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Introduction 

Twenty-five years ago Andr6 Weil published a short paper entitled "De 

la m@taphysique aux math@matiques" [37]. The mathematicians of the 

XVIII century, he says, used to speak of the "methaphysics of the cal- 

culus" or the "metaphysics of the theory of equations". By this they 

meant certain dim analogies which were difficult to grasp and to make 

precise but which nevertheless were essential for research and dis- 

covery. 

The inimitable Weil style requires a quotation. 

"Rien n'est plus f6cond, tousles math6maticiens le savent, que 

ces obscures analogies, ces troubles reflets d'une th6orie ~ une autre, 

ces furtives caresses, ces brouilleries inexplicables; rien aussi ne 

donne plus de plaisir au chercheur. Un jour vient od l'illusion se 

dissipe, le pressentiment se change en certitude; les th6ories jumelles 

r6v~lent leur source commune avant de dispara~tre; comme l'enseigne la 

Git~ on atteint ~ la connaissance et ~ l'indiff6rence en m~me temps. La 

m6taphysique est devenu math6matique, prate ~ former la mati6re d'un 

trait@ dont la beaut@ froide ne saurait plus nous 6mouvoir". 

I think it is timely to submit to the 25 th Arbeitstagung certain vari- 

ations on this theme. The analogies I want to speak of are of the 

following nature. 

The archetypal m-dimensional geometric object is the space R m which 

is, after Descartes, represented by the polynomial ring ~ [x1,...,Xm]. 

Consider instead the ring Z[x I ..... Xm;~1 ..... ~n ], where Z denotes 

the integers and ~i are "odd" variables anticommuting among them- 
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selves and commuting with the "even" variables x K . It is convenient 

to associate with this ring a certain geometric object of dimension 

I + m+ n, or better still (];mln) , where I refers to the "arithmetic 

dimension" Z , m to the ordinary geometric dimensions (Xl,...,x m) 

and n to the new "odd dimensions" represented by the coordinates 

%i" 

Before the advent of ringed spaces in the fifties it would have been 

difficult to say precisely what we mean when we speak about this geo- 

metric object. Nowadays we simply define it as an "affine superscheme" 

Spec Z [xi,~K], an object of the category of topological spaces local- 

ly ringed by a sheaf of Z2-graded supercommutative rings (cf. n°4 be- 

low) I have tried to draw the "three-space-2000", whose plain x-axis 

i~ is supplemented by the set of primes 

and by the "black arrow", correspon- 

ding to the odd dimension. 

. . . . .  Spec 
Three-space-2000 

The message of the picture is intended to be the following methaphysies 

underlying certain recent developments in geometry:"all three types of 

geometric dimensions are on an equal footing" 

Actually the similarity of Spec Z to Spec k[x], or in general of alge- 

braic number fields to algebraic function fields, is a well known 

heuristic principle which led to the most remarkable discoveries in the 

diophantine geometry of this century. This similarity was in fact the 

subject matter of the Weil paper I just quoted. Weil likens the three 

theories, those of Riemann surfaces, algebraic numbers and algebraic 

curves over finite fields, to a trilingual inscription with parallel 

texts. The texts have a common theme but not identical. Also they have 

been partly destroyed, each in different places, and we are to decipher 

the enigmatic parts and to reconstruct the missing fragments. 

In this talk I shall be concerned with only one aspect of this similarity, 

reflected in the idea that one may compactify a projective scheme over 

Z by adding to it a fancy infinite closed fibre. In the remarkable 

papers [I], [2] S. Arakelov has shown convincingly that in this way the 

arithmetic dimension acquires truly geometric global properties, not 



61 

just by itself, but in its close interaction with the "functional" 

coordinates. G. Faltings [10], [11] has pushed through Arakelov's idea 

much further and beyond doubt (for me) the existence of a general arith- 

metic geometry, or A-geometry. This A-geometry is expected to contain 

the analogues of all main results of conventional algebraic geometry. 

The leading idea for the construction of the arithmetic compactifications 

seems to be as follows: 

K~hler-Einstein geometry = ~-adic arithmetic 

I have tried in sections I-3 of this talk to bring together our 

scattered knowledge on this subject. 

Starting with section 4 the odd dimensions enter the game. The algebraic 

geometers are well accustomed to envisage the spectrum of the dual 

numbers Spec ~[s] ,s 2 = 0 ~ as the infinitesimal arrow and will hardly 

object to a similar visualization of Spec ~[~]. Still, there is an 

essential difference between these two cases. The even arrow Spec ~[c] 

is not a manifold but only an infinitesimal part of a manifold. This 

can be seen e.g. in the fact that ~I[c]/~ is not ~[s]-free, since 
2 

from s = 0 it follows that cds = 0. By contrast, the odd arrow 

Spec ~[~] is an honest manifold from this point of view, since the 

Z2-graded Leibniz formula for, say, the even differential d~ , is 

valid automatically, <.d~ + d~-~ = 0 and one easily sees that QI~[~/~ 

is R[~]-free. 

In spite of the elementary nature of this example it shows why the odd 

nilpotents in the structure sheaf may deserve the name of coordinates. 

But of course this is only a beginning. 

The most remarkable result of supergeometry up to now is probably the 

extension of the Killing-Cartan classification to the finite dimensional 

simple Lie supergroups made in [15], [16]. The Lie supergroups acting 

on supermanifolds mix the even and the odd coordinates, which is one 

reason more to consider them on an equal footing. 

In sections 5 and 6 we state some recent results of A. Vaintrob, 

J. Skornyakov, A. Voronov, I. Penkov and the author on the geometry 

of supermanifolds. They refer to the Kodaira deformation theory and 
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the construction of the Schubert supercells and show that in this 

respect also supergeometry is a natural extension of the pure even 

geometry. 

The following radical idea seems more fascinating: 

~he even geometr[ is a collective 

effect in the ~-dimensional odd geometry 

There is a very simple algebraic model showing how this might happen. 

The homomorphism of the formal series in ~ variables 

1) ~ [[Xl,X 2 .... ]] ÷ R [[...<_i,~0,~i .... ]] , 

oo 

X i ÷ [ <n~n+i 
n = _co 

zs injective. 

A considerably more refined version of this construction has recently 

emerged in the work on representations of Kac-Moody algebras [17],[7]. 

This result establishes that the two realizations of gl(~) in the 

: Diff~(~[Xl,X2 .. ]) and differential operator algebras Dev ,. 

Dodd = Diff(~ [[...~_I,~0,~ I .... ]]) are explicitly isomorphic: 

(2) 6~i9{j @ij +-~ Zij (x,~) 

Here Z.. 
z3 

are defined from the formal series 

EZijplq -q~1(1-qp-ll[exp (~ xi(Pl-gl))exp(~ 
I 

-i -i 
q -P ) -1]. 

Dx i 
1 

The isomorphism (2) is established by comparison of two natural repre- 

sentations, that of Dev on R [Xl,X2,...] and that of ~odd on 
< F = ~ [~.,~-~--~ ]/I, where I is the left ideal generated by ~, i 0, 

and Z~--,j~0~ The generator I mod I of the cyclic ~[~,~-~n-]-module F 
~j 3 

can be conveniently represented as the infinite wedge-product 
-I 
A ~i and the total module F as the span of half-infinite monomials n:-~ 
i~J ~i't Jc~' card ~\ J < ~. The isomorphism 

(3) F ~[Xl,X2,...] 
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may then be considered as the development of the simplistic idea (I). 

The investigation of geometry with odd coordinates was started by 

physicists and is continued mainly in the physically motivated work 

[12],[13],[34]. In particular, the mathematical foundations of super- 

geometry were laid by F.A. Berezin [5] who early understood the role 

and the necessity of this extension of our geometric intuition. Of 

course the general philosophy of algebraic geometry is of great help. 

Odd functions serve for modelling the internal degrees of freedom of the 

fundamental matter fields, leptons and quarks. Their quanta have spin 
I 

and obey the Fermi-Dirac statistics. On the other hand the quanta of 

gauge fields (photons, gluons, W±,Z,...) have spin I and are bosons. The 

map (I) is a toy model of the bosonic collective excitations in the con- 

densate of pairs of fermions. The formulas (2) and (3) also were 

essentially known to specialists in dual strings theory. 

The idea that fermionic coordinates are primary with respect to the 

bosonic ones has been repeatedly advertised in various disguises. It is 

still awaiting the precise mathematical theory. It may well prove true 

that our four space-time coordinates (x 0 = ct,xl,x2,x3) are only the 

phenomenologically effective entities convenient for the description of 

the low energy world in which our biological life can exist only, but 

not really fundamental ones. 

Meanwhile physicists are discussing grand unification schemes and super- 

gravity theories which account for all fundamental interactions (or some 

of them) united in a Lagrangian invariant with respect to a Lie super- 

group or covariant with respect to the general coordinate transform in 

a superspace. 

Section 6 of this talk describes the geometry of simple supergravity from 

a new viewpoint which presents superspace as a "curved flag space" 

keeping a part of its Schubert cells. 

The geometry of supergravity being essentially different from the simple- 

minded super-riemannian geometry, one is led to believe that the substi- 

tute of the Kihlerian structure in supergeometry must be rather sophisti- 
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cated. Therefore I do not venture here to make any guesses about the 

~-geometry with odd coordinates. 

Comparing our present understanding of the arithmetic dimension with 

that of the odd ones we discover that the destroyed texts are re- 

constructed in different parts of the parallel texts. Trying to guess 

more, we can ask two questions. 

a) Is it possible to compactif[_a supermanifold with respect to the 

odd dimensions ? 

