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Introduction 

Let  X o ( N  ) be  the  usua l  m o d u l a r  c u r v e  w i t h  c o m p l e x  p o i n t s  ~ /Fo(N  ) a n d  K a n  

i m a g i n a r y  q u a d r a t i c  field o f  d i s c r i m i n a n t  D in w h i c h  the  p r i m e  f a c t o r s  o f  N a re  all 
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split. The theory of complex multiplication produces certain points x E Xo(N), 
called Heegner points, which are rational over the Hilbert class field H of K. In our 
first paper [9] we computed ( ( x ) - ( ~ ) ,  (x ' ) -  ( ~ ) ) ,  for two such Heegner points x 
and x' which are conjugate over H, where ( , )  denotes the global height pairing on 
the Jacobian J of Xo(N ), in terms of the derivatives at s = 1 of certain L-series 
associated to modular forms of weight 2 on Fo(N). As a consequence one obtains a 
formula for the global height pairing (YD, YD)K, where YD is the Heegner divisor 
TrH/K((X ) - ( ~ ) )  ~ J(K). The result was that the height of the f-isotypical compo- 
nent ofyv,  where f is a normalized newform of weight 2 on Fo(N), is up to a simple 
factor equal to the first derivative at s = 1 of the L-series o f f  over K. This L-series is 

/ ~ \  

the product of L(J~s)=~a(n)n -s and L ( f , D , s ) = Z a ( n ) ( ~ ) n  -~, where 

= ~ a(n)e 2~i"z, and always vanishes at s = ~ if a Heegner point of discriminant D 
exists. 

We would like to have information about the position of the Heegner divisor 
Yo as a vector in the Mordell-Weil group, rather than just its length or the length of 
its components in the various Hecke eigenspaces. To do this, we will put all of the 
Heegner divisors in the same group and then compute their height pairings with 
one another. Let J* denote the Jacobian of X*(N), the quotient of Xo(N) by the 
Fricke involution w N. The action of the non-trivial element of Gal(H/K) on 
TrmK((x)) is the same as that of WN, SO the image y ;  of Yo in J* is defined over Q. Its 
f -component  is non-trivial only i f f  is a modular form on F*(N), and this is the case 
precisely when L(f, s) has a minus sign in its functional equation and hence a zero 
(of odd order) at s = 1. The result quoted above then says that the height (now over 
~ )  of the f -component  of y* is equal, up to a simple factor, to L'(f, 1)L(f, D, 1). On 
the other hand, an important  result of Waldspurger expresses L(f, D, l) as a 
multiple of c(O) 2, where c(D) is the [Dl-th Fourier coefficient of a modular form of 
weight 3/2 corresponding to f under the Shimura lifting. This leads one to guess 
that the height pairing of the f -components  of Y*o and y *  for different 
discriminants D o and D l should be related to the product L'(f, 1)c(Do)c(D O. 

In this paper we will establish a result of this nature. Actually, the theory of 
forms of half-integral weight is adequate to express the result neatly only when N is 
prime; in general we must use instead the theory of Jacobi forms as developed in [4, 
15]. Combining this result with multiplicity one theorems guaranteeing the 
uniqueness of the lifting to Jacobi forms we will show that the f-eigencomponents 
of the Heegner divisors y* all lie on a .single line in (J*(~)|  and that their 
positions on that line are given by the Fourier coefficients of a Jacobi .form. The 
subspace they generate is non-trivial precisely when L'(f, 1) + 0. We will also prove 
a formula relating the height pairings of the Heegner divisors to integrals of 
modular forms over certain geodesic cycles on Xo(N ) associated to real quadratic 
fields. Note that the statement about 1-dimensionality is in accordance with the 
Birch-Swinnerton-Dyer conjecture, which predicts that (J*(Q)| has dimen- 
sion 1 when L'(f, 1)+0. 

We would like to emphasize the strong analogy of this theorem with some 
previous work of Hirzebruch and Zagier [10], in which the intersection numbers of 
certain modular curves on a Hilbert modular surface Y were computed and related 
to the coefficients of a modular form of weight 2. The intersection number, like our 
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height pairing, is expressed as a sum of local terms (which are calculated, in both 
cases, by counting representations by quadratic forms). The modular form of 
weight 2 then determines the positions of the curves in the homology group H2(Y) 
and hence in Pic(Y) since Y is simply connected. This fact actually permits one to 
deduce our theorem from the results of [10] in some special cases, e.g., in the first 
non-trivial case N = 37 [23]. It is therefore a great pleasure to dedicate this paper 
to Hirzebruch, who has taught all three of us so much. 

In the remainder of this introduction we will give the precise definitions of the 
Heegner divisors, Jacobi forms, and integrals over geodesic cycles, and state our 
main results. 

1. Heegner Divisors 

Let K be an imaginary quadratic field of discriminant D and class number h, and 
assume that D is a square modulo 4N (or equivalently, that every prime divisor p of 
N is split or ramified in K, and split if p2]N). Fix a residue class r (mod2N) with 
r 2 -  D (mod4N). If z e ~ (upper half-plane) is the root of a quadratic equation 

a'c2+bz+c=O, a,b,c~2g, a > 0 ,  a-=0 (modN),  
(1) 

b - r (rood 2N), b 2 - 4ac = D 

then we know by the theory of complex multiplication that the image of T in 
~)/Io(N) C Xo(N)(II2) is defined over H, the Hilbert class field of K. There are exactly 
h such images, permuted simply transitively by Gal(H/K); their sum is thus a 
divisor PD., of degree h defined over K. (Actually, ifD = -- 3 or - 4 we define PD. r as 
1/3 or 1/2 of this divisor to correct for the presence of extra units.) From a modular 
point of view, points of Xo(N ) correspond to diagrams E ~ E' where E and E' are 
elliptic curves and ~b a cyclic N-isogeny, and the points of PD,r correspond to 
diagrams where E and E' both have complex multiplication by the ring of integers 

of K and the kernel of 4) is annihilated by the primitive ideal u = N, of 

norm N. We write YD., for the divisor P,~.,- h- (oo) of degree 0 on Xo(N ) and for its 
class in the Jacobian J, and * * P~).,, YD., for the images of PD., and YD., .in X~(N) and 
J*, respectively; as stated above~ the latter are defined over Q. Our goal is a 
formula for the height pairing * * <YD ...... Y~ .... )~) of tWO such divisors. In the case 
Do=D ~ =D, ro=r 1 =r, the value of r is irrelevant for this question, since the 
group W~(2g/22g)' (t = number of prime factors of N) of Atkin-Lehner involutions 
of Xo(N ) permuts the PP., or YD,, for a given D transitively and since the height 
pairing on a Jacobian is invariant under automorphisms of the underlying curve. 
This is why the role of the square-root r o fD (mod4N) was not stressed in [9]; it 
becomes important now because for different discriminants there is no canonical 
compatible choice of square-roots. 

2. Jacobi Forms 

A Jacobi form of weight k and index N is a function ~b : S} x lI2--.IE satisfying the 
transformation law 

[ a r + b  z +d)ke2~,u +ac~(r, 
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and having a Fourier expansion of the form 

c~(z, z) = E e(n, r)qn~ r (q = e 2~i~, ~ = e2~iz), (2) 
n,r~Z 

r 2 ~ 4 N n  

where c(n, r) depends only o n  r 2 - 4 N n  and on the residue class of r  (mod2N). Such 
functions arise from theta series [c(n,r) is the number of vectors in a 2k- 
dimensional lattice having length n and scalar product r with a fixed vector of 

g- 

and Siegel modular forms ]~b is the coefficient of e 2~u~' in the Fourier length N] 
[_ 

mo u, r  orm ] , of weight k on Sp4(Z) . One can 

define Jacobi cusp forms [require r2<  4Nn in (2)], Eisenstein series, a Petersson 
scalar product, Hecke operators, and new forms [4]. Using a trace formula, it is 
possible to show [15] that the new part of the space J ~ ,  N of Jacobi cusp forms of 
weight k + 1 and index N is isomorphic as a Hecke module to the new part of the 
space Szk(N)- of cusp forms of weight 2k on Fo(N ) with eigenvalue - 1 under the 
involution f ( z )v-~(-Nz2)-~f (  - 1/Nz)(these are the cusp forms whose Hecke 
L-series have a functional equation with a minus sign under s~-~2k-s). In 
particular, if ,f~ SEk(N)- is a normalized newform, then there is a non-zero Jacobi 
form ~b=~byeJ~,~,N, unique up to a scalar, having the same eigenvalues as f 
under all Hecke operators T,,, (m, N) = 1. We can choose q~s to have real Fourier 
coefficients (in fact, coefficients in the totally real number field generated by the 
coefficients of f) .  

3. Cycle Integrals 

Let A be the discriminant of a real quadratic field of narrow class number h and 
assume that A is a square modulo 4N (i.e., make the same assumptions on the 
splitting behavior of prime factors of N as above for Heegner divisors). Choose a 
residue class ~(mod2N) with ~ 2 ~ A  (mod4N). Then the points z = x + i y e 5  
satisfying an equation of the form 

alzlZ +bx +c=O,  a ,b , c~Z ,  a-=0 (modN),  

b = ~  (mod2N),  bZ--4ac=A 

[the real quadratic analogue of (1)] form an infinite union of semicircles whose 
image in ~/Fo(N)CXo(N)(~E ) is a union of h closed geodesics, in 1:1 corre- 

spondence with the narrow ideal classes of Q(~/A-). Each such geodesic is the 
quotient 7e of one of the semicircles by a matrix M = M e ~ SL2(TZ) correspond- 
ing to a unit of the quadratic form Q(~, q) = a~ 2 + b~r/+ c q  2. If f ~  Szk(N), w e  can 
define the cycle integral 

MZo 

rk,N,e(f)= S f(z)Q(z,l) k ldz (any z0 eS ) .  
zo 

If A is a product of two negative discriminants Do and D1, then there is a 

corresponding genus character Z from the narrow ideal class group of Q(]/A-) to 
{ + 1 }, and summing over the h classes of Q (for fixed A and ~) with weighting 
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factors z(Q) gives a cycle integral which we shall denote rk, N, ~, e, o(,(f). For k = 1 this 
is just the integral of the differential form .[(z)dz over the closed cycle 7(Do, D~, ~) 
= ~ z(Q)TQ on Xo(N  ), which is invariant under WN and anti-invariant under 

[Q]  

complex conjugation. 

The Results 

Because the space 1~usp of Jacobi cusp forms is isomorphic as a Hecke module to ~  + l , N  

a subspace of S2k(N) , the "lifting map" 

'909 .... : q ~  ~ (coefficient of qnO(,O in ~lT,,)e 2~i'~ 
m = l  

c u s p  (where n o, r 0 are integers with D o = r ~ -  4Nn  0 < 0) maps Jk +1, N to S2k(N) . After a 
preliminary chapter on quadratic forms and associated orders in quaternion 
algebras, we will construct in Chap. I1 the kernel function for -~o(,,,o. It turns out 
that the Fourier coefficients of 6P~,r o, the adjoint of J~o,ro with respect to the 
Petersson scalar products in icusp and S2k(N ), are given by the cycle integrals ~ ' k + l , N  

defined above. This leads to the first main result: 

Theorem A. Let .['~ S2k(N)- be a normalized newfi)rm, ~ = ~ y ~ 3 ~ ,  N a Jacobi 
form corresponding to f as above, and Di= r~- -4Nn  i<O ( i=0,  1) two coprime 
fundamental  discriminants. Then 

1 l 
II q~ [I ~ e(no, ro)c(nl, rl) - II f 2 rk,N,OoO ........ Oo(f), (3) 

where II r II and I[ f II are the norms of  ~ and f in their respective scalar products and 
c(n, r) denotes the coefficient of  q"~r in fig. 

(Here and in the next paragraph, - means equality up to an elementary non- 
zero factor which depends only on N and k.) Note that (3) makes sense since q5 is 
unique up to a non-zero real constant and replacing ~b by 2q5 multiplies both II r 2 
and c(no, ro)c(n . rl) by )2. 

Next, in Chap. III we will construct a modular form F e S2~(N)-, depending on 
the same data k, N, Do<0,  D~ <0,  and rot ~ (mod2N) with r~--D~ (mod4N), by 
starting with a non-holomorphic Eisenstein series of weight 1 for the Hilbert 

modular group of Q( D~0DI~ ) and applying to it a differential operator  of H. Cohen 
and a holomorphic projection operator.  We prove that the scalar product  of F 
with a normalized newform f e  S2k(N)- is given by 

(F,.[') - rk, N, OoD ........ Do(f) L'(.[; k). (4) 

We also calculate the Fourier coefficients ofF.  They turn out to be given as a sum 
of two terms, one of which is a finite integral linear combination of logarithms of 
prime numbers and the other an infinite sum of Legendre functions. This infinite 
sum is shown in Chap. IV to be a finite linear combination of values of a certain 
Green's function at Heegner points. More  precisely, for k > 1 odd we prove 

k - 1  

coefficient o f q "  inF  - (DoD1) 2 ~ �9 GN,k(ZO, Zl )q-  E n ( p ) l o g p ,  (5) 
"~o,Zl p 
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here r 0 and z~ run over the points of the Heegner divisors Po ..... and T.,P* .... 
(T,.=m th Hecke operator) and * GN.k is the unique function on X*(N) 2 which is an 
eigenfunction with eigenvalue k ( k -  1) of the hyperbolic Laplace operator (in each 
variable) and is bounded except for a logarithmic singularity along the diagonal, 
while the second sum runs over primes and n(p) is an explicitly given integer which 

DoD 1 - - r  2 
is non-zero only if p divides one of the integers - , r=rorl (mod2N), 

4N 

Jr] < ]SD~D1. For k even the result is similar but with G*.k replaced by a function on 
Xo(N) 2 which is odd with respect to the action ofw N in each variable. For k = 1 we 
prove a similar formula for m prime to N, where now G* is harmonic o n  X~( ]~ / )  2 N, I  
and is bounded except for logarithmic singularities along the diagonal and the axes 
X~(N)• {~}, {o0} • X~(N). 

We also show in Chap. IV that the right-hand side of (5) for k=  1 equals 
(yDo.ro, TmYD .... ), where ( , )  is the canonical height pairing on J*(~). 

ISpecifically, terms ~ G~,k(Zo, T1) n(p)logp are height the and the local contri- 

butions from the places oo and p, respectively; they are calculated by counting the 

number of embeddings of certain Clifford orders into N2g C M2(II~) or into 

an Eichler order of discriminant N in the quaternion algebra over ~ ramified at p 
7 

and at oo. / This leads to the formula 

( ,  , ,  (f ,  F) 
((Y* ...... )y, Yo .... )y )= { j ; f )  (6) 

for the height pairings of the f-eigencomponents of ,* and * }Do,to YDt,rl' where 
J'e Se(N)- = S2(T*(N)) is a normalized newform and ( , )  has been extended to 
J*(Q) |  by linearity. From (4) and (6), we obtain (putting in the constants) 

Theorem B. Let Do, D ~ < 0 be eoprime fundamental discriminants, D i ==- r { (mod4N), 
and f E S2(Ff*(N)) a normalized newform. Then 

L'{f, 1 ) 
�9 * I f(z)dz. ((YD ..... )~"(Y~) .... )f) -- 4roll f II 2 ~(/)0, o ...... )" 

Combining this with Theorem A gives the identity 
g '  " 

((Y* ...... )I,(Y* .... )Z)__ (j, 1) c(no ,ro)c(n,,r,). (7) 
4nllq~ H 2 

On the other hand, the main result of [9] implies that 

, , IDI ~/2 L'(.J; 1) 
((Yo,,)f,(Yo.~)y)- 8u: H.f/2 L(f iD,  1) if (D, 2 N ) = I ,  

and by an analogue of Waldspurger's theorem proved in Chap. II this is equivalent 
to 

L'(f, 1 ) c(n, r )  2 (D = r 2 - -  4Nn). (8) 
((Y*, ~)f, (Y*,r)f) = 4zr j[~ II ~ 
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Together, Eqs. (7) and (8) imply that (y* .... ) / and  (Yl) .... )f are collinear (Cauchy- 
Schwarz in the case of equality!), and this gives our main theorem: 

Theorem C. Let f ES2(F~'(N)) be a normalized newJorm. Then the subspace of 
J*(@)| generated by the f-eigencomponents of  all Heegner divisors (Y*.,)I with 
(D, 2N) = 1 has dimension 1 if L'(f, 1) 4= 0 and 0 if  L'(f, 1) = O. More precisely, (y* ~)/ 

{ r 2 -  D ) 
= C ~, ~4N ' r Yl, where c(n, r) is the coefficient of  q,~r in a Jacobi form 4)I e J2,N 

and y/e(J*(ll~)| is independent of  D and r with (yz, y / ) = L ' ( f ,  1)/4~11r 

We also discuss in Chap. V the interpretation of(5) for k > 1, the modifications 
that would be needed in the proof of Theorem C for (D, 2N) + l, and the relation 
of Theorems B and C to the conjecture of Birch and Swinnerton-Dyer. The 
ideal statement of Theorem C, analogous to the main theorem of [10], would be 
that the formal power series ~ yr~ 4Xn,rqn~ r lies in the tensor product 

n , r E Z  
r 2 4 N n  < 0 

* cusp J (~)@J2.N, with non-vanishing ./'-component iff E(,s 1)4:0. 
For the reader's convenience we remark that Chaps. II, III, and IV are 

essentially independent (all three use parts of Chap. I) and can be read in any order. 
The results of Chap. II (in particular, Theorem A) are of independent interest in the 
theory of Jacobi forms. 

Notations 

The symbols era(x) and e,,(x) (m~ N) denote e 2~imx and e 2=ix/m, respectively. In e"(x), 
x is a complex variable, while in era(x) it is taken to be in ~/m~.  We sometimes write 
e(x) for e 2=ix (x ~ ~). 

For a function f : 2 g ~  we write f-+ for J symmetrized or antisymmetrized, 

r e s p e c t i v e l y ' i ' e " f • 1 7 7  '~t = 1 . I n  

a sum of the form ~ we understand that the summation is over positive divisors 
din 

only. The abbreviation "mod" is frequenctly omitted; thus we often write a =-b(n) 
instead of a -  b (modn). The symbols ~ and ~ denote sums over representatives 

a(c) elc)* 

for all residue classes or all primitive residue classes modulo c, respectively. 
By a discriminant we mean any non-zero integer A - 0 ,  1 (4), by a fundamental 

discriminani either I or the diseriminant of a quadratic field. Any discriminant A 
can be written uniquely as Ao cz with Ao fundamental and c >  I; c is called the 
conductor of A. A prime discriminant is a fundamental discriminant with exactly 
one prime factor [i.e., - 4 ,  - 8 ,  8, or ( -  l) Ip- tI/Zp with p an odd prime]. For A a 

discriminant, ( A ) i s  the Kronecker symbol [ the totally multiplicative function 

I,JX I~\ 

with ( Z l l )=sign(A)  and ( ~ )  for p prime defined as O if plA, + l  ifpXA and 
X--/ XF/ 

-- square (4p), - ~ otherwise].  A 
J 
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.~ denotes the upper half-plane, F(l) the full modular group SL2(~ ) and Fo(N ) 

(   ,thesub roupo (:  or  0w d noteb,   ( ,the p c  
of cusp forms of weight 2k on Fo(N ) and by Jk N (resp. lcusp~ the space of Jacobi , a k ,  N ! 

forms (resp. Jacobi cusp forms) of weight k and index N on the full Jacobi modular 
group F(lf=SL2(;g)~ ;g2. (For the theory of Jacobi forms we refer to [4].) The 
Petersson scalar products on these spaces are normalized by 

(f, g)= ~ .f(r)g(r)v 2k-2dudv (J; g eSzk(N)), 
r o ( n ) \ o  

(qS, ~p) = ~ ~b(z,z)u;(r,z)vk-3e-4~uy~/';dxdydudv (q~, ~p e J ~ P ) ,  
F(1)J\ .~ x �9 

where r=u+iv ,  z=x+iy .  

I. Quadratic Forms, Genus Theory, and Clifford Algebras 

In this preliminary chapter we collect together some material about quadratic 
forms which will be used in later chapters. Specifically, Sect. I treats the 
classification under Fo(N ) of binary quadratic forms of the form ax 2 + bxy + cy 2 
with a divisible by N, Sect. 2 discusses the definition of genus characters on such 
forms, and Sect. 3 treats the Clifford algebras of binary quadratic forms (which are 
quaternion algebras) and their orders. The reader may want to skip this chapter 
now and refer to the results later as needed. 

1. Fo(N)-Classification of Binary Quadratic Forms 

We consider integral binary quadratic forms [a, b, c](x,y)=ax 2 +bxy+cy 2. As 
usual the group F( | )  operates on such forms by 

[a,b,c]~,(~ ~)(x,y)=[a,b,c](~x+fiy,  Tx+6y) 

preserving the discriminant A = b 2 -4ac  and the greatest common divisor (a, b, c), 
the number of classes with fixed values of these invariants being finite. We denote 
by 2~ A and 2 ~ the set of all quadratic forms of discriminant A and the subset of 
primitive forms (greatest common divisor = 1), respectively. We are interested in 
the classification with respect to the subgroup Fo(N), N e N. A further invariant in 
this case is the greatest common divisor of a and N, which we suppose to be N; yet 
another invariant under this assumption is the value of b modulo 2N. Thus for an 
integer ~ mod2N and a discriminant A with A __~2 (mod4N) we set 

2~N.~.o = {[a, b,c] ~~ [ a - 0  (modN), b - ~  (mod2N)}. 

