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In algebraic topology one studies genera, which are ring homomorphisms from the 
SO 

oriented bordism ring ~, to a q-algebra R (commutative, with I). To a genus 
SO 

~: ~, ~ R one associates the following three power series with coefficients in R : 

(i) g(x), an odd power series with leading term x , the logarithm of the formal group 

law of ~ (this means that the formal ~rouD, whose definition we do not repeat here, 
• . ~ ~. . ~ 2n x 2n+I 

equals g-1(g(x) +g(y)) ). It zs given expllcltly by g(x) = ~n=0~(¢~ ) ~ and 
SO hence, since the classes of the {p2n generate ~, ®~, determines ~ completely. 

(ii) P(u), an even power series with leading term I, the Hirzebruch characteristic 

power series of ~. This means that if ~ denotes the stable H*(.;R)-valued expo- 

nential characteristic class on oriented bundles characterized by ~(~) = P(eI(~)) if 

is a complex line bundle (regarded as a real 2-plane bundle), then the genus of an 

arbitrary oriented manifold M is obtained by evaluating ~(TM) on the homology funda- 

mental class of M. 

(iii) F(y), a power series with leading term I, the K0-theory characteristic power 

series of ~. This means that if ~ denotes the stable KO(.) ®R-valued exponential 

characteristic class on oriented bundles characterized by ~(~) = F(~ -[2]) for 

as above (this makes sense because ~ - [2] is nilpotent in KO(B~) ®R, as one sees by 

applying the complexified Chern character), then the genus of an arbitrary Spin mani- 

fold is obtained by evaluating ~(TM) on a certain KO,-fundamental class of M. 

These three power series determine one another by the formulas 

(I) u P(u) u/2 F(eU+ e -u- 2) , 
g-1(u) sinh u/2 

-I 
where g denotes the inverse power series of g . 

Recently, a particular class of genera has come into prominence through the work 

of Landweber, Stong, Ochanine, Witten and others. These genera are characterized topo- 

logically by the property that ~(M) vanishes if M is the total space of the complex 

projective bundle associated to an even-dimensional complex vector bundle over a closed 

oriented manifold, and numerically by the property that the power series g'(x) -2 is 

a polynomial of degree ~4, i.e., that 
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x dt 
(2) g(x) j for some 6, g E R . 

0 ~I - 26t 2 + gt 4 

(The equivalence of these two definitions is due to Ochanine [5].) Since this is an 

elliptic integral, such ~ are called elliptic genera. Landweber and Stong [4] dis- 

covered that there is a particular elliptic genus with values in the power series ring 

R = ~[[q]] satisfying: 

r q2r-1R (a) For r ~ I the coefficient of y in F(y) belongs to 

r r+1 
(This, or rather the weaker statement that the coefficient of y is divisible by q 

for r k 2, arises from a certain natural property of the above-mentioned KO-character- 

istic class ~ which we do not formulate here.) Based on numerical computations, they 

conjectured that condition (a) characterizes the genus in question up to a reparametri- 

zation (i.e., up to replacing q by aq +bq 2 + ... with a #0) and that with a suitable 

choice of parameter one has 

(b) F(y) has coefficients in ~[[q]] . 

By what was said in (iii), this means that the genus takes on values in Z[[q]] for all 

Spin manifolds. These facts were proved by D. and G. Chudnovsky [2], whose formulas 

show that with a suitable normalization one also has 

r 2r-I 
(c) The leading term of the coefficient of y in F(y) for r ~ I is -q , and 

(d) The genus takes values in the subring M~(F0(2)) c ~[[q]] of modular forms on 

F0(2) with rational Fourier coefficients. 

(We recall basic definitions about modular forms below.) In particular, the 6 and g 

of equation (2) are certain modular forms (of weights 2 and 4); since M~(F0(2)) is 

known to be the free polynomial algebra on 6 and g , it follows that the Landweber- 

Stong genus is universal for all elliptic genera. This universal, modular form-valued 

elliptic genus has been the object of considerable interest; it gives rise to new 

cohomology theories (the "elliptic cohomology" of Landweber, Stong, and Ravenel) and 

to connections with index theory, string theory, etc. The purpose of this note is to 

give elementary proofs of a variety of formulas for the power series g, P, and F 

associated to the Landweber-Stong genus (and in particular, easy proofs of the properties 

(a)-(d)). These proofs use ideas from the theory of elliptic functions and modular 

forms but we will prove everything we need from scratch. 

