renormalization needed to define it it is not a 

homogeneous bundle under GLre s, but its group of holomorphic auto- 

morphisms is a central extension ~L of GL by ~x. The 
res res 

homomorphism (3.3) then gives us a central extension of LG~ by {×; 

up to finite-sheeted coverings, all extensions of LG{ by ~x are 

obtained in this way. (The Lie algebra cocycle of the extension is 

given by (2.2), where < , > is the trace form of V.) 

The line bundle Det has no holomorphic sections, but its dual 

Det* has an infinite dimensional space of sections F on which ~L 
res 

acts irreducibly. Just as the space of sections of the dual of the 

determinant bundle on the Grassmannian Gr(E) of a finite dimensional 

vector space E can be identified with the exterior algebra A(E*) we 

find 

Proposition 3.4. F ~ A(H+ @ H_) 

This space is very familiar in quantum field theory as the 

"fermionic Fock space" got by quantizing a classical state space H 
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(e.g. the space of solutions of the Dirac equation) in which H÷ and 

H_ are the states of positive and negative energy. 

From the point of view of loop groups the importance of F is that 

when G = U n and V = {n the projective action of LU n on F via (3.3) is 

the "basic" irreducible representation of LU n (cf. §4 below). It 

even extends from LU n to LO2n, for F is most correctly regarded as 

the spin representation of the restricted orthogonal group of the 

real Hilbert space underlying H. 

Let us briefly consider generalizing the foregoing discussion 

to the group Map(X;G), where X is a compact odd-dimensional Riemannian 

manifold. If H is the space of spinor fields on X then Map(X;U n) 

acts naturally on H ® {n. We can decompose 

H 8 ~n = (H+ (~ ~n) @ (H_ O {n) , 

where H± are the positive and negative eigenspaces of the Dirac 

operator. We get an embedding 

Map(X;Un ) + GL(m) ( H 8 ~n) , (3.5) 

where GL(m ) denotes the group of operators of the form (3.1) in 

which the off-diagonal blocks belong to the Schatten ideal ~ m with 

m-1 = dim(X). (Cf. [21],[4].) 

The homomorphism (3.5) is very interesting: topologically it 

represents the index map in K-theory [4]. On the other hand no 

representations of GL(m ) are known, and one even feels that rep- 

resentations are not the natural thing to look for, as the two- 

dimensional cohomology class which forces GLre s = GL(2 ) to have a 

projective rather than a genuine representation is replaced by an 

m-dimensional class for GL(m ) . Alternatively expressed, on the 

Grassmannian Gr(m) (H) associated with GL(m ) there is a tautological 

infinite dimensional bundle with a connection. The "determinant" 

line bundle of this - i.e. its first Chern class - cannot be defined, 

but nevertheless the higher components of its Chern character do make 

geometric sense. 
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§4 The Borel-Weil theory 

(i) The basic representation 

To simplify the discussion we shall assume from now on that the 

compact group G is simply connected and simple. Then H2(X;~) ~ ~ , 

and so the complex line bundles L on X are classified by an integer 

invariant c1(L). In fact each bundle has a unique holomorphic 

structure, and has non-zero holomorphic sections if and only if 

c1(L) ~ 0. The space of holomorphic sections of the bundle L 1 with 

c1(L I) = I is called the basic representation of LG~: we have 

remarked that when G = SU n the bundle L I is the restriction of 

Det* on Gr(H). As we saw in that case, L 1 is not quite homogeneous 

under LG{. The holomorphic automorphisms of L I which cover the 

action of LG~ on X form a group ~G~ which is a central extension of 

LG~ by ~× - in fact its universal central extension. It corresponds 

to the Lie algebra cocycle (2.2) for an inner product < , > on 

which I shall also call "basic". 

One reason for the name "basic" is provided by 

Proposition (4.1). If G is a simply-laced group and F is the basic 

representation of LG{ then any irreducible representation of positive 

energy is a discrete summand in p'F, where p : LG~ ÷ LG~ is an endo- 

morphism. 

