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31. Mathematics and Physics 

Manin's stimulating contribution to the 25th Arbeitstagung which, 

in his absence, I attempted to present, provided me with an opportunity 

of adding some further reflections of my own. This commentary, which 

is therefore a very personal response to Manin's article, consists of 

very general and speculative remarks about large areas of contemporary 

mathematics. Such speculations are, for good reason, rarely put down 

on paper but the record of the 25th Arbeitstagung provides a rather 

singular occasion where ideas of this type may not be out of place. 

In recent years there has been a remarkable resurgence of the 

traditional links between mathematics and physics. A number of 

striking ideas and problems from theoretical physics have penetrated 

into various branches of mathematics, including areas such as algebraic 

geometry and number theory which are rarely disturbed by such outside 

influences. Perhaps a few specific examples will illustrate the 

point. The Kadomtsev-Petiashvilli equation, which arose in plasma 

physics, has been shown to be extremely relevant to the classical 

Schottky problem about the characterization of Jacobian varieties of 

algebraic curves (this was explained in the Arbeitstagung lecture of 

van der Geer) . Witten's analytical approach to the Morse inequalities, 

based on the physicist's use of stationary-phase approximation, has led 

Deligne and others to imitate his ideas in number theory with great 

success. The Yang-Mills equations and their 'instanton' solutions 

have been brilliantly exploited by Donaldson to solve outstanding 

problems on 4-manifolds. 
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All these examples connect physics with various branches of 

geometry, and it is therefore natural that Manin should have attempted 

an overview of geometry in the widest sense. The picture he describes 

is best indicated by the following schematic diagram: 

Arithmetic < Algebra Geometry Analysis ~ Physics 

Topology 

Homology K-theory 

As this suggests, ideas from topology, notably homology and 

K-theory, provide a common language and underpinning for the whole 

structure. The bridge between geolaetry and arithmetic was greatly 

expanded and developed during the Grothendieck era with the introduction 

of 'schemes'. The bridge between geometry and physics begins essent- 

ially with Einstein's theory of gravitation but has become much stronger 

with the recent development of gauge theories of elementary particles. 

The picture just envisaged is restricted, on the physics side, to 

classical physics. However, one should be more ambitious and try to 

fit quantum physics into the picture also. I will have more to say on 

this aspect later. 

§2. Arithmetic laanifolds 

An algebraic curve defined by equations with integer coefficients 

can be viewed as a scheme over Spec Z. It is the analogue of a 

surface mapped onto a curve, the 'fibre' over a prime p being the 

curve reduced mod p. Such an arithmetic surface can be 'compactified' 

by adding the Riemann surface of the curve over the 'prime' at ~. 

The Arakelov-Faltings theory is then concerned with extending as much 

as possible of the usual theory of surfaces to this arithmetic case. 
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For this purpose it turns out that one needs to introduce or find 

canonical metrics on various objects associated to the Riemann surface. 

For example, given a line-bundle ~ on the Riemann surface one has 

the one-dimensional complex vector space 

det H°(~)/det Hl(~) 

(where det denotes the highest exterior power), and one wants a natural 

metric on this space. 

This particular problem which was solved in one way by Faltings 

has been examined in a wider context (e.g. replacing ~ by a vector 

bundle) by Quillen. He has shown that a natural definition arises by 

using the regularized determinants of Laplace type operators which were 

introduced into differential geometry by Ray and Singer [3]. Such 

operator determinants are extensively used by physicists in quantum 

field theory, and this link between geometry and physics is currently 

the scene of many investigations. In any case it provides a clear 

link with quantum and not purely classical physics. 

On the Riemann surface itself there are two natural metrics (for 

g ~ 2), one being the Poincar6 metric and the other being the metric 

induced by the holomorphic differentials. In higher dimensions the 

analogues of the Poincar@ metric are the K[hler-Einstein metrics. 

Similarly for stable vector bundles there are distinguished metrics, 

and Manin proposes they should be used for a higher dimensional 

theory of arithmetic manifolds. It is interesting to note that all 

of these metrics arose in a physical context. 

Thus the geometry of K[hler manifolds, and in particular the 

study of operator determinants on such manifolds, appears as a natural 

meeting point for arithmetic and physics. In this context it is 

perhaps worth pointing out that a number of differential-geometric 

invariants constructed from operator determinants have already been 

identified with quantities arising in number theory. Thus Ray and 
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Singer [4] made a connection with the Selberg zeta-function of a 

Riemann surface while Millson [2] did something similar in higher odd 

dimensions. Also values of certain L-functions of totally real 

number fields have been related in [i] to the eta-invariant (essentially 

the logarithm of a certain operator determinant) : the eta-invariant 

is also what appears in [2]. 