THEOREM. Let R=~[[q]]. Xhen the following five formulas define the same power series 

P(u) E R[[u]] : 

(3) P(u) = I ! Gk t ~ uk 
k 0 2k-2~k-lj! 

21k 

21k 



218 

(5) P(u) u with g given by (2) , 
g-1(u) 

u/2 ~ r (1-qn) 2 ] 
(6) P(u) sinh u/2 £I [(1-qneu)(1-qne-u)] 

( -1 )  n 

(7) F(u) = u/2 [ ~ -u ] 
sinh u/2 " I - a r (e u +e -2) r 

r=1 

where Gk' ~k 6, g and a E R are defined by 
' - -  r 

. ) Gk Gk(q ) 2 k-1 - 1  Bk ~ dk-1 n 
2k n=1 dln q ' 

2#d 

I B k ~ ( ~ (-1)n/d d k-1 ) 
~k ~k (q) 2k + n_->1 dln 

n 

q , 

* = 3~ 2 6 = -3 G 2 

I *+7~4) = X = _ g(c 4 
n>-1 

-~ - 3 ~ d 
n>1 d n 

2~d 

d3)q n 

dln 
2*n/d 

n 
q , 

(8) a r ~ q (I +q2m) = ~ ~ + q 
_q2m)2r n>1 dln \ 2r-I / - m>_-1 

2~d 

, i I (here B 2 = ~ , B 4 = - ~, ... are Bernoulli numbers and denotes a sum over 
dn 

positive divisors of n). The genus with characteristic power series P(u) satis- 

fies properties (a)-(d). 

Each of the five formulas in the theorem describes some aspect of the genus with 

characteristic power series P(u) : (3) and (4) describe the genus in cohomolo~y and 

* and ~k are the Fourier expansions make the modularity property (d) clear (since G k 

of well-known Eisenstein series, as recalled below), (5) shows that the genus is 

elliptic, and (6) and (7) describe the genus in K-theory and (both) make the properties 

(a)-(c) evident. (To deduce (a) and (c) from (6) one has to split off the terms n = I 

and n = 2 from the infinite product.) Formula (6) was given by the Chudnovskys, but 

with a different proof. It has been generalized by Witten [6] to get other genera 

whose coefficients are modular forms, and in this form interpreted by him, using ideas 

from quantum field theory, as the equivariant index formula (Atiyah-Bott-Singer fixed 

point theorem) for a Dirac operator on the free loop space of a manifold. We shall 

return to these other genera at the end of the note. 

Proof of the theorem. Consider meromorphic functions ~:C + ¢ satisfying 

~(u+2~i) = -~(u) , ~(u+4~iT) = ~(u) , ~(-u) = - ~(u) , 
(9) 

has poles only for uCL, ~(u) = ~ + O(I) as u÷O , u 
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where r is in the complex upper half-plane and L denotes the lattice Z'4~i~ +7z'2~i. 

Clearly there can be at most one such function, since the difference of any two would 

be holomorphic and doubly periodic, hence constant, hence zero because odd. We will 

give different constructions showing that ~ exists and equals ~P(u) for P(u) given 
2ziT 

by any of the five equations (3)-(7), with q = e 

First, define , hy the rapidly convergent series 

(I0) ~(u) = ~ I = ~ u/2 
m6Z 2 " u slnh(~-+ 2wimT) m 

The properties (9) are immediately checked. 

I 
-m -u/2 

m62Z q e - q e 

Combining the terms m and -m, we find 

co 

I (eU/2 e_U/2) ~ qm(1 +q2m) 
@(u) - u/2 -u/2 e - e m =I (l-q2meU) (]-q2me-U) 

or, setting y = e u +e -u -2 , 

( m~ I 2m ) 
u/2 qm(1+q )y 

u~(u) sinh u/2 I - = ~ _2--~Tq~q ~ 

Expanding the geometric series in y , we find the function P(u) defined by (7), with 

a given by the first formula in (8). The second formula in (8) follows from the first 
r 

by applying the binomial theorem; either one makes properties (a)-(c) evident. 

