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Abstract. In his second notebook, Ramanujan says that 

q q4 qS q12 qx q2 qa x q4 
1 

x +  x +  x +  x +  1+ 1-- 1+ 1-- 

~'nearly" for q and x between 0 and 1. It is shown in what senses this is true. In particular, 
as q ~ 1 the difference between the left and right sides is approximately exp { -c (x ) / ( l  -q)}  
where c(x) is a function expressible in terms of the dilogarithm and which is monotone 
decreasing with e(0)= n2/4,c(1)= n2/5; thus the difference in question is less than 2.10 - s s  
for q = 0.99 and all x between 0 and 1. 

Keywords. Approximate identity; asymptotic behaviour; Rogers-Ramanujan identities; 
dilogarithm function. 

1, Introduction 

Ramanujan's notebooks abound with assertions of strange identities, a good many 
of which have remained mysterious until now. I recently learned of one of these from 
Henri Cohen, to whom it had been shown by Bruce Berndt: on page 289, formula 
(4) of the Second Notebook, Ramanujan says that 

1-- qx q - "nearly" (1) q2 q4 
1-~ x-~ 

1 q3x q8 
q4 xnt q12 

1-~ x4  qSx 
1 x + . . .  

1+.. .  

for q and x between 0 and 1. At first sight it is not even clear what this means; 
certainly the two continued fractions do not have the same power series expansions 
in q or x. However, Cohen did some computations and found that the two sides of 
(1) are numerically very close if q is near one, as shown in figure 1 or in the following 
small table giving the two values in question for x = 0.5 or 1 and q = 0.8, 0.9 and 0"95: 

x = 0 . 5  

x = l  

q = 0"8 q = 0"9 q = 0"95 

0"774652... 0"7767340180..11 0"77859859961698872648... 
0-774627... 0"7767340194. I 0"77859859961698872686... 
0"59124... 0"605146977... 0"611726198935852157... 
0"59086... 0"605146958... 0"611726198935852104... 
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Figure 1. The functions f(x) and g(x) for q = 0.6, q = 0.8. 

Cohen  also showed that  the two sides of  (I) agree for x = q. Moreover ,  they both  
satisfy the same functional  equat ion  

(h(x) + qx)h(q2x) = 1 (q fixed), (2) 

so that  they in fact agree whenever  x is equal  to an odd power  of  q (we will give the 
proofs of  these s ta tements  below). However ,  it remained to find a quant i ta t ive  measure  
for the difference of the two expressions, in order  to explain the ext reme degree of 
nearness seen in the table. This is provided by the following result, whose p roof  is 
the object  of  the present  paper.  

Theorem. For 0 < q < 1 and x > 0 denote by f ( x )  = f (x;  q) and g(x) = g(x; q) the left 
and right sides of ( l ) ,  respectively. Then: 

(I) For x =  1, we have f (1 ) -g (1 )=O(exp{ ( r r2 /5 ) / logq} ) .  More precisely, setting 
Q = exp { (rt2/5)/log q} we have 

f (1)  = qk I + x / ~ a  + 2 

~x/~- l /  
g(1) = q ~ L l - x / / 5 Q + ~ 2 ~ Q 2 4  

5 -- 3X/  3 ..), O - "  

5-23_,/5Q3 . . . .  ) 

and in particular f ( l )  - 9(1) = (5 - x/5)q~Q + O(Q 2) as q --* 1. 

(II) For x -*  0 we have f ( x )  - g(x) = O(exp {(n2/4)/log q}). More precisely, setting 
Q = exp {(~2/4)/log q} and 0 = (rt log x)/(2 log q) we have 

f ( x )  = 1 + O(x), 

1 - 2Q cos 0 + 2Q 4 cos 20 - 2Q 9 cos 30 + .-. 
g(x) - 1 + 2Q cos 0 + 2Q 4 cos 20 + 2Q 9 cos 30 + ... t- O(x), 

and in particular f ( x ) - g ( x ) = 4 Q c o s ( ~ c 2 / 2 ) + O ( Q  2) as x ~ O  through a sequence 
x = q 4 .  + ~, n ~ o o .  