This collection of forms is Fo(N)-invariant and we are interested in describing its 
orbits under Fo(N ) and (in the next two sections) defining certain Fo(N)-invariant 
functions (genus characters) on it. 

From now on we denote forms in ~N.A.o by [aN, b, c] instead of [a, b, c]. The 
greatest common divisor of a, b, and c is Fo(N)-invariant, and setting 

~o,~.o = { [aN ,  b, c] e ~N,. ,o I(a, b, c) = 1} 



Heegner Points and Derivatives of L-Series. I1 505 

we have a Fo(N)-invariant bijection of sets 
6 - -  , 0 
~u,~,o-  U ~) ~" ~N,A/~,~. (1) 

E21A 2 ( 2 N )  
2 2  = A/~2{4N) 

[ 2  _ o ( 2 N )  

Thus we can reduce to the study of forms Q �9 o ~N,A,e, which we call Fo(N)-primitive. 
Set 

(N ,  ~,O 2 -  A~ 
m= ~ 4N--);  (2) 

this g.c.d, is well-defined even though ~ is only an integer modulo 2N since 

replacing ~ by 0 + 2N replaces - 4 N  by f + ~ + N. For Q = [aN, b, c] �9 ~ o 

we have (N, b, ac) = m and (a, b, c) = 1, so the two numbers 

(N,b ,a)=ml  and (N,b ,c )=m 2 (3) 

are coprime and have product m. Conversely, we have: 

Proposition. Define m by (2) and f ix  a decomposition m = m l m  2 with ml,m2 >0,  
(m~,m2)=l. Then there is a 1:1 correspondence between the Fo(N)-equivalence 
classes of  forms [aN, b, c] �9 ~~ A.0 satisfying (3) and the SL2(77)-equivalence classes 
of  forms in o)o given by 

Q=[aN,  b,c] ~ O = [ a N l , b ,  cN2]; (4) 

here N 1 . N  2 is any decomposition of N into coprime positive factors satisfying 
(m~, N2) = (m 2, N ~ ) = 1. In particular, I~ ~ a. o/Fo(N)l = 2 v" I~~ where v is the 
number of  prime .['actors of  m. 

[Note: I~176 equals h(A) for A > 0, 2 for A = 0, and 2h(A) for A < 0, where 
h(A) is the class number of A in the standard notation, the factor 2 arising because 
~o for A <0  (A <0) contains both positive and negative (semi-)definite forms while 
h(A) counts only the positive ones.] 

Proof. This is essentially Lemma 2, p. 64, of [10], but since the proof there was only 
sketched and the statement somewhat more special (N/m was supposed square- 

free and prime t~ m) and n~ quite c~ I the  fact~ I + (Aq) sh~ be replaced 7 

by 0 if q21AI, we give a complete proof here. 

First of all, there clearly is a decomposition N = N 1 N2 with (N1, N2) = (N1, m2) 
=(N2, ml)= 1: we write N as a product of prime powers ff  and include p~ into 
N~ ifplm ~ and into either N 1 or N 2 ifp~/m. The form (~ defined by (4) is primitive 
because of (a, b, c) = 1, Eq. (3), and the properties of N~, N 2, so (4) defines a map 
~o __. o)o where 5~ ~ ~,~ . . . . . . .  is the set of forms [aN, b, c] �9 2~ o satisfying (3). N , A , o , r a t , m  2 ,,Z~A~ 

This map induces a map ~o A ,,, ,,/Fo(N)--'~~ because for 

= �9 Fo(N ) and any Q we have by an easy calculation Q ~. M = Q o M M N7 

with / ~ = (  0~NJ, N~fl) �9 we  must shOw that this induced map is 

injective and surjective. 
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lnjectivity. Suppose Q = [aN, b, c], Q' = [a'N, b', c'] �9 ~176 a,~ . . . . . .  with 

(3'=(~o(~ ~ ) f o r  some (~ ~) �9  ). We show that N,17, Nzlfl; then 

(7 ~) =~4f~176149176176176176 

the relation (~'= Q o (7 ~) says 

a'N1 = aN ~c~ 2 + be7 + cN272 , 

b' = 2aNlc~fl + b(c~6 + fly) + 2c N2~(5 , 

c'N2 = aNlfl 2 + bfl6 + cN262 . 

Reducing the first equation (modN~) and the second (mod2N1) and noting that 
b ' - ~ - b  (mod2N0 and e l - f i T =  1, we obtain 

O-7(bc~+cN27)(modN1), O-7(bf+cN26)(modN1),  

and these imply 7- -0(modN0 because the g.c.d, of bc~+cN27 and bfi+cN26 

equalsthatofbandcN2[since(~ ~) has determinant 1 ] and this is prime to N~ 

by assumption. The proof that fl-= 0 (mod N2) is exactly similar. 

Surjectivity. Let [& b', ?] be any primitive form of discriminant A ; we must show 
that it is SLz(;g)-equivalent to a form (~ with Q eo~O,A,Q,m,,m2 . Thus we want 

(: t at the  umbers 
a ----- a0~2 -k ~ 7  -t- g'7 2 ' 

b = 2acq~ + B(~a +/~7) + 2~ya, 

c = a[~ 2 + ~/~6 + ~6 2 

satisfy a-- 0 (N 0, b = 0 (2N), c -- 0 (N2) (then [a, b, c] = 0. for Q = (aN> b, c/N2], and 
Q automatically satisfies (3)). It is easily checked that these congruences hold if 

(1( ~'~- 0) l(b~0')(:)~-(:)(N1)' (l(b'~0) 1(~'7 0))(:)~ (:)(N2)" (5) 
The first equation is solvable in coprime integers c~, y (modN1) because (a, ~, ~ =  1 

and the determinant of the matrix multiplying (7)  is 0(modN 0. Similarly the 

second is solvable in coprime integers f, 6 (rood N 2)- Since (N1, N2)= 1, we can add 

to(5) thecongruencecondi t ionson(~)(modNz)and(~)(modNOrequiredto  

get det (~ ~)=l(modN).SincereductionmoduloNfromSL2(~)toSL2(7Z/N~) 

is surjective, there is a matrix (~ ~) �9 SL2(;g) with the needed properties. This 
completes the proof. 
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Denote by 2N, a (resp. 2~ the set of all [resp. all F0(N)-primitive ] quadratic 
forms [aN, b, c] of discriminant A, so 

YN,A = U 2 N ~ o= 1 / (-~ ~ _~0 20 
0(2N) , , (2~(A N,A/d 2 , N,A ~- 0( 2N)U N,A,q"  

0 2 = A (4N) 0 2 -- 3 (4N) 

Observing that 2 v for a number m with v prime factors is just the number of 
squarefree divisors of m, we find from the proposition 

I~ ~ Jro(N)l = 12~ �9 Z n~/.~(mld), 
din 
dZlA 

d squarefree 

where na(N ) denotes the number of square roots (mod2N) of A (mod4N). 
We end this section with some remarks on the action of Hecke operators and 

Atkin-Lehner involutions on quadratic forms. Let N' be a positive integer with 
N'I[N. For  Q~2N,~ we define 

QIWN'= Q \TN  6N' ' where ~,fl ,7,~eZ, c ~ 6 N - f l T ~ = l .  (6) 

(aN' 
Such matrices \~N 6N' exist and any two are both left and right Fo(N )- 

equivalent, so (6) gives a well-defined map from 2N, A/Fo(N) to itself. It is easily 
checked that these maps are isomorphisms and satisfy the relation W N, o WN,, 
= WN,N,,/~N,,N,,)2, SO they form a group of order 2 t l, t =n u m b er  of prime factors of 
N. Writing out (6), we see that [aN, b, c] ~ WN, has a middle coefficient which is 

2N 
congruent to b modulo N' and to - b  modulo 2N', so 

~(mod2N/N'), 
WN"2N, a,JFo(N)-~-~2N,,~,e*/Fo(N), e*--  - -e  (mod2N') .  (7) 

The Hecke operators T,, (m> 1) are defined, also in analogy with the theory of 
modular forms, as the one-to-many maps from 2N, A/Fo(N) to 2N,A,,~/Fo(N) (i.e., 
homomorphisms between the free abelian groups generated by these sets) sending 
[Q] to the finite collection (or sum) of all [Q o A], where A runs over the set of left 

F~176 ~N ~)ofdeterminantmwith~,fi,~,6eTZ, 

prime to m. Note that ~ goes to mQ under this correspondence, l f F  is any function 
on ~ 2N, JFo(N) which is homogeneous of degree r [i.e. F(#Q)= (~F(Q) for f e IN] 

A 

and we define 
~u,d,o(F) = ~, F(Q), 

Q~-~N,~,e/Fo(N) 

then for m = p  a prime not dividing N we have 

5(~N,z,e(FlTp) = ~N, Ap2,op(F)+ p r ( ; )  c~N, c a,e(F)+pZ~+lccSN,A/p2,e/p(F) ,. 

here FITp has the obvious meaning, the last term is to be omitted if p2,~A, and e/p is 
the unique solution 2 (2N) of p2 ~- Q (2N), 22 = A (4N). For  a proof (with N = 1 and 
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in a somewhat different context), see [22, pp. 290 2921. By induction on the 
powers of primes dividing m, one deduces from this the formula 

d u  a 0( F] Tin) = Z d tiN, Ad,2. ed'( ) 
m = d d '  

for A fundamental and m prime to N. 

2. The Generalized Genus Character ZDo 

Classical genus theory associates to each discriminant A and fundamental 
discriminant divisor Do of A [i.e. Do is a fundamental discriminant and AID o - 0 or 

1 (mod4)] a F(1)-invariant function ZDo: ~176 by settingz~o(Q)= ( D : )  for 

any integer n prime to D o represented by Q; such an n always exists and the value of 

(Dn~ is independent of the choice. The set 9~ a natural group structure 

and ZOo is a homomorphism; conversely, all homomorphisms ~176 
have the form ZDo for some discriminant divisor D o of A, the only relations being 
;<~o = ZD, if A = DoDlg 2 for some g e N. In this section we give a natural extension of 
this function to a Fo(N)-invariant function on ~N, ~ under the assumption that both 
D O and AID o are squares modulo 4N. For Q e 9~ we set ZDo(Q)= ZDo((~) with (] as 

in Sect. 1; we then extend to non-Fo(N)-primitive forms by )~Do(#Q)= ( D~ ) ZDo(Q) 

[cf. (1) of Sect. 1], so ZDo(#Q)=0 if ( ( ,Do)>l .  A different formulation of this 
definition, and the main properties of the function Z~o, are given in the following 
proposition. 

Proposition 1. Let N >  1, D o a fundamental discriminant and A a discriminant 
divisible by D o such that both D o and AID o are squares modulo 4N. For 
Q = [aN, b, c] e ~u,A set 

0 otherwise, 

where in the first case n is an integer prime to D O represented by the form 
[aN1, b, cN2] for some decomposition N=N1N2,  Ni>O. Such an n exists and the 

value 
k / 

Fo(N)-invariant and has the .following properties: 

P1 ( Multiplicativity ) : 

ZDo([aN, b, c]) = ZDo([alN, b, ca2])Zoo([a2N, b, ca,]) if (al, aa) = I . 

P2 ( Invariance under the Fricke involution): 

XDo([aN, b, c]) = Zoo([cN, - b, a]). 

P3 (Explicit formula): )~Do([aN, b,c]) = ~ a  ~ 
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for any splitting D O = D1D 2 of Do into discriminants (necessarily fundamental and 
coprime) and N = N I N 2  of N into positive factors such that (D~,NIa) 
=(D2, N2c)= 1, Zoo=O !f no such splittings exist. 

Proof. The condition (a, b, c, Do) ~ 1 is equivalent to (a, c, Do) = 1 since 
b 2 -  4acN (DO). If it is satisfied, we can find N~ and N 2 satisfying 

N = N I N  2, N~,N2>O, (N~,c, Do)=(N2,a, Do)=l; (2) 

then the g.c.d, of the coefficients of the form [aN 1, b, cN2] is prime to D O and 
therefore by a well-known theorem this form represents integers prime to Do. Let n 

besuchanintegeranddefinezo~176176 vlOoH(~) where p* is the 

prime discriminant divisor of D divisible by p [i.e. p* = ( ~ - )  p for p t- 2, p* = - 4 ,  

8 o r - 8 w i t h D o / p * = _ l ( 4 ) f o r p = 2  .Ifp,~aN~then n = aN sincen=aNlxe 

bxy + cN2y 2 implies 4aNln = (2aNlx + by) 2 - Ay 2 and p* divides A . / I f p  is odd, + 
1_ 

th i sequa t ionsays tha taNln i sasquaremodulop ,  and(P*) i s theLegendre  

symbol. If p =  2 one has to distinguish according to the three values of p* and use 

that A/p* is 0 or 1 modulo 4. Similarly = cN if p,~cN 2. Since 

(aN1, cN2, Do) = 1, each plD o satisfies one of these conditions. This shows that each 
/ . a . \  

(P-~), and hence also their product  )~oo(Q), is independent of the choice of n, and 
\ , - /  

also shows that the right-hand side of the "explicit formula" P3 is independent of 
the splitting D = D 1D z [-for a given splitting N = N~N z satisfying (2)] and that this 
formula is true. We still have to check the independence of this splitting; the Fo(N )- 
invariance then follows as in Sect. I (namely changing Q by M e Fo(N ) changes the 
form JAN1, b, cN2] by 1~), and P1 and P2 are obvious from the explicit formula P3. 

The passage from any splitting N = N ~ N 2 to any other can be accomplished by 
moving one prime d at a time, so we can restrict ourselves to such changes. If d,fDo 
then multiplying one N i by d and dividing the other N~ by { changes (o,) 

N ~  �9 Na c by , and this is 1 since D1D 2=Do-square (mod4{) by 

hypothesis. Assume diDo. If dlac, then (2) forces us to include the full power of ( 
dividing N into N l or N 2 (depending whether dla or dlc) and the problem of 
moving d from one side to the other does not arise. Assume that (~/ac and, for 
convenience, { =1= 2 (the case d = 2 is similar and will be left to the reader). Since D is 
fundamental, d2XDo, so (llDo. Then the fact that D o is a square (mod4N) implies 
~e2XN. Suppose that dIN1; then (IIN1 and d,fN2, and the change we are 
considering is N~,N2~N1/{,  N2d. The condition (N1, D~)= 1 implies LgD~ and 
hence dll D2, so as splitting of D o for the new splitting N~/d. N2d of N we can take 
DId* - D2/d* (we have already shown that the formula in P3 is independent of the 
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splitting of D o for given N1,N2). Thus Nla NEC is replaced by 

N ~ ]  \ N2cd J" These two products differ by 

( [* ~ ( y l ~  [* [* 

But b E - 4 N a c  = D O �9 A/D o implies that #lb and (hence) 4 N a c / # -  - D o / [ .  A/Do ([), 

so this equals the Legendre symbol (@D-~ which is 1 because of the hypothesis 

A/D o-- square (4N). This completes the proof. 
We remark that a function like )/Do (for N = I )  was defined in [12] and an 

explicit formula like our P3 proved there (Proposition 6, p. 263). 
Finally, we give one further property of our genus characters: 

P4 ( Invariance under Atkin-Lehner involutions): 

)/Do(QIWN,)=)/oo(Q) for all Qe,~N, o, N'[IN (W~, as in Sect. 1). 

The proof, which is somewhat more complicated than that of P2, will be omitted 
since this result will not be used in the sequel. 

The remainder of Sect. 2 is devoted to the proof of the following technical 
proposition (needed in Chap. II), which gives a formula for the function 
)/Oo([aN, b, c]) in terms of Gauss sums. By assumption D O = r 2 (4N), A/D o = r 2 (4N) 
for some integers r o and r; we can always choose them so that their product is 
congruent to a chosen square root ~ of A (mod4N). Then we have: 

Proposition 2. Write D O = r 2 - 4Nno, D = A = t.2 _ 4Nn, and suppose b = ror (2N). 
Do 

Denote by F(x, y) the second degree polynomial Nx  2 + roxy + noy 2 + rx + sy + n with 
r o y  - -  b 

s= - - ,  and for any c>-I set 
2N 

,~  =.~-c(N, ro, no, r, s, n)= 1 Z E ec(2F(x, Y)) 
C 2(e)* x,y(c) 

Then for any a >= 1 we have 

1 ~  (D~ I X  ( [ a N ,  b 2 - A T \  
a al. \ d ] Yale = Oo b, 4 N a J )  

Io 

b2_A 
/f a4 , 
otherwise. 

(3) 

/ &  
Remark. Using the standard identity ~ ec(2m)= Y~ # /d}d(Ramanu jansum) ,  

x(c)* al(c,m) \ / 

we can rewrite ~'~e as ~/~ where N(d) is the number of solutions in 

integers x ,y  (modd) of F(x,y)=-O(d). The proposition is then equivalent to the 
Dirichlet series identity 

([ b b 2 - d ] ) a  -s 
2_. N(d)d-~- 1 = L s + 1, ~(s) ~. )~Oo aN, . 

a=l b~-~ ' 4Na J /  
a 4 N  
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Proof. We can simplify the assertion to be proved by making two reduction steps. 
First of all, both sides of(3) are multiplicative functions of a (this can be seen easily 
for the left-hand side, and follows for the right-hand side from PI above), so we 
may assume that a is a prime power p~; we shall treat only the case p =# 2, leaving the 
case p = 2 to the reader. Secondly, we may replace the second-degree polynomial F 
by F o M for any M e SLz(P'E~ ) without affecting the correctness of (3). Indeed, the 

valueofo~, . i sunchangedbythiss inceM(;)runsover(~/cZ)  2 as ( ~ )  does. On the 

other hand, replacing F by F o M replaces the quadratic form Q0 = IN, r o, no] by 
the equivalent form Qo o M and hence does not change either Do or the value of 

/ \ 

)(,p,.Do/p,(Qo):Zp,.Do/p,(N) for any prime p[Do, while it replaces ( ~ s ) b y  
t" x \ - -  / 

M l ( r S  ) and hence leaves invariant the quantity 
k - -  / 

b 2 - A  
C=Qo( s,r)+nD o -  4N ' 

and the right-hand side of(3) depends only on Do, a, C and the ~p,.Do/p,(N) by P3 of 
Proposition 1. For  c = p~ with p 4:2 (indeed, for any odd c), we can find M �9 SL2(~  ) 
diagonalizing Qo (modc), so we can assume r o-= 0 (c). Then 

1 
= c a{c~* ec(2n)Gc(2N' 2r)Gc(2n~ 2s) 

where Gc(A, B) denotes the one-variable Gauss sum ~ ec(Ax 2 + Bx). 
x(c) 

Case 1: pXD o. Using the formula (easily deducible from the standard case B = 0) 

where e(c) equals 1 or i according as c -  1 (4) or c -  3 (4) and (4A)- 1 denotes the 
inverse of 4A (modc), we find 

\ c j ~,(c)* ,~(c)* 

so for a any power of p 

( 2 , a ) = d  

0 if a,~C, 

in agreement with (3) by P3 of Proposition 1. 
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Case 2: p]D o. Since p:#2 and D o is fundamental, p2/~Do, so we can assume [after 
acting by a suitable element of SLz(2g)] that p~N, PHno. The sum Go(AN, 20 can be 
evaluated again by (2), and the sum Gc(2no, As) by 

c=p" / [ 0 if p%R, 
p* 2 } - -  Gc(A,B)= (A/p~ 
prlA I ]/pce(c/p) \ c/p / ec/p(-(B/p)2(4A/p) -1) if plB. 

Proof. Replacing x by x + 
c 
P m" the definition of Gc gives G~(A, B) = ep(B)G~(A,\ B), 

so G~ = 0  ifp,fB. If plB, then Go(A, B)= G~/p(A/p, B/p) and we apply (4).) This gives 

{ g :  [/Pe'(P)(N)(n~176 c/p ,] if  plC, 

0 if pyC. 

TheinnersumisOifc, C(replace2by2+p, andequalse.(p,l/p.C.(-D~ 
cIC. Hence P \ p / 

0 if c~C, 
p - I  

where p* = ( -  1) 2 p. By P3 of Proposition I this proves (3) in this case also (note 
1 

that the left-hand side of (3) reduces to the single term ,N, for a =  pV, p[Do). 
a 

3. Clifford Algebras and Eichler Orders 
Fix an integer N > I. In this section we will consider a primitive integral binary 
quadratic form q(x, y) which represents only integers which are squares (mod4N). 
Then q has the form q =  [Do, 2n, D1] where D o and D I are squares (mod4N) and 
n 2= - DoD ~ (mod4N). We will further assume that D o and D 1 are relatively prime 
and that q is non-degenerate over ~.  

The discriminant of q is equal to 4(n 2 -  DoD 1). By hypothesis, this is divisible 
by 16N. We define 

M =  disc(q) nZ-DoD1 
16N 4N 

Ifp is any prime dividing NM, we define e,(p) = + l as follows: Let D be any integer 
prime to p which is represented by q (either D o or D 1 will always do) and define 

e(p)= ( ~ ) .  This is independent of the choice of D and equals +1 if piN. For any 

az positive divisor d = I~ P}" of M we let ~:(d) = I~ :(Pi) and introduce the Dirichlet 
series 

] __ e(p)a+ lpr l)s 

f (s)= Z g(d) ds= [I  {1) 
dim P~ II M 1 - e(p)p ~ 
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Since disc(q)4=0, the form q determines a non-degenerate quadratic space of 
dimension 2 over Q. We let B be the Clifford algebra of this space. Then B is a 
quaternion algebra over t0 with basis (1, e0, e~, eoel ) satisfying the multiplicative 
relations 

eZ=Oo, e2=01, e o e l + e l e o = 2 n .  