We seemingly need a construction of such a compactification if we want 

to have a cohomology theory in which the Schubert supercells would have 

nontrivial (i.e. depending essentially on the odd part) cohomology 

classes. 

D. Leites has conjectured that in an appropriate category an "odd pro- 

jective space" might exist, that is the quotient of Spec k[~1 .... ,~n ]~ 

Speck modulo the multiplicative group action (t,(~i)) ~ (t~i). Of 

course, in the ordinary sense it is empty. 

b) Does there exist a group, mixing the arithmetic dimension with the 

(even) geometric ones ? 

There is no such group naively, but a "category of representations of 

this group" may well exist. There may exist also certain correspondence 

rings (or their representations) between Spec ~ and x . A recent 

work by Mazur and Wiles [27] shows that the p-adic Kubota-Leopoldt 

~-function divides a certain modular p-adic C-function defined in 

characteristic p. Such things usually happen if a correspondence 

exists. 

Finally, I would like to acknowledge my gratitude to many friends whose 

ideas helped to consolidate certain beliefs expressed here. I am 

particularly grateful to I.R. Shafarevitch who taught the arithmetic- 

geometry analogies to his students for three decades, to A.A. Beilinson 

who has generously shared his geometric insight with the author. 
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I. A-manifolds and A-divisors 

I. A-manifolds. Let K be a finite algebraic number field, R its 

r i n g  o f  i n t e g e r s ,  S = S f  U S t h e  s e t  o f  f i n i t e  a n d  i n f i n i t e  p l a c e s  o f  K. 

If v 6 S, K denotes the completion of K with respect to the valu- 
v 

ation I[v:K ÷ ~*. We put la] v : lal if K v = ~ , lal v :lal 2 , if Kv= {- 

Then I-~ la[ v= I for all a 6 K. Moreover, R= {aE KI lalv~1 for all v6Sf}. 
V 

We shall call the following data an A-manifold: 

(I) X= (Xf;~v,V 6Soo) 

Here Xf is a scheme of finite type, proper, surjective and flat over 

S p e c  R, w i t h  s m o o t h  i r r e d u c i b l e  g e n e r i c  f i b e r .  F u r t h e r m o r e ,  ~ i s  a 
V 

= ~  K~hlerian form on the complex variety Xv: (Xf ~Kv) (~), and ~v v 

if K v = ~ ;  i f  Kv= ~ , t h e n  t h e  f o r m s  c o r r e s p o n d i n g  t o  t h e  two  e m b e d d i n g s  

K ÷~ should be conjugate. 
V 

We shall denote by vol 
V 

dim X v 
V 

the corresponding volume forms. 

The simplest example of an A-manifold is the A-curve Xf = Spec R 

endowed with the volumes of ~ii points v 6 S ; ~v do not exist in this 

case. 

I want to stress the preliminary nature of the definition (I). First 

of all, one should not restrict oneself to the relatively proper schemes. 

If X v is not proper, the ~v presumably may have logarithmic growth 

at infinity, cf. [8]. Furthermore, a very special role is played by the 

K~hler-Einstein forms ~ , see n°5 below. 
v 

2. Invertible A-sheaves. An invertible A-sheaf on the A-manifold (I) 

is the data 

(2) L = (Lf; h v , v E S ) . 

Here if is an invertible sheaf on X[,_ h v - a Hermitian metric on 

i v = if ® K v with the evident reality conditions and the following 
R 

property: 
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(3) the curvature form F of the hermitian connection 
v 

correspondin9 to h v i~s ~v-harmonic. 

We recall that if s 

F v = ~ log hv(S,S) 

(3) is empty. 

is a local holomorphic section of i v , then 

in the domain of s. For an A-curve the condition 

It is evident how to define the tensor product [ ® i' of two invertible 

A-sheaves. The group of isomorphism classes of invertible A-sheaves is 

denoted by PiCAX. The identity is the class of the structure sheaf 

0 X: (0Xf; hv I hv(1,1) : I for all v6 S ) 

Later on we shall use the following fact: for a fixed ~ , h 
v v 

fined by the condition (3) up to a multiplicative constant. 

is de- 

Sections. Let i be the invertible sheaf (2). Set H (X,[) = Hi(Xf,lf) • 3. 

These cohomology groups are the R-moduli of finite type, and the ordinary 

Riemann-Roch-Grothendieck theorem for schemes [35] tells much about their 

structure. An essentially new object in A-geometry is the Euler A-charac- 

teristic XA([) . If a canonical map D:X-~"A-point" were to exist, one 

would define XA(i ) as RD,([). This meing otherwise, only certain ad 

noc definitiol,s of XA(1) in a few particular cases are known, which 

are reviewed in n°2. The general i~ea is that in case Hi(x,i) = 0,1 > 0, 

one must define XA(1) as the covolume of the image 

H°(X,[) + ® H°(Xv,i v) : H° (X,[) 
v6S 

relative to a certain volume form on H° . The general definition of 

this volume form is still lacking. Following Faltings [10] , one may 

conjecture that to construct it one can use a canonical metric on the 

bundle on Pic0X v with fiber ® det Hi(Xv,iv) (-])i and to supplement 
i 

this by inductive reasoning on the N6ron-Severi group. 

A correctly defined XA(I ) should be calculable via an A-Riemann-Roch 

theorem so that we shall need divisors of sections of [ and, more 

generally, A-characteristic classes. 



67 

4. A-divisors. We shall mean by an A-divisor on X the following data: 

D : (Df;rv I r v 6 ~ , v6 S ). 

where Df is a Cartier divisor on Xf. The following symbolic notation 

is more convenient 

D : Df * [ rvX(V) 
v6S 

The A-divisors X(v) (not to be confused with X v) are called the 

"closed fibers" of X at infinity. The A-divisors form a group DiVAX. 

By the A-divisor of a section s 6 H°(X,i) we shall mean the following 

element of DiVAX: 

(4) div s: divfs -[ (S 
v6S X 

v 

Isl[¢:Kv]v = hv(S'S) " 

log ISlv'VOlv) X(v), 

Here divfs is the Cartier divisor of s . If a rational function g 

on Xf is a quotient of two sections of i , it is natural to define 

its principal A-divisor by the formula 

{sl div g : divfg -[ (f 
v6S X 

v 

log Igl v VOlv)X(v) , 

which does not depend on i . Finally, the same formula (4) may be used 

to define that A-divisor of a meromorphic section of i. 

Now we can easily introduce the A-sheaves 0(D) where D is an arbi- 

trary A-divisor, together with the canonical section whose A-divisor 

is D . First, for D= Df we set: 

(6) 0(Df) = (0xf(Df) ; h v) 

where h v is the unique metric on 

(3) and normalized by 
0xf(D f) ® K v satisfying equation 

(71 f logliDflv - vol -0, vCS. 
Xv V ' 
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where 1Df is the meromorphic section of 0xf(D f) whose Cartier 

divisor is Df. Using (4) and (7) we get div ID= divfl D = Df which 

justifies (6). 

Furthermore, we set 

(8) 0( ~ rvX(V)) : (0xf;h v i 111V : exp (-r (f VOlv)-l)) . 
v6S v Xv 

Again using (4) we obtain 

div I = [ rvX (v) vCS 

as is to be expected. 

As in the geometric case we can construct the exact sequence 

0 ÷ Div~X÷ DiVAX + PiCAX ÷ 0, 

D ÷ class of 0(D) 

where Div~X is the group of principal A-divisors. 

5. Green's functions. It is clear from the previous definitions that 

the essential information about the Archimedean part of the A-divisors 

is encoded in the functions 

(9) Gv(Dv,X) lIDvlv(X) , x6 X v 

On the compact Kihlerian manifold (Xv,~ v) 

by the following conditions: 

they are uniquely defined 

a) Gv(Dv,X } is real analytic for x {supp. D v. The function 

Gv(Dv,X)/Ig(x) i v , where gv is a local equation of Dv, is ex- 

tendable to supp D 
V 

b) The (1,1)-form ~ log Gv(Dv,X ) is ~v-harmonic outside of D v. The 

corresponding current is a linear combination of a harmonic form and 

the @Dv , 
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c) ~ log Gv(Dv,X)'vol v : 0 
X v 

Furthermore, 

d) Gv(D v + Dv,X) : Gv(Dv,X) "Gv(D"v,X) . 

e) Gv(div gv,X) : Cg- Igv(X) I v for each meromorphic function gv where 

c is defined b y  c )  . 
V 

It is explained in the last chapter of Lang's book [22] how to calculate 

Green's functions on abelian varieties and algebraic curves using theta- 

functions and differentials of the third kind respectively. The K~hlerian 

metric involved is flat in the first case and induced by the flat metric 

of the Jacobian in the second one. The same metrics are used in the 

Arakelov-Faltings-Riemann-Roch theorem on A-surfaces which we shall state 

i~ ~°2. 

Since the function (9) is not constant except in trivial cases, the 

closed fibers X(v) , v 6 S , should be imagined as "infinitely degene- 

rate". To make it more credible note that if for v 6 Sf the closed fiber 

is degenerate then a meromorphic function or a section of an invertible 

sheaf can have different orders at different components of X(v) . In 

other words, instead of lIDflv one should consider in this case 

• correspond to the components X(v) lIDflv i where the valuations V 1 i 
of X(v). Finally, one can unify these numbers into a function 

lIDfl (x) , x 6 X(R v) = Xv(Kv) setting lIDfl (x) = lIDflV i if the section 

x intersects X(v) . 
1 

This analogy suggests refining the definition of the divisor supported 

by X(v) , v6 S . Conjecturally, instead of a constant r v one should 

consider a volume form @v and delete the integrals from (4) and (5). 