(ii) The Borel-Weil theorem 

To describe all the positive energy irreducible representations 

of LG we must consider the larger complex homogeneous space 

Y = LG/T, where T is a maximal torus of G. This manifold Y is fibred 

over X with the finite dimensional complex homogeneous space G/T as 

fibre. Complex line bundles on Y are classified topologically by 

H2(y;zz) ~ZZ • H2(G/T;ZZ) ~ @ T , 

where T is the character group of T. Once again each bundle has a 

unique holomorphic structure, and is homogeneous under ~G~. If we 

denote the bundle corresponding to (n,l) 6 ~ @ T by Ln, l then we 

have the following "Borel-Weil" theorem. 
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Proposition (4.2). 

(a) The space F(Ln,I) of holomorphic sections of Ln, 1 is either 

zero or an irreducible representation of LG~ of positive energy. 

(b) Every projective irreducible representation of LG of 

positive energy arises in this way. 

(c) F(Ln, I) # 0 if and only if (n,l) is positive in the sense 

that 

0 < l(h ) < n<h ,h > 

for each positive coroot h of G, where < , > is the basic inner 

product on ~ . 

It should be emphasized that except for the "if" part of (c) 

this proposition is quite elementary, amounting to little more than 

the observations that (i) any representation of positive energy 

contains a ray invariant under L-G{, and (ii) L-G~ acts on Y with a 

dense orbit. Thus the elementary part already yields 

Corollary (4.3). For positive energy representations of LG: 

(a) each representation is necessarily projective, 

(b) each representation extends to a holomorphic representation 

of LG{, and 

(c) each irreducible representation is of finite type, i.e. if 

it is decomposed into energy levels H = ~ H , where H is the part 
• q q 

where the rotation e i@ 6 ~- acts as e lq8, then each H has finite 
q 

dimension. 

Assertion (c) holds because a holomorphic section of Ln, 1 is 

determined by its Taylor series at the base-point. That gives one 

an injection 

F(Ln, I) ÷ S(Ty) , (4.4) 

where Ty is the tangent space to Y at the base-point, and S denotes 

the completed symmetric algebra. The injection is compatible with 

the action of T , and the right hand side of (4.4) is of finite type. 
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(iii) Unitarity 

We have mentioned that all positive energy representations of 

LG are unitary. In fact a simple formal argument shows that each 

irreducible representation has a non-degenerate invariant sesquilinear 

form, but it is not so simple to show that it is positive definite. 

By (4.1) it is enough to consider the basic representation. When 

G = SU n or S02n the unitarity is then clear from the description 

(3.4) of the basic representation; and one can deal similarly with 

all simply laced groups by the method of §5 below. The only proof 

known in the general ease is an inductive argument in terms of 

generators and relations, due to Garland [7]. 

It would obviously be very attractive to prove the unitarity 

directly by putting an invariant measure on the infinite dimensional 

manifold Y and using the standard L 2 inner product. That has not 

yet been done, though it seems to be possible. The measure will be 

supported not on Y but on a thickening Y*, to which the holomorphic 

line bundles L extend. One expects to have an LG-invariant measure 

on sections of L @ L for each positive bundle L. There is no dif- 

ficulty in finding a candidate for Y*: the manifold Y is modelled on 

the Lie algebra N ~ ~ of holomorphic maps ~ : D ÷ ~{ (with ~(~) 

lower triangular) which extend smoothly to the boundary of D ; the 

thickening is modelled on the dual space, i.e. the holomorphic maps 

with distributional boundary values on S I. (*) 

(iv) The Kac character formula and the Bernstein-Gelfand- 

Ge!fand resolution 

Because each irreducible representation of T ~ LG is of finite 

type it makes sense to speak of its formal character, i.e. of its 

decomposition under the torus T × T. This is given by the Kac 

character formula, an exact analogue of the classical Weyl character 

formula. 

Thinking of Y = LG/T as T ~ LG/ T × T, we observe that the 

torus ~ × T acts on Y with a discrete set of fixed points. This 

set is the affine Weyl group War f = N(T × T)/(T x T). If one 

ignores the infinite dimensionality of Y and writes down formally 

(*) An interesting family of measures on Y is constructed in [5], 
but it does not include the measure needed to prove unitarity. 
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codimension, 

indeed Z is 
w 

triangular}. 

the Lefschetz fixed-point formula of Atiyah-Bott [2] for the character 

of the torus action on the holomorphic sections of a positive line 

bundle L on Y then one obtains the Kac formula, at least if one 

assumes that the cohomology groups Hq(Y; ~(L)) vanish for q > 0. 