Proposition 1. 1) A finite prime p is ramified in B ![.]" plM and g ( p ) o r d p t m ) :  __ |. 
2) The infinite place is ramified in B iff Do, D1, and M are all negative. 

Proof. Recall that a place v is ramified in B iffB|  is a division algebra. We may 
restate this in terms of the ternary quadratic form given by the square on the 
subspace B ~ of elements of trace 0 in B. This subspace has basis (e0, el, eoel - n )  
and squaring is given by the formula 

(xe o + ye 1 + z(eoe L - -  n ) )  2 : q ( x ,  y )  Jr 4NMz 2 . 

B is ramified at v iff this form does not represent 0 in Q,,. Over IR, this requires that q 
be negative definite, which is equivalent to the condition in (2). Over Qp, a short 
calculation using [17, p. 37] shows that one must have e(p) ~ --1. 

Corollary. The order of f(s) at s = 0 is the number of finite primes p which ram!])~ in B. 
In particular, f(O) # 0 if B ~- m2(~). 

We now introduce the order S=2g+2ge o +2gcq +Zc~oc q of reduced discrimi- 
nant NM in the quaternion algebra B, where ei=(ei+Di)/2, By construction, S 
contains the quadratic orders 7/[ct0] and Z[cq]  of discriminants D o and D~, 
respectively. Recall that an order R of B is an Eichler order of index N if for all 
primes pXN the localization Rp = R| c= Bp = B| is a maximal order and for 
all primes pin there is an isomorphism from Bp to Mz((l)p ) which maps Rp to the 

~  aNc bd) a'b'c'dEZP}" [Recall that ~:(P)= + l f~ plN' s~ Bp is is~176 

phic to Mz(ll~p ) by Proposition 1.] 

Proposition 2. The number ~(S) of Eichler orders of index N in B which contain S is 
given by the formula 

e(S)= I] ( l+o rdp (M))=  Z t(d). 
plM dIM 

e(p)= 1 (d, d isc(B))= 1 

Proof. Since a global order R is completely determined by its localizations [17, 
p. 83], it suffices to calculate, for each prime p, the number of local Eichler orders 
Rp containing Sp. IfpXNM, then Sp is maximal in Bp and Rp = Sp is the only choice. 
If plNM, then e(p) is defined. If r,(p)= - 1 then p~/N and Rp must be a maximal 
order. If Bp is a division algebra, this maximal order is unique. Even when Bp is a 
matrix algebra there is a unique maximal order Rp containing Sp, because Sp 
contains the ring of integers ~;p in the unramified quadratic extension of~p,  and an 
argument similar to [7, Sect. 3] shows that Sp=Cp+p~ [Note that 
ordp(M) is even in this case by Proposition 1.] Finally, assume ~:(p}---1. Since p 
splits in (9o~, or (9D~, S o containsthe ring (~p =2go| and is therefore conjugate to 

anorderof theform{(NM bd) a'b'c 'deZP} inM2(q2p)[17'p'39]'TheEichler 
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orders of index N which contain this order have the form 

) a, b, c, d e Zp with 0 < k < ordp(M). Hence there are ordp(M ) + 1 

possibilities for Rp. This completes the proof. 
We will now use Proposit ion 2 to determine the number of embeddings of S 

into certain Eichler orders of index N in B. To do this, we begin with a simple 
combinatorial  observation. Let X and Y be two sets on which a group G acts and S 
a G-stable subset X x  Y. For  x e X  the stabilizer Gx of x acts on the set 
Yx = {Y e Y I (x, y) ~ S}. Similarly for y ~ Y the stabilizer Gy of y acts on Xy ~ X. Then 
there are natural bijections 

Yx/G~ ~- S/G ~ U XSGy, 
x E X/G y �9 Y/G 

SO 

y Card(Y~/G~)= ~, Card(XSGy ). (2) 
x E X / G  y E Y / G  

We apply this to 

X = set of all Eichler orders R of index N in B, 

Y=set of all algebra homomorphisms c~:S-~B, 

S={(R,  0)] qS(S)~R}, G=B•  • (acting by conjugation). 

The set Y/G has a single element, since any embedding q~ extends to an 
automorphism of B, which is inner by the Skolem-Noether theorem. Take this 
element to be the inclusion S C B = S |  then the stabilizer Gy is trivial and the set 
Xy is the set of all Eichler orders R C B of index N containing S, so the expression on 
the right of (2) is the number Q(S) of Proposit ion 2. On the other hand, the coset 
space X/G is finite and represents the set of global conjugacy classes of Eichler 
orders of index N in B. I fx  corresponds to the order R, then Gx = NormB x (R)/~ x. 
Hence (2) gives 

Q(S) = ~, Card {~ : S ~ R  (rood NormR x (R)/~ • )} 
R mod B ~/~ x 

= Z [ N ~ 2 1 5 2 1 5  • 1Card{c~ :S-~R (m~215 
R mod B • • 

since NormB~ (R)/~ • acts faithfully on the embeddings of S into R, and contains 
R • ~ •  • ~ R • _+ 1 } with finite index. 

Let R 1 be a fixed Eichler order of index N in B, and let/~1 = R 1 |  in/3 =/~ | 

- - g |  (where ~ - -  [ I 2 ~ p C ~ = ~ |  Since the global Eichler orders are all 
\ P / 

locally conjugate, the set of Eichler orders R (mod B • • is identified with the 
double cosets Norm/~• (RO\B• • If g is an element representing the double 
coset, the order Rg=g ~Rgc~B is well-defined up to conjugacy in B. We have 
Norms~ (Rg)=Normh~ (g-t/~lg)CaB• in /~x. 

We wish to rewrite our sum over Eichler orders up to conjugacy as a sum over 
the (possibly larger) double coset space/~ ~ \/3 • x which is also finite and indexes 
the left ideal classes for the order R 1. (This is the classical distinction between 
"types" and "classes" in the theory of orders.) Each coset g must be taken with 
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multiplicity 1/eo, where 

e 0 = Card {g' e/~• \/~ • • I g' = g in Norm~ x (/~ 0\/~ • • }. 

An easy calculation shows that 

e 9=[Norm~X ~. �9 ̂  •215 (Ro). Ro NormB • (Rg)] 

Multiplying our two indices, we find that the above formula for ~(S) becomes 

o(S) = Y~ [Norm~x (/~g) ^ • ~ • 1 ~ • �9 . "R~Q ] -  Card{~b:S R g ( m o d R o / + l ) } .  
oe R ~ \B ~/n • 

The weighting factor is now independent of g, since the map n ~ g lng identifies 
NormB, (/~,) with Norm/~. (/~g) and maps R~ to R o . This factor is calculated 
locally, and is equal to 2 *+', where s is the number of finite primes ramified in B and 
t the number of primes dividing N [17, pp. 4 3 4 4 ] .  Hence finally 

Card { fo : S---' R~ (mod R$ / + l ) } = 2*+'o(S) . 
o e R  • 2 1 5  • 

The orders R 0 appearing in this formula are precisely the h~ right orders of the left 
ideal classes for the order R = R~. Hence we may state the result in elementary 
terms: 

P r o p o s i t i o n  3. Let R be an Eichler order of index N in B and R~,..., R h the right 
orders of left ideals I l ..... I h which represent the distinct ideal classes of R. Then 

h 

�9 2 ~+' ~S" y, Card{~b S~R~ (modR~• 1)} = 0~ J, 

where s is the number of finite primes which ramify in B, t the number of primes 
dividing N, and o(S) is given by Proposition 2. 

Let us examine Proposition 3 when B ~ M201~). Here we may take R to be the 

Eichler order { ( N c  : ) a , b , c ,  de7l} inM2(~g) .Thisorderhasclassnumberl ,  by 

the strong approximation theorem for SE2, so the sum on the left-hand side of 
Proposit ion 3 has only one term. The group R• is fro(N), the degree 2 

( - 1  ~) S incediscB=l ,  wehaveo(S)=#(O)by Proposi- extension of Fo(N ) by 0 ' 

tion 2. Hence Proposit ion 3 may be restated 

Card { ~ : S--+ R (mod/~(N))} = 2'#(0). (3) 

This formula is now true for any S, since both sides vanish when B = S |  is not 
isomorphic to M2(Q). 

We can rewrite (3) in more elementary terms, since specifying an embedding 
(a:S--+R is the same as giving the images Eo=4,(eo) and E~ =q~(e 0. These are 
matrices of trace 0 in the suborder �9 + 2R of R [because E~ = D~ (mod 2R)] and 
satisfy E 2 = Di, Tr(EoE 0 = 2n. Hence 

bi 2ci~ 
E i= _ 2aiN - b  i J 
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with 
ai, bi, ciETZ , b 2 - 4 a i c i N = O i ,  bob1 --2N(aocl +coaO=n. 

Each E i corresponds to a quadratic form Qi = [aiN, bi, ci] �9 2~N, o, in the notation of 
Sect. 1. Let AN denote the discriminant form on the lattice AN= U ~N,o of all 

D 

quadratic forms [aN, b, c] with a, b, c ~ 2g; then the associated bilinear form BAN 
with BAN(Q, Q)= AN(Q)is given by 

B~N([aoN, bo, Co], laiN, bl, cl]) = bob1 - 2N(aocl + coaO. 

Hence (3) can be restated as follows: 

Corollary. 

1Card {(Qo, Q 1)�9 ~/Fo(N)IAN(Qo)= Do, AN(Q~)= DI, BA,,(Qo, Q1)= n} 

=2' E ~(d). 
d D o D I  - n 2 

I 4 N  

The factor �89 comes from the fact that Fo(N)/Fo(N ) ~_ Z/2 acts freely on the set of 
pairs (Qo, QI) in question, because at least one of Do, D 1 is odd. 

The corollary just stated was proved for N = 1 in I-8, pp. 211 213], using a more 
complicated method involving the number theory of the quadratic fields 

11)(]/~o), 11~(]/~t), Q(I/DoD1) and of the biquadratic field t1~(]~Doo, I/D1). Notice 
that the left-hand side of the identity counts the Fo(N)-equivalence classes of 
representations of the binary quadratic form q = [Do, 2n, D1] by the ternary form 
AN, since the conditions on Qo and Q I just say AN({Qo + qQl)= q(~, q). 

We shall use Proposition 3 in one further case in this paper. Assume that D o, 
D1, and M are all negative, so B is ramified at infinity and ((0) = 0. Then #'(0)4 = 0 if 
and only if B is ramified at a single finite prime p. In this case we have ('(0) 
=�89 We shall see that the orders R~ occurring in 
Proposition 3 in this case are just the endomorphism rings of the supersingular 
points (modp) of the curve Xo(N), and that the embeddings of the Clifford order S 
into the orders R~ will be relevant in calculating the local height pairing of Heegner 
divisors. 

!I. Liftings of Jacobi Modular Forms 
cusp  In [15] it was shown that the space Jk,N of Jacobi cusp forms of weight k and index 

N is isomorphic as a Hecke module to a certain subspace of the space of cusp forms 
of weight 2 k -  2 on Fo(N), and lifting maps ~k,N1~usP--*~ 2k _ c  2(N) were constructed. The 
purpose of this chapter is to construct the kernel functions for these liftings. This 
will lead to several identities relating the Fourier coefficients of a Jacobi-Hecke 
eigenform to the periods and to the special values of twists of L-series of the 
corresponding form in Szk 2(N). 

1. Kernel Functions for Geodesic Cycle Integrals 

Let N EN, 0 ~TZ/2N2~, and A > 0  be a discriminant satisfying d - 0  2 (4N), and 
denote by AN,A, o the set of binary quadratic forms Q(x, y)= ax2+ bxy + cy 2 with 
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integer coefficients and discriminant A satisfying a = 0 (N), b = ~ (2N) as in Chap. 0, 
Sect. 1. Let D o be a fundamental discriminant dividing A such that both D o and 
A/D o are squares modulo 4N, and let Zoo :2~N,A,o--'{ --+ 1,0} be the function defined 
in Sect. 2 of Chap. 0 (generalized genus character). The group Fo(N ) acts on ~ 4,0 
in the usual way and Zoo is Fo(N)-invariant. For  an integer k > 1 we define 

L,~,~,~,oo(~)= Z ):00(9_) (z e ~). 
e~a,,,~,o Q(z, 1) k 

This series converges absolutely and uniformly on compact sets and defines a 
holomorphic cusp form of weight 2k on Fo(N ). For k =  1 the series no longer 
converges absolutely but we define 

where 

ft, u, A,e, Do(z) = lim fl,  m ,d,o. Do(Z; S), 
s ~ 0  

ZDo(Q) Im(z) s l l k\ 
fk,N,A,o,Oo(Z; S)= F, ~Re(s)> ~ ) ;  Q,~ . . . . .  Q(z, 1) k IQ(z, 1)r 

this is then a holomorphic modular form of weight 2 on Fo(N ) and is a cusp form if 
D o 4= 1. It follows from P2 of Proposition 1, Chap�9 I, Sect�9 2, that 

fk, N, A,O, DO e M 2 k ( N )  sign DO 

for all k=> 1, where M2k(N) ~ (r,= + 1) denotes the ( - l )%-eigenspace of WN on 
M2~(N) or equivalently, the subspace of cusp forms in S2k(N) with sign ~, in the 
functional equation of their L-series. 

The functions fk, N, A, o, Oo were introduced (for N = D O = 1) in [20, Appendix 2] 
and have been used several times [-14, 13, 12] in connection with the Shimura 
correspondence between modular forms of weight 2k and weight k +  �89 Their 
Fourier coefficients are given by the following proposition. 

Proposition 1. The Fourier expansion of fk,  N,d,o~,Oo(7-) (k >= 1) is given by 

A,O,A.o,Do(Z) = ~ c~,~(m,A,~,Oo)ea"i"z," 
m = 0  

here - t - 1 = ( - 1 )  k signDo, +1 �9 c;,u(m, A, ~, Do) is %u(m, A, ~, Do) symmetrized or anti- 
symmetrized with respect to ~ (see Notations), and 

Ck'N(O'A'~'D~ iTz otherwise, if k = l ,  D o = l  , A = f  2 ( f > 0 ) ,  0=-f (2N) ,  

12~z~k k 1 
Ck, N(m, A, ~, Do)= ik(sign Do)-1/2 (k - 1)! (m2/d) ~ -  

• IIDol- l/2~N(m, A, ~, Do) + ik(signDo)l/2~2(m2/d) 1/4 

x,~t(Na)-l/ZSu"(m'A'~'D~ ~\ Na ]J 



518 B. Gross et al. 

for m>0,  where (signD0)-+l/2=l for D o > 0  , +_i for D o < 0  , {(oo) 
eN(m, A, ~, Do) = m ~  

0 

SN.(m, A, O, Do) = 

if A = D ~ f  2 ( f > 0 ) ,  f ire,  D o f - ~ ( 2 N ) ,  

otherwise, 

b 2 - A  

b=-o(2N) 
b 2 = A ( 4 N a )  

and 

ql,~k + 2~-112 

J k -  l /2 ( t )=  v>O • ( -1)~v!  F(k + v + /~' 

is the Bessel function of order k t 2" 

The proof  is essentially the same as the one given in [20, pp. 44~[5], for 
N--  D o = 1 and in [12, pp. 246-250], for non-trivial level and character, and will 
not be repeated here. Notice that our functions are always cusp forms for Do 4:1, 
while the functions in [12] were sometimes non-cuspidal for k = l  and N not 
squarefree [12, pp. 249 250]; this is because our character ZDo is slightly different 
from the character mD in [12] and because of our assumption that both D o and 
A/D o are squares modulo 4N. 

The second property we need is the relation to cycle integrals (or geodesic 
periods) of modular  forms. For  f ~  Szk(N) and Q = [a, b, c] ~ ~ ~ set 

rk.N,Q(f)= ~ f(z)Q(z, 1) k ldz, 
YQ 

where 7o is the image in Fo(N)\~ of the semicircle a[z[ 2 +bx + c = 0  (x = Re(z)), 

oriented from - b -  ] /A to - b + ] /A,  if a # 0 or of the vertical line bx + c = O, 
2a 2a 

oriented from - c / b  to i ~  if b > 0  and from i ~  to - c / b  if b<0 ,  if a=0 .  It is easily 
checked that this makes sense [i.e. that the integrand is invariant with respect to 
the subgroup of Fo(N ) preserving Q] and depends only on the Fo(N)-equivalence 
class of Q. Cycle integrals of this type were first used by Shintani [14] and were 
studied in detail (for N =  1) in [13]. Define 

rk, N,~,o,Do(f)= ~ ZDo(Q)rk,N,Q(f) . 
Qe.~ N , A, e/Fo(N) 

Then we have 

Proposition 2. For f ~ S2k(N) signo~ 

For a proof(at  least in the case when A is not a square) see [13, p. 232] (for N = 1, 
k > 1) or [12, pp. 265 266] (for N arbitrary and k > 1). The argument used in these 
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two references in fact gives 

(L A, N,.o, oo(. ; sO)= r(k + s/e) 

an identity which will be used in Chap. III. 

/ j - k +  ~ - s / 2  r i f ~  
k, N, A, Q, Do~d7 

2. Poincard Series f o r  Jacobi  Forms  

For the theory of Jacobi forms we refer to [4]. We recall only that a Jacobi cusp 
form of weight k and index N has a Fourier expansion of the form 

49(r, z) = ~ c(n, r)q"ff ('c e fO, z e 117., q = e 2~i~, ~ = e2xiz) ,  
n, rEZ 

4nN>r 2 

where c(n, r) depends only o n  r 2 - 4 n N  and on the residue class of r (mod 2N) and is 
(-1)k-symmetric under r-+ - r ,  and that there is a non-degenerate scalar product  

cusp (Petersson product) on the space Jk, N of all such forms. Hence for integers n, r with 
r2< 4 N n  there is a unique function Pk.N, = tcu~p depending only on r 2 -  4 N n  (n,r) ~ ~ k , N  
and on r (mod2N), such that 

((O, Pk,N,(,,r))=O~k,N(4N n r 2) k+3/2.(coefficient ofq"ff  in r (1) 

for all 4) e 1cusp where (. �9 ) is the Petersson product and "~k,N , 

N k 2 F ( k - 3 )  
O~k,N= 27rk-  3/2 

Proposition. The  PoincarO series Pk, N,(n,r) has the expansion 

Pk ,  N, (n, r)( r ,  Z) = ~ gil + X, (,,,)(n', r')q"'ff', (2) 
n',r'ff~ 

r'2 < 4Nn' 

where _+ 1 = ( - l)k g~, N,(.,,)(n', r') is gk, N,(., ~)(n', r') symmetr i zed  or ant i - symmetr ized  
with respect to r' (cf .  N o t a t i o n s ) ,  and 

k 3 
t t t "k - gk. N,(...)(n, r') = aN(n, r, n ,  r ) + t 7r [ / 2 N  I/2(D'/D)Y - a 

X c>-21HN' c(n'  r, n ' ,  r')J k _ ~ \ N c  ] '  

where 

and 

D ' = r ' 2 - - 4 N n  ', D = r  2 - 4 N n ,  

{ ;  !f D ' = D ,  r ' = r ( 2 N ) ,  
aN(n, r, n', r') = o therwise ,  

HN,c(n, r, n', r') = c -  3/2 ~ ec((N22 + r2 + n)e - ' + n'~ + r'2)e2u~(rr' ) 
o(c)* 
2(c) 

is a K loos t e rman- t ype  sum. 
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Proof. Let us first suppose k > 2. We claim that 

Pk, u, (,,,)(Z, Z) = Z (e"' rk, u?)(Z, Z), (3) 
y e F (  1 )~j \ F (  1 )a  

where e"'r=e 2'a('~+'Z), the operation ]k,U is as in [4], and F(1)% 

= { ( ( I  0 ~),(O,l~))n,  iJe7Z}isthestabilizerofthefunctione""inthefullJacobi 

group F(1) J = SL2(2E) t~ 7Z 2. Indeed, the sum on the right of(3) converges absolutely 
and uniformly on compact sets and clearly defines a function i,, ]cusp By the usual 11 O k ,  N " 

unfolding argument, we see that its Petersson product with an arbitrary WeOk, u A  t~o~P 
equals 

j (a(z, z)e""(r, z)vke 4~NY~/"V- 3dxdydudv (z = x + iy, r = u + iv). 
F( 1 ) ~ \ ~  x 

Putting in the Fourier expansion of 4) and observing that a fundamental domain 
for the action of F(1)% on .~ • C is ([0, ~ )  • [0, 1]) • (IR • [0, 1]), we find that the 
integral equals 

co 1 oo l 
E c(n',r')~ ~ f ~e2~i((n'-n)u+(r'-,)X)e 27r(In'+n)v+(r'+r}y} 

n' ,  r' 0 0 cx~ 0 

• v k- 3 e 4~uy:/~dudvdxdy 

=c(n,r) y e-4~rn"v k 3 e-4;r(ry+Ny2/V)dy dr. 
0 

The inner integral equals e ~',m, so the double integral equals 

[DI k+~C~k,N. This proves our claim. 
We now have to compute the Fourier development of the right-hand side of(3). 

