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Introduction

Let Xo(N) be the usual modular curve with complex points $/I(N) and K an
imaginary quadratic field of discriminant D in which the prime factors of N are all
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split. The theory of complex multiplication produces certain points x € X 4(N),
called Heegner points, which are rational over the Hilbert class field H of K. In our
first paper [9] we computed {(x)— (o0), (x")— (c0)> 4 for two such Heegner points x
and x’ which are conjugate over H, where { , > denotes the global height pairing on
the Jacobian J of X (N), in terms of the derivatives at s=1 of certain L-series
associated to modular forms of weight 2 on I,(N). As a consequence one obtains a
formula for the global height pairing {yp, yp>x. Where y,, is the Heegner divisor
Tryk((x) —(o0)) € J(K). The result was that the height of the f-isotypical compo-
nent of y,, where f is a normalized newform of weight 2 on I(N), is up to a simple
factor equal to the first derivative at s= 1 of the L-series of f over K. This L-series is
the product of L(f,s)=Ya(mn™* and L(f, D,s)=Y a(n) <§> n~*% where f(z)
=Y a(n)e?™™, and always vanishes at s=1 if a Heegner point of discriminant D
exists.

We would like to have information about the position of the Heegner divisor
yp, as a vector in the Mordell-Weil group, rather than just its length or the length of
its components in the various Hecke eigenspaces. To do this, we will put all of the
Heegner divisors in the same group and then compute their height pairings with
one another. Let J* denote the Jacobian of XE(N), the quotient of X o(N) by the
Fricke involution wy. The action of the non-trivial element of Gal(H/K) on
Tryyx((x)) is the same as that of wy, so the image yj of y), in J* is defined over @. Its
f-component is non-trivial only if f is a modular form on I*(N), and this is the case
precisely when L(f, s) has a minus sign in its functional equation and hence a zero
(of odd order) at s=1. The result quoted above then says that the height (now over
@) of the f-component of y} is equal, up to a simple factor, to L'(f, )L{f, D,1). On
the other hand, an important result of Waldspurger expresses L(f, D,1) as a
multiple of ¢(D)?, where ¢(D) is the [D|-th Fourier coefficient of a modular form of
weight 3/2 corresponding to f under the Shimura lifting. This leads one to guess
that the height pairing of the f-components of y§ and yj for different
discriminants D, and D, should be related to the product L'(f, 1)e(Dgy)c(D,).

In this paper we will establish a result of this nature. Actually, the theory of
forms of half-integral weight is adequate to express the result neatly only when N is
prime; in general we must use instead the theory of Jacobi forms as developed in [ 4,
15]. Combining this result with multiplicity one theorems guaranteeing the
uniqueness of the lifting to Jacobi forms we will show that the f-eigencomponents
of the Heegner divisors y¥ all lie on a single line in (JXQ)YQR), and that their
positions on that line are given by the Fourier coefficients of a Jacobi form. The
subspace they generate is non-trivial precisely when L'( f, 1)+ 0. We will also prove
a formula relating the height pairings of the Heegner divisors to integrals of
modular forms over certain geodesic cycles on X o(N) associated to real quadratic
fields. Note that the statement about 1-dimensionality is in accordance with the
Birch-Swinnerton-Dyer conjecture, which predicts that (J*(@Q)®R), has dimen-
sion 1 when L'(f, 1)+0.

We would like to emphasize the strong analogy of this theorem with some
previous work of Hirzebruch and Zagier [10], in which the intersection numbers of
certain modular curves on a Hilbert modular surface Y were computed and related
to the coeflicients of a modular form of weight 2. The intersection number, like our
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height pairing, is expressed as a sum of local terms (which are calculated, in both
cases, by counting representations by quadratic forms). The modular form of
weight 2 then determines the positions of the curves in the homology group H,(Y)
and hence in Pic(Y) since Y is simply connected. This fact actually permits one to
deduce our theorem from the results of [10] in some special cases, e.g., in the first
non-trivial case N =37 [23]. It is therefore a great pleasure to dedicate this paper
to Hirzebruch, who has taught all three of us so much.

In the remainder of this introduction we will give the precise definitions of the
Heegner divisors, Jacobi forms, and integrals over geodesic cycles, and state our
main results.

1. Heegner Divisors

Let K be an imaginary quadratic field of discriminant D and class number h, and
assume that D is a square modulo 4N (or equivalently, that every prime divisor p of
N is split or ramified in K, and split if p?|N). Fix a residue class r (mod2N) with
r>=D (mod4N). If te€ H (upper half-plane) is the root of a quadratic equation

at’+bt+c=0, ab,ceZ, a>0, a=0(modN),

1)
b=r(mod2N), b*—4dac=D (

then we know by the theory of complex multiplication that the image of 7 in
H/To(N)C X o(N)(C) is defined over H, the Hilbert class field of K. There are exactly
h such images, permuted simply transitively by Gal(H/K); their sum is thus a
divisor P, , of degree h defined over K. (Actually, if D= — 3 or —4 we define P, , as
1/3 or 1/2 of this divisor to correct for the presence of extra units.) From a modular
point of view, points of X (N) correspond to diagrams E-% E’ where E and E’ are
elliptic curves and ¢ a cyclic N-isogeny, and the points of P, , correspond to
diagrams where E and E’ both have complex multiplication by the ring of integers

o o D
of K and the kernel of ¢ is annihilated by the primitive ideal n= <N , r+;/> of

norm N. We write y,, , for the divisor Pp, ,—h - (o) of degree 0 on X ((N) and for its
class in the Jacobian J, and P} ,, v}, for the images of P, , and yp ,in X§(N) and
J*, respectively; as stated above, the latter are defined over Q. Our goal is a
formula for the height pairing {y}, ... V5., > of two such divisors. In the case
Do=D,=D, rg=r,=r, the value of r is irrelevant for this question, since the
group Wx(Z/2Z) (t =number of prime factors of N) of Atkin-Lehner involutions
of X o(N) permuts the P, , or y, , for a given D transitively and since the height
pairing on a Jacobian is invariant under automorphisms of the underlying curve.
This is why the role of the square-root r of D (mod4N) was not stressed in [9]; it
becomes important now because for different discriminants there is no canonical
compatible choice of square-roots.

2. Jacobi Forms

A Jacobi form of weight k and index N is a function ¢ : $H x €C— C satisfying the
transformation law

4)(?&”» . ) (et dfe T ) v(‘z Z)GSLZ(Z)
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and having a Fourier expansion of the form

Pr,2)= ¥ cnng'l" (g=e*", {=e’), 2

nreZ
r2<4Nn

where c¢(n, r) depends only on r* —4Nn and on the residue class of r (mod2N). Such
functions arise from theta series [c(n,r) is the number of vectors in a 2k-
dimensional lattice having length n and scalar product r with a fixed vector of

2miNt’

length N7 and Siegel modular forms | ¢ is the coefficient of e in the Fourier

expansion of a Siegel modular form FC IZ) of weight k on SpAZ)jl. One can

define Jacobi cusp forms [require r2 <4Nn in (2)], Eisenstein series, a Petersson
scalar product, Hecke operators, and new forms [4]. Using a trace formula, it is
possible to show [15] that the new part of the space J;%% y of Jacobi cusp forms of
weight k+ 1 and index N is isomorphic as a Hecke module to the new part of the
space S,,(N)~ of cusp forms of weight 2k on I,(N) with eigenvalue — 1 under the
involution f(z)r>(—Nz*) ¥ f(—1/Nz) (these are the cusp forms whose Hecke
L-series have a functional equation with a minus sign under s+ 2k—s). In
particular, if fe S,,(N)™ is a normalized newform, then there is a non-zero Jacobi
form ¢=¢, eJ¥T y, unique up to a scalar, having the same eigenvalues as f
under all Hecke operators T, (m, N)=1. We can choose ¢, to have real Fourier
coefficients (in fact, coefficients in the totally real number field generated by the
coefficients of f).

3. Cycle Integrals

Let A be the discriminant of a real quadratic field of narrow class number h and
assume that 4 is a square modulo 4N (i.e, make the same assumptions on the
splitting behavior of prime factors of N as above for Heegner divisors). Choose a
residue class g (mod2N) with ¢?=A (mod4N). Then the points z=x+iye9
satisfying an equation of the form

az)>*+bx+c=0, a,b,ceZ, a=0(modN),
b=p (mod2N), b?—dac=4

[the real quadratic analogue of (1)] form an infinite union of semicircles whose
image in H/TH(N)CX(NNCT) is a union of h closed geodesics, in 1:1 corre-
spondence with the narrow ideal classes of Q(‘/Z ). Each such geodesic is the
quotient y, of one of the semicircles by a matrix M =M, e SL,(Z) correspond-
ing to a unit of the quadratic form Q(&, n)=a&? +bén+cen® If f€85,(N), we can

define the cycle integral
Mz

rk,N,Q(f): zj f(Z)Q(Zal)kfle (any zo€9).

If 4 is a product of two negative discriminants D, and D,, then there is a

corresponding genus character y from the narrow ideal class group of (Q(]/Z) to
{+1}, and summing over the h classes of Q (for fixed 4 and p) with weighting
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factors x(Q) gives a cycle integral which we shall denote ry x4, p,(f). For k=1 this

is just the integral of the differential form f(z)dz over the closed cycle y(Dy, D, 0)

=Y x(Q)yg on X,(N), which is invariant under wy and anti-invariant under
(01

complex conjugation.

The Results

Because the space J;'%  of Jacobi cusp forms is isomorphic as a Hecke module to
a subspace of S,,(N)~, the “lifting map”

a0
FLpore: = Y (coefficient of g"{™ in @|T,, )™
m=1
(where ny, r are integers with Dy =r§—4Nn,<0) maps J;%% y to S, (N)~. After a
preliminary chapter on quadratic forms and associated orders in quaternion
algebras, we will construct in Chap. Il the kernel function for %, , . It turns out
that the Fourier coefficients of . , , the adjoint of %}, . with respect to the
Petersson scalar products in J;'¥] y and §,,(N), are given by the cycle integrals
defined above. This leads to the first main result:

Theorem A. Let feS,,(N)” be a normalized newform, ¢p= ¢ e J;*%  a Jacobi
Sform corresponding to f as above, and D;=r?—4Nn,<0 (i=0,1) two coprime
Sfundamental discriminants. Then

1 1 .
TIE c(ng, roe(ng, ri) = Wik kN DoDy.ror, DS ) s 3)

where ||| and | f || are the norms of ¢ and { in their respective scalar products and
c(n, r) denotes the coefficient of q"(" in ¢.

(Here and in the next paragraph, = means equality up to an elementary non-
zero factor which depends only on N and k.) Note that (3) makes sense since ¢ is
unique up to a non-zero real constant and replacing ¢ by 4¢ multiplies both || ¢ ||?
and c(ng, ro)c(n,,ry) by A%

Next, in Chap. Il we will construct a modular form F € S,,(N) ", depending on
the same data k, N, D, <0, D, <0, and ryr, (mod2N) with r? =D, (mod4N), by
starting with a non-holomorphic Eisenstein series of weight 1 for the Hilbert
modular group of Q()/ DD, ) and applying to it a differential operator of H. Cohen

and a holomorphic projection operator. We prove that the scalar product of F
with a normalized newform feS,,(N)™ is given by

(Fo ) =1 N. Dob.rors, 0ol /) LS K). (4)

We also calculate the Fourier coefficients of F. They turn out to be given as a sum
of two terms, one of which is a finite integral linear combination of logarithms of
prime numbers and the other an infinite sum of Legendre functions. This infinite
sum is shown in Chap. IV to be a finite linear combination of values of a certain
Green’s function at Heegner points. More precisely, for k> 1 odd we prove

k-1

coefficient of g™ inF  =(DyD,) 2 Y G¥ (t5,7,)+ Y n(p)logp: (5)

0, Tt p
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here 1, and t, run over the points of the Heegner divisors P} , and T,P%

(T,,=m"™ Hecke operator) and G¥ , is the unique function on X ¥(N)? which is an

eigenfunction with eigenvalue k(k — 1) of the hyperbolic Laplace operator (in each

variable) and is bounded except for a logarithmic singularity along the diagonal,

while the second sum runs over primes and n(p) is an explicitly given integer which
2

is non-zero only if p divides one of the integers Doa%\f r—, r=ror, (mod2N),

|F] < ]/DOD1 . For keven the result is similar but with G¥ _, replaced by a function on
X o(N)? which is odd with respect to the action of wy in each variable. For k=1 we
prove a similar formula for m prime to N, where now G}_; is harmonic on X§(N)?
and is bounded except for logarithmic singularities along the diagonal and the axes
X#(N) x {00}, {a0} x XF(N).