(III) In general f (x) - g(x) = exp { [c(x) + o(1)]/ log q} cos 0 for q ~ 1 with 0 as in (II) 
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and 
~2 

C(X) = --( + �89 + X2/4) �89 -- x / 2 )  2) 

+ �89 2 ((1 + x2/4) �89 + x /2 )  - log (x) log ((1 + x2/4) �89 + x/2) 

(Li2(t) =n~=t rj---~the dilogarithm function). 

The theorem implies, for instance, that for q = 0.99 the left- and right-hand sides 
of (1) agree to about 85 decimal digits for x near 1, to about 96 digits for x near �89 
(c(�89 2.218...), and to about 107 digits for x near 0. 

The known values/.22(1 ) = n2/6 and Li2(�89 - ~/5)) = (n2/15) - log2(�89 + ~/5)) ([21 
1.4.1) imply c(0) = n2/4, c(1) = n2/5, so the formula of part (III) is compatible with the 
assertions in (I) and (tl). A graph of the function c(x) is shown in figure 2. Notice that 
c(x) becomes negative for x larger than about 6.177, so for x this large the difference 
between the two sides of (1) becomes exponentially big rather than exponentially 
small as q--* 1. 

In the next section of the paper we give some simple transformations of the continued 
fractions in (1). Sections 3 to 5 contain the proofs of assertions (I),(II), and 
(III), respectively, and we conclude with some speculations about what Ramanujan 
himself had in mind when stating (1). 

3 

2 

4 

0 

- 1  

1 ,?. 4 6 ~ o  

Figure 2. Graph of c(x). 

2.  Pre l iminar ies  

In this section we give various representations off(x)  and g(x) as quotients of infinite 
sums. The formulae in the first proposition were given by Berndt. 

PROPOSITION 1. 

Define power series F(x) = F(x; q)~7 [[q, x]] and G(x) = G(x; q)E2vl'[q, x -  1"1] by 

F(x)= ~ q"~*" 
,=o (1 - qa)(1 - q*).,.(1 - q2")(1 - q3x)(1 - q S x ) . . . ( 1  - q2,+ Xx), 

oo X - 2nq 4n2 
G(x) 

n@o (1 - q*)(1 - q*) . . .  (1 - q*")" 
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Then 

F(q- 2x) q G(q- 2X) 
f (x)  = (l -- q x ) - - ,  9(x) = 

F(x) x G(x) 

The functions F(x) and G(x) satisfy the recursions 

1 - -  q x  
- - F ( x )  = q - l x F ( q -  2x) + (1 - q-  lx)F(q-*x), 

G(x) = G(q- 2x) + q4x- 2G(q-*x). 

An immedia te  corol lary is that  bo th  h = f  and h = # satisfy the recursion (2). 

Proof. 

(i)-For j~>O define Fj(x) like F(x) but  with q.2+. replaced by q.,+t2j+.,  in the 
numerator .  Then for j t> t 

qn 2+(2j- 1)n  

FJ- I (x ) -F~(x )=  ,=1 ~ (1 - q2).-.(1 - -  q 2 n - 2 ) ( 1  - -  q3x)...(1 -- q2n+lx) 

q2j 
1 -- qaxFj(q2x) 

and 

Fj_ l(q- 2x) - F~_ l(x) 

qn 2 + 1 2 j -  l ) n  

qx,~=l (1 -- q2). . . ( l  -- qZn- 2)(1 -- qx)(l - -  q3x)...(1 - -  q2n+ i x )  

q2j+ z X 
(1 - qx)(1 - qax) Fj(q2x)" 

These two equat ions  give f o r j  = 1 the recurrence for F o = F stated in the Proposi t ion,  
and for j ~> 1 the recurrence 

f j -  1 (x) = 1 - q2 j -  l x/(1 + q2 ff f j(x) ) 

for the quantit ies f j(x) = (1 - q2j+ lx)fj(q2 j-  2x)/Fj(q2Jx). It now follows by induct ion 
that  fo  = f as claimed. 