A set of representatives for F(1)'~\F(1)J is formed by the pairs ( ( ~  bd),(2a, 2b) ) 

where 2, c, d e Z  with (c,d)= l and for each c,d we have chosen a, b e N  with 
a d -  bc = 1. Hence 

kNt/--CZ2"2a'c+b\cc~-u CZ + d c r+d)  Pk.N,(,,,)(Z, z) = ~, (CZ + d) e [72-:2i + Z + 22 
c ,d , ) te~g 
(c, d) = 1 

e,(a~+_b']er( z az+b~ 
x \ c r + d J  c r + d  + 2 c ' r + d / "  (4) 

We split up the sum into the terms with c = 0 and those with c 4: 0. If c = 0, then 
d = _+ 1, so these terms give 

~, qN't2+r'~+n(~2SZ+r+~-2NX-r)= ~, r r' (--+l=(-- | )k).  
2 ~  n ' , r '  e Z  

r '2 < 4 N n '  

The terms with c < 0 give ( -  l)k times the contribution of the terms with c > 0, with 
z replaced by - z (replace a, b, c, d by their negatives), so we need only consider the 
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terms with c > 0. Using the identities 
2 

z -  
ar+b  a I z 2 a z + b  c a 

. . . .  + - + 2 - ,  
cT + d c c(cz + d) ' cz + d cz + d cr + d c 

C Z - -  
22 az + b z cz 2 a 

cz+d + 2 2  . . . . . . . . . . . . . .  +22  
cz+d  cz+d  cz+d  c' 

and replacing d, 2 by d+~c, 2+tic with the new d and 2 running (modc)* and 
(mod c), respectively, and ~, [:~2~, we obtain  for these terms the contr ibut ion 

k "~-- - - f l  1 , t \  
~. c - k ( z  + ~ +~}  e N __ 

c > O, ~ , f l e Z  \ c / 
d(c)*, ;4c) Z + + O~ 

C 

| Z - -  C (I 
X e n e r + )~ (" ) c 2 z+  - +et c +~ 

C 

~.(c) 

with 

~, ~+o~ / \c~i~:+~)/ \d-~+~)/ 

The Poisson summat ion  formula  gives 

Fk, N. c, (.. r)(z, z) = 

with 

Z 7( n',r')q"'ff' 
n',r '  EZ 

rz n ) 
7(n ' , r ' )=  ~ r-ke(--n'r) ~ e -  z2 + . . . .  r'z dzdr 

Ci - i o 3  C2 i~x~ "g CT, (?2T 

(C~>O, C2~F- Q. 

' I r )  
We substitute z - , z +  2 N  c - r ' r  . Then the inner integral becomes 

The latter integral is s tandard  and equals \ 2 / N ]  . Hence we find 

/ - - r r ' \  c~ +i'~' ( D' D )  
7(n ' ,r ' )=(2N)-n2e~2N-C)c ~i~(z/i)'12z-ke ~ N Z +  4Nc z - t  dz. 
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If D '>  0 we can deform the path of integration up to i~ ,  so ?(n', r ' )= 0 in this case. 
For D' <0  we make the substitution ~= ic-1(D/D')~/Zs to get 

k 3 
( - - r r ' ) i - % k  k(D,/D)2 4 7(n', r') = 2n(2N)- 1/2e \ 2Nc ] 

1 C~+ic~ 2~z 
k+ l/2e~(~176 ')ds (C '  1 > 0 ) .  s 

The function t~--~(t/#)k-~Jk_~(2]~tt ) is the inverse Laplace transform of 
/ \ 

[1, 29.3.80], so the integral equals 2niJk ~ (Nc(D 'D) ' /2 ) .  S~_+ s - k -  ~e-~S  From 
X / 

this formula (2) (for k > 2) follows immediately. 
If k=2 ,  then the series in (4) does not converge absolutely. By Hecke's 

"convergence trick" we define P2, N,(,,,)(z, z; s) for Re (s)> 0 as the series in (4) with 
(cz+d) -k replaced by (cz+d)-21cz+d1-2~. One can then easily compute the 
Fourier expansion of this function in the same manner as above. From the Fourier 
expansion one shows immediately that P2,N,(,,~)(t,z;s) has a holomorphic 
continuation to s = 0 and that its limiting value as s-+0 is holomorphic in z and has 
the expansion given by (2) with k = 2. Moreover, it is easily checked that the Jacobi 
cusp form P2, N, (,,,) defined by the property (1) is equal to this limit. The details are 
standard and will be left to the reader. This completes the proof of the proposition. 

3. Lifting Maps 

Let r o e Z and D o a negative fundamental discriminant with D o = r 2 - 4 N n  o. For 
( ] ~ / c u s p  

~k + 1,N w e  se t  

(~)(w) =-.:1 C\d2,,o, (1) 

where c(n, r) is the coefficient of qn(r in 4~ as in Sect. 2. It was proved in [15] by 
means of a trace formula that ~o  ..... maps Ok+l.N/cusp into S2k(N)-, preserves 
newforms, and commutes with the action of Hecke operators. [The coefficient of 
e 2~i"w in (1) is just the coefficient of q"~ r~ in q~l To.] We now prove the main result of 
this chapter, a formula for the adjoint map of,~o .... in terms of the cycle integrals of 
Sect. 1. 

Theorem. For f ~  S2k(N)-, the fimction 

( i ~  k l  

cY*~176  \2N] n,reZE rk, N, Oo(r2-4nN) . . . . .  oo(f)q"(' 
r 2 < 4nN 

(z e ~, z ~ C, q = e 2nir, ~ = e 2~iz) (2) 

is a Jacobi cusp form of weight k + l  and index N. The maps J~  ..... :J~,~'P,N 
- - * S z k ( N  ) and �9 . . . . .  --4"Jk+P~.u are adjoint maps with respect to the 
Petersson scalar products, i.e., ( ~  ..... (~b),f) = (~b, ,9~,, ,o(f))for all .f ~ Szk(N) and 
(~(~/cusp 

~k + l,N" 
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Proof. Set 
Qk, N,Oo,ro(w; z, z) 

=Ck, N,Do ~ (4nS--r2) k- 1/2.fk, N, Do(r2_4nN),ror, Do(w)qn(r , 
n,r~Z r 2 < 4nN 

where fk, s,a,e, oo is the function defined in Sect. I and 

( _  2i)k - 1 iDolk- ,/2 
Ck, N,Do ~ - -  

It follows from Proposition 2 of Sect. | that 

~,,ro(f)(~,z)=(f,  Ok,N, Oo.,o(-; --f ,  --i)) VfeS2k(N)- ,  

where ( , )  denotes the Petersson scalar product in S2k(N ) -.  Hence to prove the first 
assertion of the theorem it suffices to show that Ok, N, o .... is a Jacobi cusp form (of 
weight k + 1 and index N) with respect to (z, z), and to prove the second it suffices to 
show that O is the kernel function for the map 2f~o .... i.e., that 

~%o,,o(4)(w) = (4, Qk, N,oo,ro(-- ~; �9 �9 )) V4 e J~,~;~,N, 

where now ( ) denotes the Petersson scalar product in r ~ p  In view of the ~'k+ l,N" 
definition of 6~Do,~o, the defining equation of Jacobi-Poincar6 series [(1 ) of Sect. 2], 
and the fact that ~'~k,N,D . . . .  (-- f, -- ~; W) = Qk, N,O ..... (r, Z; ~), this is clearly equiva- 
lent to the following basic identity: 

i k- l(2rt)k 
Ok, N,o .... (W;~,z)=ck,~,oo (k--l)! 

,.=l adam d'kPk+,,N,(,oa,~rod,)(r,Z) e 2~i'w. (3) 

We shall prove this identity by the method of [20], i.e., we expand both sides in a 
double Fourier series and then compare Fourier coefficients. The Fourier 
developments offk,u,a,o,o o and Pk+ ~,u.(,,~) were given in Proposition 1 of Sect. 1 
and the Proposition of Sect. 2, respectively. Inserting them into (3), we see that the 
identity we have to show is 

i k 1 (2~t) k k- 1 ( - 1/2 + 
( k - l ) !  Iolk '/2(m2/D~ ~ ID~ ~:g(m, DDo, rro, Do) 

+ i k+ 17~2(m2/DoD)l/4 _)) x ~ (Na)- 1/2S~,(rn, DDo, rro, Do)J k_ 1/2 Na ~D~ 
a>=l 

=ik 1 (270k mk-'  ( ~  - )  ( ( m2 m ) 
( k - l ) !  d~,. (m/d) k 6~ d2 no, dro, n,r 

/ /m 2 \k/2- l/4- 
- 4 - i k + l T z ~ N - l / 2 ( D / ~ D o )  

+ / m 2 m r )  ( ~ _ ] / m 2 D o D ) )  
•162162 n, Jk , / 2 \ N c V d ~  
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or equivalently 

m k l(Do/D)k/=e~(m, DD o, rro, Do) + i k+ '(D/Do) k/2 '/4mk- ' / 2 ~ 2 N -  ,/2 

X ~ a-1/2S~qa(m , DD o, rro, Do)J k_ 1/2 (TC~,Tt~ . ~ 0  ~ )  
k 

a>l \ l v u  / 

= m k-z dime (m/d) k6+ ~ 2  no,7 ro, n, r 

+ik+ l(D/Do)k/2 1/4mk- 1/27~2 N 1/2 

..N,C~d~ -- n,r Jk 1/2 (4) dim c= 1 \ no' d r~ Nc 

for all r e > l ,  n>O, r e Z  with D=r2- -4Nn<O.  
We frs t  show that the first terms of both sides of(4) agree. For  this it is sufficient 

to show that 

Do k m 2 m 

The left-hand side of (5) is zero unless D = D o f  2 for some f e n  with fire and 

r Z f - r o r ( m o d 2 N ) , i n w h i c h c a s e i t e q u a l s ( 2 f ) f k .  Bydefinition, theright-hand 

side is zero unless D = Dof 2 with f e  N, fire and r -  rof(2N),  in which case (with 

d = m / f )  it also equals ( Dm~f ) fk. Hence we must show that under the condition 

D = D o f  2 the congruence 

follows from the congruence 

r = ro f  (rood 2N) (6) 

rr o =- r2 f (mod 2N). (7) 

Let t = (ro, 2N). Since Do is fundamental, t is a product of different primes each of 
which exactly divides N, and from D = D o f  2 it follows that tlr, so r=O=-rof(t). 
Hence (7) implies (6). 

In the second term on the right-hand side of (4) we substitute cd = a to get 

ik+ l(DiDo)kl2-Xl4mk X12~Z~2 N 1/2 

a > l  dl(a,m)~k d / , ~kd ~ nO, d l 'O ,n , r  Jk--1/2 N a ~ D D o  

Hence for the proof  of (3) it suffices to show the following 

Lemma. For all m > l, n >= O, r e 7Z with D = r 2 - 4Nn < 0 we have 

SN,(m, DDo, rro, Do ) x~ ( O o ~ [ a / ~ i l / 2  H ( m  2 m ) = n o , ~  ro, n, r (8) /~ I ~1 I ~, /~! N,aldl d2 dl(a,m) \ u / \ 
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Proof. If we put in the definitions of SNa and HN, c and multiply both sides of (8) 
with e z N a ( - - m r o r  ), then the identity to be proved becomes 

/[- bZ-D~ / 'b-r~ i 
b(~m Z~176 aN'b'- -4Na--~)ea~ 2N m / 

b=_rro(2N) 
b 2 ~ DDoe4aN) 

= a - '  ~ ( D ~  ~, e , /d ( (N22+~ro2+ ' + n ~ + r 2  
dl(a,,n)\ d ) o(.Id)* t \  d 2 no Q- " 

2.(aid) 

As functions ofm both sides of this are periodic with period a, so it will be sufficient 
to show that their Fourier transforms are equal. Hence we must show that for 
every h'e~g/aTZ, we have 

1 ,,~)Xoo([aN, b, b2-DDo]~e  ( ( b - r r o  h , )m)  
a b(2.=) 4aN J) " \ \  ~ 

b=rro(2N) 
b 2 = DDo(4aN) 

--a 2 Z Z d 
m(a) dl(a,m) 

x ~ e,i e N2 2 + ~ % 2 +  d~ n o ~ - l + n ~ + r 2 - h '  . 
o(ald)* 
Ma/d) 

Set h=2Nh'+ror. Then the expression on the left is easily seen to equal 
{ [ -  h e --DoDT\ 

Z~176 Na'h" 4Na / )  o r 0  according as h2=DoD(4Na)or not, while for the 
\L_  

right-hand side we obtain after replacing m by md and then (2, m) by (r fire) the 
expression 

1 ( D o ~  1 
a-  ~1-\ l u / " ~ ) ~ Z i  ~ e~le(~(N22+rom2+nom2+r2-h'm+n)) " 

o(a/d)* 
2`, m(a/d) 

Thus Eq. (8) is equivalent to Proposition 2 of Sect. 2, Chap. I. 
This completes the proof of the theorem. 

4. Cycle Integrals and the Coefficients of Jacobi Forms 

In [15] it was proved that the subspaces of newforms in rcu,p and S2k(N)- are "-'k + I , N  

isomorphic as Hecke modules. Let f6S2k(N ) be a normalized newform and 
49 @ / c u s p  ~k+l,N a non-zero Jacobi form having the same Hecke eigenvalues. The 
following statement is then a formal consequence of the theorem of Sect. 3. 

Theorem. Let Do=r2-4Nno <O be a fundamental discriminant. Then for all 
n, r ~ 7Z with D = r 2 - -  4Nn < 0 we have 

c(n, r)c(no, ro) __ ( i ~ k - l r k , N ,  DD o . . . . .  oo(f) (I) 

(49, 49) \ 2 N )  (f, f )  ' 

where ( , )  denotes the Petersson scalar product and rk, N.oo .... ,,.oo(f) is the cycle 
integral defined in Sect. 1. 
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Note  that the left-hand side of (1) is independent of the choice of r since 
replacing r by PC changes both the numerator  and the denominator by I#[ 2. We 
can always choose r to have real coefficients; then the bar in (1) can be omitted. 

We remark that a formula analogous to (1) for Fourier coefficients of modular 
forms of half-integral weight on Fo(4N ) with N odd and squarefree was given 
in [12]. 

Proof. By the strong multiplicity theorem quoted above and the fact that the lifting 
map 5~ .... commutes with Hecke operators, we know that J ~  .... (q~) is a multiple 
of f .  Comparing the coefficients of ql in these two forms we obtain 

.9~Vo,ro(q~) = C(no, ro) f . (2) 

The same multiplicity I theorem implies that 

5P*o,,.o(f) = 2q~ 

for some 2 ~ ~.  By the theorem of the last section we have 

2c(n, r) = coefficient of q"(' in ,~,,~o(f) 

On the other hand, 

2c(n, r)(~b, q~) = c(n, r)(~*o,ro(f), r 

=c(n, r)(L Yo .... (r 
= c(n, r)c(no, ro)(,/; f ) ,  

where in the last line we have used (2). Comparing the two formulas we obtain (1). 
For  a fundamental discriminant D with (D, N)= 1 we denote by 

~) / D \  
L(f, [;)a~ 

tho q adratic charac,e  

L(f,D,s) has a holomorphic continuation to I1~ and satisfies the functional 
equation 

L*(f, D, s ) :=  (270- ~(NDZ)~/2r(s)L(f, D, s) 

=(-1)k(_--DN)wfL*(f, D, 2k s), 

where wf is the eigenvalue of f under the Fricke involution w N. Since by 
assumption f lies in the subspace Szk(N ) - we have wf = ( -- l)k, so for D < 0 and D a 
square modulo 4N we have 

L*(f, D, s) = L*(f, D, 2k - s). 

By setting (n,r)=(no, ro) in (1) we obtain as in [12] a refinement of a result of 
Waldspurger [18] about  the value of the twisted L-series at the central point: 
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Corollary I. Let D = r 2 -- 4Nn < 0 be ]hndamental with (D, N) = 1. Then 

[c(n, r)12 _ ( k -  1)! iDik 1/2 f ,  D, k) 
(~b, ~b) 22k- lrckNk- ' L((f, f )  (3) 

Remark. The power of 2 in the formula in Corollary 4, p. 67 of [4] is given 
incorrectly. 

Proof. By (1), we have 

Ic(n,r)l 2 _ (  i ~k a 
((a, (o) \ 2 N  J rk, u, D2,,2 D(f)/(J; ,f) 

with 
rk.U.D~..2.,(f) = E zo(Q) ( f(w)O(w. 1) k- ldw- 

Qe ~N, D 2. r2/Fo(N) "lQ 

A set of Fo(N)-representatives of quadratic forms Q = [aN, b, c] with b - r 2 (2N) and 
discriminant D 2 is given by {[0, D, p][p (modD)}. Hence 

rk'N'm'*2'D(f)= , ; )  iI~*~ f (w) (Dw+p)  k - ldw  

: - - i k D  k - l ~  ~ i t+ 'dt 
o u(m [DIJ 

= i -~ + l lDl* 1/2(2n)-kF(k)L(f, D, k), 

where in the last line we have used analytic continuation. Equation (3) follows 
from this. 

As in [12] we obtain from (3) that L(.s D,k)>0. One can also deduce that 
(~b, ~b) is an algebraic multiple of one of the periods o)+, co associated to f 

Finally (as in [12]), by squaring both sides of (1), taking absolute values, and 
then applying (3) we obtain 

Corollary 2. Let D o = r 2 - 4Nn o < O, D = r 2 - -  4Nn < 0 be two negative jundamental 
discriminants prime to N. Then 

( 2 ~ ) 2 '  r - 2  
( D o D )  k '/2L(.f, Do, k)L(f, D,k)= ( k - 1 ) !  21 ~.N. , , , ,  ....... Do(J)[ - (4) 

A formula similar to that in Corollary 2 has been independently proved by 
Waldspurger [19], by different methods and in much greater generality. 

From (3) and (4) we also obtain growth estimates for L(J~ D, k) and c(n, r), as 
in [12]. 

III. A Modular Form Related to L'(f, k) 

Let N_>_I and A > 0  a discriminant which is a product of two negative 
discriminants Do, D 1 which are squares (mod4N), ~ an integer (mod2N) with 
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02=-A (4N). In Chap. II  we constructed for each k > l  a function fk.N,A.o, OO in 
Szk(N ) - [the space of cusp forms of weight 2k on Fo(N ) whose L-series have a minus 
sign in their functional equation] such that for all f e  Szk(N )- the scalar product  
(f,J'k,N,A,~.l~o) equals, up to a simple factor, the cycle integral rk,N,A,Q, Do(f ). I n  this 
chapter we will construct another  function F = Fk, N,A,o, Do e Szk(N ) such that the 
scalar product  (f, F) for f e  S2k(N)- is (again up to a simple factor) the product  of 
rk.N,A,O. Do(f ) with L'(f, k), the derivative of the L-series o f f  at the symmetry point 
of its functional equation. The construction starts with a non-holomorphic  weight 

I Eisenstein series for the Hilbert modular  group of Q([/A) and makes use of a 
differential operator  of H. Cohen which maps Hilbert modular  forms to ordinary 
modular  forms. We also compute the Fourier coefficients of F. They turn out to be 
the sum of two terms - an infinite sum involving Legendre functions of the second 
kind and a finite sum involving Legendre functions of the first kind. These 
expressions will be given an arithmetic interpretation in Chap. IV. 

We will suppose that A is a fundamental discriminant (i.e., that D 0 and D 1 are 
fundamental and coprime); this simplifies the calculations considerably. 

1. Construction of  the Modular Form F 

Associated to the discriminant A and the decomposit ion A = DoD, we have the real 

quadratic field K = tI~([fA ) ofdiscriminant A and the genus character )~' CK--+ { +__ 1 } 

(CK = narrow ideal class group of K), defined by the property Z(a) = N a  if a is an 
V 

integral ideal prime to Di and Na its norm. /Th i s  is well-defined since every 
L 

integral ideal a splits as aoa 1 with o i prime to D i and since N a  = ira is an 
7 

prime to A.| The residue class 0 (mod2N) with 0 2 - A (4N) corresponds to a ideal 

primitive integral ideal 

jA 
C (OK=7Z + ~O+ 2 2 

of norm N. For  se l l ;  with Re(s )>0  we have the Eisenstein series 

E,(z, z') = EK,~,, ... .  (z, z') 

= ZZ(a)N(a ), +2s 2 '  Y~Y'S 
~.1 m,. (mz + n)(m'z' + n')lmz + n[2"~[m'z' + n'[ 2s 

( z=x  +iy, z '=x '  +iy' efO), (1) 

where the first sum runs over the wide ideal classes of K and the second over all 
non-zero pairs (m, n) e (no x ~ • a)/f)K, and the prime on m, n denotes conjugation in 
KIll). This function is non-holomorphic  in z,z' but transforms like a Hilbert 
modular  form of weight I with respect to the congruence subgroup Fo(n ) of 
S Lz( (g K), i.e., 

E (aZ+b  a'z '+b'~ 
s \ ~ z + d '  ~;~G d ; / =  (cz + d)(c'z'+ d')Es(z, z') 
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for a, b, d ~ C K, c ~ n, a d - b c  = 1. The Eisenstein series E s is known to have an 
analytic continuation in s. Our  assumptions on D o, D 1 and N imply z(n) = 1 [-in fact 
Z(P) = 1 for all prime ideals p dividing rt], and this in turn implies that E~ vanishes 
identically at s = 0  (cf. I-8, p. 214], where the case N = 1 is discussed in more detail). 
We set 

E(z, z ' )= 0_ E~(z, z')[~= o . lys 
This is again a non-holomorphic  function of z and z' that transforms under F0(n ) 
like a holomorphic Hilbert modular  form of weight 1. 