A comparison with the Mumford-Schottky curves may serve to clarify the 

situation. Meanwhile we shall use the coarse definitions. 

6. The intersection index. Let o:Spec R÷ Xf be a section of the 

structural morphism z: Xf + Spec R . We shall consider the image of @ 

as the closed A-curve Y lying in X. We define the intersection index 

of Y with an A-divisor D such that supp Y n supp D is disjoint from 

the generic fiber of ~ : 
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(10 )  <Y,D> : ~ (Y'Df)vlOg qv + [ <Y'D>v 
vESf vES 

Here (Y,Df) for v6 Sf denotes the sum of the local intersection 

indices of Y and D in the closed points of Xf over v, qv is the 

order of the residue field. Furthermore, for v6 S we set 

<Y,Df> v: -log Gv(Df,v,Yv) , 

-I 
<Y, ZrvX(V)> = X rv(I v°l v) 

vES vES X v 

An equivalent definition is obtained if one puts (I0) and (4) together. 

Denote by o*(I D) the section of the A-sheaf o*(0(D)) on Y, induced 

by 0(D) . Then 

(11) <Y,D> : -Zog 77 io*(I D) I v 
V 

From the product formula one sees that the right hand side of (11) re- 

mains unchanged if one takes a different non zero section of 0*(0(D)) 

instead of O*(ID) . This justifies the following general definition of 

degree of an invertible A-sheaf i on the A-curve Y = Spec R: 

(12) deg [ : -log ~ Isl v 
V 

One can take any non zero meromorphic section s of i in (12). 

2. The Riemann-Roch theorems. 

I. The geometric Riemann-Roch theorems. We shall recall first the 

simplest Riemann-Roch-Hirzebruch theorem for projective manifolds over 

a field. Let X be a d-dimensional manifold, i an invertible sheaf on 

it. Set X([) = E(-1) i dim Hi(i) and denote by c1(L), tdi (X) the Chern 
i 

and Todd classes respectively. Then 

(1 )  x ( L )  = 
d 

I 
< [ ~ c1(i)i tdd_i(X) > 
i=0 

where < > in the right hand side of (I) means the intersection index 

calculated in the Chow ring or in a cohomology ring with characteristic 

zero coefficients. In particular 
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d i 
(2) X(L) : [ n i 

<c1(1) tdd_i (X) > 
i=0 

In this section we shall describe three particular cases of a would be 

Riemann-Roch theorem for A-manifolds, for the projective space, A-curve 

and A-surface respectively, the last case being by far the deepest one. 

As we have said already, the first problem is to define XA(L) 

2. Projective A-space. Let us consider the A-manifold, for simplicity 

over ~ • pd = (Pi "~)' where ~ is a Kihlerian form on pd(~) . We 

shall realize P~ as Proj S(Tz), where T Z is a Z-free module of 

the rank d+1 , and we set T= ~ ~ T~ . There is a canonical hermitian 

metric on 0f(n) whose curvature from is a multiple of ~ . We shall 

denote by 0(n) the corresponding A-sheaf. Since 

Hi(Ip d ,0(n) ) = Sn(T Z) , Hi(p d, 0(n)) = 0, 

(n~d) (Sn(T)) 
for i > 0 , n >_ 0 , we must choose a volume form w n6 Aft 

and then define 

where v 
n 

group. 

w 

XA(O(n ) )  = l o g  I~1 
n 

E AZ (n~d) (Sn(TZ)) 

# 

is one of the generators of this cyclic 

The simplest imaginable choice of w is the following one. Consider 
n 

the isomorphism 

n n~d) 
(n~d) .d+1 

~n:Az (Sn(TZ)) ÷ [I\ z (TTz) ] 

n (nad, 
® ~ J n ,n+d, 

which maps v n onto v I (if ~-ft d ~ ~ ~ one can still 

correctly define ~n@(d+1) , which suffices for our needs). Now choose 

somehow w I and set 

® n ,n+d) 

w n (<0n~ idlR) \W 1 ) 

Then 

w I ® ~+1(nd d) 
×A(0(n)) = log iV~11 n (n+d, (0(I)) 

d~l d J XA 
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In view of (8), n°1, the tensor multiplication of an A-sheaf i by 
r r 

0(K P(~)) multiplies the metric on i~ byexp( -' n vol P ) " Assuming 

the corresponding change of w I , we get 

r 
XA(0(]) ® 0( n ]? (~))) : XA(0(1)) + 

r(d+IL 
n vo i P 

and finally 

n (n+d. .n+d r 
(3) XA(0(n) ~0(rm(~))) : d$~ d }XA(0(1)) + ~ d ) vol ~ 

Comparing (3) with (I) and (2) we see that pd looks like a (d + 1)- 

dimensional geometric manifold. We can also guess the Todd A-classes 

tdAd+1_i(~d) . 

3. A-curve. Let X : Spec R, n = [R:Z] : r I + 2r2, r I : card {v 6 S IKv:R}. 

Denote by i = ([f;hv) an invertible A-sheaf on X, L = H°(X,if) . 

According to n°.I.3, we have 

XA(L) : vol(( @ L ~ Kv)/L) . 
v6S 

We choose the volume form on ~ L~K v implicit in this definition 
vtS~ 

following A. Weil [36] and Szpiro [33] in the following way: 

2 n 
w : q~ w v , 

2riT r2 v6S 

where w is the volume form corresponding to the Euclidean metric on 
v 

L defined by h With this choice, the following statements, closely 
V V 

parallel to the case of curves over finite fields, are valid. 

The Riemann-Roch theorem: 

XA(L) = deg L + XA(0 x) 

where deg i is defined by (12), n°1. 

The Euler number of the structure sheaf: 

Xi(0 X) = r 2 log ~ - ~ log IAKi , 
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where £K is the discriminant of K. 

o = ~ 1 for all v} Then HA(0):{0]U Furthermore, set H~(L) {s£ L I Isl v 

{roots of unity in R}, which is the analog of the constant field. From 

the Minkowski theorem one easily deduces that XA(L) k 0 implies 
o 

HA(i) + 0 

4. A-surface. An A-surface X = (Xf,ev), according to Arakelov and 

Faltings, is a semistable family of curves Xf ~ Spec R with smooth 

irreducible generic fiber of genus g > 0 and the following metrics 

at infinity: 

g 

: = I ~ Vk,v A -- ~v V°iv 2zi k=1 Vk'v 

Here (ml,v,...,mg,v) is a base of the differentials of the first kind 

on X orthonormal with respect to the scalar product 
V 

I 
<m,v'> 2"~i S m A ~'. 

Xv(~) 

: ~I x . We denote by ~f the relative dualizing sheaf of ~. Then Rv v 

The canonical A-sheaf ~ = {~f,hv) is unambigously defined by the fol- 

lowing prescription which normalizes h v . For an arbitrary point 

xE X v the residue map res x : ~Ix v® 0Xv(X) + ~ is an isometry of the 

geometric fiber of the former sheaf and of { . 

5. The Euler characteristic. Faltings [10] defines XA(L) for an in- 

vertible A-sheaf i on X in the following way. 

The decisive step is the definition of canonical metrics on the spaces 

detKvH°(i v) ~ detKSH1 (iv) ~ Kv' v6 S , in the case H°(L v) = HI (Lv) = 0. 

This being done, Faltings uses this case as the induction base with 

respect to the ordinary degree of i on the generic fiber. To this end 

, H I 0 he represents i in the form L0(D) where H°(L0, v) = (i0,v) : 

and D is a horizontal A-divisor which can be taken as a sum of sections 

after a base extension. One can then simultaneously define XA(L0(D)) 

and prove the Riemann-Roch formula if only one establishes the in- 

dependence of this construction on the choice of the isomorphism 

i : L0(D) which is highly non-unique. 
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This independence is valid for the following particular choice of 

metrics on all L0's simultaneously. Set PiCg_IX v= M v and denote 

× M . Let IT2:X x M ÷ M by the by Iv the universal sheaf over X v v v v v 

projection map. We can construct the invertible sheaf det R~2,E v on 

M v. Its geometric fiber at a point y6 M v corresponding to the sheaf 

iv(Y) : Iv I (X v x {y}) can be canonically identified with 

det H°(iv(Y)) ® det-]H1{iv(y)) ® Kv 

Over the set U = {y6 Mv I H°(Lv(Y)) : H1(Lv(Y)) = 0} the sheaf 

det R~2,E has a canonical unit section. On the other hand, M v~U is 

the theta-divisor, and an easy consideration shows that under the suit- 

able identification det R~2,[ = 0My(-8) the unit section goes into I. 

Therefore, a choice of an A-structure on 0M(-8) normalizes all 

XA(L0). Faltings proves that the 8-polarization induces precisely the 

A-structure suitable for the inductive argument. 

We can now state the Riemann-Roch. 

I 
6. Theorem. a) XA(0{D)) : ~ <D,D-K> + XA(~) , where 9 = 0(K) , < > is 

the intersection index defined in n°1.6. 

b) XA(~) = -i~( < K,K > + 6 ) , 6 = [ 6v(Xv), 
yES 

where 6v(X v) : log card (singular points of X(v)) for v C Sf ; for 

v 6S , 6 is a real analytic function on the moduli space of Riemann 
V 

surfaces which measures the distance of X to the boundary. 
V 

Of course, in the geometric case, the Noether formula b) follows from 

the Riemann-Roch-Grothendieck theorem applied to the morphism ~. 