(ii) We have 

G ( x )  - G ( q -  2x) = ~ x- 2.qa.2 
.= , (1  - q4)...(1 _ q4.-4)  

= ~ X-2(n+l)q4fn+l}2 
~= 0 (1--- q~..-~(1 ~ - " )  = q'x-2G(q-*x)" 
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Replacing x by q-2.+ 2 x and rearranging, we find 

q4n 
xG(q-2"+2x)/G(q-2"x) = x-4 xG(q_2.x)/G(q_2._2x ) (n >~ 1) 

and hence by induction xG(x)/G(q-2x) = q/g(x) as asserted. [] 

The representation for f is a little more awkward than that for 9 because F(x) has 
poles at x = q-3, q-5 . . . . .  To eliminate these, set 

if(x) = (1 - q3x)(l - qSx)." F(x). 

Then both the recursion for F and the formula for f become simpler: 

le(q-2x) 
if(x) = q-  lxF(q-Zx) + F(q-4x), f ( x )  = F(x) " (3) 

Write i f ( x )=~=oa .X"  where a.~Z[[q]].  Comparing coefficients of x" in the first 
equation in (3) gives (1 - q -4" ) a .  = q-2.+ la. - 1, so by induction 

( _  1)nq "2+2" 

a. = (1 - q4)(1 - qS)--.(1 - q4.) ao. 

Now writing H(x) for ao~ff(q-2x) (the value of ao is irrelevant; it is in fact equal to 
1--[~(1 + q2.)) we have 

PROPOSITION 2. 

Define H(x) = n(x; q)~Z[[q, x]] by 

~o ( _  1).q.2x. 
H(x) = ~o( 1 _ q4)~- ~S ~-~.-~.(1 _ q4.)" 

Then H(x) = -qxH(q2x)  + H(q4x) and f (x )  = H(x)/H(qZx). [] 

Of course, we could have proved this directly by an argument similar to the proof 
of Proposition 1 and avoided introducing F entirely. 

3. Asymptotic behaviour for x = 1; the Rogers-Ramanujan identities 

Define a function ~(z) in the upper half-plane .~ = {zeCl~(z)> 0} by 

if(z) = (z e.~), (4) 
14 q q2 

1+ 
1+. .  
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where q = exp(2niz) and qa for 2 e Q  denotes exp(2ni2z). For x = 1, both continued 
fractions in (1) can be expressed in terms of ~: 

f(1; q) = - ql/~(z + ~), 9(1; q) = q~((4z) (q = exp (27ziz), ze.~). (5) 

The key to understanding the behaviour o f f ( l )  and 9(1) as q ~  1 is the fact that ~(z) 
is a modular function, namely 

{(r<z))=[(z) v~,er(5), ze~, 

where 

F(5)= { (~  ~)a,b,c, deT/,ad-bc=l,a=d=l(mod5),b=c=O(mod5)} 

/a h\  
and y ( z ) f o r  a 2 x 2  matrix 7 = t ;  d ) o f  determinant 1 denotes the image 

k - -  

(az + b)flcz + d) of z under the associated fractional linear transformation. This fact, 
well known to Ramanujan, follows from the Roger-Ramanujan identities. Recall that 
these are the formulae 

oo qn  2 

~ o ( l _ q ) . . . ( l _ q , )  = [-I (1 -qn)  -1' 
n n = _ + t { 5 )  

an2 + n 

~ o ( l _ q ) . . . ( l _ q . )  = I-I ( l - q " )  -1 
n n=- _+2[51 

([1], Theorem 362 and 363). The left-hand sides of these equations are G(1;q~) and 
G(q-�89 q§ respectively, where G(x; q) is defined as in Proposition 1, so by (5) and that 
Proposition we have 