Next, define ~(u) as u-Ip(u) with P(u) given by the product formula (6). 

Again it is easy to check that this function satisfies (9) and hence is the same as the 

one just considered. This proves (6) and gives a second proof of (a)-(c). 

The Taylor expansions (3) and (4) of P(u) and log P(u) are easily obtained 

from the above two constructions: the first construction gives 
du du 

co u/2 ( qmeU/2 me-U/2 ) 
q = u/2 -e 2 ) q 

P(u) sinh u/2 ~ 2m u 2m -u sinh u/2 ~ (e 2 md 
m=1 I -q e I -q e m,d->1 

d odd 
u12 

which (on substituting the Taylor series of sinh ~ and sinh ) is seen to be 

equivalent to (3), and the second gives 

~ nd 
u/2 (e du + e -du - 2) q log e(u) = log ~ + (-I) n d ' 

n=1 d=1 

u/2 can be which is similarly equivalent to (4) (the Taylor expansion of log sinh u/2 

found by differentiation). 

Finally, the "elliptic" property (5) also follows from the axiomatic characteri- 

zation (9): the properties (9) imply that ~(u) 2 and ~'(u) 2 are even and invariant 
-2 -4 

under translation by L and have poles at u = 0 with leading terms u and u as 

their only singularities (mod L), so ~,2 must be a monic quadratic polynomial of ~2 
= ~4 ~2 I 

i.e., @,2 -26 + S for some 6, g ~ ~ , and then ~--~ = u +... can be written 

as g-1(u) where g(x) =x +... is given by the elliptic integral (2). The expansions 
2~ir 

of 6 and g as functions of q = e can be obtained by comparing the coefficients 

of u 2 and u 4 in P(u) obtained from formulas (3), (4), and (5). 

It remains to check property (d), i.e., that the series P(u) defined in the 

theorem has Taylor coefficients which are modular forms on Y0(2) . We recall that 
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F0(2) is the subgroup of SL2(~) consisting of matrices (2 ~) with c even and that 

for F = F0(2) or SL2(~) a modular form of weight k on F (k an integer, necessarily 

even and nonnegative) is a holomorphic function f:H+ $ (l{=upper half-plane) satisfy- 

(aT+b) = (cT+d)kf(r) for all T6 H, (~ ~) 6r and having a Fourier expansion ing f cr+d 

a(n) qn with a(n) of polynomial growth in n. The C-vector space of such forms is 

denoted by Mk(£) , the Q-vector space (of the same dimension) of forms with a(n) E 

for all n is denoted by ~(F), and the graded ring @M~(£) by M~(F). For F = 
k 

SL2(Z) this ring is ~[G4,G6], where 

(11) G k Gk(T) Bk ~ ( ) = _ __ + ~ d k-1 n 
2k q (k> O, k even) . 

n=; dln 

2(2%i)kp 
For k ~4 the function Gk(~) is modular of weight k because ~ - ~ k  is equal to 

the absolutely convergent Eisenstein series ~'(mT+n) -k (summation over all pairs of 

integers m,n , not both zero). The function G 2 is "nearly" modular: it satisfies 

G (aT+b. + i a 
(12) -2 c--~ ) = (cT+d) 2 G2(~) ~-~ c(cr+d) for T 6H , (c ~) ESL2(~) . 

From these facts and the easily checked identities 

(13) G~(T) = Gk(T) - 2 k -1Gk (2T )  , ~k(T)  = -Gk (T )  + 2Gk(2T) ( k ~ 2 )  

it follows that G k * and ~k are modular forms on F0(2) for all k (including k=2) 

Therefore each of the formulas (3), (4), or (5) shows that P(u) has coefficients in 

M~,(F0(2)); more precisely, the coefficient of u k is in KI<@(F°(2)) for each k>0. 