In [2] Cohen showed how to map Hilbert modular  forms to ordinary modular  
forms by first applying a suitable differential operator  and then restricting to the 
diagonal SSC-~ x .~. A special case of this construction is that the operator  

k 1 ( 1)2 ~k-lfl)(z,Z') 
'k 

sends Hilbert modular  forms q~ of weight 1 on Fo(n ) to ordinary modular  forms of 
weight 2k on Fo(N ). This is true even if q, is not holomorphic.  Hence the function 

l A k/2 
f f (z)=Pk, U.~.e, oo(z)-- (2rti)k_ , 87re (C~k_,E)(z) (ZERO) 

transforms like a modular  form of weight 2k on Fo(N ). Finally, we define 

F(z) = Vk. N. a, Q, o.(z) = rChol( F) , 

the holomorphic projection of F, i.e., the unique form in Szk(N ) such that (f, F) 
= ( f ,  F) for all f~Sz~, (N ) (cf. [-16] or [9]). 

, E ( - 1  - 1 ~  It is easily checked that replacing E~(z, z') by (Nzz ' ) -  "~ \ N z '  N-z;J has the 

same effect as replacing n by u' or as interchanging z and f .  This implies that 

Fk, N,~,o, OoIekW N = Fk,N,,~" -e, oo = ( - 1) k- IFk, N,A,e, Oo. 

Hence F lies in the ( - 1 )  k- ~-eigenspace of WN, which is S2k(N)-.  

2. Fourier Expansion o f  F 

The construction described in Sect. 1 was given for k = N = 1 in [8, p. 214], and the 
Fourier development of F was computed there in that case. Of  course, since 
$2(1) = {0}, the final step in the argument  in [8] was that the expression obtained 
for the mth Fourier coefficient of F had to be equal to zero for all m, a conclusion 
which no longer holds here. However, most of the rest of the computat ion 
generalizes, so we shall be relatively brief in our presentation and emphasize only 
those aspects which are new for the case of forms of higher weight and level. 

oO 

Write the Fourier development of F as Z a,,, e2'~'z. The formula for a,, is 
r r l = l  

somewhat  different according as k > 1 or k = 1. 



530 B. Gross et al. 

P r o p o s i t i o n  1. Suppose k> 1. Then for all m> 1, 

a m = ( m  )k --1 ~ or, 1l P k  - 1 
Inl < , n l / A  

n~mo(2N)  

n > m l/~)i 
n=_mo(2N) 

- -  ~ '  O-0 ,  Z - -  k 1 , 
n > m ~ d  

n- -  = m~o(2N) 

where ao,x(a ) and a'x(a ) for a an integral ideal of K denote the value and derivative, 
respectively, of 

as, x(a)= Y~ z(b)S(b) ~ 
b[a  

at s = 0 and PR- ~(t) and QR- l(t) are Legendre functions of the first and second kinds. 

We recall that Pk 1(t) is a polynomial of degree k - t  and Qk 1(t) ( t > l )  a 
function satisfying 

1 , t + l  
Qk- 1(t) = ~ Pk 1~ t) log t~--i + (polynomial of degree k - 2) 

and 

Qk_~(t)=O(t -~) as t - ~ ;  

these properties characterize Pk-1 and Qk ~ uniquely up to a scalar multiple, 
which is fixed by the normalization Pk-1(1) = 1. The first few values are 

eo(t)=l, e,(t)=t, e~(t)=~3t~-l), P~(t)=gs?-3t), 
1, t + l  t I t + l  3 t 2 - 1 .  t + l  3t 

Q ~ 1 7 6  Q l ( t ) = 2 ~  Qz(t)-  4 l o g ~  2 

The result for k = 1 is more complicated because of the different properties of 
the holomorphic projection operator nho~ in this case and because the infinite series 
in Proposition I now diverge. To state it, we need the function Q~ 1(0 (seC,  
Re(s)>0) for non-integral s; it is defined by 

~o F(s) 2 t / l+t '~-~ { 2 ) 
es_ , ( t )=  coshv)-Sdv= s's;2s; l + t  ' 

where F(a, b; c; z) is Gauss's hypergeometric function. We also use the notation 
a(m) for the sum of the positive divisors ofm e N and H(Di) (i = 0, 1) for the value at 

s=Oof theL-ser iesL(s , (~) ) ; th isequals �89189 3 and h(Di), the 

ideal class number of lI)(]/Di), otherwise. With these notations, we can state: 
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Proposition 2. Suppose k = 1. Then for all m >= 1 prime to N, 

(A m ~ ~ t72( n - 1 
Inl <ml/A 

n~mo(2N) 

-- s~llim Inl>mt/TiE aO,z  I1 Qs l \ m ~ - A -  ) nt- s ~  i 
n z rno(2N) 

[-11 N logp m L'[ / D o \ \  

- 12H(Do)H(D On(m) where 2=  
N H (1 + 1/p) 

pIN 

8 
Proof. We first need the Fourier development of E(z, z')= Jss E=(z, z )Is= o. This is 

essentially the same as that given in [8, p. 215], for the case N = 1, and we simply 
quote it: 

E(z,z')= Z c(v,y,Y') e2~i(~z+v'z') 
vEtl~- 1 

with 

c(v, y, y') = { 

2LK(I, Z) log(yy') + 4C if v = 0, 

8712A 1/2otz((v)~)]'[-1 ) if ~2>~0, 

-4z2A-1/2ao,z((v)bn-l)q~(Iv'[y' ) if v > 0 > v ' ,  

-4z2A-1/z%.z((v')bu 1)q~(Ivly ) if v ' > 0 > v ,  

0 if v ~ 0 ,  

where y and y' are the imaginary parts of z and z', b = ( ~ - )  the different of K, 

the L-series of ;~, C the number 

C = EK(1, Z) + (�89 log (AN)-  log n -  7)LK(1, Z) 

(7= Euler's constant), ao,z and a'x the arithmetic functions defined in Proposi- 
tion 1, and (b the real-valued function 

(b(,) = ~e -a=''du ( t>0)  
1 U 

(exponential integral). 
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We next compute  the Four ie r  coefficients of  F(z). T o  do this we must compute  

for all r >  0, so 

Using the identi ty 

- 1 "P / t - - l \  (l) 

V' - -  V"] 
we can write the expression in brackets  as (v + v') k-  1P k ~ \ v T ~ v ) .  Ifv > 0 > v', then 

c(v,y,  y') depends only on y'. By Leibniz's rule we have 

, / r \  ~t ~ , 7 ,  .< 
d" fq~flv'l 'teZ"i"z't ~ J i : q ~ " v '  '~ : " e  2 r c i v ' z ' ~  

. . . .  Y"  " =   -Lot, , 

oo 
=(2rt iv,)~e2,, i~'='  I e-,*,~l.,'ly'.(1 u),-d_u 

1 U 

cg k- l ( qj(]v,ly,)e2~,~= + ~, z,)) 

=(2~i)k 1 2 (__l)t  v%,k-1 t 
g = O  

' ' __  ) k  1 E e 2 r H ( v  + v ' I z  X e 4a:lv ly u( U 

= (2~i)k- i e2..~ + ~'~= 

I'/I \ U + V + V ' J  u 

where in the last line we have used (1) and replaced u by Iv'] lu. The result for 
v < 0 < v '  is obta ined from this by replacing v by v' (so v now runs over  n'b ~). 
Put t ing  this all together,  we find 

le(z) = ~ a,,(y)e 2~i"~ 
m = - - o o  

~ k - l ( c ( v , y , Y ' )  e2"i(~z+v'~')) for all v e u b - 1 .  Fo r  v = 0  this is given by 

~'4LK(I, Z) logy  + 4C if k = 1, 
C~k-~(2LK(I ' )~) IogYy '+4C)= ~2(k -- 2) ! (1 + ( - - 1 )  k 1)L~(l,)0y l -k  if k > l .  

For  v < 0  it is 0. If v>>0 then c(v ,y ,y ' )  is a constant  and 
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with 

am(y) = 
~2(LK(1,x)logy+C) if m = 0 ,  k = l ,  

constant �9 y ~-k if m=O,  k > l ,  

0 if m>O 

v,>O Tr(v) m 
k-1 [ 

A 2 
2 ~o,~((v)~"- b 2 v~nb i 

v>0>v' Tr(v)=m 

x I~'.i~(u+m)k-'pk-a(u--v+V'~e-4~Y"d~u\ u+m / u -~(--l)k 1(...) } , (2) 

where (...) means the expression obtained from the preceding one by replacing 1~ by 
n' at both occurrences. 

We now turn to the last step, computing the holomorphic projection F(z) of 
F(z). We assume first that k > l .  From (2) and the fact that q~(x) or any of its 
derivatives is bounded by a polynomial in x times e-4~x as x ~ Go, we see that F(z) 
= O(y-k +~) as y = I m  (z)~ ~ ,  and the same is true at any other cusp since E,(z, z') 
has a Fourier development of the same type at all cusps. Hence the hypotheses of 
Proposition 5.1, p. 288, of [9] are satisfied and nho~(/~) is given by Sturm's formula 

F(z) = ~ am e2~imz~s2k(N), 
m = l  

(4nm)2k- 1 ~ (3) 
a m - -  ~ a,,(y)e - 4 ~ m y y 2 k  - 2dy" 

( 2 k - 2 ) !  o 

We substitute into this am(y) from (2). The first term in (2) is absent for m>0,  and 
the second is a constant (i.e., independent of y) and hence unaffected by the 
holomorphic projection process [taking am(y)=c in (3) gives a , ,=c ,  too]. The 

n+m~A 
conditions Tr(v)=m, v~>0, and v enb-~  are equivalent to v -  with 

]n[<m]/A, n=mo(2N), so this term is the same as the first term given in 
Proposition 1. Applying the same argument to the remaining terms, we see that to 
prove Proposition I we need only prove the integral identity 

(4~) 2k-I (.e_4~myy2k (U--V+V') 
(2k-2) !  0 I~' 1P~-1 \  u + m  / e  4nyu dy 

= 2 , - 1 ,  k 'm-kQk ,(V-~mV' ) 
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for v > - v ' > 0 ,  v+v'=m>O. Interchanging the integrals and performing the 
integration over y, we can write the left-hand side of this as 

Pk- 1 (x)dx 
Iv'l \ u+m J u 1 

We therefore need to prove the identity 

k 1 dx } ( l - x )  Pk_,(X)2~X=2(--1--2)k tog_,(2 ) (2>1). 
- 1  

But this is easy: by the defining property of Qk- l(X), we have 

1 (1--x)k-Ipk_I(X)dx 
J'l x + 2  

= - , } [  (l + 2)k-'Ptx + 2 1(--/~)+(polynomial in x,2)]dx 

1 2+1 = ( -  1 -2 )  k 1P k_ 1(2) o g ~  1 +(polynomial in 2) 

= 2 ( -  1 -2)  k 1Qk_ 1(2)+(polynomial in 2), 

and since Qk 1(2)=O(2-k) and the integral on the left is O(1/2) as 2--+oo, the 
polynomial in the last line must vanish. This completes the proof of Proposition 1. 

For k = 1 the simple formula (3) must be replaced by the following, which is a 
restatement of Propositions 6.2 and 6.7 of [9]. 

Holomorphic Projection Lemma. Let F(z)= Z am(y)e 2~imz be a function on 
m =  - o o  

which transforms like a holomorphic modular form of weight 2 on Fo(N), and suppose 
that for every divisor M of N there are numbers A(M), B(M) such that 

( c z + d ) - 2 f f ( : : ~ : )  -=A(M)logy+B(M)+O(y-*) as y=Im(z)-+oo (4) 

with e. > O.[or all d ~ SL2(Z) with (c, N) = M. Let F(z) = ~ a,.e 2~im= ~ S2(N) be 
m = l  

the holomorphic projection of F. Then 

I T  am=lim.4~m.a, .(y)e 4~myy.~ ldy + s - 1  J 
s ~ l  L 0 

[a(lm) a pIN P~---~-I~ 21 ~ ~c~] --48cw(m) • dl~ m + 2 + log2+  + (2)+ 
dim 

for (m, N) = 1, where 
#(M)A(M) 

�9 = I1 ( 1 - p - 2 ) - ' .  Z M ~ , 
pIN MIN 

#(M) In(M)-- A(M)logM] 
fl= H ( l - P  2)- , .  3[ M 2 

pIN MIN 
(~(M) = M6bius function). 
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Apply ingth is inourcase ,  w e s e e f r o m ( 2 ) t h a t ( 4 ) h o l d s f o r ( ~  bd)=(; ~), 
with 

A(N) = ~ LK(1, Z) = D~D~176 2 LDo(1)L D,(1) = �89 t), 

B(N)= 2i2~2-C=�89189 L~:(I)-t-L~:(1) ] �9 

To find the development at other cusps we choose ( :  : )6SL2( , )wi th (c ,N ,=M 

and observe that (cz + d)(cz' + d)E s + d ' cz' + d is an Eisenstein series defined 

by the same expression as in (1) of Sect. 1 but with the summation conditions in the 
inner sum replaced by m, n e a, d m -  cn e rm. A standard calculation shows that this 
Eisenstein series equals 

( M )  '+2s M1-2'~ ~F(s+�89 LK(2s, z)(yy' ) ~+(exp. small) 
LK(1 +2s'z)(YY')S N ~AV(s+ 1) 2 

as y, y'--+ oo (the first term comes from the summands with m = 0, the second from 
those with m :4= 0 upon replacing the sum over n by the corresponding integral). 

This gives for the function F(z)= ]/A c9 Es(z, z)[s_ 0 an expansion like (4) with 
87172 OS 

A(N) 
A(M) = M - -  

N 
M(B(~)  A(N), M~ B(M) = + ~ l o g ~ )  

[A(N), B(N) as above]. Hence 

A(N) #(M) �89 0 ~ =  1 ]  (1 _ _ p - 2 ) - I  ~ "  - -  , 
pin N M'TN M N [ l ( l + p  -1) 

pIN 

f l=~  �89 _ l o g n _ 7 +  ~Oo 1 
LDo ( )~- ~11(1)-~- ~ ,  pin p-- I J 

On the other hand, (2) and the arithmetic considerations given for k > | show that 

o 1 (Inl-ml/-A 
a" ( ' =a= -  2 7-S U 

n =- mQ(2N) 

with 

0 
a m = ~_, 

n < mV7l 
n _-- m0(2N) 

,) 
<',it, ) "  ' )" ) ,  
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SO 

where 

i 
) 

4rcm am(y)e '4"~'nyy~- l dy 
0 

= (4rim)' - T(s)a ~ 2 Z e,,q'~-i 
\ 2 ml / A  

O~ 

~Ps-l(2) =4~ f O(2y)e 4~yy~ ~dy (2>0).  
0 

The same calculation as in [8, p. 210] shows that 

~ 0 . 7 ' ~ - 1  - + - \ 2 m ] ~ -  (47r)~-1F(s+l) ~ o , Q ~ - l k m l / A j  O(s 1) 

as s--*l, so the holomorphic projection lemma gives 

( In[ ) (4nm) ~- iF(s+ 1) 24~(m)- 
a,. = a ~ - ~-liml ]hi <2lint x e,,Qs-, \m[/-AJ - F(Zs) " ~ - ]  

n ~ m o ( 2 N )  

+ 2 2  log p + 1 o g 4 + 1 + 2  ( 2 ) -  
pin p 2  __ | 

and this is equivalent to the formula in Proposition 2. 

3. Evaluation of (F, f )  

The object of this section is to calculate the scalar product (F, f )  for a newform 
f e  S2k(N). Since we have seen that F belongs t o  SZk(N ) , and since S2k(N) and 
Szk(N)  + a r e  orthogonal, we may restrict attention to f e  S2k(N) . For such an f the 
L-series L(f, s) vanishes at s=k ,  and its derivative at this point will enter our 
formula. 

Theorem. Let f e S2k(N)- be a normalized newform. Then 

i k ' r (k  �89 
(Fk, N,A,o, Oo'f)= 2k+ lzrk+ 1/2 rk.S,A,o, oo(f)L'(f ' k), 

where rk.u.a,o,oo(f) is the cycle integral defined in Chap. II, Sect. 1. 

Proof. By the definition of the holomorphic projection operator, (F , f )  equals 

(F,f) .  Also, the operators __fSs: ~ and ~k- I  commute, since they involve 

differentiation with respect to different variables. We will therefore first compute 
~k- 1 of the Eisenstein series Es(z, z'), then the scalar product of f with this, and 
finally the derivative at s=0.  For  the first step, we use: 
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Lemma. Let m, m', n, n' be real numbers, s e I~., and denote by h the function 
ySy,S 

h(z, z') = 
(mz + n)(m'z' + n')Imz + nl 2Slm'z' + n'12s 

(z,z '  e~ ,  y=Im(z) ,  y'=Im(z')) .  Then 

(C~k-lh)(z)= ~. Pk j(s)(mn'--m'n) k-1-2;  y2S-2j 
k 1 ' Q(z)kiQ(z)12. ,  2 i ,  

0<=i<= 2 

where Q(z) denotes the quadratic polynomial (mz + n)(m'z + n') and the Pk, j(S) are 
polynomials in s with 

p, j (0)={(0  k ,  1), /f j = 0 , / f  j > 0 .  

Proof of the Lemma. The function h is the product of a function ofz and a function 
of z'; we first calculate the derivatives of these functions individually. By Leibniz's 
rule 

1 d ~ y~ 
f.' dze((mz+n)[mz+n,  2") 

=p+q=e~' p! dz p (mz+n)S; l (mi+n)  ~ dz q(y~) 

, (;),. 
= p+q=t~ (mz+n)~+P+l(mi+n) "~ (2i) q 

(2iy)-eY ' ( s ; P ) ( ; ) ( 2 i m y ~  p 
=(mz+n)lmz+nl2S Z ( - 1 )  v v+q=~. \ m z  + n }  

= (mz +n)lmz-3t- n[ 2's ~ ( -  l)d-j S j (mz +n~ j ' i= o \mz  + n /  

where in the last line we have used the identities 

and 

2imy m~ + n 
m z + n  m z + n  

l,. (s ;p) (;) x,.= J(;)(s;,)xj 
p+q=E j=O 

Inserting this formula into the definition of the operator c~ k 1, we find 

( k -  1)!2(2iy) ' ky2s 
( % _  i h ) ( z )  = Q(z) lO(z)12~ 

X d+f,'~=k-1 ~?~1. \j~=O ( -  \ j / t  \ m ~ n / ]  i I 

\ j '  1\~1 1' 
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( - - l ) t  ( ( ' ]  ( f f )  =O unless j + f = k - l ,  when only For fixed j,j' we have t+~'%k- 1 ~ \J /  
the terms d = j ,  d' =j '  contribute. Hence 

(k-- 1)!2(2iy) 1 -ky2s 
(C~k_ lh)(z) = O(z)]Q(z)12s 

x X f ! # !  
t '+g ' ,  = k -  1 

But clearly 

m z + n /  \ m ' z + n ' /  " 

( k -  l)t2 ~ dtd'!  d' X X 
/ + t " = k -  1 

= 2 Pk, j(s)(4XX')J(X + X')  h 
2 j+h=k-  1 

for some polynomials Pk,j(S), because the left-hand side is a symmetric homo- 
geneous polynomial of degree k - 1  in X and X'. Therefore 

(2iy)1 ky2S 
(~k th)(z) = ~2(z)lt2(z)l~ 

• 

k - - 1  
O<~J--< 2 

. .  f - 4 ~ ) ' ~  i ( 2i y(mn' -- m'n) ) k- ' - 2 ~ 

which is equivalent to the statement of the lemma. The statement about 
Pk,~(O) is clear from the definition of the Pk, j(S). In fact, Pk,~(S) 

= 4 - J  [ ).~_1 ( s - j + n ) '  but we will not need this formula. 