I 1 l 

((z)=q-~9(l;q i) q'G(q 2;q.) = ~ = q'~ f i  (1 - q,)t,/s) G(1;q,) .=1 

((n/5) = Legendre symbol = + 1, - 1,0 for n = _ 1, 4- 2, 0 (mod 5), respectively). On 
the other hand, we have 

1"I (1 -- q") = ~ ( - -  1)"q �89 + 3") 
. 5 0 ,  + 1(5) n 

l-I (1 - q") = ~ ( -  1)"q �89 +") 
n ~0,-I- 2(5) n 

by the Jacobi triple product identity ([1], Theorems 355 and 356), so this can be written 

~(z) = 01o.3(z) 
Oao.l(z), 01o,j(z) = ~ ( - ,  1)"q (l~176 ( j =  1,3). (6) 

This equation makes it clear that ((z) is a modular function, since both theta-series 
01o.3(z) and 01o.1 (z) are modular forms of weight �89 In fact ((z) is a well-known modular 
function called Klein's icosahedral function. It is a "Hauptmodul" for F(5), i.e., defines 
an isomorphism from ~/F(5)u  {cusps} to PI(C). 

We will not give the proof of the invariance of ((z) under F(5), since in view of (5) 
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what we actually need are the transformation laws satisfied by ~(z) with respect to 
matrices sending the cusps 0 and 2 ~ to infinity. To obtain these, recall that the Poisson 
summation formula implies 

~(n)e-'n2t/Y = ( f  t) �89 .~=1 f((n)e-rtn2/ft (~a(t) > 0) (7) 
n = l  

for any even primitive Dirichlet character X of conductor f > 1, where G(X) is the 
Gauss sum Z~= 1 x(n) cos (2nn/f) associated to X, a complex number of absolute value 
x/~" Applying this to the two primitive even characters of conductor 20 gives 

2 sin (2rt/5) ( ,  w/5 - 1 i ' 
01~ +-- i01~ = (5t)�89 \ 1 _ 

and hence from (6) 

~(it) = x/~ -- 1 i/i \" 
1 + - - - ~ - - - ~ )  

Inserting this into the second of equation (5) and letting t tend to 0 through positive 
real values, we find 

g(1; q) = q~- 2 

= q~W/-5-- 1 1 - -~w/5  + 1)Q/(1 + QS/(1 + Q1~ + .--))) 

2 1 + ~ ( ~  - 1)O/(t + Q'/(1 + Ql~ + ...))) 

(Q = exp {(n2/5)/log q}), giving the second formula in (I) of the Theorem. Similarly 
(7) applied to the two non-real even primitive characters of conductor 40 gives 

01o,1(�89 + it)) • i01o,3(�89 + it)) 

and hence 

2 sin (n/5) (1 
- x//- ~ -T- ~ x / ~  + 1)0(01o 1(~(5 + i/t))-T- i01o.3(~5 + i/t))) 

by (6) and (5) 

 (52i t)= 
- 1 + �89  + 1) (�89 + i/t))' 

f ( 1 ; q ) = q ~ X / ~ -  1 1 + �89 + 1)Q/(1 - QS/(1 - Q1~ . . . .  ))) 
2 1 -- �89 - 1)Q/(1 - QS/(l - Ql~ . . . .  )))' 

giving the first formula in (I) also. 
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4. Asymptotic behaviour for x small: theta series 

Write the function H(x) of Proposition 2 as H§ + H_(x), where 

q':x" 
= 4- Z 

.>1o (1 -- q ' ) . . - (1  --q4")' 
(-- l)n= 4-1 

so that H+(x)eZ[x2][[q4]], H_(x)EqxZ[x 2] [[q4]]. As a refinement of the recursion 
H(x) = -qxH(q2x) + H(q4x) of Proposition 2 we have 

qn2xn 
n• 4- ~ (1 - -q ' ) . - . (1 - -q4" - ' )  

n ~ l  
( - l ) n =  • 

q(n+ 1 ) 2 x n +  1 

=4- Z .>~0 ( I - - q 4 ) ' " ( 1  --q4") 
( -  1)a = .T- 1 

An equivalent formulation of this is that the 2 x 2 matrix 

= - qxH (q2x). 