We also show in Chap. IV that the right-hand side of (5) for k=1 equals
Vbore IV, .r»» where (,> is the canonical height pairing on J*@).

Specifically, the terms ) G% ,(to,7,) and n(p)logp are the local height contri-
butions from the places oo and p, respectively; they are calculated by counting the
number of embeddings of certain Clifford orders into (NZZ ;) CM,(@Q) or into
an Eichler order of discriminant N in the quaternion algebra over @@ ramified at p

and at oo.:l This leads to the formula

(/. F)
WBord s Wb ds? =i (6)
Foordr Wben i 2= (1)
for the height pairings of the f-eigencomponents of yj , and y} ., where
JeS,(N)” =8,(IF(N)) is a normalized newform and {, > has been extended to
JHQ)®R by linearity. From (4) and (6), we obtain (putting in the constants)

Theorem B. Let Dy, D, <0 be coprime fundamental discriminants, D,=r? (mod4N),
and feS,(I¥(N)) a normalized newform. Then

=L e

475||f” 2 (Do, Dy,rory)

<(yl>§0,ru)f’ (y?;‘,n)f> =

Combining this with Theorem A gives the identity

L(fi1
<(y;k)o.m)f’ (y;(;l'r')f> = Zn(Hf(;S Hl ‘

On the other hand, the main result of [9] implies that
DI (£, 1)

OB.Ap B2 =" 5 _H"f_HTL(f’ D,1) if (D,2N)=1,

(g, ro)e(ny, ry). (7)

and by an analogue of Waldspurger’s theorem proved in Chap. I1 this is equivalent
to

L)
4nfg)?

Wb bA0 = cnry*  (D=r’>—4Nn). (8)
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Together, Egs. (7) and (8) imply that (y§_ ), and (v}, , ), are collinear (Cauchy-
Schwarz in the case of equality!), and this gives our main theorem:

Theorem C. Let feS,(IF(N)) be a normalized newform. Then the subspace of
JHQ)®R generated by the f-eigencomponents of all Heegner divisors (y3 ,), with
(D,2N)=1 has dimension 1 if L'(f, 1)#0and 0 if L'(f, 1)=0. More precisely,(y} ,),

4N
and ye(J*Q)®R), is independent of D and r with (y,,y.>=L(f, /A 1%

We also discuss in Chap. V the interpretation of (5) for k> 1, the modifications
that would be needed in the proof of Theorem C for (D,2N) =1, and the relation
of Theorems B and C to the conjecture of Birch and Swinnerton-Dyer. The
ideal statement of Theorem C, analogous to the main theorem of [10], would be
that the formal power series Y V5 _4na.q"C" lies in the tensor product

n,re
r2—4Nn<0

JHQ)RJSX, with non-vanishing f-component iff L(f,1)=0.

For the reader’s convenience we remark that Chaps. II, III, and IV are
essentially independent (all three use parts of Chap. I) and can be read in any order.
The results of Chap. 11 (in particular, Theorem A)are of independent interest in the
theory of Jacobi forms.

2
=c (r ——, 1 |y, where c(n, r) is the coefficient of ¢"(" in a Jacobi form ¢ eJ, s

Notations

The symbols e™(x) and e,(x) (m € N) denote e*™™* and e>™*/™, respectively. In e™(x),
x1s a complex variable, while in e,,(x) it is taken to be in Z/mZ. We sometimes write
e(x) for e*™* (xe Q).

For a function f:Z—C we write f* for f symmetrized or antisymmetrized,
respectively, ie., f(r)=f{r)+ f(—r). By d|n(ne N)we mean d|n and <d, g) =1.In

a sum of the form ) we understand that the summation is over positive divisors
din

only. The abbreviation “mod” is frequenctly omitted; thus we often write a= b(n)

instead of a=b (modn). The symbols > and Y denote sums over representatives
ae) o(e)*
for all residue classes or all primitive residue classes modulo ¢, respectively.

By a discriminant we mean any non-zero integer A=0,1 (4), by a fundamental
discriminant either 1 or the discriminant of a quadratic field. Any discriminant 4
can be written uniquely as 4,c? with 4, fundamental and ¢>1; ¢ is called the
conductor of A. A prime discriminant is a fundamental discriminant with exactly
one prime factor [i.e.,, —4, —8, 8, or (— 1)?~Y2p with p an odd prime]. For 4 a

. a4\ . C e .
discriminant, <> is the Kronecker symbol | the totally multiplicative function
. A . 4 . . .
with <41> =sign(A) and <p> for p prime defined as O if p|4, +1 if p¥4 and

A=square (4p), —1 otherwise |.
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$ denotes the upper half-plane, I'(1) the full modular group SL,(Z) and I(N)

b
(N € N) the subgroup of(Z d> with Nlc. For k>0 we denote by S,,(N) the space

of cusp forms of weight 2k on I'(N) and by J, y (resp. J;'3) the space of Jacobi
forms (resp. Jacobi cusp forms) of weight k and index N on the full Jacobi modular
group I'(1)! =SL,(Z) x Z*. (For the theory of Jacobi forms we refer to [4].) The
Petersson scalar products on these spaces are normalized by

(/. 8)= Ibf(f)g(f)vz"'zdudv (f, g€S:(N)),

To(N)©

(¢, )= F(l)"'{ﬁ . Mz, 2)p(, 2)o* "3~ NP dxdydudo (¢, peJ5RP),

where t=u+iv, z=x+1iy.

I. Quadratic Forms, Genus Theory, and Clifford Algebras

In this preliminary chapter we collect together some material about quadratic
forms which will be used in later chapters. Specifically, Sect.1 treats the
classification under I'(N) of binary quadratic forms of the form ax*+bxy +cy?
with a divisible by N, Sect. 2 discusses the definition of genus characters on such
forms, and Sect. 3 treats the Clifford algebras of binary quadratic forms (which are
quaternion algebras) and their orders. The reader may want to skip this chapter
now and refer to the results later as needed.

1. Iy(N)-Classification of Binary Quadratic Forms

We consider integral binary quadratic forms [a, b, c](x,y)=ax>+bxy+cy?. As
usual the group I'(1) operates on such forms by

[a,b,c]o (‘;‘ §> (x,3)=[a, b, J(ox+ By, yx+ 6y)
preserving the discriminant A =b? —4ac and the greatest common divisor (a, b, ¢),
the number of classes with fixed values of these invariants being finite. We denote
by 2, and 29 the set of all quadratic forms of discriminant 4 and the subset of
primitive forms (greatest common divisor =1), respectively. We are interested in
the classification with respect to the subgroup I5(N), N € N. A further invariant in
this case is the greatest common divisor of a and N, which we suppose to be N; yet
another invariant under this assumption is the value of b modulo 2N. Thus for an
integer ¢ mod2N and a discriminant 4 with 4=? (mod4N) we set

2y.4.0,=1[a,b,cle 2,]a=0(modN), b=9 (mod2N);.

This collection of forms is Iy(N)-invariant and we are interested in describing its
orbits under I';(N) and (in the next two sections) defining certain Ij(N)-invariant
functions (genus characters) on it.

From now on we denote forms in 2y , , by [aN,b, c] instead of [a, b,c]. The
greatest common divisor of a, b, and ¢ is Iy(N)-invariant, and setting

Qg,/l.g: {[QN, b’ C’] E’QN,A,Ql(a’ b’ C): 1}
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we have a Iy(N)-invariant bijection of sets

’@N.A,Q: U U /'Qg,/wl,z- (1
£%|A A(2N)
22= AJ£2(4N)
£A=0(2N)
Thus we can reduce to the study of forms Q € 25, ,, which we call I(N)-primitive.
Set
2
_ e’ 4y,
m—(N,Q, e ) @
this g.cd. is well-defined even though ¢ is only an integer modulo 2N since
24 2.4
replacing g by ¢+ 2N replaces %\] - by QZ}\T +o+N.ForQ=[aN,b,c]le 2% s
we have (N,b,acj=m and (a, b,c)=1, so the two numbers
(N,b,a)=m, and (N,b,c)=m, 3)

are coprime and have product m. Conversely, we have:

Proposition. Define m by (2) and fix a decomposition m=m,m, with m{,m, >0,
(m;,m,)=1. Then there is a 1:1 correspondence between the I'y(N)-equivalence
classes of forms [aN,b,c] e «UZ,?,‘A.Q satisfying (3) and the SL,(Z)-equivalence classes
of forms in 99 given by

Q=[aN,b,c] — Q=[aN,,b,cN,]; 4

here N,-N, is any decomposition of N into coprime positive factors satisfying
(my, Ny)=(m,, N\}=1. In particular, |23 4 /To(N)|=2"-|20/SLy(Z)|, where v is the
number of prime factors of m.

[Note: [25/SL,(Z)| equals h(A) for A>0, 2 for A=0, and 2h(4) for 4 <0, where
h(A4)is the class number of 4 in the standard notation, the factor 2 arising because
94 for A <0 (4 £0) contains both positive and negative (semi-)definite forms while
h(4) counts only the positive ones.]

Proof. Thisis essentially Lemma 2, p. 64, of [10], but since the proof there was only
sketched and the statement somewhat more special (N/m was supposed square-

. ) A
free and prime to m) and not quite correct |:the factor 1+ (q) should be replaced
by 0 if quA:I, we give a complete proof here.

First of all, there clearly is a decomposition N= NN, with (N, N,)=(N,,m,)
={N,,m)=1: we write N as a product of prime powers p” and include p" into
N, if p|m; and into either N, or N, if pym. The form § defined by (4) is primitive
because of (a,b,c)=1, Eq. (3), and the properties of N, N,, so (4) defines a map
D3 homm— 2% where 25 4, .- is the set of forms [aN, b, ¢] € 2, satisfying (3).
This map induces a map 2% 4, m..m/lo(N)>29/SLy(Z) because for

M= <1\O/CV ﬂ)EFo(N) and any Q we have by an easy calculation Q- M =0~ M

1)
~ N

with = & NP
Ny ¢

injective and surjective.

)eSLZ(Z). We must show that this induced map is
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Injectivity.  Suppose  Q=[aN,b,c], Q’:[a’N,b',c’]E!ﬂ%dw‘mhm2 with
Q/ZQO(Z g for some ) §>€SL2(Z). We show that N,|y, N,|B; then

(;C g) = M for some M € I,(N) and automatically Q' = Q - M. Written out in full,

the relation 0'=0- <:( g) says

dN,=aN o> +bay+cN,y?,
b’ =2aN of + b(ad + By)+2¢N,y5,
¢'Ny=aN >+ bBo+cN,6°.

Reducing the first equation (mod N,) and the second (mod2N ) and noting that
b'=9=b(mod2N,) and «é — fy=1, we obtain

0=y(boo+cN,y) (modN,), 0=ypb+cN,0)(modN,),
and these imply y=0(modN,) because the g.c.d. of ba+cN,y and b+cN,é
equals that of band ¢N, | since (z §> has determinant 1 |and this is prime to N,
by assumption. The proof that f=0 (mod N,) is exactly similar.

Surjectivity. Let [d,b,&] be any primitive form of discriminant 4; we must show
that it is SL,(Z)-equivalent to a form Q with Qe‘,@g,A’g’mhmZ. Thus we want

<$ g) € SL,(Z) such that the numbers

a=do*+bay+&p?,
b=2aaf + b(od + fy)+ 2675,
c=ap*+bps+¢&s?

satisfy a=0(N,),b=0(2N),c=0(N,) (then[a,b,c]= 0 for Q=[aN,, b,¢/N,], and
Q automatically satisfies (3)). It is easily checked that these congruences hold if

AV CAN a  3(b+a) (B _(0
(o )W (i )00 s

The first equation is solvable in coprime integers «, 7 (mod N, ) because (&, b, &)= 1

and the determinant of the matrix multiplying ") is 0 {(modN,). Similarly the
7

second is solvable in coprime integers f,d (mod N,). Since (N, N,)=1,wecan add

to (5) the congruence conditions on oc> (modN,) and g (mod N ,) required to

0

is surjective, there is a matrix (oc g) € SL,(Z) with the needed properties. This
completes the proof. 7

get det (z ﬁ) =1 (mod N). Since reduction modulo N from SL,(Z)to SL,(Z/NZ)
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Denote by 2y, (resp. 25 ,) the set of all [resp. all I;(N)-primitive] quadratic
forms [aN, b, c] of discriminant 4, so

— — .00 0 _ 0
va= U Zvae= Ul Wy, Ava= U Znae
2(2N) £24 2(2N)
QZEA(4N) QIEA(4N)

Observing that 2° for a number m with v prime factors is just the number of
squarefree divisors of m, we find from the proposition

|,,@2,, A To(N)| = |QB/SL2(Z)‘ ’ > nA/dZ(N/d) .
s
d squarefree
where n,(N) denotes the number of square roots (mod2N) of 4 (mod4N).
We end this section with some remarks on the action of Hecke operators and
Atkin-Lehner involutions on quadratic forms. Let N’ be a positive integer with
N'{N. For Qe 2, , we define

N
=1.
=1

Q|Wy. 1Q0<aN ﬂ), where o, f,y,0eZ, adN —pfy 6)

NN yN  ON’
aN" B

7N ON’
equivalent, so (6) gives a well-defined map from 2, ,/I(N) to itself. It is easily
checked that these maps are isomorphisms and satisfy the relation Wy o Wy,
= Wiy n-jve. ny2- 80 they form a group of order 2' ', t = number of prime factors of
N. Writing out (6), we see that [aN,b,c]- Wy. has a middle coefficient which is

Such matrices < > exist and any two arc both left and right I(N)-

2N
congruent to b modulo N and to —b modulo 2N, so

¢ (mod2N/N"),
— ¢ (mod2N').