Applying the lemma term by term to the series defining E~ (in the region of 
absolute convergence), we find 

k - 1  - - - j  

(~k ,Es)(z)= ~ pk, j(s)A 2 
k - 1  

O - < J <  2 

y2S 2j 
x ZZ(a)  ~. r(m,n) k 1-2j (1) 

[.l " , .  Qm.(z)lQm.(Z)l 2s-2j '  

where the summations over [a] and m, n are the same as in the definition of E, and 

mn' - m'n (mz + n)(m'z + n') 
r(m, n ) :  Q,..(z) = 

N ( a ) I / A  ' U(a) 

Note that r(m, n) is an integer, equal to 0 if •m + 7Zn is one-dimensional and to 
_+[a :Zm+TZn] otherwise, and that Qm, is a quadratic polynomial with integer 
coefficients and discriminant r(m, n)2A. Applying [2k7 for 7 e Fo(N ) to (t) permutes 
the m, n in the inner sum, leaving r(m, n) invariant. Therefore we can rewrite (l) as 

k - 1  

Cgk- 1E~ = ~. Pk. i(s)A 2 J ~ ~ r k-  1 2Jq~k, 2~- 2j . . . . .  (2) 
j [a] r e Z  
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where 
y~ 

q,~ ...... (z)= z(a) 2'  (",")~( . . . . .  )/'~k Q,,,(z)klQm,(z)l z~ 
r(m, n) = r 

is a (non-holomorphic) modular form of weight 2k on Fo(N), and then [because of 
the absolute convergence for Re(s)>> 0] compute the scalar product of each term of 
(2) with f separately. Note that �9 k ...... depends on the narrow ideal class of a but 
that Ok ...... + ( - - l )  k-  lCI)k . . . . . .  [and hence the inner sum in (2)] depends only on 
the wide ideal class, since replacing a, m, and n by 2a, 2m, and 2n with 2 e K • 
N(2) <0,  replaces Z(n), r(m, n), and Q~,(z) by their negatives. We now consider the 
individual terms of (2). 

r = 0. If r(m, n)= 0, then me  Q, so m = 2c, n = 2d for some coprime integers c, d 
r/ 

(unique up to sign) and 2 e a. Hence 

~ k  . . . . .  o ( Z )  ~ 
z(a) Z' ) / 

- 2 c,~z ( x~~ N(2) gIN(2)I -S (cz+d)Zklcz+dlZs. 
(c,d) = 1 \ c A n n a  

The inner sum depends only on the greatest common divisor ofc and N, so this is a 
linear combination of functions 

y s  

(cz+d)2k[cz +dl2~ (MIN, Re(s)>>0) 
c , d ~ Z  

(c, d) = 1 
(c, N) = M 

which are non-holomorphic Eisenstein series of weight 2k on Fo(N ). Therefore 

(L O~ ..... o) = 0 (3) 

since f is a cusp form. 

r = + 1. For  the reason given above, we have 

E(Ok ..... ,+ ( - -1 )~- lOk  ..... , )=  Z Ok ..... i 
[a] [.l e ~K 

where [a] on the left-hand side of the equation runs over the wide ideal class group 
of K and on the right over the narrow ideal class group (which is always twice as 
big, since the fact that A is a product  of negative discriminants implies that all units 
of K have norm + l). For  r(m, n) = 1, the quadratic polynomial Qm,(z) has the form 
aNz 2 + bz + c with a, b, c e Z, b = ~ (2N), b 2 - 4Nac = A, i.e., it equals Q(z, l) for some 
Q e 0) N, 4, o in the notation of Chap. I. Conversely, every Q e ~N, 4, ~ occurs this way 
exactly once [there is a bijection between ~K and CN,~.o/Fo(N) by the results of 
Sect. 1 of Chap. I, and the different choices of (m, n) with r(m, n) = l for given a 
correspond to the forms which are Fo(N)-equivalent to a single such form]. Also, 
~(a) = Zvo(Q) under this correspondence. Hence 

Z ( , ~ ~  , ( z )+ ( -  ~-~ , , ,  l) ,p~ ..... -,(z))=L,~,,A,~,,,o(~; s) 
a 
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in the notation of Sect. 1 of Chap. II, and the last equation of that section gives 

(.f, ~ (~k,s,a., + (--1) k- 1 (J~k,~ ,a , - i )~  
\ [al / 

F F + - -  l-~ 
- k + - -  

A z 

[rl > 1. For  a fixed ideal a, the pairs (m, n) �9 (ha x a)/C~ with r(m, n) = r are obtained 
from a fixed pair m o, n o with r(mo, no)= 1 by (m n)= (mo no) ~ with 

The quadratic polynomial Qm.(z) equals (cz + d)2Qo(TZ) under this correspondence, 
where Qo(z) = Qmo.o(Z), and the action of(9~ on (m, n) corresponds to multiplication 
of 7 on the left by an element of the stabilizer Fo(N)eo of Q0 in lo(N ). Hence 

4)k ~ ~ ~(z)=r-klrl-S ~r ~ R Qo(z)Y~Qo(z)l ~ 2k 7 
' ' '  y o( )eo\ 

Comparing this equation with the same one for r = 1 [with R~ = Fo(N)] gives 

~k +.(Z) = r - k - s  Z q)k ~ . + 112k7 (r=> 1), 
, s , a ,  _ 7 E F o ( N ) \ R ~  . . . .  

a finite sum. The value of (a, N) for 7 = d e R~ is left Fo(N)-invariant, and the 

t e r m s w i t h ( a , N ) = M > l  y i e l d a n o l d f o r m . [ W e c a n w r i t e ~ = 7 ' o (  M 01) with 

7' e F o ( N ) \ R ~ ,  so these terms have the form g(Mz) where g is a modular form on 
7 

obtained as a trace from Fo(N). ] The sum over the terms with (a, N) = 1 is, Co(N/M) 

by definition of the Hecke operator  T~, just r 1 - k ~  k ...... + lIT. Hence 

q)k ...... +(--1)k-'q~k ...... -r = r ' - 2 k  ~(ePk ..... , +(--1)k-Jq)k ...... ,)12kT~ 

+ (old form) (r > 1), 

and therefore, since T, is self-adjoint with respect to the Petersson product, 

a(r) , ~ 
(f,  (Pk,s . . . .  - ] - ( - - 1 ) k - l l ~ k k , ~ , a . - r )  = rek- i+stJ ,  q'k.~,.,, +(- - l )k- 'q )k , s , . , - , )  (5) 

for r > 1, where a(r) = coefficient ofq r in f =  eigenvalue o f f  under Tr. The argument 
we have given here was used for N = 1 in [13]. 
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Combining (2)-{6), we find 

[ n " ' F ( � 8 9 1 8 9  1 

o<_j<_k-21 
k 

• A - 2 - ~L(f, k + 2S)rk, N, a,o, oo(f). (6) 

The factor in square brackets is holomorphic at s = 0 and has the value F(�89 - �89 
there. On the other hand, L(f,  k + 2s) vanishes at s = 0. Hence 

= 2r(�89 -- �89 - k/2L'(f, k)rk, N, A, o, oo(f), 

and this is equivalent to the statement of the theorem. 
Using the formula for Pk, j(S) stated after the lemma, we can compute the factor 

in square brackets in (6) and hence rewrite this equation more explicitly: 

(f, rtho,(~k- 1E~)) = (f, ~k-  ~Es) 

= 2-  2k + 2 2~ F(k + 2s) 7zA 2 srk ' u, A,e, Do(f) L(f, k + 2s). 
r(s + 1) 2 

In other words, one can express the cycle integral o f f  times the value of L(f,  s) for 
any s, not just its derivative at s = k, as the scalar product  o f f  with a modular form 
whose Fourier coefficients can be calculated in closed form. 

IV. Height Pairings of Heegner Divisors 

In the introduction we briefly defined Heegner divisors y*,r of degree 0 on Xo(N ) 
over Q. These are indexed by negative discriminants D of conductor prime to N 
and classes r (mod2N) with r 2 -  D (mod4N). Their precise definition will be given 
in Sect. 1. Our main aim in this chapter is to compute the global height pairing 
(YD ..... YD ) on the Jacobian J~(N) over ~ .  In the height computat ion we shall 
assume that D O and D 1 are relatively prime. The global height depends only on the 
classes of the divisors * Yo, r in the Jacobian of X*(N),  but using N6ron's theory we 
will express the pairing as a sum of local symbols (Yo ...... Yo .... )v, indexed by the 
places v of Q, which depend on the divisors representing the classes. We will 
compute the archimedean symbol using Green's functions for the Riemann surface 
~/F*(N) and the non-archimedean symbols using intersection theory on a regular 
model for X*(N)  over 2L 

1. Heegner Divisors 

Let D be a negative discriminant which is a square (mod4N) and has conductor 
prime to N and let r be a class (rood 2N) with r 2 -  D (4N). We define a rational 

divisor VD,r on Xo(N ) over K =Q(]/D).  Recall that the affine points of Xo(N ) are 
given by x = (n : E~E ' ) ,  where E and E' are elliptic curves and n a cyclic N-isogeny. 
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Let C o = 2g + 2g ~ be the ring of discriminant D in K and n the primitive ideal 

]//D of index N. The points x in P/),~ are those which admit 2 g N + Z r +  2 

endomorphisms by Co [i.e., (9/) maps into End(E) and End(E') with the obvious 
diagram commuting] and such that the kernel of re is annihilated by n. The point x 
is counted with multiplicity l/e, where e is the order of Aut(x)/+_ 1. 

If c denotes the non-trivial automorphism of K over Q, then (PD.~)c= P/),-r 
=w~(P/),~) [5]. Hence the image P*/),r of Po,~ on the quotient curve X*(N) 
= Xo(N)/w N is rational over ti) and depends only on _+ r (rood 2N). By [5], or by the 
proposition in Sect. I of Chap. I, the degrees of PD,~ and P* /),~ are both equal to 
H(D), the Hurwitz class number. We define the divisor Y*,r of degree zero on X*(N) 
over II~ by 

Y;,r= P;,~--/q(D)(~ 
where oo* is the rational cusp on X*(N) which is the image of the cusp Do (or 0) on 
Xo(N). 

Over the complex numbers, Xo(N)=~/Fo(N ) and X'd(N)=~/F~(N), where 

'0) .~ = .~2H71(~) and FJ'(N) = Fo(N)UWNFo(N)C PSL2(]R), WN = N 

are assuming that N > 1, so F*(N) contains Fo(N ) with index 2.] The divisors P/),,. 
and P*,~ are given by 

P~,r = ~/),2Co(N), P% =.~,2r?(N),  (1) 

where ~/),~ and ~o.,r are the infinite subsets of .~ defined by 

~/),r = {r E .~ I aNt2 + bz + c = 0 for some [aN, b, c] ~ oQN,/),~ with a > 0}, 
(2) 

~,~= r 
(~N,o,r as in Chap. I). These equations are to be interpreted as equalities of divisors 
with rational coefficients, so a common point of ~o,~ and ~n,-~ has multiplicity 2 
in ~*,~ and a point of ~ / F  represented by z ~ ~ is counted with multiplicity equal 
to the multiplicity ofz in ~ divided by the order of the stabilizer ofz in F. The point 
oo* over 112, of course, corresponds to the cusp ioo (or 0) in ~/F*(N). 

Finally, by the formula at the end of Sect. 1 of Chap. I, we see that (o), 
Tm(Po,~)= ~dd ' ~ /)a~,~a (3) 

for D fundamental and (m, N) = 1. Since T., commutes with wN and sends oo* to a 
multiple of oo*, the same formula holds for P*o,, and Yo,* ~. 

2. Review of Local Symbols 

We review the basic ideas of N6ron's theory; for more details see [6]. Let X be a 
non-singular, complete, geometrically connected curve over the locally compact 

Io.k. ~N~+ that for any Haar  field k.. We normalize the valuation map ] " • • so 
measure dx on k. we have the formula c~*(dx) = I~1~" dx. Let a and b denote divisors 
of degree zero on X over k. with disjoint support; then N6ron defines a symbol 



Heegner Points and Derivatives of L-Series. I1 543 

(a, b)v in ~ which is bi-additive, symmetric, continuous, and satisfies the property 
( • rex(x), (f))~ = log I [I f(x)"xl, when b = ( f )  is principal. These properties charac- 
terize the local symbol completely. 

When a and b have the point z (and no other) in common, one can extend 
N6ron's definition by choosing a uniformizing parameter z at z and defining 

(a, b)~ = ~im { (%, b) - ord~(a) ord~(b)log [n(y)[~}, 

where a r is the divisor obtained from a by replacing z by a nearby point y not in the 
support of b. 

When v is archimedean, one can compute the N6ron symbol as follows. 
Associated to b is a Green's function gb on the Riemann surface X(k-v)-Ibl which 
satisfies •0-gb=0 and has logarithmic singularities at the points in Ib[. More 
precisely, the function gb-ord~(b)loglnl ,  is regular at every point z, where n is a 
uniformizing parameter at z. These conditions characterize g~ up to the addition of 
a constant, as the difference of any two such functions would be globally harmonic. 
The local formula for a = X rex(x) is then 

(a, b)v = E mxgb(x). 

This is well-defined since ~ m~=0 and satisfies the required properties since if 
b = ( f )  we could take gb=loglfl~. 

Ifv is a non-archimedean place, let C~ denote the valuation ring ofk~ and qv the 
cardinality of the residue field. Let X be a regular model for X over C~ and extend 
the divisors a and b to divisors A and B of degree zero on ~'. These extensions are 
not unique, but if we insist that A have zero intersection with each fibral 
component  of S~ over the residue field, then the intersection product (A. B) is well- 
defined. We have the formula 

(a, b)~= - ( A .  B) logq~. 

Finally, if X, a, and b are defined over the global field k we have (a, b),~ = 0 for 
almost all completions k~ and the sum 

(a, b) = Z (a, b)~ 
v 

depends only on the classes a and b of a, b in the Jacobian. This is equal to the 
global height pairing of N6ron and Tate. The same decomposition formula into 
local symbols can be used even when the divisors a and b representing a and b have 
non-disjoint support, provided that the uniformizing parameter n at each point of 
their common support  is chosen over k. 

We will apply this theory to compute the global height pairing of Heegner 
divisors on X*(N) as a sum over places v of •: 

(Yuo.~o, Yo . . . .  ) = E (YD ..... YO . . . .  )l). 
t~ 

Since the divisors * Yo., have the cusp ~ *  in their common support, we must fix a 
uniformizing parameter n at this cusp. We let n denote the Tate parameter q on the 
family of degenerating elliptic curves near or*. This is defined over Q, and will even 
give a uniformizing parameter over 2g on the modular  regular model .~'*. Over C 
we have q = e 2~i~ on X~(N)(II2) ~ ~/F*(N), where z e ~ with Im(z) sufficiently large. 
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3. The Archimedean Contribution 

Let z o and zl be points of.~ which are not in the same Fo*(N)-orbit, and Xo 4: Xl the 
corresponding points of X~(N)(G). Then the local symbol 

( ( X o ) - ( o o * ) , ( x l ) - ( o o * ) > G =  ~ ( Z o ,  Z~) (1) 

defines a bi-Fo*(N)-invariant function G~v on .~ • ~ minus the F*(N)-orbit of the 
diagonal. The archimedean part of the height pairing of Y*o,ro and y* .... is given by 

, , _ 1 c z , t o ,  p ,  (yoo,ro, yo .... )o~ - ~. .N,- , ,o, ,o,  ,, .... ), (2) 

where we are using the convention that f(a) for a divisor a =  Xm~(x) means 
Z mxf(X)- The factor �89 arises because tl)~ is N, not ~.  

We need a formula for the function G*. For s e ~  with Re(s)> 1, define the 
point-pair invariant 

( Iz~ )(zo, 
g~(zo, z l )= -2Q~_ a 1+ 2im(zo)im(zl)j 

where Q~_ l(t) is the Legendre function of the second kind. The function defined by 
the convergent sum 

GN,~(Zo, ZO = Z gs(zo, YZ0 
y~Fo(N) 

is the resolvent kernel function for ~/Fo(N ). It is bi-Fo(N)-invariant, finite on 
(~)/Fo(N)) 2 except for a logarithmic singularity along the diagonal, and has 
eigenvalue s(s-  1) for the hyperbolic Laplacian. Another eigenfunction with this 
eigenvalue is the Eisenstein series of weight 0 at the cusp Go : 

EN(z,s)= Z Im(yz) ~ (z ~ .~, Re(s)> 1), 

which satisfies Eu(z,s)=y~+4)N(s)y ~ ~+O(e -y) as y ~  for a certain mero- 
morphic function qSN(s), specified below. Let * Gu.~, E*, ~b~v be the corresponding 
functions when Fo(N) is replaced by F~(N). We have 

G~.~(Zo, Z,)=GN,~(Zo, ZO+GN,~(Zo, WuZO, E*(z,s)=Eu(z,s)+EN(wNz, s). (3) 

Proposition 1. The function G* defined by (1) is given by 

G*(zo, zl)= l im[G* s(Zo, ZO- 47t . ] .~' L ' 1 2 s s  (Eu(z~ s) + E*(z 1, s ) -  qS*(s)) . (4) 

Proof. The function G* of (1) satisfies 
(i) G* is bi-F*(N)-invariant, symmetric, and harmonic in each variable; 

(ii) for fixed z o, 

G*(zo, zl)=ezologlzo-zll2+O(1) as zl~Zo, 

G~v(Zo, ZO=4rtIm(zO+o(l) as zt ~ i ~ ,  

and G*(zo, zl)= 0(1) as z I tends to any point of S5 not Fo*(N)-equivalent to z o or to 
any cusp not F*(N)-equivalent to ~ .  [Here Go is the order of the stabilizer Of Zo in 
ro*(N).] 
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Indeed, from the axioms in Sect. 2 and the choice of the uniformizing parameter 
q = e 2"~z at oo we see that 

G~(zo, z , )= f ( z  O -  lim (f(z) + logle2"i~l~:) 
Z ~ i o O  

=f(zt)  + lim ( f ( z ) -  4n Ira(z)), 

where f is a Green's function associated to the divisor (Xo)-(oo*) on X*(N). This 
makes the harmonicity and the behavior as x 1 ~ c u s p  obvious, while for xl --*Xo we 
have f ( x 0 =  logln(x01r O(1) where n is a uniformizing parameter at Xo, and one 
can take n to be (z -z0)e~,'. The expression on the right-hand side of(4) also satisfies 
(i) and (ii), by the same arguments as in [9, pp. 239 241] and [8, p. 208]. This shows 
that the two expressions are equal, since their difference is globally harmonic, 
hence constant, and vanishes at oo*. 

Combining (2) and (4) and recalling that y* r= P* r -  H(D)(oo *) with P*o.r of 
degree H(D), we find 

�9 �9 _ 1_ [ * . p* ~E*tp* o~ (YD ...... YO .... )~--21im,~1 GIn's(P~ ..... o .... )-- 147:2s (H(Dt'  u, oo ...... 
l _  

+ H(Do)E~(P* ..... s) - U(Oo)U(D ,)~b*(s))j . (5) 

We now proceed to evaluate each of the four terms in the square brackets. From (3) 
and Eqs. (1), (2) and wNPo, , = Po, -~ of Sect. 1 we have 

G*u,~rP*oo.~o, P*m,,,~-~- Gu. s (P uo  . . . .  P D  . . . .  ) + Gu. ~(Poo. ~o, Po~. -~),  (6) 

so for the first term in (5) it suffices to evaluate Gm~(Poo,, o, Po .... ). 

Proposition 2. For nEW~, nZ-DoD1 (4N), define 

o(n) = y~ c(d), (7) 
n 2 --  D o D 1  

d 4 N  

where e is associated to the quadratic form [Do, - 2 n ,  D1] as in Sect. 3 of Chap. I. 
Then for Re(s)> 1, 

GN,~(Po ..... Po .... ) = - 2  ~ ~o(n )Q~_ , ( .~ /~ - ) .  (8) 

/ \  

n > VDoD \VDoOt  / 
n ~  - r o r l ( 2 N )  

Proof. From (1) of Sect. 1 and the definition of Gins we have 

Gm~(Poo,ro, PD,,r,)= Z Gu.s(Zo, T1) 
( % 0 , ' C l ) e ( . ~ D 0  ' r o  x ~O)~DI ' r t ) / F o ( N ) 2  

= E gs(~0, ~1), 
(ro,~t)~(~D o, % • #o~, .~)/ro(N) 

where in the second equation Fo(N ) acts diagonally on ~Do,~o • ~D .... and in both 
equations we are making our usual conventions about  multiplicities [-i.e., each 
term G m ~(Zo, z 1) or g~(zo, z~)is to be weighted with a factor equal to the reciprocal of 
the order of the stabilizer of(Zo, zl) in Fo(N) 2 or Fo(N) ]. Associated to z i ( i=0,  1) we 
have the positive definite quadratic form qi = [-aiN, bi, ci] of discriminant D~, with 
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b i =- r i (2N), with qi('ci, 1 ) = 0. Then 

g s ( r o , ~ l ) = - 2 Q s - i  1 + 2 Im(%)Im(T0J  

with n=2N(aoc  t + a l C o ) - b o b l ,  i.e., n=--BAN(qo, qO in the notation of Chap. I, 

Sect. 3. Clearly n > ~ and n -  - r o r  I (2N). This proves (8) with 0(n) replaced 
by 

O(n) = :If {(to, ~1) e (~0Oo,r o X ~O .... )/Fo(N)] BAN(qo, ql) = - -  n }  

or equivalently since there is a 1:1 correspondence between positive definite 
forms in AN, o,r and their roots in 

O(n) = �89 =tt: {(qo, q,) E (AN.Do .... x AN,o .... )/ro(N)l BAu(qo, ql) = -- n}. 

[The �89 arises because the condition Bz~,(qo, qO = n forces qo to both he positive 
definite or both negative definite, and we want to count only the former.] Let t 
denote the number of prime factors of N. Then 

2tO(n) = �89 :ti: {(qo, q,) e (AN, Do X AN, o,)/F0(N) 1 84 N(qo, q,) = -- n} 

because the group W ~ (2g/22g)' of Atkin-Lehner involutions acts freely on the set of 
pairs (%, r 0 (mod2N) with r~ = Di(4N ) and with a fixed product  rot 1 (mod2N), 
since D O and D 1 are coprime. This last expression equals 2t0(n) by the Corollary to 
Proposit ion 3 of Chap. I, Sect. 3, so 0(n)= r This proves (8). 