The structure of @ (X v) for v6 S 
v 

about X(v) as a degenerate fiber. 

vaguely agrees with our philosophy 

Faltings proves the Noether formula by an argument using the moduli 

space of X instead of Picg_1 of the first part. 

The governing idea always is to use some canonical A-structures on the 

moduli spaces and their tautological sheaves, to apply the ordinary 
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Riemann-Roeh-Grothendieck to the finite part and then to "compactify" 

this information by the K~hlerian geometry. 

Hence we need the A-geometry of arbitrary dimension anyway, even to 

deal with A-surfaces only. In the next section we shall discuss what 

is to be done to put this program on a firm foundation. 

3. Prospects and problems of A-geometry 

I. The problem of the definition of the fundamental categories. 

In the definition of A-manifolds given in 1 . 1 .  no conditions on the 

K~hlerian forms ~ were imposed. However, the Arakelov and Faltings 
v 

theorems are proved for distinguishedKihlerian structures. We shall give 

the tentative definitions in a more general context. 

Let Iv be a locally free sheaf on a compact Kihlerian manifold 

(Xv,~V) and hv a Hermitian metric on Iv. We choose holomorphic 

local coordinates (z ~) on X and a base of local holomorphic 
v 

sections (si) of E v and set hij : hv(Si,Sj) . The curvature tensor 

of the canonical connection associated with h is 
v 

F. = - 92hij + h ab 9hib ~hij 

13~8 ~za~[~ ~z ~ ~8 

where (h ab} = (hij)-1 . Set ~v = -~ g~8 dz~ A d~8 and (gy$) = (gas)-1 

Then ([v,hv) is called a Hermite-Einstein sheaf if 

ge~F i = ~h 
jab 13 ' 

where l is a constant. (It can be explicity calculated: setting 

n = dim X v we get ~= (2~n ~ c1([v)~n-1)v / (rk [ ~ nv ))" 
v v 

On the holomorphic tangent sheaf IX there is the hermitian metric 
v 

gv = 2gab d z a d ~  " The m a n i f o l d  (Xv,Wv) i s  c a l l e d  t h e  H e r m i t e - E i n s t e i n  

manifold if (TXv,g v) is a Hermite Einstein sheaf. 

The existence and uniqueness problems for Hermite-Einstein structures 
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on a sheaf E were considered by Kobayashi [19] and Donaldson [9]. 
v 

Kobayashi has shown that the existence of such structure implies the 

semistability of E and that any semistable Hermite-Einstein sheaf 
v 

(Ev( , hv(i) (i) (Ev,hv) is a direct sum @ i) ) with stable Ev 

(Stability here means that the function ~(F) = deg0~ r F/rk F, where 
n-1 

deg~v F = f c I (F)~v , is monotonous on subsheaves Fc E) . 
Xv 

On the other hand, Donaldson proved that on projective algebraic sur- 

faces (Xv,~v) any stable sheaf has a unique Hermite-Einstein metric 

(up to a multiplicative constant). The same is true for algebraic 

curves and, conjecturally, for all projective manifolds. 

Deep existence and uniqueness properties of Kihler-Einstein metrics 

on manifolds were obtained by Yau [38] and Aubin [3]. From Yau's 

results it follows in particular that for c](X v) = 0 each cohomology 

class of K~hlerian metrics contains a unique Kihler-Einstein metric. 

Aubin has established the existence on X of a unique K~hler-Einstein 
v 

metric with the constant I = -] under condition that ci (X v) contains 

a form with negative definite metric. 

Ourlimited understanding of A-geometry suggests the special role of those 

A-manifolds for which (Xv,~v) are K~hler-Einstein. This condition 

appears to be a reasonable analog of the minimality of Xf over Spec R. 

Furthermore, on a given A-manifold, the following definition of a local- 

ly free A-sheaf seems plausible enough: it is the data E = (Ef;hv,V6S ~) 

for which Ef is a locally free sheaf on Xf and (Ev,h v) are 

Hermite-Einstein sheaves on (Xv,~v). For rkEf = I this is our initial 

definition. 

The category-theoretic aspects of these definitions need clarification. 

Since the Hermite-Einstein property may possibly be relevant only for 

locally free and semistable sheaves, to define a substitute for coherent 

A-sheaves one probably is bound to consider something like "perfect 

complexes of locally free A-sheaves", as in [35]. Unfortunately, the 

differential geometry of complexes of sheaves in a derived category 

is not sufficiently developed. 

The complexes of A-sheaves must have a torsion invariant XA. For 
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v 6S the corresponding component of XA under certain conditions 

should be given by the Quillen construction [30]. 

I do not know how to define morphisms of A-manifolds. The problem seems 

to be related to the hyperbolicitytheory by Kobayashi [18]. In fact, it 

is based on the study of morphisms D÷ X and X + D, where 
v v 

D= {zC~, IzbS1} is the analog of Spec Z . Therefore it can be con~ 
P 

sidered as the counterpart of the theory of Zp-models of @p-manifolds. 

2. The problem of canonical A-structures on moduli spaces and of 

A-moduli spaces. The Arakelov and Faltings work shows the existence of 

distinguished A-structures on the moduli spaces of curves and of in- 

vertible sheaves on a curve, by which one arrives at good statements 

of the principal results. (For the moduli space of curves having a 

boundary this statement should be considered as heuristic, granting the 

existence of good definitions). 

One should study from this view point the moduli spaces of stable sheaves 

on a curve, with rank and degree relatively prime. The first unsolved 

problem is to generalize the Riemann-Roch-Arakelov-Faltings theorem to 

the A-sheaves of arbitrary rank, where the second Chern A-class c2A(E) 

should emerge,an intersecting new invariant. 

When a category of A-spaces is properly defined one would naturally 

hope for existence of moduli-objects in this category. Of course, the 

first problems here are again connected with the situation "at infinity", 

i.e. the K~hlerian geometry. In this respect a recent work of Koiso [20] 

deserves to be mentioned. Koiso shows in particular that the base space 

of normal and stable family of K~hler-Einstein structures carries a 

canonical K~hler structure. Unfortunately in most cases it is unknown 

whether it in addition satisfies the Einstein equation. 

3. The p_~obl@m of intersection theory of A-manifolds. In the important 

paper [4] A. Beilinson defined regulators for K-theory and introduced 

the general technique for construction of intersection theory on 

A-manifolds. We shall briefly describe here a part of his results, 

stressing the role of K-theory as a cohomology theory. 

Let Xf be a regular projective scheme flat over Z , dim Xf = d + I 
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We fix two cycles z i of pure codimension Zi in Xf . Assume that 

~0 + ZI = d+ I and supp (z 0 A Zl) n Xf,~ = ~. We shall describe Beilinson's 

construction of the A-intersection index <z0,zl > . For simplicity, we 

shall assume that both cycles have zero cohomology classes on the generic 

fiber. In this case we can forget ~ since the intersection index will 

not depend on this metric. We get 

<z0,zl > = <z0,z1> + ~ log p'<z0,z1> p 
p6Sf 

and define the fiberwise indices < > with the help of several cohomo- 
V 

logy theories. 

To calculate < >~ we shall use the Deligne-Beilinson cohomology H~ . 

F o r  a s m o o t h  c o m p a c t  c o m p l e x  m a n i f o l d  X a n d  a c o e f f i c i e n t  r i n g  

B c~ , B(j) : (2~ -/~)JB, this cohomology is defined as follows: 

H~(X ,B(j)) : RKF(x ,B(j)0) , 

= Cone (F j @ B(j) ~ ~') [-I], B(J) D 

where F j : ~J (the truncated complex of holomorphic forms), ~: ~I-e2, 

ei the natural injections. In the noncompact case, the forms with 

logarithmic singularities are used. The now standard homological methods 

permit us to define the D-cohomology of simplicial schemes, the relative 

D-cohomology, to define the classes of algebraic cycles and to prove the 
• / 

Polncare duality theorem. 

Now we return to the situation described earlier and set Ui:X -supp z . 
itoo 

If the classes of z.l,~ in H D21i(X ,IR(li)) vanish, the Mayer-Vietoris 

sequence shows that the classes c/Dzi6 H~ii(X,Ui,IR(ii)) are of the form 

~i where ~i C H~ 21i-I (Ui,19(~i)) . We can construct the class 

60 U 616 H~d(u0(] UI)IR (d+ 1)) 

and its image 

2d+I 
(z 0 n Zl) ~ = ~(%0L~%1)6 H D (X,IR(d + I) ) 

Let ~:X~÷ Spec R be the structure morphism. The final formula for 
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the A-intersection index at the arithmetical infinity is 

1(Spec m ~(I)) = {/m(1) = <z0,z1> ~ = ~,(z 0 N Zl) ~6 H? , 

To define <zl,z2> p in a similar way, Beilinson introduces the 

K-cohomology: 

where ~P are the Adams operations. In this case also the relative 

version and the formalism of the cyclic classes can be defined. Setting 

U i = Xf ~ supp z i as earlier we can now construct the intersection class 

2d+2(Xf U 0 U U1;~(d+ I)) (z 0 N zl)fC H K , 

Set S' = supp ~f(Xf ~ (U 0 U UI)) , where [f:Xf+ Spec Z is the structure 

morphism. This is a finite set of primes. We have <z0,zl > = 0 for 
P 

for p{ S' , and for p6 S' the index <~0,Z1>p is a sort of direct 

image zf(z 0 N zl) f localized at p. 