The Hecke operators T, (m 2 1) are defined, also in analogy with the theory of
modular forms, as the one-to-many maps from 2y ,/I4(N) to 2y 4,2/T(N) (ie.,
homomorphisms between the free abelian groups generated by these sets) sending
[Q] to the finite collection (or sum) of all [Q - 4], where A runs over the set of left

Wy i 2y 4,o/ To(N)=> 2y 4 o/ To(N), %= { (7

o
o prime to m. Note that ¢ goes to mg under this correspondence. If F is any function
on | ) 2y, 4/To(N) which is homogeneous of degree r [i.e. F(/Q)=¢"F(Q) for £ e N]

I,(N)-equivalence classes of matrices ( ?\’ ﬁ) of determinant m with o, 5,7, € Z,
Y

a4
and we define
Ly, a,0F)= > F(Q),

Qe2n,4,0/TolN)

then for m=p a prime not dividing N we have

A
gN,A,g(F|Tp)="g’pN,ApZ,Qp(F)_l—pr(p) gN,A,Q(F)+p2r+l”(iN,A/pz,e/p(F);

here F|T, has the obvious meaning, the last term is to be omitted if p> ¥ 4, and ¢/p is
the unique solution A(2N) of pA =g (2N), A>= A (4N). For a proof (with N =1 and
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in a somewhat different context), see [22, pp. 290-292]. By induction on the
powers of primes dividing m, one deduces from this the formula
A
gN,A,Q(Fl Tm): Z <E> drgN,Ad’z,gd’(F)

m=dd’

for A fundamental and m prime to N.

2. The Generalized Genus Character yp,

Classical genus theory associates to each discriminant 4 and fundamental
discriminant divisor D, of 4 [i.e. D, is a fundamental discriminant and 4/D,=0or

. . . . D
1 (mod4)] a I'(1)-invariant function y,: 25—{41} by setting y, (Q)= </0> for
n
any integer n prime to D, represented by Q; such an n always exists and the value of
D
(70> is independent of the choice. The set 25/I'(1) has a natural group structure

and x,, is a homomorphism; conversely, all homomorphisms 29/I'(1)—{+1}
have the form y;,, for some discriminant divisor D, of 4, the only relations being
Ap,=p,f A=DyD,g*for some g € N. In this section we give a natural extension of
this function to a Iy(N)-invariant function on .2 , under the assumption that both
Dy and A/D,, are squares modulo 4N. For Q € 2% , we set yp(Q)= yp,(0) with { as

. o D
in Sect. 1; we then extend to non-Iy(N)-primitive forms by y,, (£/Q)= (/0 xp,(0)

[cf. (1) of Sect. 1], so xp(£Q)=0 if (£,Dy)>1. A different formulation of this
definition, and the main properties of the function y, , are given in the following
proposition.

Proposition 1. Let N>1, D, a fundamental discriminant and A a discriminant
divisible by D, such that both D, and A/D, are squares modulo 4N. For
Q=L[aN,b,c]e 2y 4 set

D,

Yo @)= <n> i (@b,c,Do)=1, (1)

0 otherwise

where in the first case n is an integer prime to D, represented by the form
[aN,,b,cN,] for some decomposition N=N,;N,, N;>O0. Such an n exists and the

value of %’) is independent of the choice of N,N,, and n. The function yp, is
I'y(N)-invariant and has the following properties:
P1 (Multiplicativity ):
1oi[aN, b, =p([a, N, b cas Do [asN,bcay]) if (agam)=1.
P2 (Invariance under the Fricke involution):
Ap([aN,b,c])=xp([c¢N, —b,a]).

P3 (Explicit formula):
XDo([aNabac]):(j\?l ><D2 >
12/ \N,c
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for any splitting Do=D D, of D, into discriminants (necessarily fundamental and
coprime) and N=N,N, of N into positive factors such that (D, N,a)
=(D,, N,o)=1, xp,=0if no such splittings exist.

Proof. The condition (a,b,c,Dy)=1 is equivalent to (a,c,Dy)=1 since
b*=4acN (D). If it is satisfied, we can find N, and N, satisfying

N=N;N,, N,,N,>0, (N, ¢,Dy)=(NyaDy=1; (2)

then the g.c.d. of the coefficients of the form [aN,,b,cN,] is prime to D, and
therefore by a well-known theorem this form represents integers prime to Dy. Let 1

*
be such an integer and define y,, (Q) by (1). Then x5, (Q)= [] <B’—1—> where p* is the

plDo

o . -1
prime discriminant divisor of D divisible by p |:1.e. p¥*=|—|pforp£2 p*=—4,
p* r*
8or —8with Dy/p*=1(4)forp= 2j] dfptaN | then (n) = (aN) since n=aN ,x*
+bxy+cN,y? implies 4aN n=(2aN x + by)* — Ay* and p* divides 4. [pr is odd,

this equation says that aN,n is a square modulo p, and (p*) is the Legendre

symbol. If p=2 one has to distinguish according to the three values of p* and use

that A/p* is 0 or 1 modulo 4‘] Similarly <p:> = (f;) if p¥eN,. Since

(aN{,¢N,, Dy) =1, each p|D satisfies one of these conditions. This shows that each
*

Pr? , and hence also their product y, (Q), is independent of the choice of n, and

also shows that the right-hand side of the “explicit formula” P3 is independent of
the splitting D= D, D, [for a given splitting N = N, N, satisfying (2)] and that this
formula is true. We still have to check the independence of this splitting; the I5(N)-
invariance then follows as in Sect. 1 (namely changing Q by M e I(N) changes the
form [aN,,b,cN,] by M),and P1 and P2 are obvious from the explicit formula P3.

The passage from any splitting N =N N, to any other can be accomplished by
moving one prime £ at a time, so we can restrict ourselves to such changes. If /4D,
then multiplying one N; by ¢ and dividing the other N; by ¢/ changes
(%) . <1€;> by <D1/DZ>, and this is 1 since D,D, =D =square (mod4/) by
hypothesis. Assume #|D. If Z]ac, then (2) forces us to include the full power of 7
dividing N into N, or N, {depending whether /|a or £|c) and the problem of
moving Z from one side to the other does not arise. Assume that / fac and, for
convenience, £ #2 (the case £ =2 is similar and will be left to the reader). Since D is
fundamental, /24D, so Z||D,. Then the fact that D, is a square (mod4N) implies
¢*¥N. Suppose that /|N,; then /|N, and /Z¥N,, and the change we are
considering is N, N,—>N,//, N,/. The condition (N,, D,)=1 implies 2} D, and
hence ¢|| D,, so as splitting of D, for the new splitting N,/¢ - N,/ of N we can take
D, ¢* - D,/¢* (we have already shown that the formula in P3 is independent of the
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i . D D .
splitting of D, for given N,,N,). Thus < 1><2> is replaced by

Nya/\N,c
D,/* D, /™ ) 1 2
<N11a//> (sz/cf> These two products differ by

() () ) ) =) ) = (45) )
Nyajf)\ ¢ )\Nye)\ ¢ ) \Nac/tJ\ ¢ ) \ ¢ J\ ¢ )

But b2 —4Nac=D, - A/D, implies that /|b and (hence) 4Nac// = —D,// - A/D (/),

4/D . .
so this equals the Legendre symbol <L/9> , which is 1 because of the hypothesis

A/Dy=square (4N). This completes the proof.

We remark that a function like yx,, (for N=1) was defined in [12] and an
explicit formula like our P3 proved there (Proposition 6, p. 263).

Finally, we give one further property of our genus characters:

P4 (Invariance under Atkin-Lehner involutions):
Lo @IWa)=xp(@) forall Qe2y,, NN (Wy asin Sect. 1).

The proof, which is somewhat more complicated than that of P2, will be omitted
since this result will not be used in the sequel.

The remainder of Sect. 2 is devoted to the proof of the following technical
proposition (needed in Chap. H), which gives a formula for the function
xp,([aN, b, c]) in terms of Gauss sums. By assumption Dy =r§(4N), 4/Dy=r? (4N)
for some integers r, and r; we can always choose them so that their product is
congruent to a chosen square root ¢ of 4 (mod4N). Then we have:

A
Proposition 2. Write Dy=r3—4Nn,, D= b= r?> —4Nn, and suppose b=ryr(2N).
0

Denote by F(x, y) the second degree polynomial Nx*+roxy +nyy* +rx+ sy +n with
—b
= T—O;‘-]\—lv, and for any ¢ =1 set

1
F.=F(N,ro,no,1,8,0)=— 3% Y elAF(x,y)).
C i0)* x,y(c)

Then for any a=1 we have

b2—A h?—4
1 D 27 ; e
() L) T
0 otherwise .

Remark. Using the standard identity ) ef{im)= 3} /1(2) d (Ramanujan sum),
atey dlie,m)

we can rewrite %, as Y ,u<2)2N(d), where N(d) is the number of solutions in
dlc

integers x, y (modd) of F(x,y)=0(d). The proposition is then equivalent to the
Dirichlet series identity

© -1 bz_
4;1 N(dd s = L<s+ 1, (—D—0>> {(s) bzzixpo <|:aN, b’?ﬁ;]) a’’s.
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Proof. We can simplify the assertion to be proved by making two reduction steps.
First of all, both sides of (3) are multiplicative functions of a (this can be seen easily
for the left-hand side, and follows for the right-hand side from P1 above), so we
may assume that ais a prime power p*; we shall treat only the case p +2, leaving the
case p=2 to the reader. Secondly, we may replace the second-degree polynomial F
by F oM for any M e SL,(Z) without affecting the correctness of (3). Indeed, the

value of %, is unchanged by this since M (i) runs over (Z/cZ)* as (;) does. On the

other hand, replacing F by F o M replaces the quadratic form Q, =[N, rq,no] by
the equivalent form Q. M and hence does not change either D, or the value of

. o —5
Xp+ Do/ Q0) = Xpr- poyp{N) for any prime p|D,, while it replaces < . ) by
M! <_S> and hence leaves invariant the quantity
F

b*— A4
C=Qy(—s,/)4+nDy= 4
QO( S’r)+n 0 AN >

and the right-hand side of (3) depends only on Dy, a, C and the y .. ,,,«(N) by P3 of
Proposition 1. For ¢ =p® with p=2 (indeed, for any odd ¢), we can find M € SL,(Z)
diagonalizing Q, (modc), so we can assume r,=0(c). Then
1
Fe=— %, elin)GAN, ir)G (Ang, As),

C ey

where G (A, B) denotes the one-variable Gauss sum Y e (Ax*+ Bx).

x(c)
Case 1: p¥D,. Using the formula (easily deducible from the standard case B=0)
A
c

c=p" (p*2), pr4 = GC(A,B)=1/58(C)< )ec(—Bz(4A)‘), )

where &(c) equals 1 or i according as ¢=1(4) or c¢=3(4) and (44) ! denotes the
inverse of 44 (modc), we find

F=15 ey (%) e — Ar¥(4N) " + s%(4ng) ") + An)

C A0)*
D D
= <w—9> Z ec(/lD(; IC): <,~2.> Z ec(lC)a
C J ey C J Ao

so for a any power of p

Dy F 9,0,
25 (2)g 5 w0

(A,a)=d

D
=(9£>>:ea(w>= <a°>“ iralc,

@/ @ 0 it arc,

in agreement with (3) by P3 of Proposition 1.
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Case 2: p|D,. Since p=+2 and D, is fundamental, p> 4D, so we can assume [after
acting by a suitable element of SL,(Z)] that p¥ N, p|n,. The sum G(AN, Ar) can be
evaluated again by (2), and the sum G (1n,, As) by

c=p’ 0 if p{B,
+2 L= G(A,B)= .
’ZnA ( Wa(c/p)(f//lf) e, (—(B/p)*44/p)~") if plB.