§3. Fermions 

There is a basic distinction in physics between two types of 

particles, namely bosons and fermions. Bosons involve commuting 

variables and so are easily understood on a geometric level, but 

fermions involve anti-commuting variables and so are more mysterious 

geometrically. On a purely algebraic level of course there is no 

mystery: polynomial and exterior algebras are both well understood 

and extensively studied. However, the development of gauge theories 

in physics where geometric insight and interpretation greatly assist 

the purely formal algebraic aspect has naturally led to the attempt to 

develop a 'super-geometry' in which both sets of variables are 

incorporated. 

The development of super-manifolds as outlined by Manin appears 

to be an elegant extension of classical geometric ideas and it should 

throw light on the algebraic computation of physicists who build 

'super-symmetric' theories. Nevertheless the theory still appears to 

lack some essential ingredients and Manin asks whether the fermionic 

coordinates can somehow be 'eompactified' so as to make them 

topologically more interesting. In this context I would like to make 

a tentative suggestion concerning the right geometric way to interpret 

fermionic variables. 
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Consider first a smooth manifold M, its de Rham complex 2*(M) 

and in particular the ring ~°(X) of smooth functions. For a super- 

symmetric analogue, suppose now that M is a closed sub-manifold of 

*(N) denote the complex of another manifold N, and let A = ~M 

currents on N which are supported on M and smooth in the 

M-directions (recall that a current is just a differential form with 

distributional coefficients). Locally an element of A can be 

expressed in the form 

E f (x)~G dx~ A dy 5 
~BY 

where x = (x l...xm) are coordinates on M, Y : (YI'''''Yr) are 

normal coordinates to M in N, 6 is the Dirac G-function of M, 

~, B are skew-symmetric multi-indices and y is a symmetric multi- 

index (so that ~Y represents derivatives in y). If we take 
Y 

a,7 to be empty and B to be a single index we get a subspace RG 

of A where R is the super-ring of the super-manifold given by M 

and its normal bundle in ~. On the other hand A itself should be 

viewed as the super de Rham complex of this super-manifold. 

The advantage of this point of view is that approximating the 

G-function by suitable smooth functions (e.g. Gaussians) we can try to 

interpret fermions as bosons on N which are very sharply peaked 

along M. More precisely the fermions should appear as 'leading 

terms' of such sharply peaked bosons. Geometrically this might 

correspond to putting a metric on N which is very sharply curved 

along M, so that M is an 'edge of regression' in the language of 

classical differential geometry. 

I am trying to suggest that super-geometry should be some kind of 

limit of ordinary geometry and not an entirely different kind of 

entity constructed simply by formal analogy. 
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~4. The quantum level 

Quantum theory is characterized by infinite-dimensionality and by 

non-commutativity. When trying to understand the possible geometric 

counterpart of some aspect of quantum-theory this must be borne in 

mind. 

As I have already mentioned the study of linear elliptic operators 

provides one bridge between geometry and quantum field theory. For 

example ideas from supersymmetric field theories have cast new light 

on the index theorem. 

In a different direction it is I think not inappropriate to 

consider Connes' non-commutative differential geometry (see the survey 

talk by Connes in this volume) as a version of quantized geometry. 

Recall that Connes studies situations such as the ergodic action of a 

discrete group on a manifold where the geometric quotient does not 

exist in any way as a reasonable space. However, a non-commutative 

algebra exists with which various geometric constructions can still be 

made. 

In the lecture of Lang he explained a conjecture of Vojta based 

on an interesting analogy between arithmetic surfaces and Nevanlinna 

theory. It is perhaps interesting in this connection that John Roe 

in his Oxford D.Phil. thesis shows how the Nevanlinna theory fits into 

Connes' framework. Analysing this situation might shed light on the 

analogy between Connes' theory and questions in Arithmetic. 

If one asks for the analogue of quantum theory in Arithmetic one 

can hardly avoid considering the whole Langlands programme. Adelic 

groups are obvious analogues of gauge groups and Hilbert space 

representations are the basic objects of the theory. This analogy 

deserves closer scrutiny, particularly in view of the fact that non- 

abelian dualities, generalizing class-field theory on the one hand 

and electric-magnetic Maxwell duality on the other, seem to be a main 
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objective in both number theory and physics. Perhaps our classical 

diagram should be enlarged to a quantum diagram in the following way: 

Quantum 
Langlands ÷ Connes + Field Theory Quantum 

Arithmetic + Geometry ÷ Physics Classical 
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