I = ~ (-1)n gives The modularity also follows from (10) because the expansion sinh x n~Tzx+~in 

u ~ ( u )  = u ~ ~ u ( -1 )n  u k ~, (_ l )n  
+4~im~ + 2"rrin = l - ~ (4--~) ( m , r + n / 2 ) ~  

mEZ n6 7Z k>0 m,nEZ 
k even 

with the inner sum clearly a modular form of weight k on F0(2) (here some care is 

needed with the conditionally convergent double series), or from the axiomatic charac- 

(9) by noting that for (a b)6 F0(2) and ~ satisfying (9) the function terization 

~(u) = (cT+d) ~((cT+d) u) satisfies (9) with respect to ~ = aT+b 
cT+d " 

This completes the proof of the theorem. From a purely modular point of view, 

there are two surprising aspects of the formulas it contains. First of all, the space 

of modular forms Mk(F0(2)) breaks up in a natural way as the direct sum of a space 

of Eisenstein series (forms whose Fourier coefficients a(n) are sums of powers of 

divisors of n with congruence conditions) and a space of "cusp forms" (forms satisfying 

• and ~k and hence has dimension I for a(n) =O(n k/2) ). The former is spanned by G k 

k=2 and 2 for k> 2 (the dimension of the full space M k is k/2). It is quite 

remarkable that the coefficients of both P(u) and log P(u) belong to this tiny 

snbspaceo The other surprising fact is that, although the Eisenstein series G~, G~,... 

have rational Fourier coefficients and non-zero constant terms, there is a rational 

linear combination of I, G 2 , .o. , G2r , namely ar, which vanishes to order 2r-I 

(i.e. twice ~as far as one has any right to expect) and is monic with integral coeffi- 
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cients. This, and also the fact that the a r have much smaller coefficients (i.e., 

that the G k* satisfy congruences to high moduli), are illustrated by the first values: 

* _ I + q + q2 q4 G2 24 + 4q3 + + 6q5 + 4q6 + 8q7 + q8 + 13q9 + ... 

, 7 q2 q4 + 757q + ... G4 = -240 + q + + 28q3 + + 126q5 + 28q6 + 344q7 + q8 9 

, 31 q2 q4 + 59293q + ... G6 504 + q + + 244q3 + + 3126q5 + 244q6 + 16808q7 + q8 9 

al q + q2 + 4q3 + q4 + 6q5 + 4q6 + 8q7 + q8 + 13q9 + ... 

3 q6 7 + ... a 2 q + 5q 5 + + 14q + 31q 9 

5 a 3 q + 7q 7 + 27q 9 + ... 

We now turn to the other genera introduced by Witten. The same formal power 

series calculation as that which showed the equivalence of (4) and (6) gives 

u/2 ~ (1-qn) 2 < !0~,G k ) = exp -- u k 
(14) sinh u/2 = (I -qneU)(1 -qne-U) k 

21k 
where G k is defined by (11). Call this power series Pw(U) and the associated genus 

~W (W for "Witten" or "Weierstrass"; terminology due to Peter Landweber). Let us 

compare this genus and power series with those of Landweber-Stong: 

- The left side of (14) shows that the KO-theory characteristic power series of 

~W can be written in the form 

~ [ n ]-I ~ e u _ 
I- q r (y = _2+e u ) 

n=1 (1-q n)2 y = ~ bry 
r=O 

r 
where b r belongs to Z[[q]] and has leading coefficient q . Thus the analogues of 

properties (a)-(c) hold for the Witten genus, and ~W(M) belongs to ~[[q]] if M is 

a Spin manifold. The product in (14) is simpler than that in (6). It can be neatly 

expressed by saying that the associated KO-valued characteristic class ~J~W($) is a 

certain tensor product of sums of symmetric powers of ~, and in this form has a 

natural interpretation as an index formula for a Dirac-like operator on the free loop 

space of M; the corresponding expression for the Landweber-Stong genus also has an 

interpretation as an index formula for an operator, but this time one which has no 

finite-dimensional version. (For all this, see Witten's paper [6].) 