<Proof . Replacing x by x + ;in the definition of G, gives G (A4, B)=e¢,(B)G (4, B),

so G.=0if pyB. If p|B, then G (A, B)= G.,(A/p, B/p) and we apply (4).> This gives

e () (") 5 (B eiapoiny i it i
c P

F.= c/p ] ie
0 if pyC.

The inner sum is 0if ¢4 C (replace 4 by A+ p) and equals &(p)}/p - ; . <Dﬂ> (C/C> !

¢|C. Hence p p
X Dy/p*\ (NC/c .
7 - c( . b if ¢|C,
0 if cxC,

p-1
where p*=(—1) ? p. By P3 of Proposition 1 this proves (3)in this case also (note

1
that the left-hand side of (3) reduces to the single term — %, for a=p*, p|D,).
a

3. Clifford Algebras and Eichler Orders

Fix an integer N> 1. In this section we will consider a primitive integral binary
quadratic form g(x, y) which represents only integers which are squares (mod4N).
Then g has the form g=[D,,2n, D] where D, and D, are squares (mod4N) and
n*=D,D, (mod4N). We will further assume that D, and D, are relatively prime
and that ¢ is non-degenerate over Q.

The discriminant of g is equal to 4(n? —D,D,). By hypothesis, this is divisible
by 16N. We define

M= disc(q) _ n*—DyD, .

16N 4N

If p is any prime dividing NM, we define ¢(p)= + 1 as follows: Let D be any integer
prime to p which is represented by ¢ (either D, or D, will always do) and define

D .
ep)= (p) . This is independent of the choice of D and equals + 1 if p|N. For any

positive divisor d=[] p{* of M we let &(d)=]] &(p)* and introduce the Dirichlet
series

1 _8(p)a+1 (a+1)s
P (1)

o= b= 1 o
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Since disc(g) +0, the form g determines a non-degenerate quadratic space of
dimension 2 over Q. We let B be the Clifford algebra of this space. Then B is a
quaternion algebra over @ with basis {1, ¢y, e,,eq¢; > satisfying the multiplicative
relations

ea=D,, ei=D,, ey, +ee,=2n.

Proposition 1. 1) A finite prime p is ramified in B iff p|M and &(p) ¥ = 1,
2) The infinite place is ramified in B iff Dy, D, and M are all negative.

Proof. Recall that a place v is ramified in B iff B®Q@, is a division algebra. We may
restate this in terms of the ternary quadratic form given by the square on the
subspace B® of elements of trace 0 in B. This subspace has basis ey, e, e,¢, —n)
and squaring is given by the formula

(xeq+ ye, +z(ege, —n))* =q(x, y) + 4NMz>.

Bis ramified at v iff this form does not represent 0 in Q). Over IR, this requires that g
be negative definite, which is equivalent to the condition in (2). Over @), a short
calculation using [17, p. 37] shows that one must have gp)¢»™ = —1

Corollary. The order of £(s)at s=0is the number of finite primes p which ramify in B.
In particular, £/(0)+0 if B~M ,(©Q).

We now introduce the order S=Z+ Zoy+ Za, + Zoyo, of reduced discrimi-
nant NM in the quaternion algebra B, where a,=(e;+ D;)/2. By construction, S
contains the quadratic orders Z[ay] and Z[a,] of discriminants D, and D,,
respectively. Recall that an order R of B is an Eichler order of index N if for all
primes pt N the localization R,=R®Z,< B,= B®Q, is a maximal order and for
all primes p|N there is an isomorphism from B, to M ,(@Q,) which maps R, to the

b
order {(Z\‘ch d) a,b,c, deZp}. [Recall that &(p)= +1 for p|N, so B, is isomor-
phic to M,(@Q,) by Proposition 1.]

Proposition 2. The number 9(S) of Eichler orders of index N in B which contain S is
given by the formula

o8)= ]| (I1+ord, (M))= Y &d).
piM d[M
ep)y=1 (d, disc(B))= 1

Proof. Since a global order R is completely determined by its localizations [17,
p. 83], it suffices to calculate, for each prime p, the number of local Eichler orders
R, containing S,,. If pf NM, then S, is maximal in B, and R, =S, is the only choice.
If pINM, then &(p) is defined. If &(p)= —1 then p¥N and R, must be a maximal
order. If B, is a division algebra, this maximal order is unique. Even when B, is a
matrix algebra there is a unique maximal order R, containing S,, because S,
contains the ring of integers (,, in the unramified quadratic extension of @Q,,,and an
argument similar to [7, Sect. 3] shows that S,=¢,+p°*»™"?R . [Note that
ord,(M) is even in this case by Proposition 1.] Finally, assume &(p)=1. Since p
splits in @, or 0, , S, contains the ring ¢, =Z ,®Z, and is therefore conjugate to

b
an order of the form {(NZ/IC d> ab,c,d elp} in M,(@Q,)[17, p. 39]. The Eichler
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orders of index N which contain this order have the form
—k
{(NZ"C P d b) a,b,c,de Zl,} with 0< k< ord,(M). Hence there are ord ,(M)+1

possibilities for R,. This completes the proof.

We will now use Proposition 2 to determine the number of embeddings of S
into certain Eichler orders of index N in B. To do this, we begin with a simple
combinatorial observation. Let X and Y be two sets on which a group G actsand 2
a G-stable subset X x Y. For xe X the stabilizer G, of x acts on the set
Y, ={ye Y|(x,y)eZ}. Similarly for y e Y the stabilizer G, of y actson X ,C X. Then
there are natural bijections

U Y/G,e=2/G> |) X,/G

y?

xeX/G yeY/G
SO
S Card(Y,/G)= ¥ Card(X,/G,). 2)
xeX/G yeY|G X

We apply this to
X =set of all Eichler orders R of index N in B,
Y=set of all algebra homomorphisms ¢:S— B,
2={R, )| PSSR}, G=B"/Q* (acting by conjugation).

The set Y/G has a single element, since any embedding ¢ extends to an
automorphism of B, which is inner by the Skolem-Noether theorem. Take this
element to be the inclusion S C B=S®®; then the stabilizer G, is trivial and the set
X, is the set of all Eichler orders RC B ofindex N containing S, so the expression on
the right of (2) is the number ¢(S) of Proposition 2. On the other hand, the coset
space X/G is finite and represents the set of global conjugacy classes of Eichler
orders of index N in B. If x corresponds to the order R, then G, =Normg. (R)/Q".
Hence (2) gives

o8)= Y Card{¢:S—R (modNormg.(R)/Q")}

Rmod B @~
= Y [Normg.(R):R*@Q*] 'Card{¢:S—>R (modR*/+ 1)},
RmodB @}~
since Normg. (R)/Q* acts faithfully on the embeddings of S into R, and contains
R*@Q*/@Q™ =R™/{41} with finite index. A
Let R, be a fixed Eichler order of index N in B,andlet R, =R, ®Zin B=R®Q
=R®Q (Where Z=T1] ch(f):Z@(Q) . Since the global Eichler orders are all
p

locally conjugate, the set of Eichler orders R (mod B* /QQ ™) is identified with the
double cosets Normj. (R)\B*/B*. If g is an element representing the double
coset, the order Rg:g’lligmB is well-defined up to conjugacy in B. We have
Normy. (R,)=Normj. (g~ 'R,g)nB* in B™.

We wish to rewrite our sum over Eichler orders up to conjugacy as a sum over
the (possibly larger) double coset space R\ B* /B *, which is also finite and indexes
the left ideal classes for the order R,. (This is the classical distinction between
“types” and “classes” in the theory of orders.) Each coset g must be taken with
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multiplicity 1/e,, where
e,=Card{g'e R“*\B*/B* |g'=g in Normj.(R,)\B*/B*}.
An easy calculation shows that
e,=[Normy.(R,): R} - Q> *Normg. (R,)].
Multiplying our two indices, we find that the above formula for ¢(S) becomes

o§)= Y [Normg.(R):R;Q*] ' Card{¢:S—>R,(modR;/+1)}.
ge RX\B*B> ) '
The weighAting factor is now i{ldependent of g, since Athe map n— g 'ng identifies
Normj. (R;) with Normy.(R,) and maps R{ to R,;. This factor is calculated
locally, and is equal to 2°*, where s is the number of finite primes ramified in B and
t the number of primes dividing N [17, pp. 43-44]. Hence finally
y Card{¢:S—>R, (modR, /£ 1)} =2""o(S).

gER‘\iZ*/BX

The orders R, appearing in this formula are precisely the hy right orders of the left
ideal classes for the order R=R,. Hence we may state the result in elementary
terms:

Proposition 3. Let R be an Eichler order of index N in B and R, ..., R, the right
orders of left ideals 1, ...,1, which represent the distinct ideal classes of R. Then
h
Y Card{¢:S—R;(modR;/+ 1)} =2°""9(S),
i1
where s is the number of finite primes which ramify in B, t the number of primes
dividing N, and ¢(S) is given by Proposition 2.
Let us examine Proposition 3 when B= M ,(@Q)). Here we may take R to be the
. b . .
Eichler order {(A‘;C d) a,b,c,de Z} in M,(Z). This order has class number 1, by

the strong approximation theorem for SL,, so the sum on the left-hand side of
Proposition 3 has only one term. The group R*/+1 is I(N), the degree 2

. -1 0\ _. . .
extension of I{(N) by < 0 1). Since disc B=1, we have ¢(S)=¢(0) by Proposi-

tion 2. Hence Proposition 3 may be restated

Card{¢:S—R (mod [(N))} =2/(0). 3)

This formula is now true for any S, since both sides vanish when B=S®@ is not
isomorphic to M ,(Q).

We can rewrite (3) in more elementary terms, since specifying an embedding
¢:S—R is the same as giving the images E,=¢(e,) and E, = ¢(e,). These are
matrices of trace 0 in the suborder Z+ 2R of R [because E;= D, (mod2R)] and
satisfy E? =D;, Tr(E,E,)=2n. Hence

b; 2¢;
b= <—2aiN ﬁbi>
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with
a,b,c;e, b?—4acN=D;, bob,—2N(ayc,+coa,)=n.
Each E; corresponds to a quadratic form Q,=[a;N, b;, ¢;] € 2y, in the notation of
Sect. 1. Let Ay denote the discriminant form on the lattice 2y= )2y, of all
D

quadratic forms [aN, b, c] with a,b,ceZ; then the associated bilinear form B,
with B, (0, Q)= A,(Q) is given by

B, ([aoN, by, col,[a; N, by, c )=bob, —2N(asc, +coay).
Hence (3) can be restated as follows:

Corollary.

%Card{(Qo’QJEQ}Zv/Fo(N)|AN(Q0):D0> ANQ)=Dy, BAN(QO’Ql):n}
=2 ¥ 2.s(d).
e

The factor 4 comes from the fact that I(N)/I(N)=Z/2 acts freely on the set of
pairs {(Q,, Q,) in question, because at least one of Dy, D, is odd.

The corollary just stated was proved for N =11in 8, pp. 211-213], using a more
complicated method involving the number theory of the quadratic fields

Q()/Do), Q(/D,),Q(|/DoD,) and of the biquadratic field Q(/D,,}/D;). Notice

that the left-hand side of the identity counts the [(N)-equivalence classes of
representations of the binary quadratic form g=[D,,2n, D] by the ternary form
Ay, since the conditions on Q, and @, just say ANEQ,+1Q ) =q(&, »).

We shall use Proposition 3 in one further case in this paper. Assume that D,
D,,and M are all negative, so B is ramified at infinity and £(0)=0. Then #'(0) =0 if
and only if B is ramified at a single finite prime p. In this case we have £'(0)
=4(ord,(M)+1)-o(S)-(—logp). We shall see that the orders R; occurring in
Proposition 3 in this case are just the endomorphism rings of the supersingular
points (mod p) of the curve X 3(N), and that the embeddings of the Clifford order S
into the orders R, will be relevant in calculating the local height pairing of Heegner
divisors.

I1. Liftings of Jacobi Modular Forms

In [15]it was shown that the space J;"} of Jacobi cusp forms of weight k and index
N isisomorphic as a Hecke module to a certain subspace of the space of cusp forms
of weight 2k —2 on I'y(N), and lifting maps Ji'3* — S — ,(N) were constructed. The
purpose of this chapter is to construct the kernel functions for these liftings. This
will lead to several identities relating the Fourier coefficients of a Jacobi-Hecke
eigenform to the periods and to the special values of twists of L-series of the
corresponding form in S,, ,(N).