(Here ~(L) is the sheaf of holomorphic sections of L.) Unfortunately 

it does not seem possible at present to prove the formula this way. 

One can do better by using more information about the geometry 

of the space Y. It possesses a stratification just like that of X 

described in §2. The strata {Ew } are complex affine spaces of finite 

and are indexed by the elements w of the group Waff: 

the orbit of w under N-G~ = {7 6 L-G~ : 7(~) is lower 

Let Y denote the union of the strata of complex codimension p. 
P 

The cohomology groups H*(Y; ~(L)) are those of the cochain complex 

K" formed by the sections of a flabby resolution of ~(L). Filtering 

K" by defining K" as the subcomplex of sections with support in 
P 

Yp gives us a spectral sequence converging to H*(Y; ~(L)) with 

E~ q_ = HP+q(Kp/K~+I ) . ~  Because Yp is affine and has an open neighbour- 

hood U isomorphic to Y x {P the spectral sequence collapses, and 
P P 

its El-term reduces to 

E? ° = IUp; 
P 

E pq = 0 if q ~ 0 
! 

In other words H*(Y; ~(L)) can be calculated from the cochain complex 

{H~ (Up; ~(L))}. Here H~ (Up; ~(L)) means the eohomology of the sheaf 

~(L) IU p with' supports Pln Yp. It is simply the space of holomorphic 

sections of the bundle on Y whose fibre at y is 
P 

Ly 0 H~O } (Ny;~) , 

where Ny ~ {P is the normal space to Yp at y; furthermore, H~0}(Ny; ~) 

is the dual of the space of holomorphic p-forms on Ny. Thus as a 

representation of ~ × T 

E pO m (~ S(T* @ N w) ~9 det(N w) @ L w , 
w 

where w runs through the elements of Waf f of codimension p, and T w 

and N are the tangent and normal spaces to Z at w. If we know 
W W 

that Hq(Y; ~ (L)) = 0 for q > 0 then we can read off the Kac formula. 
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The cochain complex E~ 0 is the dual of the Bernstein-Gelfand- 

Gelfand resolution, described in the finite dimensional case in [3] 

(cf. also [13]). Its exactness can be proved by standard algebraic 

arguments, and one can deduce the vanishing of the higher cohomology 

groups Hq(Y; ~(L)). But it would be attractive to reverse the 

argument by proving the vanishing theorem analytically. 

§5 "Blips" or "vertex operators" 

The Borel-Weil construction of representations is quite 

inexplicit. I shall conclude with a very brief description of an 

interesting explicit construction of the basic representation of LG, 

for simply laced G, which was independently extracted from the 

physics literature in [14], [6] and [19]. 

The idea is to start with a standard irreducible projective 

representation H of LT, and to extend the action from LT to LG. 

The abelian group LT is essentially a vector space, and for H we 

take its "Heisenberg" representation. To make the Lie algebra 

L~ act on H amounts to defining, for each basis element ~i of ~6, 

an "operator-valued distribution" B i on $I: for then an element Efi~ i 

of L ~ will act on H by 

Z I fi(8)Bi (8)d8 
i S 1 

We must construct B i for each basis element of ~{/t 6" These are 

indexed by the roots of G, and the remarkable fact about simply- 

laced groups (i.e. those for which all the roots have the same 

length) is that the roots correspond precisely to the set of all 
I homomorphisms ~ : ~ + T of minimal length. Now for each @ E S 

and each small positive a let us consider the blip-like element 

B ,8,£ of LT such that 

B ,9,s(8') = 1 if 18' - 8 I > S , 

while on the interval (8 - s, 8 + e) of the circle B describes ~,@,S 
the loop ~ in T. When Bd,@, s is regarded as an operator on H it 

turns out that the renormalized limit 

lim e-IB 
s÷0 ~,@,s 
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exists in an appropriate sense, and is the desired Be(@). Such 

operators have been called "vertex operators" in the physics 

literature. 

Extending the representation from theLie algebra to LG presents 

no problems. 
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