\H_(q2x) H+(q2x)/I 

satisfies the recursion 

,8, 

This implies that the determinant of oaf'(x) is invariant under x ~, q2x and hence, since 
~ ( x )  tends to the identity matrix for x ~ 0 with q fixed, that det ~ ( x )  = 1 identically. 
Now the content of Proposition 2 can be reformulated as 

f(x) = ~ ( x )  (1),  (9) 

where ( ) denotes fractional linear transformation, as in w 3. The key to Ramanujan's 
assertion is that 9(x), the second expression in (1), is given by 

g(x) = .~(x)( 2(x) ) (10) 

where 

O_(x) 
2(x) = 2(x; q) = 0 - ~ '  O+(x) = ~ q"~x". (11) 

nEZ 
(--l)n= • 

Indeed, by applying the Poisson summation formula to O+ and O_ as in the last 
section (this is of course the most classical application of the Poisson summation 
formula, going back to Jacobi), we obtain 

2(x) = 1 - 2Q cos 0 + 2Q 4 cos 20 - 2Q 9 cos 30 + . . .  (12) 
1 + 2Q cos 0 + 2Q 4 cos 20 + 2Q 9 cos 30 + ... 
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where Q =exp((n2/4)/logq), O=(Tt/2)(logx/logq), and since .,~(x)=12 +O(x ) we 
immediately deduce from (10) the assertion of part (II) of the Theorem. 

Equation (10) follows immediately from Proposition 1 and 

PROPOSITION 3. 

Denote by G(x) and -O(x) the vectors 

( qx-lG(q-2x)~ and [O_(x)~ 
a(x) ' ) \O+(x) ) '  

respectively. Then -G(x) = c" ~,(x)-O(x) where c is a scalar independent of x. 

1 - q4,)- 1, (In fact c = l-In=l( but we do not need this fact and will omit the proof.) 

Proof. The recursion satisfied by G(x) can be written in terms of G'(x) as 

-G(q2x)=q-ix-l(~ lx)-G(~r ). 

Combining this with (8) we see that the vector 7"(x) = ~ ( x ) -  1G(x) satisfies the recursion 

- 1 - 1 (  0 1 -  
~(qEx)=q x t l  o) t (x) .  

1 

( t_(x)'~ 
Write 7"(x) as \t+(x)J" Since G-(x) is an even power series in x we have 

~(x) = ( o d d  ~, /even  odd ' )  
\even, /  ~a~'a(x) = t odd even,/ 

(13) 

(where "odd" and "even" denote even and odd functions of x), so t_(x) is odd and 
t+(x) is even, i.e.. 

t• E t.x" 
n 

( - l ) n =  +1  

for some coefficients tnG2rl'[q'l]. (Note that all coefficients of ~,~, G, O and 7" are in 
the ring Z[x, x-1]  [[q]] and can be expanded as doubly infinite Laurent series in x 
with coefficients in Z[[q]].) The recursion (13) now gives t~+l = q2~+ lt~ for all n~Z, 
so tn = toq ~2. This proves Proposition 3 with c = t o. []  

The fact that the recursion (13) is satisfied by O =  c-17" as well as by 7" says that 
O• = q- ix- 10:(x). Therefore 2(x) is changed to its reciprocal under x ~ q2x and 
hence is invariant under x~q4x, which is why 2(x) must have a Fourier series 
expansion in 0 = (n/2)(log x/log q) (as given explicitly in (12)), The property 2(q2x)= 
2(x)- 1 togetherwith the obvious symmetry property 2(x- 1) = 2(x) implies that 2(x) = 1 
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for x an odd power  of q (this also follows f rom (12), or  from the wel l -known produc t  
expansion of 2, or f rom ( l l )  since 

q.2+. = ~. qn2+n 
n odd n even 

via n - ,  - 1 - n), so (9) and (10) imply Cohen ' s  result that  f (x )  and O(x) agree for such 
x. Finally, instead of using just  ~ ( x )  = 12 + O(x) we could use the full expans ion  