{. Kernel Functions for Geodesic Cycle Integrals

Let NeN, 9€Z/2NZ, and 4>0 be a discriminant satisfying 4=9?(4N), and
denote by 2y , , the set of binary quadratic forms Q(x, y)=ax?+bxy+cy* with
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integer coefficients and discriminant A satisfying a=0(N), b=¢ (2N) as in Chap. 0,
Sect. 1. Let D, be a fundamental discriminant dividing A such that both D, and
A/D, are squares modulo 4N, and let y;, : 2y 4 ,—{+ 1,0} be the function defined
in Sect. 2 of Chap. 0 (generalized genus character). The group I(N) acts on 2y 4,
in the usual way and y,, is Io(N)-invariant. For an integer k>1 we define

IPA)
Sovaanld= % oG F

This series converges absolutely and uniformly on compact sets and defines a
holomorphic cusp form of weight 2k on I(N). For k=1 the series no longer
converges absolutely but we define

(ze9).

fl.N,A.g,l)o(Z): liﬂr%fl,N.A,Q,Do(Z; s),

where

N A0 Ime) 128\
Junaend@ 9= 2 6C K 06 DF <R"(S’> 2 )

this is then a holomorphic modular form of weight 2 on I';(N) and is a cusp form if
Dy 1. 1t follows from P2 of Proposition 1, Chap. I, Sect. 2, that

fk,N,A,g,Do € Mzk(N)Sig“DO

for all k=1, where M, (N) (e=+1) denotes the (—1)e-eigenspace of Wy on
M, (N) or equivalently, the subspace of cusp forms in S,,(N) with signe in the
functional equation of their L-series.

The functions f; y 4, p, Were introduced (for N=D,=1) in [20, Appendix 2]
and have been used several times [14, 13, 12] in connection with the Shimura
correspondence between modular forms of weight 2k and weight k+ 3. Their
Fourier coefficients are given by the following proposition.

Proposition 1. The Fourier expansion of f, n 4., p.(2) (k21) is given by

aQ

fl;,D,A,g,DO(Z): Z, ki nm, 4,0,Dq )elmmz.

here +1=(—1Y-signD,, cE\(m, A,0,D,) is ¢, nlm, 4,0, Dy) symmetrized or anti-
symmetrized with respect to ¢ (see Notations), and

e n0, 4,0, 0)—{ im if k=1, Do=1, A=f* (f>0), ¢=/CN),

otherwise ,

Cn
(k— 1)'

X [IDOI“”ZEN(m,A,Q,Do)+i"(signDo)”zﬂﬁ(mz/A)”“

X (Na)Al/ZSNa(maAaQ’Do)Jk— ] (nVLf>:|

. nm, 4,0, D )-“lk(SIgnD )" 12
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for m>0, where (signDy)*'*=1 for D,>0, +i for D,<0,

Dy : 2,2
m/f if A=Dgf* (f>0), flm, Dof=¢(2N),

0 otherwise,

SN(ma A’ o, DO) =

pr—4
Snam, 4,0,D¢)= > Xpo\|aN, b,———— | | e2n4(mb)

b(2Na) 4Na
b=p(2N)
b2 = A(4Na)
and
(t/z)k+2v—1/2
= S (=
T 12t go( ) vIT(k+v+1/2)
is the Bessel function of order k— 1.

The proof is essentially the same as the one given in [20, pp. 4445], for
N=D,=1 and in [12, pp. 246-250], for non-trivial level and character, and will
not be repeated here. Notice that our functions are always cusp forms for Dy =1,
while the functions in {12] were sometimes non-cuspidal for k=1 and N not
squarefree [12, pp. 249-250]; this is because our character y,, is slightly different
from the character w,, in [12] and because of our assumption that both D, and
4/D, are squares modulo 4N.

The second property we need is the relation to cycle integrals (or geodesic
periods) of modular forms. For feS,,(N) and Q=[a,b,c]e 2y 4, set

nenolf)= | [(2)Q( 1) ldz,

where y, is the image in IH(N)\$ of the semicircle alz|* +bx +c=0 (x =Re(z)),

—b—|/4 — . .
oriented from b2 f to b; I/Z, if a+0 or of the vertical line bx+c¢=0,
a a

oriented from —¢/b to ico if b>0 and from ico to —¢/b if b<0, if a=0. It is easily
checked that this makes sense [i.e. that the integrand is invariant with respect to
the subgroup of Iy(N) preserving Q] and depends only on the I(N)-equivalence
class of Q. Cycle integrals of this type were first used by Shintani [14] and were
studied in detail (for N=1) in [13]. Define

TioN 4000l ) = > Xl @i, 0l f) -

Qe2n, 4, o/ To(N)

Then we have

Proposition 2. For feS,,(N)&Pe,

2k—2\ ,_ _ :
(f;ﬁc,N.A.Q,Do):n<k_1>2 AT nenlS)-

For a proof (at least in the case when 4 is not a square) see [13, p. 232] for N=1,
k>1)or [12, pp. 265-266] (for N arbitrary and k = 1). The argument used in these
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two references in fact gives

i1
rér <k+ 5‘>
2 —k+3-s52

(f:fk,N,A,g,Do( 5 9)= *Fm—d Te.N. A0 po(f),

an identity which will be used in Chap. IIL

2. Poincaré Series for Jacobi Forms
For the theory of Jacobi forms we refer to [4]. We recall only that a Jacobi cusp
form of weight k and index N has a Fourier expansion of the form

dr,z)= Y cnng'l" (1€9,zeC, g=e*"", {=e*™9),

n,re
4nN>r2

where c(n, r) depends only on r? —4nN and on the residue class of r (mod 2N) and is
(—1)*-symmetric under r— —r, and that there is a non-degenerate scalar product
(Petersson product) on the space J;'y of all such forms. Hence for integers n, r with
r* <4Nn there is a unique function P, y (, ,€J5"¥. depending only on r>—4Nn
and on r (mod2N), such that

(h, P, in.r) = e M(@Nn—r?) 7K 32 (coefficient of ¢"¢" in ¢) (1
for all ¢ eJ*3P, where (-, -) is the Petersson product and
NET20(k—3)
ak,N = - —27F§T .

Proposition. The Poincaré series Py y (., has the expansion

Pk,N,(n,r)(T9Z): Z z gk+N (n,r)(nl’ r/)(lnzr, > (2)

n',r'e
r'2<4Nn’

where +1=(=1), gy .0, 7') i8S Qi v, .\, ') symmetrized or anti-symmetrized
with respect to v’ (cf. Notations), and
3

k —_—
gk,N,(n.r)(nls r/) = (SN(na ¥, n/y rl) + ikn ‘/EN h 1/2(1)//D)2 4

X Z HN,c(n»r’n/’ r/)Jk'% <N7ICI/D—(D>’

c21

where
D'=r?*—4Nn', D=r*>—4Nn,
. 1 if D'=D, +¢=r(2N),
b i1 2 ” ’= ’ .
w1 ) {0 otherwise,
and

Hy (nr,n,r)=c"%2 Y e((NA>+ri+n) " +n'o+rle,nlrr)
elc)*
Ac)

is a Kloosterman-type sum.
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Proof. Let us first suppose k>2. We claim that
P v nnlT:2)= ) ("l a7, 2), 3)

ye F(YEAT(1)7

where e™"=¢e*™ " ¥ the operation |y is as in [4], and I(1),

(s )00

group I'(1Y = SL,(Z) x Z*. Indeed, the sum on the right of (3) converges absolutely
and uniformly on compact sets and clearly defines a function in J{{F. By the usual
unfolding argument, we see that its Petersson product with an drbltrdry peJi¥
equals

n,1e Z} is the stabilizer of the function ¢™" in the full Jacobi

(1, 2)e™ (1, 2)oke "N Iy 3dxdydudy  (z=x+iy, T=u+iv).
L\ xc

Putting in the Fourier expansion of ¢ and observing that a fundamental domain

for the action of I'(1)!, on $ x € is ([0, co) x [0, 1]) x (R x [0, 1]), we find that the
integral equals

n,r’ - 0

1 1
Z c(n )OJ?.!' 3? J‘eZni((n’—n)u+(r'~r)x)€72n((n'+n)v+(r’+r)y)
00
x o7 4N o dydvdxdy

e e) o
=C(n, r) j ev4nnvvk3< j e—4n(ry+Ny2/v)dy> dU.
0 —w
-1/2
The inner integral equals <4> ™" 5o the double integral equals
v

|D|"** iy, 5. This proves our claim.
We now have to compute the Fourier development of the right-hand side of (3).

A set of representatives for I'(1)! \I'(1)’ is formed by the pairs (((Z Z), (g, lb))

where A,c,deZ with (c,d)=1 and for each ¢,d we have chosen a,beZ with
ad—bc=1. Hence

22 +b z
P — dy ke[ S 2T )
. onr(®2) c,d,ZAeZ(CT+) ( +chL C‘c+d+ ct+d
{c,d)y=1
at+b z at+b
A ) 4
e (cr+d> <c1+d+ cr+d> @

We split up the sum into the terms with ¢=0 and those with ¢+0. If ¢=0, then
d= +1, so these terms give

Z qN}.Z+r/1+n(C2N/1+riC~2Na-r)_ Z 5,%(n,r,n’,r’)q"'C" (i1:(“1)k)~
leZ rn <r4eNZ;l
The terms with ¢ <0 give (— 1)* times the contribution of the terms with ¢> 0, with
z replaced by —z (replace a, b, ¢, d by their negatives), so we need only consider the
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terms with ¢>0. Using the identities

A
at+b a 1 z N ar-i~b_Z_E+ a
ct+d ¢ clct+d) ct+d Tcttd cr+d ¢’
/{ 2
clz—=

at+b z cz? < c) a

A2 40 xS 27

c7:—|—d+ ct+d  ct+d ct+d * ¢’

and replacing d, A by d+ac, A+ fic with the new d and 4 running (modc¢)* and
(modc), respectively, and a, f € Z, we obtain for these terms the contribution

N d & ¢ a

D (A S B [ A

>0, a peZ C d C
d(e)*, A(c) T+ P +a

d
= 2 C—k Z ec((N12+rl+n)d~I)Fk,N,c,(n_r)<T+ ’(" Z_%>

c=1 d(cy* .

Alc)
with

_ —k N (Z_/)))Z N —1 v Z_ﬁ
Funcon®a= 3 (+a) e <_ T+a >L <c"‘(r+a)>e (C(Ha))'

The Poisson summation formula gives

Fk, N.c‘(n.r)(’[’ Z) = Z z }7(”,, r/)qn'Cr’

n',r'e

with

', )= | T *e(—n'7) {

Cy—ioo Cy—iw

(C,>0, C,eR).

Cytioco Cp+iom
1 2 N, rz
e +

. 1 (r . .
We substitute z—z+ IN < ~r’r>. Then the inner integral becomes
C

_rr’ D’ D 1 , Cr+ico N ,
e<2NC>e<4NT+4NCT >L(n‘[)(j'2;[,'me<_ ‘L_Z>dZ.

1/2
The latter integral is standard and equals <ﬁ> . Hence we find
!

'\ C1 i D' D
C P =(2AN)" 12 rr N2k, 2 o .
y(n',r')=(2N) e(TNc C‘Lm(‘C/L) 7% 4Nr+4NcI dt



522 B. Gross et al.

If D’ 2 0 we can deform the path of integration up to ioo, so y(#’, r')=0 in this case.
For D' <0 we make the substitution t=ic~'(D/D")"/?s to get

k3

YO, )= 2m(2N) 12 (—2Aj’>i*kck%(n'/n)27
C

1 Citio T (D D) s -5 1)
X —— [ s k1% e ds (C;>0).

27i Ci{—iow

The function t+>(t/w)"*J,_,(2)/ut) is the inverse Laplace transform of
s> s ¥ 2745 [1, 29.3.80], so the integral equals 2niJkg<§~(D’D)”2>. From
c

this formula (2) (for k>2) follows immediately.

If k=2, then the series in (4) does not converge absolutely. By Hecke’s
“convergence trick” we define P, y (, (%, 2; s) for Re(s) >0 as the series in (4) with
(ct+d)~* replaced by (ct+d) ?|ct+d|™*. One can then easily compute the
Fourier expansion of this function in the same manner as above. From the Fourier
expansion one shows immediately that P, y  ,(t,z;5) has a holomorphic
continuation to s =0 and that its limiting value as s—0 is holomorphicin z and has
the expansion given by (2) with k =2. Moreover, it is easily checked that the Jacobi
cusp form P, y (.  defined by the property (1) is equal to this limit. The details are
standard and will be left to the reader. This completes the proof of the proposition.

3. Lifting Maps

Let roeZ and D, a negative fundamental discriminant with D, =r§—4Nn,. For
P el v we set

DO k— 1 n2 h 2minw
Do,(,(¢)(w)~z<‘§n<d>d <d2no, do>>e wes), ()

where c(n, r) is the coefficient of ¢"{" in ¢ as in Sect. 2. It was proved in [15] by
means of a trace formula that &, , maps J{%%  into S,(N)", preserves
newforms, and commutes with the action of Hecke operators. [ The coefficient of
e2™™ in (1) is just the coefficient of "™ in ¢|T,.] We now prove the main result of
this chapter, a formula for the adjoint map of &}, ,, in terms of the cycle integrals of
Sect. 1.