- The right side of (14) shows that ~W(M) is a modular form on SL2(Z) if the 

first Pontryagin class of M vanishes rationally, since then G 2 drops out of the 

characteristic class ~w(TM) . In this case ~w(M) is simpler than ~Ls(M) because it 

is a modular form on the full modular group rather than a congruence subgroup. On the 

other hand, if P1(M) does not vanish then ~w(M) is not a modular form at all, but 

belongs instead to the larger ring 

A M~(SL2 (Z)) ~[G4 G6] M, = ~[G2. G4, G 6] m M, = = , . 

A 
This may not be all bad: the ring M, is also studied in the theory of modular forms 

A 
and is in many respects nearly as good as M, (the elements of M, are "almost modular" 
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A 

by (12), and the rood p reductions of M,N Zg[[q]] and M,N 2g[[q]] agree for all primes 

p ). In one respect it is even better: it is closed under the differentiation operator 

d _ I d (specifically DG 2 5 2 DG 4 7G 6 - 8G2G 4 DG 6 400 2 D = q dq 2~i d~ , = ~G 4 - 2G 2 , = , = ~--G 4 

- 12 G2G 6 , and more generally Df + 2kG2f EMk+ 2 for f CM k) . 

- There is no analogue of the additive formulae (3) and (7) or of the elliptic 

property (5), so k0 W is not an elliptic genus and does not have a simple description 

in cohomology. This is because the axiomatic characterization (9) no longer applies: 

the function u-IPw(U) is nearly, but not quite, doubly periodic. (It changes by a 
d 2 u-1 

factor -ql/2eU under u ÷ u+2~iT . The function d~-~log Pw(U) is periodic, 

and in fact equals 2G2 minus the Weierstrass £-function for the lattice Z.2~i~+ 

2g'2~i .) This is closely related to the non-modularity of the coefficients of Pw(u) 

as functions of ~ (cf. comments at the end of the note). 

Witten discusses one other genus, the one associated to the signature operator. 

Let ~(~) and ~n(~) (n >--I ) be the characteristic classes with characteristic power 

series u and I + qne2U tanh u I -q~ee 2~' where q is a parameter. Tile G-signature theorem of 

Atiyah and Singer says that for a smooth finite-dimensional manifold X with S l-action, 

the equivariant signature, an element of the representation ring R(S |) ®£--~C[q,q -I] , 

is given by 
co 

(15) <~(TM) TT ~n(Vn ) , [M] > , 
n=1 

where M = X $I is the fixed point set and v the subbundle of the normal bundle of 
n 

M in X on which S I acts via [ cosn6 sinnO] (We are being very brief and a little 
-sinnO cos nO ~ " 

imprecise here.) This equivariant signature is constant, either (cf. [I]) 

(i) because it is defined in terms of the action of S I on the middle cohomology 

of X and this action is trivial since S I is connected, or 
-I 

(ii) because it is an element of ¢[q,q ] which is regular at both q=0 and q=oo. 

Witten's idea was to apply (15) to the case when X is the free loop space of a smooth 

manifold M; then M is the fixed point set and each ~ is finite-dimensional (and in 
n 

fact isomorphic to TM®C ), so that the formula makes sense even though X itself is 

infinite-dimensional. On the other hand, neither (i) nor (ii) applies and we get a 

non-trivial power series in q. Modifying A by dividing its defining characteristic 

power series by its value at u =0 (i.e., looking at the associated stable class), and 

(p~TT 1+qn ~dimM (H) where replacing u by u/2, we find that this power series is \_ ~, 1_--7~ / q0 S , 

q0 S is the ~[[q]]-valued genus with characteristic power series 

(16) Ps(u) _ u/2 n~=1( I + qneU I + qne-U~/(1+qn) 2 
t a n h  u /2  = I - q n e U  I q--h- -~e-u / I \  I - q n  

For this genus, analogues of all five formulas in the theorem about P(u) hold. The 

analogue of (6) is (16) itself, and the analogues of (3), (4), (5), and (7) are: 
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(17) 

(18) 

(19) 