~ ( x )  = 

] q4x2 
+ (1 -- q*)(l -- q8) t- ... 

qax 
1 __q4 . . . .  1 + 

qx / 
1 _ q 4  . . . .  

qSx2 

( - r = q5  ' 

and thus replace the formula  in (II) of  the Theo rem by a full expansion in powers  of  
x for 0 (rood 2~) fixed (i.e. for x tending to 0 through a sequence q4"x o, n-+ oo). In 
particular,  to  two terms we have 

f ( x )  = 1 1 + q 2X + O ( x 2 ) '  g(X)=,~,(X) -- # ( x ) x + O ( x  2) for x-+O, 

where #(x) is the periodic function 

( q + O(Q) as q -+ l ). p(x) = (1 - -  q2,~,(X)2) = 1 + q2 

5. Asymptot ic  behaviour for x arbitrary: the dilogarithm function 

In the last two sections we studied the asympto t ics  of  f (x ;  q ) -  g(x; q) as q-+ 1 for 
x = 1 and x near  0. We now study how these asymptot ics  change as x changes. Wri te  
e(x) = e(x; q) for f ( x ) -  g(x). Subtract ing the functional  equa t ion  (2) with h = g f rom 
the same equat ion  with h = f ,  we find 

0 = (g(x) + e(x) + qx)(g(q2x) + e(q2x)) -- (8(x) + qx)g(q2x) 

= e(x)f(q2x) + t(q2x)g(q2x)- 1 

o r  

1 
e(x) = f(q2x)g(q2x)e(q2x). 

By induction this gives 

( -- 1)" #_2nx ~ 
e(x) = f(q2x)g(q2x)..,  f(q2nx)g(q2nx) ,q y. 

As n-+ m we have 

(14) 

f~(x)  for n even~  
q2nx"+O, f ( q 2 n x ) " 4  1, g(q2"x)~[2(q2x)= 2(x) -1 for n odd, J 
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by the results of the last section (specifically, by equations (9) and (10) and the 
periodicity 2(q4x)= 2(x)), so letting n--, oo in (14) gives the closed formula 

e(x) = f(q4._Zx)9(q,._2x)f(q,.x)9(qa.x ) (1 - ;.(x)), 
(15) 

where the nth term of the product  tends to 1 with exponential  rapidity. We use 
equat ions (14) and (15) to study the asymptotics of e(x;q) as q ~ l  with x fixed. 
(Actually, this is not  quite right since as log x/log q varies modulo  4 the value of e 
will oscillate; thus we should either let q tend to 1 cont inuously and restrict x to lie 
in an interval [q-2Xo, qZxo] with log x/log q (mod 4) constant,  or  else fix x and let q 
tend to 1 through a sequence of values for which log x/log q (mod 4) is constant.) In 
fact, since the behaviour  of 1 - 2(x) as q ~ 1 is completely k n o w n - - i t  is asymptotical ly 
equal to 4 exp { (Tt2/4)/log q} cos[(r~/2)(log x/log q ) ] - -  and since both  e(x) and 1 - 2(x) 
vanish whenever x is an odd power of q, it is more  convenient  to study the ratio 
e(x)/(1 - 2(x)), the first factor in (15). It is also natural  to consider the (logq)th power 
of this, i.e. to define a new quanti ty A(x; q) by 

e(x; q) = (1 -- 2(x; q))A(x; q)l/logq, (16) 

because by parts (I) and (II) of the Theorem we know that  A(x; q) has the well-defined 
limits e -"2/z~ and 1 as x ~  1, q--* 1 and x ~ 0 ,  q--* 1, respectively. We want to show 
that  A(x; q) tends to a limit as q ~ 1 for any x, and to evaluate this limit. 