Theorem. For feS,,(N)", the function

l' k—1
(/l;ko ru(j)(T 7)= <2N> > Tk, N, Do(r2 — 4nN), ror, no(f)q"Cr

n,reZ
rt<4nN
(TES), ZG(E, q:eZnir’ C:eZniZ) (2)
is a Jacobi cusp form of weight k+1 and index N. The maps S} . Jis8 v

-8,(N)" and S, :Sud{N)” =88 v are adjoint maps with respect to the
Petersson scalar products, i.e., (%p, (), f)=(d, S5, . (/) for all feS,,(N)” and
Pe 5T x
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Proof. Set
Qk,N,Do,rO(W; 7,2)

=Cu,Npy 2. (4nN — rz)k_ l/Z.fk,J\',DO(rZ —4nN),r0r,D0(W)anr s

where fi y 4...p, 15 the function defined in Sect. 1 and

( 2l)k 1|D lk 1/2

Ck,N,DO ?R(Zk*2> .

It follows from Proposition 2 of Sect. 1 that

S ool N0 D=, Qe v.porel 5 =T —2) VfESHN)T,

where (, ) denotes the Petersson scalar productin S,,(N) ™. Hence to prove the first
assertion of the theorem it suffices to show that Q, y p. ., 1S a Jacobi cusp form (of
weight k + 1 and index N) with respect to (z, z), and to prove the second it suffices to
show that € is the kernel function for the map %), ,,, i.e. that

P DYW)=(D, 4§ po.r ol —W; 5 7)) Vei¥l y,

where now (,) denotes the Petersson scalar product in J{%% y. In view of the
definition of &}, ., the defining equation of Jacobi-Poincareé series [(1) of Sect. 2],
and the fact that €, y p, (=T, —Z; W)=, y p..,.(T, 2; —W), thisis clearly equiva-
lent to the following basic identity:

ik - 1(27[)"
N Dy G )T

- - D ’ mimw
x ;lmk 1( > <d0>dkPk+1.N,(nnd’2,r0d’)(r’z)>ez -3

dd'=m

Qk, N, Do,rO(W§ 1,2)=

We shall prove this identity by the method of [20], i.e., we expand both sides in a
double Fourier series and then compare Fourier coefficients. The Fourier
developments of fi x4 0.0, a0d Pyt y (n.n Were given in Proposition 1 of Sect. 1
and the Proposition of Sect. 2, respectively. Inserting them into (3), we see that the
identity we have to show is

w1 2m)f k—1/2¢,,2 L —1/2,
Gy 1P Vm2DD) * (IDo| 5 m, DD, o, Do)
+i** 1)/ 2m?/D, D)4
X ¥ (Na)*l/zSﬁa(m,DDO,rro,Do)Jk_1/2 (ﬁ\@ﬁ))
azl

&1 (2m)* k-1 D, k 2 oom
=i (kA“'m d};"<d>( /d) <(3N< no,dro,n,r>
"“n]/N 1/2( / )k/Z—/
dz

m> m oy /m?
<d2 no,d ro,n,r)Jk1/2<N;‘/dzDoD>>

21+

xZH
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or equivalently

,1(D0/D)k/2 +(m DDO’rro,D0)+ik+I(D/Do)k/2f1/4mk41/2nl/§N—1/2
D) a—l/zszi\;a(m,DDo,"ro,Do)Jk—1/2<nle/B;)B>
a

azl

e %( ) /d)k5N< zno,r;lro,n,r>

4kt I(D/Do)k/zfl/“mk"/?‘n]ﬁ]\f* 1/2

m?2 m
X Z( )d 1/22}11\”((12 no,dro,n r)Jk 1/2<N er> 4)

d|lm c=1

forall m=1, n20, reZ with D=r>*—4Nn<0.
We first show that the first terms of both sides of (4) agree. For this it is sufficient
to show that

dim

. D, m> m
(D/DO) /ZSN(m7DDO’ rrorDO): Z d ( /d)ké dz nOad r07n’r . (5)

The left-hand side of (5) is zero unless D= D, f? for some feN with f|m and

réf =ror (mod2N), in which case it equals < /f) f*. By definition, the right-hand

side is zero unless D =D, f? with fe N, f|m and r=r, f(2N), in which case (with

d=m/f) it also equals D/ 7 f*. Hence we must show that under the condition
D=D,f? the congruence
r=rqf (mod2N) ©6)
follows from the congruence
rro=ri f{mod2N). 7

Let t =(ry, 2N). Since Dy, is fundamental, ¢ is a product of different primes each of
which exactly divides N, and from D =D, f? it follows that t|r, so r=0=r,f(1).
Hence (7) implies (6).

In the second term on the right-hand side of (4) we substitute cd=a to get

l'kJr I(D/Do)k/Z— 1/4mk*1/2n‘/§N* 1/2

D, m:  om
d- 1/2H , J DD
) )

Hence for the proof of (3) it suffices to show the following

Lemma. For all m21,n=0, reZ with D=r> -4Nn<0 we have

D 2 m
SNa(m’DDO’rrOsDO): Z <70>(a/d)1/2HN,a/d<d2 Ry, —~ r0>”’> (8)

di{a,m)
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Proof. If we put in the definitions of Sy, and Hy . and multiply both sides of (8)
with e, y,(—mryr), then the identity to be proved becomes

b*—p,D b—ror
N b 6] o]
b(ZXa:N) XDU([G > 4Na :Dea( 2N m>
b=rro(2N)

=rrg
b2 = DDg(4aN)

D 2
=a"' ¥ (—O>d y ea/d<<N/12+mrol+m2 n0>ghl+ng+ri>.
di@m\ d efariy d d

As functions of m both sides of this are periodic with period g, so it will be sufficient
to show that their Fourier transforms are equal. Hence we must show that for
every W' e Z/aZ we have

1 b>—DD, b—rry
a b(;zv) mZ(;z)XD"([aN’b’ 4aN D%(( 2N —r)m

b=rro(2N)
b2 = DDo(4aN)

1 D,
= =94
bz

2
x ¥ ea/d<(N/12+ Mol + m2n0>g'1+ng+rl—h’m>.

alafay d d d

Ma/d)

Set h=2NH +ryr. Then the expression on the left is easily seen to equal
h*—D,D
Xo ([Na, h’4NO:|> or 0 according as h? =D,D (4Na) or not, while for the
a

right-hand side we obtain after replacing m by md and then (4, m) by (¢4, gm) the
expression

D 1
a 'y <0) — Y euo(NA? +romhi+ngm® +ri—hm+n)).
dla d a/d A@(a{d)/’;)

Thus Eq. (8) is equivalent to Proposition 2 of Sect. 2, Chap. I.
This completes the proof of the theorem.

4. Cycle Integrals and the Coefficients of Jacobi Forms

In [15] it was proved that the subspaces of newforms in J{%% y and S, (N)™ are
isomorphic as Hecke modules. Let feS,,(N)” be a normalized newform and
¢$eJ;¥h y a non-zero Jacobi form having the same Hecke eigenvalues. The
following statement is then a formal consequence of the theorem of Sect. 3.

Theorem. Let Dy=r*—4Nny<0 be a fundamental discriminant. Then for all
n,reZ with D=r*—4Nn<0 we have

c(n, r)eng, ro) - (i>k_ ' tkj'Nﬂ)giJ‘rn,Do(f) (1)
(¢, ¢) 2N (f.0) ’

where ( , ) denotes the Petersson scalar product and 1, y_ppe.rm,. plf) is the cycle
integral defined in Sect. 1.
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Note that the left-hand side of (1) is independent of the choice of ¢, since
replacing ¢ by u¢ changes both the numerator and the denominator by |¢|>. We
can always choose ¢ to have real coefficients; then the bar in (1) can be omitted.

We remark that a formula analogous to (1) for Fourier coefficients of modular
forms of half-integral weight on I,(4N) with N odd and squarefree was given
in [12].

Proof. By the strong multiplicity theorem quoted above and the fact that the lifting
map %5, ,, commutes with Hecke operators, we know that ), , (¢) is a multiple
of f. Comparing the coefficients of ¢! in these two forms we obtain

Fo.rol @)= Cngs To) f - 2

The same multiplicity 1 theorem implies that

S =29
for some AeC. By the theorem of the last section we have

Ac(n, r)= coefficient of ¢"(" in S5 (/)

l' k—1
- (2N> rk’N’DDO’rro,Du(fy
On the other hand,

Ac(n, r)(@, §) = c(n, r)(SB, . (), §)
=, 1) (f, Sig,r D))

= C(I’l, r)c(nO’ rO)(fs f) ’
where in the last line we have used (2). Comparing the two formulas we obtain (1).
For a fundamental discriminant D with (D, N)=1 we denote by

L(f,D,s)= 21 <§> an®  (Re(s)>»0),

n=

. . . D
the L-series of f=Y a,q" twisted by the quadratic character <~> Recall that

L(f, D,s) has a holomorphic continuation to € and satisfies the functional
equation
L*(f, D,s):=(2n) (ND*yI'(s)L(f., D,s)

= (1) (_’LN) w,L¥(f, D,2k—s),

where w, is the eigenvalue of f under the Fricke involution wy. Since by
assumption f lies in the subspace $,,(N)~ we have w, =(—1)*, soforD<0Oand D a
square modulo 4N we have

L*(f, D,s)=L*(f, D,2k—s).

By setting (n,7)=(ny, 7o) in (1) we obtain as in [12] a refinement of a result of
Waldspurger [18] about the value of the twisted L-series at the central point:
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Corollary 1. Let D=r*-4Nn<0 be fundamental with (D, N)=1. Then

le(r)? _ k=D! e LS DK 3
P e R T v

Remark. The power of 2 in the formula in Corollary 4, p. 67 of [4] is given
incorrectly.

Proof. By (1), we have

le(n,n)I* _

(&, 0)

i k—1 .
<ﬁ> ew.on ol VS )

with
ren.p2e o f)= > (@) [ S(W)Q(w, 1)~ ldw.
Qe 2N, p2 r4To(N) b2
A set of I,(N)-representatives of quadratic forms Q =[aN, b, c] with b=r*(2N) and
discriminant D? is given by {[0, D, 1] | u (mod D)}. Hence

rewoirl )= ¥ <9> T o Dwt 0w

uD) \ U i

42 D Ho\ g
= —*pk? < > <it+>t" Ydt
{‘, u%:)) H f IDl

© o /N
— k12 = Jae ™ dt
| I g)nzl(n>
=i D 2 2m) TR, D),

where in the last line we have used analytic continuation. Equation (3) follows
from this.
As in [12] we obtain from (3) that L(f, D,k)=0. One can also deduce that
(¢, ¢) is an algebraic multiple of one of the periods w ,,w_ associated to f.
Finally (as in [12]), by squaring both sides of (1), taking absolute values, and
then applying (3) we obtain

Corollary 2. Let Dy=r}—4Nny,<0, D=r?>—-4Nn <0 be two negative fundamental
discriminants prime to N. Then

k—1/2 (27I)2k 2
(DyD) L(f, Do, K)L(f, D, k)= (7("_ 1)!2 |rk.N.DD(),rr0‘D0(j)l . (4)

A formula similar to that in Corollary 2 has been independently proved by
Waldspurger [19], by different methods and in much greater generality.

From (3) and (4) we also obtain growth estimates for L(f, D, k) and c(n, ), as
in [12].

III. A Modular Form Related to L'(f, k)

Let N=1 and A>0 a discriminant which is a product of two negative
discriminants D,, D, which are squares (mod4N), ¢ an integer (mod2N) with
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0>=A(4N). In Chap. II we constructed for each k=1 a function f, y 4, p, in
S,.(N)™ [the space of cusp forms of weight 2k on I'y(N) whose L-series have a minus
sign in their functional equation] such that for all fe S,,(N)~ the scalar product
(fs Jx. v, 4.0, po) €quals, up to a simple factor, the cycle integral r,_y 4 , po(f)- In this
chapter we will construct another function F=F, y 4, p,€S,(N)" such that the
scalar product (f, F) for feS,,(N)" is (again up to a simple factor) the product of
v, 4,00l f ) With L'(f, k), the derivative of the L-series of f at the symmetry point
of its functional equation. The construction starts with a non-holomorphic weight
1 Eisenstein series for the Hilbert modular group of (Q(l/]) and makes use of a
differential operator of H. Cohen which maps Hilbert modular forms to ordinary
modular forms. We also compute the Fourier coefficients of F. They turn out to be
the sum of two terms ~ an infinite sum involving Legendre functions of the second
kind and a finite sum involving Legendre functions of the first kind. These
expressions will be given an arithmetic interpretation in Chap. 1V.