4. The problem of the Euler A-characteristic and of the Riemann-Roch 

A-theorem. I cannot add much to what has been said earlier. Two remarks 

may be in order. 

First, granting that the definition of XA in a general situation can 

be done in terms of the analytic torsion of the Dalbeault complexes, we 

shall need the relative analytic torsion to treat the general Riemann- 

Roch-Grothendieck case. 

Second,independently of the conjectural general theory, very interesting 

and directly accessible problems of A-geometry may be found, e.g., in 

the theory of flag manifolds G/P Z . A recent work by Bombieri-Vaaler 

[6] is an example. It suggests in particular that the classical Min- 

kowski "geometry of numbers" should be interpreted in A-geometry as a 

theory of characteristic classes at the arithmetic infinity. 

4. Superspace 

I. Examples of superspaces. A smooth or analytic manifold can be described 
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by a family of local coordinate systems and transition functions. Be- 

fore introducing a formal definition of superspace, we shall give 

several examples of supermanifolds with the help of local coordinates. 

a) The mln -dimensional affine superspac e. It has global coordinates 

(x I ..... Xm;¢ I , .... ~n ) , where x i commute among themselves and with 

Cj and Cj anticommute. In the category of superschemes over a 

commutative ring A the ring of functions on the relative affine 

mln-space is the Grassmann algebra with generators ~j over polynomial 

ring A[x I .... ,Xm]. In the category of C -supermanlfolds the ring of 

functions is C ~ ,... ,. (Xl 'Xm) [¢I ""¢n] 

b) The mln-dimensional projective superspace. It is defined by the 

atlas U i, i= 0,...,m , each U i being a mln-dimension~l affine space. 

It is convenient to introduce a homogeneous coordinate system 

(X0,X1,...,Xm;Z],...,Z n) and to relate the coordinates 

(x~, j #i i~ ..... ¢i) by setting x!=3 Xj/Xi' cji = Zj/X i" 

c) The supergrassmannian of the d0idl-dimensional linear superspaces 

in the (d O + c0id I + Cl)-dimensional linear superspace. We shall describe 

it Dy the following standard atlas. Consider matrices of the form 

(d O + d I) × (d0+c 0 + d I + c I) divided into four blocks such that the format 

of the upper left block is d O x (d O + Co). For each subset I of columns 

containina d O columns of the ]eft part and d O columns of the right 

part consider the matrix 

c O d O d I c. 

x I 

(I) z I = 

I 0 

0 I 

~ I  0 

0 ~I 

] 0 

x I 

0 I 

< ) 
I 

d O 

d I 

The columns I in Z I form the identity matrix. All the remaining 

places are filled by the independent even and odd variables x~b ,¢~d 
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even places being in the upper left and lower right blocks. These vari- 

ables (xi,<i) are the coordinates of the local chart U I. Denote by 

BIj the submatrix of Z I formed by the columns with indices in J. 
-I 

Then the transition rules are Zj: BIj Z I. 

Setting in this prescription d01d I : II0, d O + c01d I + c I = m + 1in, we get 

the projective superspace. On the other hand, setting d I = c I = 0 , we 

get an ordinary grassmannian. 

Proceeding in a more systematic way, we shall start with several basic 

notions of superalgebra and then define superspames by means of a 

structure sheaf. 

2. Superalgebra. The algebraic composition laws relevant in geometry 

are naturally divided into additive and multiplicative ones. All additive 

groups in superalgebra are endowed with a ~ 2-gradation and all multi- 

plications are compatible with it. We use notation A = A 0 @ A I and 

= s in case a 6 A s , then ~= ~ + ~. The elements of A 0 are called 

even ones and those of A I odd ones. The characteristic feature of the 

superalgebra is the appearance of certain signs ±1 in all definitions, 

axioms and polynomial identities of fundamental structures. 

We shall give a representative list of examples. 

Let A= A 0 @ A I' be an associative ring. The supercommutator of homo- 

geneous elements a,b 6 A is defined by the formula [a,b] = ab- (-1)~ba. 

The ring A is called supercommutative iff [a,b] = 0 for all a,b 

If 2 is invertible (which we shall always assume), a 2 1 = ~[a,a] = 0 for 

all a 6A I. The supercommutators in general satisfy two identities 

[ a , b ]  = - ( - 1 )  a'a~ [ b , a ]  , 

[ a , [ b , c ] ]  + ( - 1 )  ~ ( ~ + ~ )  [ b , [ c , a ] ]  + ( - 1 }  ~ ( ~ + ~ )  [ c , [ a , b ] ]  : 0 . 

These identities (together with superbilinearity) are taken as the de- 

finition of Lie superalgebras. The ring morphisms, by definition, res- 

pect the gradation. 

Let A be a supercommutative ring. The notions of (Z2-graded, of 
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course) left, right and bimodule S over A coincide, just as in the 

commutative case, left and right multiplications being connected by the 

formula as = (-I)~ s a . A new feature is the parity-change functor: 

(I I S) 0 = SI,(I I S) I = S O , right multiplication by A coincide on S 

and TTs . An A-module S is called free of rank Plq iff it is 

isomorphic to A plq= A P@ (HA)q ~ The tensor algebra of A-modules differs 

from the ordinary one by the introduction of Z sign into certain 

canonical isomorphisms, e.g. ~ : S ® T~ T® S is defined by 

~(s® t)= (-1)st t® s. There are internal Hom's in the category of 

A-modules consisting of ordinary morphisms and also of odd ones, with 

the linearity rule f(as) = (-I) ~ a f(s) . 

The morphisms between the free A-modules can be given by matrices. 

One must not forget that the passage from the left (row) coordinates 

to the right (column) coordinates of an even element implies sign 

change in odd coordinates etc. The matrices are often written in the 

standard format, like (I) where the even-even places are kept in the 

upper left block. The group GL represents the functor of the in- 

vertible matrices corresponding to even morphisms. 

F. Berezin has invented the superdeterminant, or Berezinian, 

Bet : GL(plq,A) ÷A T . It is a rational function of the elements of the 

matrix which in the standard format is given by the formula 

det (B - B2B4-1B3 ) det B 4 
I 

Ber B 3 B4] = I 

The kernel of Ber is denoted SL. Since Ber is rational, supergrass- 

mannians fail to have PlUcker coordinates, as we shall see later. 

The Berezinian of a free module Ber S is defined as a free module of 

rank Ii0 or 011 (depending on the parity of q in rkS : p(q) 

freely generated by any element of the form D(s I ..... Sp+q) where (s i) 

is a free base of S, with the relations 

m(f(s]) .... ,f(Sp+q)) = Ber f - D(s I .... Sp+q). This notion is a specific 

substitute for the maximal exterior power in commutative algebra. 

The bilinear forms on a free A-module T with the symmetry conditions 

are divided into four main types: OSp (even symmetric), SpO (even 
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alternate), I-~O (odd symmetric), ~Sp (odd alternate). The form b ~ on 

~-~T is defined by the formula b~(~tl,]Tt 2) = (-])tb(t],t2). This cons- 
truction preserves parity but changes the symmetry of the form so that 

usually it suffices to consider only types 0Sp and ]~Sp. 

The automorphism functor of a non-degenerate form defines the super- 

groups of the corresponding type (we shall consider below only the split 

ones). Besides SL, OSp and ~Sp, there is in superalgebra one more 

series Q of supergroups of classical type: the centralizer group of 

an odd involution p : T+ T, p= I, p2 = id. The Lie superalgebras of 

these groups, slightly diminishedif necessary (to kill a center etc.) 

constitute the classical part of the Kae classification [15] of simple 

finite dimensional Lie superalgebras. There are also two exceptional 

types (one having parameters)and Catzdan~ype superalgebras of formal 

vector fields whichhappen to be finite-dimensional when defined on 

Grassmann algebras. 

A superderivation X:A÷ A verifies the Leibniz formula 
~N 

X(ab) = (Xa)b + (-I) xa aXb. There are two natural modules of relative 

differentials of a commutative A--algebra B:~vB/A and ~ddB/A, 

classifying even and odd differentials respectively. Later on we use 

mainly ~ddB/A since the corresponding de Rham complex is super- 

commutative while for ~I B/A it is super anticommutative. 
ev 

3. Supergeometry. The most general known notion of a "space with even 

and odd coordinates" is that of superspace. Superspace is a pair (M,0M) , 

where M is a toplogical space, 0 M a sheaf of local supercommutative 

rings on it. Morphisms of superspaces aremorphisms of locally ringed 

spaces compatible with the gradations of structure sheaves. 

All objects of the main geometric categories,-differentiable and analytic 

manifolds, analytic spaces, schemes, - are trivially superspaces, with 

0 M= 0M, 0. Such superspaces we shall call purely even ones. 

In the general case we set JM= 0M" 0M,I, Gr i 0M: j~/j~+In s . Furthermore, 

Mrd: (M,Gr00M), GrM = (M,I~ 0': Gri0M) . 

The structure sheaf GrM has a natural ~-gradation. To consider GrM 

as a superspace we reduce it modulo 2. 



84 

With the help of these constructions we can define the most simple and 

important class of superspaces. We shall call a superspace (M,0 M) a 

supermanifold, analytic or algebraic, iff a) Mrd is a pure even mani- 

fold of the respective class; b) the sheaf 0 M is locally isomorphic 

to the sheaf Gr0M, which is in turn isomorphic to the Grassmann algebra 

of the locally free (over Gr0M) sheaf JM/J~ of finite rank. (Note 

that this Grassmann algebra should be called symmetric in the super- 

algebra since JM/J~ is of pure odd rank). 