We now turn to the Eisenstein series E*(z, s). Here we must evaluate, for D = D O 
or D1, the sum 

,Z e*(~, s)= , Z G(~, 5). 
rE ~,~ D, r/FI~(N) r:e Jfl l), r/Fo(N) 

To do this, we recall that EN(z,s) can be expressed [9, (2.16)] as 

G(z,s)=N ~ [ | ( 1 - p  2s)-' 2 ~ E  z,s , (9) 
pIN d in  

where E(z, s) is the Eisenstein series for SL2(77). Hence our sum becomes 

> , ~ - ~  E E ~,s + E E ~,s . 
diN \re~@D,r/ fo(N)  ze~Pl), r/E)(N) 

The association [Na, b ,c]~-~, lNa,  b, dc[ identifies 22D,~/Fo(N , with J2o/Fo(1)for 
L ~  U 

any divisor d of N, by the proposition of Chap. I, Sect. 1. Hence each of the inner 
sums is independent of d and equal to Y E(z, s). But this sum is given by the 
"zeta-function . . . .  e,,/sL~(z) 

E(r, s) = 2 S[Dl~/2~(2s) l f fo(S  ) = 2-'~IDI~/z((Zs)- I~(s)LD(s), 
rE ~D/SL2(~)  

H(D) 
where LD(S ) is the holomorphic function of s introduced in [21] with LD(1) = - / . ~ , .  

Vlul 
If D is fundamental, then ~.(s) is the Dedekind zeta function of Q([/D) and LD(s) 

i ,  t ,s a  ro uct o v e r  
\ \ I /  
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prime factors of the conductor. / Since ~ p(d)d-S= [I (1 _p-Z), we find that 
d diN pIN 

21 -'~ID] S/2 ~(s) 
EN(PD,r,S)=* �9 , NS H (1+p-S) ((2s) " Lo(s) 

pin  

and consequently 

6 H(D) [ 1 flo ID['/2 logp 
E * ( P * , r , S ) = ~ N l q ( I + p  1) s 1 + ~  g 2 N ~ + v l ~ u ~  +7 

pIN 

- 2  (2)+L~(I) +O(s--l)  as s--*l (10) 

(7 = Euler's constant). 
*S Finally, we must obtain an expression for qSN(), the coefficient ofy 1-5 in the 

Fourier expansion of E}(z, s) at ~ .  But E~(z, s) is given in terms of E(z, s) by (3) and 
(9). For the Eisenstein series of level 1, we know that 

e(z. s) = / + r ( k ) r ( s -  ~);(2s- 1) y, -~ + O(e r) 
r(s)(12s) 

as y--*~. Hence 

r ( � 8 9 1 8 9  l - p - '  1-p-2S+'  1 
= r(s)((2s) .~ i 2 p 2~ + N-~ I] _ p-  2, vlS 1 

For s near 1 this gives 

6 1 1 1 ( 3 1  logp 
~*(s)=n N I l ( l + p  ~) s - I  + - 2  ogU+ Z vl~ P + 1 

pIN 

- -1og4+27-2 (2) +O(s-1)  as s ~ l .  (ll) 

Combining (5), (6), (8) [applied to both (Do, ro) , (D1, r l) and (Do, ro), (D1, -- r0], (10), 
and (11), we obtain our final result: 

Theorem. 

(YD ....... Yo .... 5~, 

= lim I -  s ~ 1 n 2 > DoDt 
n~ror l (2N)  

+2 lOgDoD1 

o(.)Os-, ~ V b o o ,  / - ~ i  

,ogp ~_ L' L' ] 
- - p ~ l N p ~ l + 2  (2)-- ~O~(1) - c o  ~ L- m~ 2 

with =,2H,Oo,.,O,,jN p NH ( ,  + ond as ,7, 
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4. The Contributions from Finite Places 

We fix a finite prime p ofq~. To calculate the local symbol * * (Yt) ....... YD . . . .  )p  in terms 
of intersection theory, we need a regular model f *  for X~(N) over the valuation 
ring Zp of ~p. 

A modular model X for Xo(N ) over Z was constructed by Katz and Mazur 
[11], using ideas of Drinfeld. The scheme _X is smooth over •[1/N] and regular 
except at closed points _x in characteristic pIN where Aut(_x)+ { + 1}. We let f *  
denote the minimal desingularization of the quotient of_X by the Fricke involution 
w N. Then f *  is smooth over 7Zp when pXN. When piN the curve f * |  may 
have several components. 

Let P*_ 0., be the multi-section of f *  over Zp which extends P*,, and oQ*_ the 
section corresponding to the cusp oo*. 

Proposition I. * * (YD . . . . .  YD . . . .  ) p  ~-- - -  ( - e ~ )  . . . . .  �9 P* .... )p logp. 

Proof. Since the discriminants D o and D 1 are relatively prime, we may assume that 
p , f D  o .  We then claim that the divisor _P* .... - H ( D o ) ~ *  has zero intersection with 
each fibral component  of 5~'* over Zip. This is clear when pXN and f *  is smooth, 
with a single component  over 7l/p, so assume that pIN. Since pXD o and 

D o - r~ (4N), we see that p must split in the imaginary quadratic field (I)(]/Doo). Let p 

be the unique factor o fp  which divides r~ + l /D~ Then the points _x in the divisor 
2 " 

P-oo,ro all reduce (modp) to the component  g , ,o  of _X| containing the cusp oo 
[9, (3.1)] and all reduce (modJ)) to the component  ~, of X| containing the �9 O , r t  

cusp _0. These cusps, and the corresponding components, are interchanged by w N 
and give rise to a single component  ~-* containing _o2o (modp) on X/w N. Since the 
reduction is ordinary, the points in _P*, .... all reduce to regular points on ,~-*, so lie 
in the same component  as oo* in Y'*. Hence P* .... -H(Do)oO* has zero 
intersection with this special component ;  it clearly has zero intersection with all 
others. 

From the general theory described in Sect. 2, we have the identity 

(YDo ..... YD, , r l )v  = - -  ((-P*o, ro -- H(Do)~_ *)" P* �9 * (_ v~,r,--H(D1)~_*))plogp. 

But the points in P * ,  have no intersection with ~ *  (modp), since they correspond 
to elliptic curves with complex multiplication and hence have potentially good 
reduction at all primes. Finally, since q is a uniformizing parameter at oo* over Z r, 
we find that the local symbol is calculated using the convention that ( ~  *- ~ *)p = 0 
[6]. Hence the intersection product on the right-hand side reduces to 
-(-Pt)o,,o" -P• .... )logp. 

We now turn to the computation of the relevant intersection multiplicities. 
First we have: 

Proposition 2. I f  piN then ~ P *  . P *  ~ - O .  ~ -  D o , r o  - Dl,rlJp-- 

Proof. We may assume p,fDo, so the points in -PD,,,,o have ordinary reduction on X. 

I fp  is split in ~ ( 1 / ~  ) the same is true for the points in _PD .... . By Deuring's theory 
[3], singular points with ordinary reduction and distinct quadratic fields of 



Heegner Points and Derivatives of L-Series. II 549 

multiplication reduce to distinct points (modp). If p is not split in II~(I/D~), the 
points in -PD~,~ have supersingular reduction on _X, so are disjoint from the points 
in the reduction of _PD ..... which are ordinary. Hence the intersection number is 
zero in all cases. 

We henceforth assume that pXN, so X is smooth over Zp and ~'*~  X_/w N. 
Denote the projection map by F:X~?t'*' ,  then F.(Po.~)= P*_ ~,~ and F*(_PD,* ~) 
=-Po.~+-PD.-r" Since D o and D 1 are relatively prime, we may re-order them so 

p~/D o. Fix a square root ~ 0 0  of Do in the completion W of the maximal unramified 
extension of ~p. A Heegner point x = ( ~ : E ~ E ' )  lies in the divisor Po .... if 

r0 + I f  Do 6) 0 = ~ + 2~ DO -~ [/D~- embeds into End (x) and ~o = ~ End(x) annihilates 
2 2 

kern. Here, and in what follows, we will write l/boo for the endomorphism which 
gives multiplication by our fixed square root ofD o on the tangent space. The points 
_x in Po ...... are all rational over W. A point y lies in the divisor Po .... + Po . . . .  if the 
order C~ of discriminant D 1 acts on y and the cyclic subgroup of order N in its 
diagram is annihilated by an element ~z r C~ of trace r~ (hence also by - ~  of trace 
- r  0. The divisor -PD .... + _Po,.-r, is always rational over W; its points _y are all 
rational over W iff pXD 1. We have 

P* "P*, ~,),,=(PDr ro (-Po .... +-PD,,-~))w (1) 
- D o , r o  - , , " 

and we now turn to the intersection product  on X over W. 

Assume first that pyD~. Then we may fix a square root ~ in W. A point 

r I + l//Dl 
Y = OF : F ~ F ' )  lies in the divisor Po .... over W if the endomorphism cq - 2 

annihilates ker~. Suppose that (x. y )w>0  for xE _Poo.ro and ) 'e  ~PD .... . Then our 
diagrams reduce to the same isogeny z=-(O:E---,E')=(~v:F--.F ') on X |  W/pW. 
Write R for the endomorphism ring Endw/vw(Z ). The reduction ofendomorphisms 
gives injections Endw(x ) % R, Endw(y) c. R. Since D o and D1 are coprime, R 
cannot be an order in a quadratic field, so it follows from Deuring's theory that z is 
a supersingular point on X |  that R| is a quaternion algebra over Q 
ramified only at p and at infinity, and that R is an Eichler order of index N in this 
quaternion algebra. Moreover, the embeddings of Endw(_X ) and Endw(_y ) give 

elements 1/-/9~ a n d  o~i=(ri+/Di)/2 ( i=0,  1) in R satisfying 

] / D o o ~ - + l / ~ l / D o o = 2 n  for some nr n=ror , (mod2N),  nZ <ror, . 

Proof. l fDol/D , +~Di l /Do=4Tr (%~t ) - -2 ror  , an even integer 2n is with 

n = rorl (2). The elements ~o and ~1 lie in the annihilator of ker(~b) = ker0p), which is 
a two-sided ideal ICR of index N. Locally at a prime #IN we can identify R| t 

N2g~J respec- 

tively. This shows that Tr(li-)~ NZ  and hence NJTr(c%~t), which is equivalent to 
the congruence n=-ror~ (2N). Finally, n 2 < O o O  1 since R |  is a definite quater- 

nion algebra and ~oo] /O~ a non-central element of trace 2n and norm DoD 1.1 
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Thus we get an embedding of 

. ~,ro+e o . ~,,r~+e t +roe~+r~eo+eoe 1 
S = S [ ~ 1 7 6 1 7 6  +IL 2 ~  + z r ~  4 

(eZ=Do, eZ--Dl,1-- eoel +eleo=2n),  

the Clifford order studied in Sect. 3 of Chap. I, into R by sending ei to ~D i. 
Actually, the intersection of_x and y gives two embeddings orS into R, as we could 

also have mapped e 0 to -l/-D~o and e 1 to - ] /Dl l .  Finally, the intersection number 
(_x "_Y)w is given by 

(x_. y )w=l(ordp(m)+ l) ,  where M =  O~ 
- 4 N  ' 

if we assume R has no units besides _+ 1. Indeed, by [9, Proposition 6.1] we have 

(_x" Y_)w = �89 Z Card HOmw/p,w(X_, y_)degl , 
i>=1 

and when [R • [ = 2 the ith summand equals 2 for i < k and 0 for i > k, where k is the 
largest integer such that _x = y  (modpk). The condition _x =_y (modff) means that S 
embeds into Endw/p,w(x)=Endw/p~w(y), which is the unique suborder of index 
pzl-2 in R containing the ring of integers in a quadratic field inert at p [7], and this 
happens if p2i-2[M" Hence k = ( o r d p ( M ) +  1)/2, and this proves our claim. 

We now consider the converse. Pick a supersingular point z on _X| W/pW and 
let R=Endw/pw(Z) and ICR the ideal annihilating the kernel of the cyclic 
N-isogeny defined by z. Fix a binary quadratic form [Do, 2n, DI] with n2< DoD 1 
and n=ror ~ (mod2N), let S be the associated Clifford order and 
M = (DoD~ -n2)/4N. To each embedding ~b of S into R, normalized by insisting 

that ~b(eo) = ] /~o  on the tangent space, we wish to attach a certain contribution to 
the intersection pairing of the divisors -/'Do and -Pro on X over W. Write 

4,(el)=el/Dx with e=  +1. The ideal I contains the elements S o + ~ o o  and 
- 2 

Sx +el /D~ for some integers so, s~ (well-defined modulo N), and the proof above 
2 

shows that SoS~ = n (2N). Via the lifting theorem [8, Proposition 2.7], which also 
holds when the conductor of the order is prime to the characteristic, the given 
embeddings of (9 0 and (9~ into R correspond to points x ~ -Po .... ,_Y ~ PD ..... which 
reduce to z (modp) and are congruent modulo pk where k=(ordp(M)+|)/2.  

Since the total intersection is given by the sum over all the supersingular points 
in the special fibre, which correspond to the right orders Ri of the distinct left ideal 
classes for a fixed Eichler order of index N in the quaternion algebra B(p) ramified 
at p and @, we find that 

Y (PD ..... .(_vD .... +P,, , . -~,))w 
SoS1 = - r o r l ( 2 N )  

| --~ • 1 } ordp(m)+ 1 
= Z Z ~ #~ {StDo,2,,D,I RimodRi  /+  " 

R i  n = . r o r l ( 2 N )  - -  2 
n 2 < DOD 1 
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The factor 1/2 in the last sum comes from the fact that we are taking only the 

normalized embeddings [those with qS(eo)= ]/Do ]. The left-hand side is equal to 
2t(-PD .... " (~PD .... + -PD . . . .  ))w, where t is the number of prime divisors of N, because 
the group of Atkin-Lehner involutions has order 2 t and acts freely on the pairs 
(So, S 0 (mod2N) with product for I (mod2N). Hence we obtain the formula 

(P- oo,ro'(Po .... + P- oi , - , ' ) )w 

1 
- 2t+~ . . . . . .  Z(2N) R,Z 4~{Stoo, 2,,,o~j--"RimodRi• " ordp(M) + 1 2  (2) 

n2<DoD~ 

We have proved (2) under the assumption that all R i have only the units +_ 1, 
but in fact the formula as written (i.e., with the embeddings being counted only up 
to conjugation by Ri/+ 1) is true without this assumption. We omit the proof. We 
have also been assuming that pXD1, but in fact (2) remains true also if PlD1. We 
now indicate the changes in the argument which must be made in this case. If p 
does not divide the conductor olD 1 , then the points in -Po .... are pointwise rational 

over the ramified quadratic extension W[I/D1-] and are conjugate, over W, to the 
points in the divisor -Pol,-rl. Hence the left-hand side of (2) is equal to 

(_Po .... �9 -Po .... )~, where ~ is a prime in W[~D1] .  Again, such an intersection gives 
an embedding of StD o 2, D1] into an Eichler order R in B(p); in this case ordn(M ) 

/DoD1-4n2"~" ' 2 2 
= ord p~  ~IN ) = 1 as p In so the relevant points _x and y in these divisors 

N / 

are congruent (modr 0 but not (rood r&). Here, however, when we consider the 
converse, an embedding S ~ R  always lifts to an intersection in _Po .... "-Po .... with 

SoS 1 =ror 1 (mod2N), as c]/Di = l /D  1 = 0  (mod~t). Hence (2) continues to hold in 
this case. If, on the other hand, p divides the conductor of D 1, then p is prime to N 
and DI =pZSD'l, rl =pSr'~ (mod2N) with s>  1 and the conductor of D'~ prime to p. 
As before, an intersection o f s  e P-oo,ro and _y e-Po .... gives rise to an embedding of 
the Clifford algebra Swo ' 2n, O~1 with n = rori (2N) into an Eichler order of index N in 
B(p). If M = (DoD 1 --4n2)/4N, then ordp(M) is odd. Hence n = g~n ', M = pZSM' and 
any embedding of Stoo, 2n,o,~ extends to an embedding of the larger order 
Stoo,2,,,ow Our previous arguments show that embeddings of the larger order 
contribute to the intersection pairing of PDo,~,~ with Poi,,i + Po;, -ri, with multiplic- 
ity �89 1). On the other hand, the divisor -Po .... has the form -Pm,~'~ + ~ (_Y) 
where the points y_ are locally quasi-canonical liftings of levels 1 < r < s of points 
_Y'e-Pm,~' [7, Sect. 5]. Since each quasi-canonical lifting y is congruent to y' with 
multiplicity 1, the total contribution of an embedding of Swo,~n,o, ~ to our 
intersection pairing is �89 + 1) + s = �89 + 1 ) as before. 

We now combine Proposition 1 with formulas (1) and (2) to obtain the 
following formula for the local height pairing: 

�9 * - -  2 t - I  (Yo ..... Yo .... ) p -  E E ~{4):S--*R, modR,• 1} 
n=--rorl(2N) R, 

n 2 < D o D I  

ordp (M) + 1 
x 2 . ( - l o g p ) .  
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We can simplify this formula by applying the results of Sect. 3 of Chap. I, which 
count the number of embeddings of S, the Clifford order of [D o, 2n, DI], into 
Eichler orders in S |  in terms of the Dirichlet series :(s) = ~ e,(d)d ~. Since we are 

assuming that Do, Da < 0  and n 2 <DoD ~, the algebra B = S |  is definite and 
hence ramifies at at least one finite place. Hence : (0)=  0 and the derivative #(0) 
=~e(d)logd is non-zero precisely when B is isomorphic to some B(p). In this 

d 
case, we showed in Proposit ion 3 of Chap. I, Sect. 3, that 

:'(0) = 2 - '  -~ Z # {S--* Ri • mod Ri/_+ 1 }- �89 (M) + 1). ( -- logp). 
Ri 

Comparing this with our formula for the local height, we obtain our final result: 

Theorem. The total non-archimedean contribution to the height pairing oJ" the 
Heegner divisors * Yoo,~o and * Yo .... is given by 

�9 * - Y, ( ~ e(d)logd) (Yoo.ro, Yo . . . .  > p - -  . . . . .  (2N) D o D l - n  2 p prime 
nZ<DoDI dl 4N 

where e is the (+_ 1)-valued function associated to the quadratic form [D o, -, D l]. 

V. Heights and L-Series 

In this chapter we combine the results of Chaps. II--IV to obtain the principal 
results as stated in the introduction. The final section discusses the form these 
results take for elliptic curves parametrized by modular forms. 

1. Hecke Operators and the Main Identity 

Let D O and D~ be coprime negative fundamental discriminants with 
Di=-r~ (mod4N) and F=Fk,N,OoO,,rorl,Oo=~amq " the cusp form in S z k ( N  ) 
constructed in Chap. III. In this section we combine the results of Chaps. III and 
IV to relate the coefficients a,, to height pairings and to values of Green's functions 
for Xo(N ). Our  main interest is in the case k = 1. 

Theorem 1. Suppose k = 1. Then for m > l prime to N, the Fourier coefficient a m of F 
is equal to the global height pairing * T~ * (YDo,,o, ,,Yo .... ), where T m denotes the m tk 
Hecke operator on X~(N). 

Proof. We will compute the non-archimedean and archimedean parts of the height 
pairing separately. In particular, we will show that the finite part  is given by 

�9 z * - _,) 
n 2 < m2A 

0 denote DoD 1 and for 1 (mod2N) and Z, n, a'z are as in Chap. l I I  (Z where A and the 
\ 

genus character of K = Q(I~A ) corresponding to A = Do. D1, n the primitive ideal 
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7/N + 2~ ~ A  of norm N in K, o'x(a ) for an integral ideal a of K the derivative at 
N 

s = 0 of a=, z(a) = h~, z(b)N(b)=) "The expression on the right of (1) is the first term in 
/ 

the formula for a,, given in Proposition 2 of Chap. III, Sect. 2. The archimedean 
part of the height pairing will then be shown to give the remaining two terms of 
that proposition (i.e., the infinite sum of Legendre functions and the term with the 
factor 2). 

The first observation is that 

(YDo,ro,* T.mYD* . . . .  ) v - -  < * . . . . .  TrnlYD* . . . .  ) v  

for any place v and any decomposition m = morn 1 with m o and ml coprime, since 
Tin= TmoTm, and T,, o is self-adjoint with respect to the local height pairing. We 
choose m o and m~ such that m o is prime to D l and ml to D o. (This is possible since 
D O and D l are assumed coprime; the splitting is not unique and some of our 
intermediate formulas will depend on it, but the final result will not.) By formula (3) 
of Sect. 1 of Chap. IV and the remark following it, we deduce that, for any place v 
of Q, 

�9 ,,,YD .. . .  ) , , =  Z (Y~ , ,do , , odo ,  * 2 YDld . . . .  d l ) v  " (2) 
,,o=ao~;, \ -  o / \ d l  J 
ml =dld~ 

The point is that the discriminants Dod ~ and Did ~ occurring on the right-hand side 
of (2) are coprime and have conductor prime to N, so we can apply the results of 
Chap. IV. 