We will suppose that A4 is a fundamental discriminant (i.e., that D, and D, are
fundamental and coprime); this simplifies the calculations considerably.

1. Construction of the Modular Form F

Associated to the discriminant A and the decomposition 4 = D,D, we have the real

quadratic field K = QQ/Z) of discriminant 4 and the genus character y: Cx—{ 41}
. D;\.. .

(Cx=narrow ideal class group of K), defined by the property y(a)= <V;> ifaisan

integral ideal prime to D; and Na its norm. [This is well-defined since cvery

. . . . . . D D/ \.. .
integral ideal a splits as aga, with a; prime to D, and since <NO> = <NI> ifaisan
a a

ideal prime to A. | The residue class ¢ (mod2N) with ¢? = A4 (4N) corresponds to a

primitive integral ideal

o
n:ZN+ZQA+2L/Z c(OK:Z+ZQ+2‘/

of norm N. For se C with Re(s)>0 we have the Eisenstein series

Es(Za Z,) = EK,x, l.s,n(z’ Z/)

— aNal+2s ’ e ySyS
[;]X( ) ( ) ";n (mz+n)(m/zr+n/)|mz+nl2slmlzz+n/l2s
(z=x+iy, Z7=x"+iy' e 9), (1)

where the first sum runs over the wide ideal classes of K and the second over all
non-zero pairs (m, n) € (na x a)/¢, and the prime on m, n denotes conjugation in
K/@Q. This function is non-holomorphic in z,z" but transforms like a Hilbert
modular form of weight 1 with respect to the congruence subgroup Iy(n) of
SL,(Oy), ie.,

<a2+b az'+b

ervy B e — // ’ ’ E ’
e C,Z,+d,> (cz+d)(cZ +d)Ez.2)
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for a,b,de Oy, cen, ad—bc=1. The Eisenstein series E, is known to have an
analytic continvation in s. Our assumptions on D, D; and N imply y(n)=1 [in fact
x(p)=1 for all prime ideals p dividing n], and this in turn implies that E vanishes
identically at s=0(cf. [8, p. 214], where the case N =1 is discussed in more detail).
We set

! a 0
E(Z’Z ): gES(Z’Z)IS:O

This is again a non-holomorphic function of z and 2’ that transforms under I;(n)
like a holomorphic Hilbert modular form of weight 1.

In [2] Cohen showed how to map Hilbert modular forms to ordinary modular
forms by first applying a suitable differential operator and then restricting to the
diagonal HCH x H. A special case of this construction is that the operator

k—1 k-1
(@ )= ¥ (~1)f<’</ ) )

=0 0z00z% 1

sends Hilbert modular forms @ of weight 1 on I',(n) to ordinary modular forms of
weight 2k on I,(N). This is true even if @ is not holomorphic. Hence the function

- - 1 Ak/2
F(Z):Fk,N,A.Q.Do(Z): (77;)7:1 82 (6r-1E)z2)  (z€9)

transforms like a modular form of weight 2k on I(N). Finally, we define
F(Z):FkN,A,g,D(,(Z):nhol(F)’

the holomorphic projection of F, ie., the unique form in S,,(N) such that (f, F)

=(f, F) for all feS,,(N) (cf. [16] or [9]).

. 1 —1
It is easily checked that replacing E(z,z) by (Nzz')"'E, <N N ) has the

same effect as replacing n by n’ or as interchanging z and z'. This implies that

— — k-1
Fk,N,A,Q,D()'ZkWN_Fk.N,A, _Q,Do_(—l) Fk,N,A.g,Do‘

Hence F lies in the (—1)*" '-eigenspace of Wy, which is S, (N)~.

2. Fourier Expansion of F

The construction described in Sect. 1 was given for k=N =11in[8, p. 214], and the
Fourier development of F was computed there in that case. Of course, since
S,(1)=1{0}, the final step in the argument in [8] was that the expression obtained
for the m™ Fourier coefficient of F had to be equal to zero for all m, a conclusion
which no longer holds here. However, most of the rest of the computation
generalizes, so we shall be relatively brief in our presentation and emphasize only
those aspects which are new for the case of forms of higher weight and level

Write the Fourier development of F as z a,e*™™, The formula for q,, is
=1

somewhat different according as k>1 or k—1
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Proposition 1. Suppose k>1. Then for all mz=1,

o |l

|n| <my/A ml/ A
n=mg(2N)
A,,
e ()
b m|/4
: (=)o ()]
- " 0,x —2* k—1 B
nE*le{?N) m A

where a,_(a) and o’(a) for a an integral ideal of K denote the value and derivative,
respectively, of

5, (0)= l; 1(b)N(b)*

ats=0and P, _,(t) and Q, _,(t) are Legendre functions of the first and second kinds.
We recall that P,_(t) is a polynomial of degree k—1 and Q,_,(t) (t>1) a
function satisfying

1 t+1 .
O, (D)= EP,(, (Hlog t—tl + (polynomial of degree k—2)

and

Qi—1(=0(0"% as t—-o0;

these properties characterize P,_, and Q,_, uniquely up to a scalar multiple,
which is fixed by the normalization P,_,(1)=1. The first few values are

Pyt)=1, P()=t, Py)=33t>—1), P,y()=35-31),

t t+1 32 —1 t+1 3t
Ql(t)=§10g;_7—1, 0,(t)= ——+——log——F — .

The result for k=1 is more complicated because of the different properties of
the holomorphic projection operator x,,, in this case and because the infinite series
in Proposition 1 now diverge. To state it, we need the function Q,_(¢) (se T,
Re(s)>0) for non-integral s; it is defined by

o0 I'(s)? {1 s 2
Qs~1(t): (_‘;(t”{" ‘/ﬁCOShD)_st—_— E—[%;)—(%) F<S,S; 25; m) ,

where F(a,b; c; z) is Gauss’s hypergeometric function. We also use the notation

a(m) for the sum of the positive divisors of me N and H(D,) (i=0, 1) for the value at
D.

s=0 of the L-series L<s, <J>) ; this equals 3 or 4 for D;= —4 or —3 and k(D)), the

ideal class number of Q(]/Hi), otherwise. With these notations, we can state:
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Proposition 2. Suppose k=1. Then for all m>1 prime to N,

e 3 (,;<<M>n~l>
In| <m)4 2

n=mg(2N)

. n+m]/z _ n| A
el e ()

n=mgo(2N)

1 N logp o m L D,
+/1[510gz—p%m+0'(m) Zdlogjfﬁ ], o

dm d L
L D, ¢
— L<1’<->> +22(2)+2],

—12H(Do)H(D,)a(m)
NI+ /p)

where A=

. 0 .
Proof. We first need the Fourier development of E(z,z')= B—SES(Z, Z)s=¢- This is

essentially the same as that given in [8, p. 215], for the case N =1, and we simply
quote it:

E(Z, Z/) _ Z C(V, y,y1)621ti(vz+v’z’)

venbd~ 1
with
2Lg(1, ) log(yy)+4C if v=0,
824 Pl ((vpn 1) if v>0,
v, y,y)= 3 —4n*47 V26, (Won T H@(vy) if v>0>v,
—4n247 o, (VT HD(vly)  if V>0>v,
0 if v<0,

where y and y’ are the imaginary parts of z and z/, b:(]/Z) the different of K,

Le(s )= ¥ x(a)N(arS=L(s, (D>> L( (9))

the L-series of y, C the number
C=L1,7)+Glog(AN)—logm—y)L(1, )

(y=Euler’s constant), ¢, , and o, the arithmetic functions defined in Proposi-
tion 1, and @ the real-valued function

&)= ge“‘”“‘% (t>0

(exponential integral).
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We next compute the Fourier coefficients of F(z). To do this we must compute
%, (c(v, y, )27+ for all vend ™ !. For y=0 this is given by

4L,(1, x)logy+4C if k=1,

For v<0 it is 0. If v> 0 then ¢(v, y, ") is a constant and

2
(gk_ l(eZni(vz+v'Z )) (271:1 < Z (* 1)[( ) vrk~1 —¢’> eZni(v+v’)z .

Using the identity
n\? t—1
1y t"=(t+1)"P , 1
() <m> =(t+1) ( +1> (1)

’

. . . — v - v ’
we can write the expression in bracketsas (v +v')* " 'P, _, (-v,—v+—;> Afv>0>+,then

1=

m

¢(v, y, ') depends only on y'. By Leibniz’s rule we have

da d d TS
o BV )e?™ ™) = z(ﬁdm(lwu”s<M”)

:(Zniv/)reZRiv z' Oj‘ e—4nlv ¥ u u)r éu
1 u

for all r=0, so

(gk_ 1((p(|v/|y/)62ni(vz + v’z’))

_ -k71k71 1Y k—1\? ¢ k—1—¢
—@uif Y (—1) vy
= 4
x <Oj‘)e*4n|v’|y’u(1 _u)kld’gli> e21|:i(v+v’)z
u
(27’[1)’( 1 2n1(v+v)z

u—v+v'y _ du
< TP T e smm
v} u+v+v u

where in the last line we have used (1) and replaced u by [v/| 'w. The result for
v<0< is obtained from this by replacing v by v’ (so v now runs over n'd " !).
Putting this all together, we find
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with

o 2(LK(1 piogy+C)y if m=0, k=1,

am = —_ .
) constant - y! ¥ if m=0, k>1,

0 if m>0

TR U

ven
v>0
Tr(v)=m

k—1

AT ~
51 % g0 0pn )
M
Tr(vi=m

7 k—1 u—v+v -4nyugg _ Ay 1
><|vj,|(u+m) Pk_1< W m >e u+( NNy, (2)

where (...) means the expression obtained from the preceding one by replacing n by
i’ at both occurrences.

We now turn to the last step, computing the holomorphic projection F(z) of
F(z). We assume first that k>1. From (2) and the fact that &(x) or any of its
derivatives is bounded by a polynomial in x times e ~*™ as x — o0, we see that F(z)
=0(y **"Yas y=Im(z)— o0, and the same is true at any other cusp since E(z,z)
has a Fourier development of the same type at all cusps. Hence the hypotheses of
Proposition 5.1, p. 288, of [9] are satisfied and 7,,(F) is given by Sturm’s formula

Fz)= Y a,e’™ eS,{N),

m=1
(4 )Zk— 1 (3)
— L 7 —4nmy 2k—2d
"= k)i (f)am(y)e y y.
We substitute into this a,,(y) from (2). The first term in (2) is absent for m>0, and
the second is a constant (i.e., independent of y) and hence unaffected by the
holomorphic projection process [taking a,(y)=c in (3) gives a,,=c, too]. The

- . n+ml/4 .
conditions Tr(v)=m, v>0, and vend~! are equivalent to v:zlf with

|n|<m]/2, n=mg(2N), so this term is the same as the first term given in
Proposition 1. Applying the same argument to the remaining terms, we see that to
prove Proposition 1 we need only prove the integral identity

W T -2 u—v+vy ,du
((7l€)~2)! ("ge oy 2<|§|(u+m)" Py 1<\1m>€ Ay )dy

B y—y'
=2—1)"'mhO, <%>
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for v> —v' >0, v+v =m>0. Interchanging the integrals and performing the
integration over y, we can write the left-hand side of this as

® , u—v+v\du P, _ (x)dx
kp B 2 1-k 1— -1 k-1 )
lJ|(u+m) , 1( u+m ) V j ( v—v 4 mx
We therefore need to prove the identity

§(1— O, S 0 ).

But this is easy: by the defining property of Q, _ (x), we have
L (1=x) 1P y(x)

I T dx
L k-1 _
] (I+2)" P ’1)+(polynomia1 in x,4) |dx
E x+4

A+1
—(—1—J) P, l(i)log% +(polynomial in )
=2—1-2)"1Q, _,(A)+(polynomial in 1),

and since Q; _{(A)=0(A"%) and the integral on the left is O(1/4) as A—co, the
polynomial in the last line must vanish. This completes the proof of Proposition 1.

For k=1 the simple formula (3) must be replaced by the following, which is a
restatement of Propositions 6.2 and 6.7 of [9].