One proves then that C ~ and analytic supermanifolds can be described 

by local charts (x~ ..... Xm; ~I ..... ~]n ) . The sheaf 0 M locally consists 

of the expressions E f (x)~ e where f are even functions of the 

corresponding type. An essential feature of supergeometric constructions 

is their invariance with respect to the coordinate changes mixing even 

the 
and odd functions. Set, goese'g'' y= x+ ~i~2,~I= (I + ~  TI1~2)x2)~ I, 82= f~2iy)~h~2 " 1 + x  2 
local function f(x) into f(y-~+xL = f(y)- 

I 
The appearance of derivatives in the coordinate change formulas plays 

an essential role in the Langrangian formalism of supersymmetric field 

theoretic models. It also shows that in continuous supergeometry a 

natural structure sheaf ought to contain certain distributions. The pe- 

culiarities of continuous supergeometry were not studied for this 

reason. 

The most important superspaces which are not necessarily supermanifolds 

can be easily defined in the analytic category. They are the super- 

spaces (M,0M) such that (M,0M,0) is an analytic space and 0M, I 

is 0M,0-coherent. In the same way one defines superschemes. 

The notion of a locally free sheaf of 0M-mOdules is a natural substi- 

tute for vector bundles. For supermanifolds over a field the tangent 

sheaf TM and the cotangent sheaf ~IM= 9~dd M are defined in the usual 

way, using superderivations over the ground field. The generalization to 

the relative case is selfevident. The rank of TM is called the di- 

mension of the supermanifold. 

Now the reader will easily transcribe the descriptions given in n°4.1 

into the definitions of the superspaces in the algebraic, analytic or 

C ~ categories. Notice that the grassmannian is endowed with the tauto- 

logical sheaf, which is generated by the rows of Z I over U I. Over 



85 

the projective superspace it is denoted 0(-I). 

4. Methods of construction of superspaces, a) Let (M,0 M) be a pure 

even locally ringed space, [ a locally free sheaf of modules of rank 

01q over 0 M . Then (M,0M, s - S([)) is a superspace, which is called 

split. In the C ~ category every supermanifold is split, i.e. can be 

obtained in this way from a manifold and a vector bundle on it. In the 

analytic and algebraic categories this is not true anymore, e.g. the 

Grassmannians are not analytically split unless the tautological bundle 

is of pure even or pure odd rank. (cf. below). 

b) As in pure even analytic and algebraic geometry, very important 

superspaces are defined by their functor of points. We have already 

mentioned the algebraic supergroups GL. SL , OSp, ~Sp and in the 

next section we shall work .with the flag superspaces F(dl,...,dK;T), 

where d I < d 2 < ...< d K are the dimensions of the components of a flag 

in the linear superspace T. We expect that the main theorems on the 

representability of various functors and moduli problems admit their 

counterparts in supergeometry although the systematic work has barely 

begun. We shall state two results proved by A. Vaintrob which show the 

existence of a local deformation theory of Kodaira-Spencer type. The 

basic definitions are readily stated in the context of analytic super- 

spaces. The infinitesimal deformations are represented by the ring 

{[x,~] i (X2,x~) . 

Let M be a compact supermanifold, TM its tangent sheaf. 

5. Theorem. a) Let dim HI(M,TM)= alb . If H2(M,TM) = 0, then in the 

category of analytic supermanifolds there exists a local deformation 

of M over B= {alb such that the Kodaira-Spencer map 

P:ToB ÷HI(M,TM) is an isomorphism. 

b) Any deformation of M over a supermanifold with surjective Kodaira- 

Spencer map is complete; in particular, it is versal, if p is 

isomorphic, i 

Let us give an example. Let M be a compact analytic supermanifold of 

dimension 111 It is completely defined by the Riemann surface 

M 0 = Mrd and the invertible sheaf ]~JM= L on it. Assume that 
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genus M= g >I, deg i = 0 and i is not isomorphic to 0M@ In this 

case rk HI(M,TM) = 4g- 314g- 4. The even part 4g- 3 of this dimension 

corresponds to the classical manifold Z of deformations of the pair 

(M0,L) which is fibered by Jacobians over the coarse moduli space of 

curves. Theorem 5 shows that outside of the zero section this manifold 

Z is naturally extended to the supermanifold of odd dimension 4g- 4. 

This structure deserves further study. 

6. Theorem. Let M be a closed compact subsupermanifold of the complex 

supermanifold M'. Let N be a normal sheaf to M . 

a) If dim HO(M,N) = alb and HI(M,N) = 0, there exists a versal local 

deformation of M in M' over B = {alb 

b) A deformation of M in M' over B is complete iff the Kodaira- 

Spencer map P:ToB ÷H0(M,N) is surjective. 

7. Example. Let us return to the definition of a supergrassmannian and 

illustrate certain of our constructions. The supergrassmannian 

G = G(II1; ~212) is covered by four 212 -dimensional affine super- 

spaces. The corresponding Zi-matrices are 

ix11 ~i o I I~2 i o ~21 
~I 0 Yl I , rl 2 0 I Y2 ' 

11 x3 ~3 0! 11 x4 o ~I 
0 D3 Y3 I , 0 T] 4 I Y4 

Using the prescription in the beginning of this section, one calculates 

the transition functions, e.g. 
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<x1 i I <x4 
r~1 Yl q4 Y4 

-I 

-I -2 -I _x[ly 4 I~4 
: I x4 -I+ x4-I Y4 ~4q4_i ' 1 

-x4 Y4 84 ' Y4 -x4-1y4-2~4q4 / 

p1 x p1 A calculation shows also It follows immediately, that Grd = 

that 

2 ~ £2(pI p1 
JG x ) 

so that the obstruction ~ to the splitting of G lies in the group 

H1(T(p1xp1) ® £2(p1×p1)) = H1(p1,~1p1)2 : { ~ ~ . 

One can check directly, using the ~ech cocycle in the standard atlas, 

that this obstruction is (I,1). Hence G is not split. (Notice that 

the projective superspace is split: pmln = (pm,s(770~m(_1))) " 

Moreover, G is not a projective supermanifold. In fact, the image 

of the Picard group HI(G,0~, 0) ÷ Pic (pIxpI) consists of the classes 

of sheaves 0(a,-a), a6 ~, since the obstruction to extending 0(a,b) 

from Grd to G is essentially (a+ b)~. Therefore, any supergrass- 

mannian G(alb;~ mln) with 0 < a < m, 0 < b < n is non-projective since 

G admits a closed embedding in such a Grassmannian. 

This example shows that the use of projective technique in the algebraic 

supergeometry is restricted, and one is obliged to generalize those 

methods of algebraic and analytic geometry which do not rely upon the 

existence of ample invertible sheaves. 

For example, P. Deligne conjectured that the dualizing sheaf on a smooth 

complex supermanifold X in Ber ~I X. This was proved by I. Penkov [29] 
ev 

who has demonstrated that in this case working with g-modules on a 
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supermanifold permits one to effectively reduce the situation to the 

pure even one. 

5. Schubert supercells. 

I. Basic notions. Let G be a semisimple algebraic group, Bc G its 

Borel subgroup. The G-orbits of G/B x G/B form a finite stratification 

on this manifold whose strata Yw are numbered by elements w of the 

Weyl group W= W(G) (Bruhat decomposition). We shall call locally 

closed submanifolds Xw(b) = ({b} × G/B) N Y c G/B the Schubert cells. 
w 

In the same way, using G-orbits of G/B x G/P, one defines the Schubert 

cells for a parabolic subgroup Pc G. The geometry of the Schubert 

cells plays an important role in many developments of characteristic 

classes theory and representation theory. 

In this section we shall define Schubert supercells for complete flag 

superspaces of classical type and explain how some classical results 

generalize in this context. 

Let T be a linear superspace of dimension mLn over a field. We shall 

consider the following algebraic supergroups G given together with 

their fundamental representation T: a) G= SL(T) ; b) G= 0Sp(T) , the 

automorphism group of a nondegenerate even symmetric form b:T÷ T* ; 

c) G = ~Sp(T), the automorphism group of a nondegenerate odd alternate 

form b:T÷ T*; d) G= Q(T), the automorphism group of an odd involution 
2 

p:T÷ T , p : id. In the cases ~Sp and Q we have m = n. 

The counterpart of the classical manifold G/B is the supermanifold 

F of complete flags in T, which are in addition invariant with respect 

to b or p in the cases G= OSp, ~Sp , Q (the exact definitions are 

given below), several differences between this situation and the clAssi- 

cal one are worth mentioning. 

First, the stabilizers of complete flags B in general are not maximal 

solvable subsupergroups. However, they play the same role as the classical 

Borel subgroups both in the theory of highest weight [16] and in the 

theory of the Schubert supercells. Second, not all subgroups B are 

pairwise conjugate, and the flag manifolds F consist of several 
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components. Third, the stratification we want to construct is not 

purely set-theoretic. In fact it will be a decomposition of F x F 

into a union of locally closed subsuperschemes. The flag realization 

is suitable for this construction. 

The first unsolved problem is to define a cohomology theory in which 

the classes of the Schubert cells would be free generators. As we con- 

jectured in the introduction, this may require a sort of compactifi- 

cation along the odd dimensions. 

We shall now give some details. 