For integers M all of whose prime factors p satisfy ( A - - ~ 2 ) + -  1 we define 

((M, s) = ~ e(d)d ~, where r, is the multiplicative function on such integers given on 
aiM 

primes p with (~2 - )  4= - l by e(p): ( D-pi) if pXDimi. [This depends on our chosen 

decompositionofminthecasewhenp[mand(A)=- l . ]  Combining (2) with the 

theorem of Sect. 4 of Chap. IV, we find 

�9 TmYo .... ) v -  ~oa6 \ ,/x_-oaoa,r \ 4N , 0 
p m o  

ml =d~.di x 2 < Ad2d 2 

= ~ ~ -  - - ( D d ~ ) ( 5 ) E , ( A m 2 - - n 2  ) ) o , 

n2<Am 2 d~l(n,ml ) 

where in the second line we have set n=d'od'~x and interchanged the order of 
summation. This is equivalent to (1) by virtue of the following lemma. 

m Z A  - - n  2 
Lemma. Fix n=-mo(2N) and define #(k,s) for klM= as above. Then 4N 

(D~ 1 s) : ((nq-m~ i) 
dol( . . . . .  ) k d o )  "-~.1: '  " "tt ) " -  ,3)  
dll(n,mo 
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If Inl <m]~ then each term in this formula vanishes for s = 0  and 

.o,, .... , do \ a l / J  aoa.~'2~2'~ = ~  ~ )n  
a,l(n,ml) 

Proof. The second statement follows from the first by differentiating at s = 0, since 
i fM is positive then e.(M) = - 1 and hence [(M/d 2, 0) = 0  for all dZ]M. We therefore 

needon,yprove, , , ,  w,tU norm 

Both sides of (3) are clearly given by Euler products extending over primes p 
dividing M, so we need only prove that the Euler factors for such p are the same. 
Write pV for the largest power of p dividing a; since (N/n),m)= 1, this is just the 
power of p dividing the g.c.d, of m and (n + mA)/2. Also write p2V+,~ for the exact 
power of p dividing M and e (=  _+1) for e(p). We distinguish three cases, 

according to the splitting behavior of p in K = ~(]fA). 

Caset.(dp)=-l.  Here(p)=pisinertinK, sowehavep~llaand~=O. Sincemo 
and m 1 are coprime, we have (after possible renumbering) p,~mo, p~]m,, 
e(p) = ( ~ ) .  [Recall that this is the one case when the definition of~(p) depends on 

/ n  ', 

thesplittingm=mom,.] Hence ~ L )  - - - r . .  The p-Euler factor on the right of (3) 

is just 1 +p2.~+p4~+ ... +p2~S [-since ct is divisible by l , p ,  p2 . . . .  ,pV and p=(p)  is a 
principal ideal with Z = I and n o r m  p2], while that on the left is 

j = 0  j = 0  

and using the identity 

v x J _ ~ _ x 2 V + I - Z J  1 2 v + l  1 - - X  2 ; '+2  
x J ( l + x + . . . + x ~ - ~ i )  = Z . . . . . . . . .  E x~ . . . . . .  

j=o j=o l + x  l + x  j=o 1 - -x  2 ' 

we see that these agree. (Notice that the final expression involves only powers ofx  2, 
which is why the choice of e=  _+ 1, which was arbitrary in this case, does not 
matter.) 

Case2.(;)=O. Here(p)=p2isramifiedinK, sowehavep2~+~llaand3=Oorl. 

Since D o and D, are coprime, p divides exactly one, say Do; then p,(D~ and 

= ,n,he, rt hand on,y the term  with cont ibut  [ inc  

m, isprimetoDo, p.t/d,,andthetermswithpldogivezerosince(Dp) =01, so the 
2v+6 

p-Euler factor is just ((p2~+~, s)= ~ (~:pS)j. The p-factor on the right is the same 

since pZ~+alla, ~(p)= =e, and N(p)=p.  



Heegner Points and Derivatives of L-Series. II 555 

Case 3. ( A ) = + l. Here (p)= pp' splits in K and we have (possibly after renaming 

pandp')p~+~ Also(Dg)=(D~-)=~:,so)~(p)=z(p')=e,,and, ofcourse, 

N(p) = N(p')=p.  Therefore the p-Euler factor on the right-hand side of (3) is 

(1 +e,p'+e~p2~+ ... + (~p'~)v)(1 + ~pS + r,2pZ~ + ... + (ep~) ~+~) 

and that on the left is 

(eps)J(1 + e, pS + ~2p2S q _ . . .  q_ (gpS)2V + a -  2j) .  

j = 0  

The equality of these two expressions follows from a calculation like the one for 

This completes the proof of the lemma. 
We now turn to the archimedean part of the height pairing. In Sect. 3 of 

Chap. IV we wrote * * (Yoo,,o, YO .... )~  as the sum of two terms 

C~=�89 +C~)'  C~=!im[GN~(PD,~L ' . . . .  , Pm,+rt)-s~l-2 ] (4) 

and 

Cz = l i r a / ~ 2 ,  ~ (H(Do)E*(P* , r~) + H(D ,)E*(P*o ,,) 
s ~  1 I_l - - A S  ' " 

-H(Do)H(DOq~*(s))+s ( ' (5) 

where 2 = -  12H(Do)H(D1)/N [1 (1 + p - l ) ;  evaluating them gave the two terms 
pIN 

lira [ . . . ]  and 2[. . .]  in the theorem of that section. Now applying T,, to * Y o l . r l  

multiplies E~(P$ .... ) by m ~ -'~ 5~ d z ' -  ~ (since E* is an eigenfunction of T,, with this 
dim 

eigenvalue) and multiplies the other three terms in the square brackets in 
(5) by ~ d = or(m) (since 1 is an eigenfunction of T,, with this eigenvalue). Hence it 

dim 
m 

replaces C2 by a(m)C2 + 2 ~ l o g ~ ,  which, in view of the formula for C2, is equal 
dim 

to the final term 2[ . . . ]  in the formula for a,, given in Sect. 2 of Chap. III. On the 
other hand, the effect on (4) of applying T,, to P* is to replace C~ by Ol,rl 

i -  

T h e r e -  

fore Theorem 1 will follow if we show 

Gu ..... (PD . . . . .  Po .... ) = - 2  2 ao,z n i Qs-1 . (6) 
n > m V A  

n =- mQ(2N) 

But this follows, by the same argument as used above for the finite places, from 
F- 

Proposition 2 of Sect. 3, Chap. IV / the  0(n) occurring there is just 
k 
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( D~ n2 ) 1 4~N- , 0  , so we can apply our Lemma with s = 0 if we observe that the 

analogue of(2) holds with ( , ) ~  replaced by GN,~, which also satisfies Gm~(z o, T,,zl) 
= GN,~(T,,oZo, T, ,z  O. This completes the proof of Theorem 1. 

Substituting Eq. (6) with s =  k into Proposition 1 of Sect. 2, Chap. IIl, we 
obtain the analogue of Theorem 1 for higher weights: 

Theorem 2. Let k > 1 and F = Fk, N,A,e,t~o = ~ a,,q" the modular fi~rm constructed 
in Chap. III. Then .for m>= 1, ,,> 1 

a,,= I,. <~,,VA (m]/A)k-lpk l ( m ~ )  crx' ( ( n  + 2 I f  A ) "  - n 1) 

nzmo~(2N) 

l p , 1 , , , JI-2[GN,k,?II( D( P D  1 r , ) - ] - ( - -  1) k G N  k m ( P D o  .... P D  . . . .  ) ] "  

Because (mirA) k- 1P k_ 1 is an integer (Pk- ~ is a polynomial of degree and 

parity k - 1 with integral coefficients) and cr'z(a) for an ideal a with Z(a) = - 1 is an 
integral linear combination of logarithms of prime numbers (in fact, always a 
nonpositive integer multiple of the logarithm of a single prime number), we can 
write this as 

1G+ "p am=~ ~,k,,,( O ....... Pol r~)+ ~n(p)logp, (7) 
p 

where + 1 = ( -  1)k- 1 and signifies(+_ l)-symmetrization with respect to r l, the sum 

runs over primes p and is finite indeed, contains only primes < 4N ] '  and 

n(p) e Z. This formula suggests two problems: 
i. Interpret the right-hand side of(7) as a higher weight height pairing defined 

on Heegner sections of a certain local coefficient system over Xo(N ). 

2. If {2,,},,> 1 is a finite collection of integers such that 5~ 2,,a(m)= 0 for all cusp 
forms F, a(m)qmE S2k(N)-, then (7) implies that " 

Z 2"G~v,k,"(PD ..... PD .... )= E E E )~mG~v.k,,.(Zo, Z,) 
m r o e P D o ,  r o T1EPI)I,r 1 m 

is the logarithm of a rational number; show that each summand Z 2,,G~,k,,,(ro, zl) 
is the logarithm of an algebraic number. " 

The analogues of both these questions for the case Do=D1, ro=rl were 
discussed in the last section of [9], so we say nothing further about them here. 
Evidence for the algebraicity conjecture 2. will be presented in a later paper. 

2. Consequences 

In this section we prove Theorems B and C of the Introduction and discuss some 
extensions. 
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Let D~ = r ] - 4n~N < 0 (i = 0, 1) be coprime fundamental discriminants and write 
y* for Yo,,* r, e J*(Q), where J * =  Jac(XS(N)). The power series 

G(z)= ~ (y~,Tmy*)q m (q=e 2~iz) 
m = l  

defines a modular form in S2(F*(N))=S2(N) by the formal argument given on 
p. 306 of [9]. Theorem 1 of Sect. 1 says that the coefficients ofq"  in F and G agree 
for all m prime to N. In particular, F - G  is an oldform, so (G , f )=(F , f )  i f f  is a 
normalized newform in S2(N)-. The argument on p. 308 of 1-9] shows that (G,f) 
equals (.L f )  times the height pairing ((Y*)f,(Y*)s), where (y~)f is the 
f-eigencomponent of y* on J*(~) |  [obtainable as ~] c~,.T,.y* where ~ c~., T., is a 
finite linear combination of Hecke operators which is the identity on f and 0 on its 
orthogonal complement in S2(N)- ]. Hence 

1 
((y~)~, ( y D D  = Ibf II 2 (F,f), 

and substituting for (F,f)  the expression 

l L '  y(Oo, Ol,e) 
( F , f ) = ) L ' ( J ;  1)r2,N.a.e.no(,f)= 4~ (f' 1) ~. f(z)dz 

obtained in Sect. 3 of Chap. 11I we obtain 

L'(f, 1) 
((Y*)f'(Y*)Y)= 4~-(I-,~i ~ ,(oo.o,.~)~" f(z)dz,  (I) 

which is Theorem B. Here A and ~ denote DoD ~ and ror ~ (mod2N) as usual, and 
7(D0, D~, e) is the cycle ~ zoo(Q)7o on Xo(N ) as in the Introduction and 

Qe~N, A, e/ro(N) 
in Sect. 1 of Chap. 1I. 

Next we observe that (1) remains true when Do=D 1, ro=rl ,  at least if D O is 
prime to 2N. Indeed, in that case we have 

I f(z)dz = [1)~ L(J; O o, 1) 
y( Do, Do, O) ~7~ 

Iwhere g(f,  Do, s)denotes the twist of g ( f  , s)by ( D ~  by the proofofCorollary 1 

in Sect. 4 of Chap. II, and 

IO~ L'(f, 1)L(f, Do, I) 
((YS)T' (Y~)T) - 8 re= II f II 2 

by the main theorem of [9]. Now applying the theorem of Chap. II, Sect. 4, to the 
pairs (Do, DO, (Do, Do), and (D1,D1) , we obtain 

((y*)f, (y*)f) = CoC ,L,  ((Y})f, (Y*).r) = c~L, ((y*)f, (y*)f) = c~ L 

where c i = c(ni, r) is the coefficient of q~'r in a non-zero Jacobi form ~ = ~y e J2, N 
L'(L l) 

with real coefficients having the same Hecke eigenvalues as f and L = 4 ~ h ~  ~. 
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These formulas imply that Co(y*)i-cl  (YS)s has height 0 and hence vanishes, since 
the height pairing on J*(ll))| is positive definite. Hence (YS)I and (Y*)I are 
collinear. To obtain Theorem C we need the same statement when D o and D1 are 
not necessarily coprime. But this follows, since by Lemma 3.2 of [15] we can 
choose a fundamental discriminant D 2 = r 2 - 4 n z N  prime to Do, D~, and 2N with 

=c(n2, r2)4=0, and then (yS)i= ~(Y~)I, (Y*)I= ~2~ (Y*)I by the special case of C2 
2 

coprime discriminants. We deduce that c~- l(y*) I is independent of i (for cl 4 = 0), i.e., 
that there exists a vector Yl e (J*(II})| with height (Yl, Yl) = L such that 

(Y*.r)i = c(n, r)y I (r 2 - 4nN = D) (2) 

for all fundamental discriminants D prime to 2N. This is Theorem C. 
We observe that (2) remains true for D not fundamental (but still prime to 2N). 

Indeed, start with (2) for D fundamental and multiply both sides by a(m), the 
coefficient of q" in f ,  for some m prime to N. Since a(m) is also the eigenvalue of f 
under Tin, the left-hand side is (Tmy*,r)I and similarly the right-hand side is Yl times 
the coefficient of q"~r in ~bl T~. Equation (3) of Chap. IV, Sect. 1, expresses Troy* ~ as 
the sum ofy*,,~ ,m and a linear combination f * �9 o Yo~.~a with d < m ,  and the action of 
Tm on Jacobi forms in J z , N  is given by exactly the same formula [-4, Sect. 4]. It 
follows by induction that (2) is true with D, n, r replaced by Dm 2, nm 2, and rm. But it 
is easily checked that any R with R 2 ------ Dm 2 (mod4N) is congruent to rm (rood 2N) 
for some r with r 2 - -  D (mod4N), so this proves (2) for general discriminants D 
prime to 2N. 

It is also doubtless true that (2) remains true when D is not prime to 2N (at least 
if the conductor of D is prime to N). One could prove this either by proving the 
main theorem in [9] without the restriction (D, 2N) = 1 or by proving Theorem B 
of this paper without the restriction (Do, D~)= 1. We made this restriction to keep 
the paper from being even longer. To remove it, one would have to make the 
following changes: 

Chapter II: No change [the assumption (Do, D 0 =  1 was not made here]. 
Chapter III: The definition of E~(z,z') must be modified by replacing 

E z(a) E' . . .  
[/,1 (m, n)6 (ha x a)/~0 k 

by 

Z zoo((?) Z '  . . . ,  
[ Q ] ~ N ,  A, o/Fo(N) (m, n)e(LQ x L(2)/Fo(N)Q 

where L o and Lb for Q = [ a N ,  b,c] denote the Z-lattices 7/aN+7/b+-~2A and 

7/a + 7/b + 1 /~ .  Then the definition of F and the calculation of (F, f )  in Sect. 3 are 
2 

unchanged, as is the analytical part of the computation of the Fourier coefficients 

of F in Sect. 2, but the arithmetic functions ao,x n -1 and 

, ( ( ~  4= ml//A~ 1"~ ).- ) would have to be recomputed. 
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Chapter  IV: Here, too, the general setup and the analytic part  of the 
computat ion (Green's functions) are unchanged, but the arithmetic part  would 
have to be generalized. In particular, the results of Sect. 3 of Chap. I concerning the 
number of embeddings of Clifford orders the Eichler orders would have to be 
extended to the case when the quadratic form q =  [D o, 2n, D~] is not primitivc. 

If one knew (2) for all D and r, one could restate it in the form 

Z (Yr* -4Nn, r)fqn~ ~= C~f(Z, Z) yf. (3) 
n , r ~ 7 s  

r 2 < 4 N n  

Summing this over all new forms would say that the power series 
~ ie ~ l leW Cr i sp ,  n e w  ~, (Y~ 4N,,~),~,,q ( belongs to J (~) | . Presumably the same relation 

n , r  

would hold for the old parts by induction on N; this would then give the "ideal 
statement" formulated at the end of the Introduction. 

3. Relations with the Conjecture of Birch and Swinnerton-Dyer 

Let f e  S2(F*(N)) be a normalized eigenform, q5 s = ~ c(n, r)q"ff ~ Jz, N a non-zero 
Jacobi form with real coefficients corresponding to it. By the results of Sect. 2, there 
are elements 

yse(J*(Q)| e~eIt~(X~(N)(~2);IR)] 

[where the minus on H~ indicates the eigenvalue - l for the involution induced by 
complex conjugation on X~(N)(II2)] such that 

(Y*, r) f = c(n, r)y f (1) 

for any fundamental discriminant D = r 2 -  4nN < 0 prime to 2N and 

[7(D0, D,, ror,)]f = c(no, ro)c(n~, rl)e f 

for any fundamental discriminants D i = r~- 4niN < 0, where [7(Do, D l, t~)] is the 
homology class represented by the cycle 7(D o, D~, 0). The last statement is true 
without the assumption (Do, D 1) = 1 or (DoD 1,2N) = 1 (it was proved in Chap. II in 
full generality), but to make sense of it we must check that 7(D o, D~, 9) is a closed 
cycle and hence really represents a class in H~(X~(N); 77,). This is obvious ifD o + D I 
[each 7Q, Q ~ ~N. A. Q, is a closed geodesic in Xo(N)], but remains true also if D o = D 1. 
Indeed, for D o = D~ = D the endpoints of the semicircle 7Q for Q = [aN, b, c] are the 

- b + D  
cusps - 2 a N - '  and these are F0(N)-equivalent to the endpoints of 70, where 

Q = [ - a N ,  b, -c] ,  with the same induced orientation. Hence 7Q--TQ is a closed 
oriented cycle in Xo(N), and 7(Do, D l, 0)is a sum of such because xo(Q)= - z o ( Q )  

/ 

every Q. (Interestingly, each 70 defines a closed cycle in X~(N) if D is prime to for 
k 

--b+_D ) 
N, because the endpoints 2aN are always interchanged by w.~ in that case. 

The vector space H~(X*(N)(~);IR)] is one-dimensional, as is the space 
(J*(~) |  if the Birch-Swinnerton-Dyer conjecture is correct and L'(f, 1)4= 0. In 
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this case yf  and ef are generators and Eq. (l) of Sect. 2 gives the relation 

L'(f, I) ~ f(z)dz 
(YY' Yr - 4n l[ f I] 2 ~y (2) 

between them. If ~bf is chosen to have coefficients in K I, the totally real number 
field generated by the Fourier coefficients of f ,  then yf  and e I belong to 
(J*(~)|  f and HI(X*(N); Kr f ,  which are /-dimensional over K I. The 
differential c9 s =f(z)dz is also defined over Kf  [on the canonical model of X'~(N) 
over Q], and Ilmsll 2:= x~(~)(~) I~~ equals 4n 2 II f ll 2. Hence (2) can be written 

L'(f, 1 ) -  II~~ 1 
- -  ~ ( o f  2i ~I 

(Ys, Ys), (3) 

in which the first factor is a Kfmul t ip le  of the "+"-per iod  of f and the second, 
assuming that rkJ*(Q) I = l, a Kfmul t ip le  of the f -par t  of the regulator of the 
Jacobian. 

Equation (3) is an identity of the same sort as that predicted by the Birch- 
Swinnerton-Dyer conjecture. We now make the comparison between the two 
more explicit in the case when f corresponds to an elliptic factor E of J* over Q. 
This is the case exactly when K I = Q ;  then gby can be chosen uniquely up to sign by 
requiring that the coefficients c(n, r) are integers with no common factor. [By using 
the action of Hecke operators, we see that this is equivalent to making the same 
assumption on the c(n, r) with r 2 - 4Nn fundamental.] Changing the choice of sign 
replaces yf  by - y y  and has no effect on ef. Let p'X*(N)--}E be a non-trivial map 
defined over ~ and taking the cusp oo to 0eE.  The image ofe  I in Hl(E,q~)- lies in 
Hi(E,Z)-~2~,  because c(no, ro)c(n~,rl) times it is the integral class 
p.[7(Do, D1, rorl) ] and the integers c(n o, ro)c(n 1, rl) have no common factor (take 
no = ni, ro = r0. Let n denote the index of the subgroup it generates. Similarly, let 
P E E ( Q ) |  be the image of Ys under p . .  [If we knew (1) for all D, then an 
argument like that just used would show that P belongs to E(Q). Since we haven't 
proved this fact and don't know that the coefficients c(n, r) for r prime to N have no 
common factor, we cannot exclude the possibility of a denominator.] Finally, let 
m e be a Neron differential on E, normalized so that P*r c~ol with c > 0 (c is 

automatically an integer), and (2+ = ~ I~owl the real period of E. If/~ denotes the 
E(~,) 

canonical height function on E(Q)|  then we have the relation 
c 2 

[i(P)=deg(p)(y1.,ys). Moreover, I[o)eH 2 :=  E~ "[ Ic~ is equal to ~ ]lcol]l 2 and is 

l 
also equal to ~2 + times the integral o f2 i  o3e over a generator of Hi(E; ZT)-. Hence 
(3) becomes: 

Proposition. With the above notations, L'(E/~, 1)= l~fl+h(P).  
c n  
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Suppose  L'(E/Q, 1)+  0. Then  the B i r c h - S w i n n e r t o n - D y e r  con jec ture  predic ts  
tha t  r k E ( 0 ) ) =  1 and  tha t  

Iml,n 
L'(E/ff), 1) --  [ E ( ~ ) :  7Zp] 2 

where  LLI is the (conjec tura l ly  finite) Shafa rev ich-Ta te  g r o u p  and  

m = H [ E ( ~ p ) : E ~  �9 Hence  we are  led to 
pIN 

Conjecture.  If IJ(E/~, 1)4=0 then [ E ( Q ) : ~ p ] 2 _ _ c .  n.  m.  ILL[I. 

The  number s  c, n, and  m are  easily de t e rmined  in any  given case and  typica l ly  
involve  only  a few smal l  pr imes,  so the essence of  this  conjec ture  is tha t  the index of  
the  canonica l  1 -d imens iona l  s u b g r o u p  of the M o r d e l l - W e i l  g r o u p  which  we have 
cons t ruc ted  using Heegner  d iv isors  is rough ly  the s q u a r e - r o o t  of  ]L[I ]. O n  the 
o the r  hand ,  since I l l ,  if finite, has  square  order ,  ou r  conjec ture  also predic ts  that ,  
when E(E/Q, 1)4:0, the integer  c .  n .  m is a perfect  square .  
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