(20) 

es(U) 

es(U) 

es(U) = 

6 S 

es(U) 

c r 

1 -  ~ 2~'k k 
(k-l) ! u , 

k>0 
21k 

4 GI~ uk 
exp ( k>~O -~--.v ) ' 

21k 

gs1 x i 
u / (u) , where gS(x) = ;0 (I -26st2 +gst4) -g dt with 

I n I )d d 3 ) 
4 + 6n~1 (d~n d ) q  , ~S = "~-+ n~l (d~n (-1 qn , 

tanh u/2 I - 2 ~ c r (eU+e -2) r with 
r>_1 

(-1)mq mr [ .r+d-1. ] qn 
= !1 (1 -  qm) 2r ~ ~ (-1)n/d [ 2r-1 ) 

m= n>1 din 

r c q m[[q]] . 

Indeed, (18) is obtained directly from (16) by logarithmic differentiation (like the 

proof of (14) or of the equality of (4) and (6)). But from equation (13) and the 

modularity property Gk(-~1) = T kGk(T) (respectively (12) for k=2) it follows that 

-I T k G~(T) (21) G~( -I ) = 2 k-1 Tk ~k(T) ~k(~) = 2 
2T ' ' 

so (writing P(T;u) instead of P(u) for the Landweber-Stong genus to emphasize the 

dependence on T , and similarly for PS ) equation (18) says 

(22) ps(~;u ) = p ( - 1  u 2 ~ ; 7  ) " 

In other words, P and PS are the same function, but expanded at the two cusps 0 and 

oo of H/F0(2) (which are interchanged by T÷ -I/2~). Substituting formulas (3) and 

(5) into (22) and using (21) again gives (17) and (19). Finally, equation (22) leads 

to an analogue of the property (9) and hence to an analogue of (10), namely 

-I (-I) m I/2 (-I) m (eU-e -u) 
u Ps(U) ~ 2 tanh(u/2 + ~im~) tanh u/2 ~ - - ' m E2~ m->1 qm+q m_eU_e u 

u/2 u -u 
from which (20) easily follows. Equation (20) expresses Ps(U) as tanh u/2G(e +e -2) 

with G(y) E Z[[q, qy]] ; such a formula has an interpretation like the one given for 

equation (I) in (iii) of the introduction, but using a different K0,-Fundamental 

class (the one associated to the signature operator). 

We make a final remark. Throughout this note there has been an interplay between 

the modularity properties of the various functions with respect to the variable T and 

their elliptic properties with respect to the variable u. Functions of two variables 

having this dual modular/elliptic nature are called Jacobi forms. More precisely, a 

Jacobi form of weight k and index m is a function %: H×C -+ $ satisfying 

% ( aT+b z c~+d ' c~$d ) = (cT+d) k e 2~imcz2/(cx+d) %(T,z) 

for (a b) in SL2(~) or a congruence subgroup and 
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0( T , z+ ~r + ~) e -2~im(~2T +2Xz) ~(r,z) 

for all (~ ,p) in ~2 or a sublattice of finite index. (The theory of such forms 

was developed in [3].) The most important examples of Jacobi forms are theta series. 

triple product identity, we find that u-IPw(u) can be expressed as Using the Jaeobi 

a quotient of theta-series, 

u-1Pw(U) = (n!0 (~)n qn2/8)/( n~ (~n4) qn2/8enU/2 ) 

(here (~) equals 0 for n even, ( I) ½(n-j) for n odd), and is therefore a Jacobi 
u I 

form with respect to T and z = ~ of weight -I and index -~. (It is because 
2~i ~ 

non-zero that u-IPw(u) is not quite elliptic in u and that its Taylor the index is 

coefficients are not quite modular forms in T .) The other two characteristic power 

series we have been considering are related to PW by 

~2 
P(u) = PW(2~;u~ /Pw(T;u) , Ps(U) PW(r;u)2/Pw(2T;2u) , 

so u-qP(u) and u-IPs(u) are also Jacobi forms of weight -I, but of index 0 . It 

is interesting to note that in all of the recent occurrences of modular forms in 

algebraic topology, string theory, and the theory of Kac-Moody algebras, it is in 

fact Jacobi forms which are entering. 
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