2. The connected components of flag supermanifolds. These connected 

components are naturally numbered by the sets GI which are defined 

as follows. Set 

m+n 

, = I}0 or 011, ~ 6 = mln} SLI = {(61 .... 6re+n) I 6i i= I i ' " 

Furthermore, 

0SPI : {(6 1 ..... 6m+ n) 6 SLI 16 1 : 6m+n+1_ i , i = I ..... m+n} , 

, = 6 c i = I, ,2m} , ]IspI = {(6q .... 62m) 6 SLII6 i 2m+1-i . . . .  

m 
L ........... ] 

where (plq) c = qlp • Finally, QI = {~I11 ..... I11)} (the one element 

s e t ) .  We s a y  t h a t  t h e  f l a g  f :  0 = SoC S 1 c . . .  CSm+ n = T i s  o f  t y p e  

I 6 G I  , i f  6 i ( I )  = r k  S i / S i +  1 . F o r  g r o u p s  G = O S p ,  - ~ ' S p ,  Q t h e  

flag f is called G-stable if the following conditions are fulfilled: 

b(S i) = S I . for OSp, ~Sp ; p(S i) = S. 
re+n-± 1 

for Q . 

The functor GF I on the category of superschemes over ground field 

associates with a superscheme S the set of flags of type I 6 GI in 

the sheaf 0 S ® T ; for G # SL the flags should be G-stable. (A flag 

is a filtration of 0 s ® T by subsheaves S i such that all injections 

S. cS. locally split; G-stability is defined with respect to 

id0s ® b or id0s ® p ). 
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Theorem. Functor GF I is representable by a supermanifold which 3 6 

is irreducible except for G = 0Sp(2rl2s) , r _-> I, in which case GF I 

consists of two ismorphic components. Furthermore, 

dimSLFi = <m(m 2 I)+ n(n-2 I)1 mn ) ; 

( r2+ s2 I (2r+ 1)s) 

diO S~I = 2 

(r 2- r + s I 2 rs) 

for m = 2r + I, n = 2s > 0; 

for m = 2r, n= 2s > 0 

2 

dimJ~S~i= <rs + r(r- I) + s(s + I) rs + r(r+ I) + s(s 2 I)~ 
2 2 ~ ' 

m 

where (rls) = [ 6i(I) . • 
i=I 

Of course, the functors of noncomplete flags also are representable and 

the morphisms of projection onto a subflag are representable by morphisms 

of supermanifolds. It is convenient to prove theorem 3 by induction on 

the length of a flag, starting with relative Grassmannians as in section 

4. The reader shall find most of details in [24]. 

Now we shall set GF =I~IGFI and denote by Sic 0 F ® T the components 

of the tautological flag on FG . There are two natural flags on 

GF x GF , {p1*(Si) } and {p2*(Sj) } , where PI,2 are the projections. 

In the classical theory every G-orbit consists of those points of 

GF x GF , over which the type of relative position of flags {p1*(Si) ] 

and {p2*(Sj) } is fixed. We can imitate this definition in supergeometry 

taking functor of points instead of geometric points. 

The type of relative position of complete flags 

is, by definition, the matrix di: J = rk(S i + S:) • 
3 

(S i ) and (Sj) in T 

Let us introduce the Weyl groups G W , acting on GI : 

SLw = Sm+n ; QW = Sm ; GW:{g 6Sm+nlg(GI) c GI} for G =0Sp,~Sp. 
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The reader will notice that our GW is in general different from the 

x S for SL and not Weyl group of Grd , e.g. the latter is S m n 

S . As we shall see in a moment, in the theory of Schubert super- 
m+n 

cells it is this big group, which contains the odd reflections, which 

is the right one. 

4. Lemma. The types of relative positions of complete G-stable flags 

are in (1,1)-correspondence with the triples (I,J,w) where I,J~ GI r ~ r 

w 6 GW , J = w(I) • . 

The proof is purely combinatorial. 

5. Bruhat subsets. We set now for w6 GW , I,J = GI : 

!Yw,IJ != {x 6GF I × GFj Irk(P1*Si(x) + p2*Sj(x)) : dij,w} 

where (dij,w) is the type of relative position corresponding to the 

triple (I,J,w) in view of Lemma 4 (if J % w(I) we set iYw,iJ I = ~) . 

Furthermore, put 

iywi : _~__ {Yw,iJ I c GF x GF 
I,J 

6. Theorem. Each set iYwl carries a canonical structure of the 

locally closed subsuperscheme Y c GF x GF , such that the decomposition 
W 

I I Yw is the flattening stratification for the family of sheaves 
W 

Sij = P1* Si + P2 *S on GF GF j X m. 

We recall that by definition of a flattening stratification this con- 

dition means that each morphism q:X+ GF x GF for which all the sheaves 

q*(Sij) are flat uniquely decomposes as X + IjYw+GF × GF. The proof 

of the existence of the flattening stratification is the same as in the 

pure even case. 

7. Superlength. In the classical theory the dimension Qf a Schubert 

cell associated with w6 W equals the minimal length of a decomposition 

of w into a product of basic reflections. To state the counterpart of 

this fact in supergeometry we need several definitions. 

We shall call the following elements of GW the basic reflections: 
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d. : (i,i + I) for G : SL,Q ; 
l 

di = (i,i+ I) (m+ n+ I - i, m+ n- i) , i+ I < [ m+n--~--] 

m+n T~ : (£,m+ n+ I - k) , ~ = [--~--] for- G = OSp, ~Sp. 

The superlength Gz(w) , w C GW will be defined inductively . This is 

a vector of superdimensions (GzIj(W) I I,J 6GI) such that 

a) For a basic reflection o 6 GW we have Gzij(a) : 0 if J # d(I) ; 

the other possibilities are contained in the table: 

T~ 

SL 

110 (I=J); 

011 (I@J); 

OSp 

110 (I=J); 

011 (I%J); 

110 ( 6 ~ ( I )  = 1 t 0 ,  

m l n  = 2 r  + 1 1 2 s ) ;  

111 ( 6 £ ( I )  = 0 1 1 ,  

m l n  : 2 r  + 1 1 2 s )  ; 

010 (6Z(I) : 110, 

mln : 2r12s) ; 

110 (6Z(1) : 011, 

mln : 2r12s). 

l lSp 

I 0 (l:J) ; 

0 I (I%J) , 

0 ] (~i(z):110) 

0 0 (69 (r):011) 

Q 

111 

o K oi b) Let w = . .. be an irreducible decomposition of w as a 

product of basic reflections. Set I = oi... ~I (I) and 
l 

K-I 
Gilj(W) = [ G~{ (o i+I) , if 

i=0 ~ I i ' I i + l  
S = w z); 

GZIj(W) : 0 , if J % w(1) . 

8. Theorem. The projection map Y 
w,IJ 

over GF I the  Bruhat  man i fo ld  YW,IJ 

GF I is surjective, and locally 

is a relative affine superspace 
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of dimension Gilj(W) . 

In other words, the dimension of a Schubert cell Yw(b) 

the superlength of w. 

coincides with 

From the geometric proof of the theorem some purely combinatorial facts 

follow. For example, G£1j(w) does not depend on the choice of an 

irreducible decomposition of w; furthermore, G£Ij(W) = G£ij(w-1 

for G %~Sp, finally for G =~Sp 

G£ij(w) + dim GF I 

if J = w(I). 

Giji(w-1) + dim GFj, 

6. Geometry of supergravity 

I. Minkowski space and Schubert cells. The objective of this section 

is to describe a model of simple supergravity from the view point which 

was introduced in [26] where the kinematic constraints of supergravity 

were interpreted as the integrability conditions for a curved version 

of a flag superspace. 

To explain the essence of our approach let us recall the usual exposition 

of general relativity. The space-time without gravitational field is the 

Minkowski space of special relativity ~4 with a metric which in an 

3 2 . The gravitation field inertial frame takes the form dx 2 -iE I dx i 

reflects itself in the curvature of space-time which becomes a smooth 

four-manifold M 4 with the pseudoriemannian metric gabdxadxb . The 

dynamics is governed by the Lagrangian (action density) R vol g 
where R is the scalar curvature, vol the volume form of g. 

g 

The models of supergravity in superspace studied in many recent works 

[12],[13],[34] also start with certain geometric structures on a 

differentiable supermanifold M mln which are then used to define a 

(super) Lagrangian which is a section of the sheaf Ber M : Bet ~I M. 
ev 

There are physically meaningful cases with m% 4 ,e.g. the case mln=11132 

is now considered as the most fundamental one. 
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What is still very much unclear, is the question what exactly is the 

geometry to start with, i.e. the kinematics of supergravity. The naive 

suggestion to use a supermetric was quickly seen inadequate. The most 

universal known method is the Cartan approach. One starts with an affine 

connection and then painstakingly guesses the so called constraints and 

the action density. The constraints are the differential equations which 

must imply no equations of motion. The physical interpretation and 

quantization of constrained fields is a difficult task and one faces 

the problem of solving constraints and expressing everything in terms 

of free fields. This approach was successful more than once but the 

poor command of underlying geometry hinders the work considerably. 

Our approach essentially interprets the constraints as integrability 

conditions ensuring the existence of certain families of submanifolds 

in M mln , the geometry of these families being a curved geometry of 

Schubert supercells. 

Let us first describe from this viewpoint the simplest example, the 

Pl~cker-Klein-Penrose model of Minkowski space. 

Let T be a four dimensional complex space (Penrose's twistor space). 