The  first thing to notice is that  g(x; q) tends to a well-defined limit as q--. 1, since 
the continued fraction on the right of (1) converges at q = 1 for all x > 0. Call this 
limit y(x); then ~(x) = 1/(x + ~(x)) and consequently 

y(x) = (1 + x2/4) �89 - x/2. 

The cont inued fraction on the left of (1) also converges for q = 1 if x is sufficiently 
small (actually, as one easily checks, for x < 2), and it must  have the same limit ~(x) 
because of the functional equat ion (2). On the other  hand, equat ion (14) implies 

A(q4"x;q) =(f(q2x)g(q2x)f(q4x)g(q4x)...f(qa"x)g(q'"x))l~ (17) 

Choose  a small number  6 and let q ~ 1 and n ~ oo in such a way that  q4. = e -  ~. Then  
each factor f(q2ix) and g(q2ix)in (17) equals y (x )+  0(6)  for q ~ 1, so (17) gives 

A(e-~x; q) = (y(x) + O(6))"]~ A(x; q) = (y(x) + O(6))-~A(x; q) 

= (1 - 6~(x) + O(62))A(x; q) (q ~ 1). 

Together  with the fact that l im~. o A(x; q) = 1 for all q, this shows that  A(x; q) for q --* 1 
has a limit A(x) which satisfies A'(x) = (y(x)/x)A(x) and A(0) = 1, or  equivalently 

n2 f~ 1 t ~'~*_ A(x)=e"~'-"~/% c(x)=~-+Jotlog 1+~-) dr. (18) 

In view of (16) and the known asymptotics of 1 - 2 ( x )  for q ~  1, this proves (III) of 
the Theorem except for the evaluat ion of the integral c(x). Setting t = 2y and integrating 
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by parts, we find 

7~ 2 
�9 

The integral is evaluated in [2] (A.3.1.(6)) in terms of the dilogarithm, and this gives 
the formula asserted in the Theorem (up to the evaluation of the constant, which is 
fixed by c(0)= 7zE/4, LiE(1 ) = gE/6). As mentioned in the introduction, the formula 
c(1)-- rt2/5, which we know to be true by (II) of the Theorem, is equivalent to the 
special value Li2((3 - x/~)/2) -- rtE/15 - log2 ((1 + x/~)/2) of the dilogarithm, a value 
well known to Ramanujan. 

6. Final remarks 

In this paper we have made Ramanujan's assertion (1) precise in various senses and 
given proofs of these statements. It is reasonable to ask how much of what we have 
done Ramanujan actually had in mind. Obviously this is pure speculation. I would 
guess that he knew (I) of the Theorem, since the function defined by the continued 
fraction (4) was a favourite of his, and that he knew the magic identity (10), 
which--since he certainly knew (9) and that 2(x) is very close to 1--would suffice to 
imply (1) in the rough form stated. I do not think that he knew the full asymptotics 
o f f  - g for q ---, 1 as given in (III) of the Theorem, since he was particularly fond of 
the dilogarithm and of its evaluation at special arguments and would hardly have 
failed to at least mention the formula in his notebook. As to how he might have 
discovered (10), I have no idea, since I absolutely do not know where this identity 
comes from. I myself found it by the stupid method of evaluating the difference 
f (x;  q) - g(x; q) for hundreds of values of x and q and thus discovering numerically 
that g(x) for x small had the Fourier expansion given in (II); this at least suggested 
looking at the theta-series O+(x) and 0_(x), after which it was not too hard to discover 
the matrix W(x) and the identity (10) (the proofs, of course, were easy once the 
formulae were known, as in all identities of this type). Such extensive numerical 
computatiolas would be impossible without a computer even for a Ramanujan--but  
then again a Ramanujan would not (and in this case did not) need them to discover 
mysterious and beautiful identities which would be hidden to ordinary mortals. 
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Note added in proof 

While in India for the Ramanujan centenary celebrations, I learned that a formula 
equivalent to (10) is in fact contained in Ramanujan's "Lost Notebook". 