Let G = G(2;T) be the Grassmannian of planes in T , S = S l the 

= OG/S ~ tautological sheaf on G , S r (T ® )* There is a canonical 

isomorphism ~IG : S l~ S r , and the subsheaf A2S~ ~ A2S r c S2(~]G) 

can be interpreted as the holomorphic conformal metric on G. Choose 

a big cell UcG. The complement G~ U is a singular divisor, the 

light-cone at infinity, and there are sections s£,c r of the sheaves 

A2SZ,A2S r on U having a pole of first order at this divisor. The 

6 F(U,S2~IG) is well defined up to multiplica- complex metric sZ ® Sr 

tive constant. Now introduce a real structure p on T @ T* inter- 

changing T and T*. The involution p acts on G-points of G(2,T) 

since G(2,T) canonically identifies with G(2;T*) . Let p be com- 

patible with (U,sl,Sr) in the sense that uP=u, sip = Sr" The 

following statements can be directly verified. 

a) The real (i.e. p-invariant) points of the big cell U form the 

space ~4 . The restriction of sZ® Sr to it is a Minkowski metric. 

b) The real three-dimensional Schubert manifolds in the Grassmannian 
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G intersected with U(~) 

metric. 

form the system of light cones of this 

c) There are no real two-dimensional Schubert cells in G. In U(~) 

they define two connected families of complex planes. These families 

play an essential role in the theory of Yang-Mills fields. In fact, 

the integrability of a connection along one family means that this 

connection is an (anti) self dual solution of the Yang-Mills equation. 

In a curved space-time of general relativity null geodesics and light 

cones still exist and, moreover, define the corresponding metric up to 

a conformal factor. To break the conformal invariance one may choose 

metrics si,Cr for two-component Weyl spinors, left and right. 

We describe supergravity along these lines. In nn ° 2,3 a flag model 

of Minkowski superspace is introduced, In n°4 we explain that in a 

curved superspace two families of 0L2N - dimensional Schubert super- 

cells should be preserved. Finally, in nn°5,6 we define the dynamics 

by means of an action density, expressed through the Ogievetsky-Sokachev 

prepotential [28]. 

2. Minkowski superspace. Fix an integer N ~ I and a linear complex 

superspace T of dimension 414N. Set M = F(2i0, 2iN;T), i.e. a 

S-point of M is a flag S 2i0 c S 2LN in 0 S® T . Moreover, define 

the left and right superspaces as Grassmannians 

MZ : G(210;T), M r = G(21N;T) = G(210;T*) . 

Denote by S 210cS 21N the tautological flag in 0 M® T, by ~210c~21N 

, : ~21N/~210 
the orthogonal flag in 0M® T*. Set F~ = s21N/s 2i~ F r 

Let ~i,r:M ÷ MZ, r be the canonical maps. Let TzM = TM/M r , 

TrM = TM/M l (recall that we work in the category of complex super- 

spaces). Since M over Mi, r is a relative Grassmannian, a standard 

argument gives canonical isomorphisms 

TIM= ($210) * ¢ F t , TrM = E l *  ® ( ~ 2 1 0 ) .  

Combining this with the map F l® F l ÷ 0 M we get a natural map 
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(i) a: T/M ® TrM÷ ($210), ® (~210),. 

On the other hand, the relative tangent sheaves T/,rM are integrable 

distributions, i.e. locally free subsheaves of Lie superalgebras in 

TM, of rank 012N. Every point of M is contained in two closed sub- 

supermanifolds of dimension 012N tangent to TiM and TrM 

respectively. They are the Schubert cells we are interested in. The 

supercommutator between T/M and TrM defines the Frobenius map 

(2) b:TiM ® TrM÷ TM/(TIM + TrM) : ToM 

The following statements contain the essential geometric features of 

the picture we want to keep in the curved case. 

3. Proposition. a) The sum TiM+ TrM 

in TM of rank 014N. 

in TM is a direct subsheaf 

= ® ( ~ 2 1 0 )  b) There is a well defined isomorphism TOM ($210) * * 

making the maps (I) and (2) to coincide. • 

Finally, as in n°1, we must introduce a real structure p on T@ T* 

(in superalgebra (ab) 0 (-1)abaPb P ; cf. [24] for further details) . 

We shall assume that T P = T* , in this case (T/M) p = Yr M, 

(S210)p= ~210 . One can check that over a p-stable big cell in M some 

natural sections of TiM, TrM, ToM generate the Poincare superalgebra 

introduced by physicists (see e.g. [34]). 

4. Curved superspace. A complex supermanifold M 414N with the following 

structures will be called superspace of N-extended supergravity. 

a) Two integrable distributions 

sum is direct. 

T/M,TrM c TM or rank 012N whose 

b) Two locally free sheaves S l, S r of rank 210 , two locally free 

sheaves F1;Fr=F1 * of rank 01N and structure isomorphisms 

TIM = Sl* ~ Fl" TrM = ~r ® St* 

c) A real structure p on M such that its real points in Mrd form 

a four-manifold, and extensions of this real structure to S l@ S r , 
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F 1 @ F r interchanging left subsheaves with right ones. 

d) Volume forms v£, r 6 F(Mz,r, Ber MZ, r such that vz p = v r 

A choice of these volume forms corresponds to the choice of spinor 

metrics ~i'Sr in nO1. 

This data is subjected to one axiom. Set ToM - TM/(TIM @ TrM) . Then 
the Frobenius map ~: T~M ~ TrM +ToM coincides with the natural map 

Sl*®Fl® ~® Sr*÷S~£ Sr* under the appropriate identification 

T0M = Sl* ® Sr* as in Proposition 3 b) . 

5. Lagrangian. Let M be a superspace of N-extended supergravity. 

Using the data above one can construct a canonical isomorphism: 

2-N 

* Ber M ]4-N (N% 4) (3) Bet M = [~i~* Ber M~ ~ ~r r 

(From this point on we define Ber M as Ber*(~1odd M) ) . 

Hence the volume forms vg~ , v r make it possible to define a section 

(for N • 4) 

N-2 
N-4 

(4) w = (~* v~ ® ~r*Vr) 6 F(M, Ber M) 

In this way we get for N = I the correct action of sample supergravity. 

In the case N = 2 the action is certainly wrong since it gives trivial 

equations of motion. It seems that considering N as a formal parameter 

and taking the left (or right) part of the coefficient of the Taylor 

expansion of (4) at N = 2 we get an action suggested by E. Sokaehev. 

Anyway, for N > I one must take into account new constraints which 

might take the form of integrability of more Schubert cells. 

It is also certain that the other types of flag supermanifolds and their 

curved ~ersions are necessary for a fuller understanding of supergravity 

and super Yang-Mills equations. For example, in a recent paper by 

A. Galperin, E. Ivanov, S. Kalytsyn, V. Ogievetsky and E. Sokachev 

the manifold F(210,2Jl,2L2;T) implicitly appears which in the curved 

version can be defined as the projectivized bundle P(Fz) = P(Fr)+ M. 

In the same vein, for the largest physically acceptable case N = 8, 



98 

the 11132-dimensional flag supermanifold FI2{0,211,2{8,T) or its 

curved version P(F£) ÷ M seems to be the space considered in the 

context of the so called dimensional reduction, or the generalized 

Kaluza-Klein model. 

6. P repotential. To conclude, we give some coordinate calculations 

which make it possible to identify our geometric picture with that 

of the article [28]. Set N = I and choose in M i a local coordinate 

system (xza,@~). Assume that the following properties are true: 

I a x~), functions, (X~)rd are p-stable and functions (x a. = ~(xz + 

~ ~ ~ P, x a = (x~)P) 04,8 ) are local coordinates on M, where Or =(~ ) r 

Such coordinates (xz,@ Z) on M£ , (Xr,0 r) on M r and (~,0£,@ r) on M 

will be called distinguished ones. 

Now we set 

a a) 
(5) Ha = ~i (x£ - x r . 

These four real nilpotent superfunctions on M are called the Ogievetsky- 

Sokachev prepotential. Working locally and identifying Fl, r with 

,~0 M we can say that the prepotential completely defines the geometry 

of the superspace, except for the forms v£, r which must be given 

separately : 

3 D*(dO~, r dO~ (6) V£,r : ¢Z,r ,r ) 

Some calculations (cf. [26] for details) show that the action (3) can 

be expressed through (5) and (6) by means of the Wess-Zumino formula 

I (E~) D*(d@~,d@~ ,dr a) (7) w = ~ Bet 

A is the transition matrix between the frames where E B 

~, ~ = (~a,~ ,;~) and (~[~ ,~],Aa,A~). 
~x a ' 80 Z ~0 r 

This last frame can be defined in three steps. 

Step I. A = ~ + xa~ and A-= -2.- xa~ are defined as local 
~ a a ~ e e a 

bases for TiM and TrM respectively. From this one finds the 
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coefficients 

xa : i ~  [ (I- i~)-I] ab ; ~ = -i (I + i )-I a 
b ~ & 

Step 2. The volume forms vz, r define the spinor metrics [£,r 6 BerSl, r: 

El : (zi*vi)]/3 ® (~r*Vr)-2/3' [r : (~l*vl)-2/3® (nr*Vr) 1/3 

Step 3. The multiplier F, defining ~ : F£ and £. = FP£. , is con- 

strutted in such a way, that D*(£  ) = [ l '  D * ( ~ )  = E r .  

The structure frame (~[A ,A~],~ , ~ ) _  can be used to describe the 

geometry of simple supergravity Cartan style. In this approach it 

appears as the final product rather than the starting point. 
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