Holomorphic Projection Lemma. Let F(z)= Z a,(v)e?™™ be a function on

which transforms like a holomorphic modular form of weight 2 on I,(N), and suppose
that for every divisor M of N there are numbers A(M), B(M) such that

~<az:—{-b

(cz+d)™*F +d>=A(M)10gy+B(M)+O(y~S) as y=Im(z)»oo (4)

b © .
withe >0 for all <(cl d> eSL,(Z)with(c, N)=M.Let F(z)= Y a,e*™™ eS,(N)be
m=1
the holomorphic projection of F. Then

2
a, = lim [4nm [ a,(y)e 4™y " dy+ i‘?‘_{(ﬂq

s—1 S—l
m logp 1 v B
*48066(m)[6(’md|2md10gd+p%;)2—j+log2+2+z(2)+2a]
for (m, N)=1, where
_ -1, M)A(M)
a_ﬂv(l ) MIN M
M) B(M logM
B 11— p 1 HADLB A0 og]
pIN MIN

( (M) = Mébius function).
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. . b 1 0
Applying this in our case, we see from (2) that (4) holds for (? d> = < )

with 01
4 1/ DoD
A(N)=5‘/H;LK(1,;<)=~—~2%‘LDOM)me 2H(Do)H(D,),

A L L
B(N)= ‘/n;fC:%H(DO)H(Dl)[%logAN—logn—)H— LI,:O(1)+ L\I;‘(l)]

0

b
To find the development at other cusps we choose (? d) eSL,(Z) with (¢, N)=M

b b
and observe that (cz +d)(cz' +d)E, (j—zw% %Zj: d> is an Eisenstein series defined
zZ

by the same expression as in (1) of Sect. 1 but with the summation conditions in the
inner sum replaced by m, ne a, dm — cn e na. A standard calculation shows that this
Eisenstein series equals

M 1+2s Ml 2s TCF(S+ )2
— L1425, )y — 2 L2, 0)(yy) " +(exp. small
<N> K N frs+1)2 K yy (exp )

as y, ¥’ — oo (the first term comes from the summands with m=0, the second from
those with m=0 upon replacing the sum over n by the corresponding integral).

L . 4 0 . .
This gives for the function F(z)= [— s E(z,2),-0 an expansion like (4) with

amy=m A

_ B(N) AN), M
B(M)-M(W-» + N log N>

[A(N), B(N) as above]. Hence

e AN o ) _ SO,
— = -
z= 0= Py NI+

’ ’

A L L logp
=a| $log— —logn—y+ 22 (1) + =21 (1) + —{'-
B [2 gy ~logm—y Lno() Lnl() ,,|ZNp—1

On the other hand, (2) and the arithmetic considerations given for k > 1 show that

1 n|—m)/4
m(y) a 5 z < )
]

A A
g AC) (2
n<myd4 2 ' 2

n=mg(2N)

with
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SO

drm | a,(y)e” *™™y*~'dy
0

-
- § 7] 1
=(4mm)' SF(s)a?,,—m W ( -,

where
_(A=4n | d(Ay)e ™y T ldy  (A>0).
0

The same calculation as in [8, p. 210] shows that

1 In| 1 rQs) < In|
Y lII“l - = T A VAAlmi n s—1
250 <2m1/3 2> @ s+ 5 C Gy/a

as s—1, so the holomorphic projection lemma gives

>+0(s—1)

. |n| (4mmy " 'I'(s+1) 24xa(m)
am:ar?l_ lim Z QnQS‘l < > B
so1 | |nl<mVA I(2s s—1
1 L < m}/4 (2s)
—24oca(m)[ m d%ndlog B

lgp +1o 4+1+2C-(2)~ﬁ],
{ o

pIN

and this is equwalent to the formula in Proposition 2.

3. Evaluation of (F, f)

The object of this section is to calculate the scalar product (F, f) for a newform
fe S, (N). Since we have seen that F belongs to S,,(N) ", and since S,,(N)~ and
S,(N)* are orthogonal, we may restrict attention to f€ S,,(N) . Forsuch an f the
L-series L(f, s) vanishes at s=k, and its derivative at this point will enter our
formula.

Theorem. Let feS,(N)” be a normalized newform. Then

T k—Y) ,
(Fk,N,A,g,DO’f) 2k+1 k+1/2 rkNAgD(,(f)L(f k)

where 1ty 4, p(f) is the cycle integral defined in Chap. I1, Sect. 1.
Proof. By the definition of the holomorphic projection operator, (F, f) equals

~ 0 . .

(F, f). Also, the operators a5 and ¥,_, commute, since they involve
S s=0

differentiation with respect to different variables. We will therefore first compute

%, -, of the Eisenstein series E(z,z'), then the scalar product of f with this, and

finally the derivative at s=0. For the first step, we use:
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Lemma. Let m,m’,n,n’ be real numbers, seC, and denote by h the function
ySy'S
(mz+n)(m'z’ +n)|mz+n|>|m'z +n')*
(2,2 €9, y=Im(z), y=Im(z")). Then
y
(6o h)2)= R ki o
o o<,§k; o Q@FIQ@)**

2

h(z, )=

2s—-2j

where Q(z) denotes the quadratic polynomial (mz+n)(m'z+n') and the P, (s) are
polynomials in s with

(k=11 if j=0,
P. (0)=
.40 {0 if j>0.
Proof of the Lemma. The function k is the product of a function of z and a function

of z’; we first calculate the derivatives of these functions individually. By Leibniz’s
rule

14 y
£V dzf \(mz+ n)|mz +n|*

1@ 1 t
pi el E((mz+n)“‘(mz‘+n)‘)ﬁ R

() ()

pa=c (mz+nf P (mz 40y (20

_ @y (ST () (2me Y
~ (mz+n)|mz+n|* p+§:/( 1)< p )(q><m2+n>

o Qipty (/) <s+j <m2'+n>f
(mz+n)|mz-i—n|2s Z (-1~ j j J\mz+n)>

where in the last line we have used the identities

mz+n mz+n

B S+p W B £\ (s+] ]
,,+§:,( “(z))()“ X Z( tf <;><J>X

Inserting this formula into the definition of the operator €, _,, we find

(k—1)122iy)" *y*
0(2)10(2)*

(—1 [ ¢ I\ (s+j\ [(mzi+n
X/wgk 1/'/"(,20( <1>< J ><mz+n)>

and

(- 1h)(2)=
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—\TAY L4
Forfixed j,j wehave ) ( ,) ( ) ( > =0unless j+j=k—1, when only
t+e=k—1 L1V G\

the terms /= j, £’=j" contribute. Hence
(k—1)2(2iy)' "ty
0(2)|0()1**

g 5 1 [s+&\(s+\( mitn fimz+n\
cre=k-1 VN e mz+n/) \m'z+n') ’

1 [(s+\[(s+
k—1)1? — ) @. &4
( ) {+(’E=:k—1 f!/’!( ¢ >( £ ) X

= Y P (9@XXYX+X)

2j+h=k—-1

(G- 1M)(z)=

But clearly

for some polynomials Py {s), because the left-hand side is a symmetric homo-
geneous polynomial of degree k—1 in X and X'. Therefore

2- 1—k,2s
@ he)= 22V

Q(2)|0(2)** o
~_4Q(z)>1 <2iy(mn’ _mrn))k— t-2j
<D (g

which is equivalent to the statement of the lemma. The statement about
P, {0) is clear from the definition of the P, (s). In fact, P, {s)

BV AWE S Aty . . .
=47 " 5 IT (s—j+n), but we will not need this formula.
J ] /n=1
Applying the lemma term by term to the series defining E, (in the region of
absolute convergence), we find
k—1
(€ 1EJ(2)= > Pk,j(S)A 2

k-1
L .
0zj=—5

x % x(a) mzn rimn)f 172

-

25— 2j

y
QD) Qa2

where the summations over [ a] and m, n are the same as in the definition of E, and

)

mn' —m'n 0. (2) (mz+n)(m'z+n')

, mlZ) = ———— .
N(a))/4 N(a)
Note that r(m, n) is an integer, equal to 0 if Zm+Zn is one-dimensional and to
+[a:Zm+7Zn] otherwise, and that Q,,, is a quadratic polynomial with integer
coefficients and discriminant r(m, n)*4. Applying |,y for y € I(N) to (1) permutes
the m, n in the inner sum, leaving r(m, n) invariant. Therefore we can rewrite (1) as

rim,n)=

k—1

—J

(gk—lEs:ZPk,j(s)A ? > Y rk‘l72j¢k,2$—2j‘a,r5 (2
J

[a] reZ
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where

S

Yy
D sardz)=xla ' A IS
A NP S o= (O

rim,n)=r

is a (non-holomorphic) modular form of weight 2k on I,(N), and then [because of
the absolute convergence for Re(s)> 0] compute the scalar product of each term of
(2) with f separately. Note that @, , , , depends on the narrow ideal class of a but
that @, , , ,+(—1)"'®, . , [and hence the inner sum in (2)] depends only on
the wide ideal class, since replacing a, m, and n by Aa, Am, and An with le K™,
N(4) <0, replaces y(a), r(m, n), and Q,,(z) by their negatives. We now consider the
individual terms of (2).

r=0. If r(m,n)=0, then TEQ, so m= Ac, n=Ad for some coprime integers ¢, d
n

(unique up to sign) and Aea. Hence

_ @) , —k - y
Prcs0.0(2)= 2 c,dzel ( }.Ze:o NN >(cz+d)2k|cz+d|23'
(c,dy=1 \clena

The inner sum depends only on the greatest common divisor of c and N, so thisis a
hnear combination of functions

s

3
c.dzél (CZ+d)2k[cZ+d|25 (MlN, RC(S)>O)
((Cc',:));}:d

which are non-holomorphic Eisenstein series of weight 2k on I',(N). Therefore

(f, ¢k,s,a, 0)=0 (3)

since f is a cusp form.

r= 1. For the reason given above, we have

Z(dj}c,s,a.l+(41)k—1(pk.s‘a.l)= Z ‘pk,s,a.l

[a] lale¥x

where [a] on the left-hand side of the equation runs over the wide ideal class group
of K and on the right over the narrow ideal class group (which is always twice as
big, since the fact that 4 is a product of negative discriminants implies that all units
of K have norm + 1). For r(m, n) =1, the quadratic polynomial Q,,,(z) has the form
aNz?> +bz+cwitha, b,ceZ,b=¢g(2N),b> —4Nac = A, i.e.,itequals Q(z, 1) for some
Qe2y 4, ,in the notation of Chap. I. Conversely, every Q € 2y , , occurs this way
exactly once [there is a bijection between % and Oy , ,/Io(N) by the results of
Sect. 1 of Chap. I, and the different choices of (m,n) with r(m,n)=1 for given a
correspond to the forms which are I'(N)-equivalent to a single such form]. Also,
x(a)=xp (0) under this correspondence. Hence

2Dy 0 1(2) +(— 1y l(pk,s,a, @) =Jn. 00025 9)

a
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in the notation of Sect. 1 of Chap. 11, and the last equation of that section gives

(1 Pusa + 0 B )
1 s—1
:F<§>F<"+T>A_H1;s
S
r(k+3)

IF]> 1. For a fixed ideal a, the pairs (m, n) € (na x a)/0g with r(m, n)=r are obtained
from a fixed pair mg, ny with r{mg, ng)=1 by (mn)=(mg ny)y with

Ty, N, A,g,l)g(f) - 4

ye Ry = {(Z Z)eMZ(Z)ICEO(N), ad—bc=r}.

The quadratic polynomial Q,,.(z) equals (cz -+ d)*Q(yz) under this correspondence,
where Q(z) = Q,.n,(2), and the action of O on (m, n) corresponds to multiplication
of y on the left by an element of the stabilizer I'4(N)y, of Q, in Iy(N). Hence
- y
P sarz):r klr § — ——rt
R L PR NE TN

7
2k

[where Plyyy for y= <j Z) of determinant r is defined as r"(cz+d)*2"¢(yz)j|.

Comparing this equation with the same one for r=1 [with Ry =1Iy(N)] gives

Dy 5.0, (D)=r7F7 ) . Dy o +1lay  (r21),
yelo(N\RN

a finite sum. The value of (a, N) for y= (Z Z) € R is left I, (N)-invariant, and the

terms with (a, N}=M >1 yield an old form. [We can write y=1yo (1\(;1 ?) with
7 € [L(N)\R}y, so these terms have the form g(Mz) where g is a modular form on
I5(N/M) obtained as a trace from I"O(N).] The sum over the terms with (g, N)=11s,
by definition of the Hecke operator T,, just r' “*&®, . . . |T,. Hence
By gt (=D TID 0= T By 0 (DT Do Dl T
+(old form) (r=1),
and therefore, since 7, is self-adjoint with respect to the Petersson product,

- alr B
(f’ ¢k,§.n,r+(_1)k 1d>k,§,a. —r): %(f.’ (bk‘i.u.] +(—1)k 1(I)Ic,§,o, - 1) (5)

for r > 1, where a(r) = coefficient of ¢" in f=eigenvalue of f under T,. The argument
we have given here was used for N=1 in [13].
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Combining (2)-6), we find

TG (k+s5—j—4)
5 (g —1 Eﬁ == P i R z
(f , ) l:osjgk;l k"(s) r(k-l—S"})

=~

XA 2 LU k250 v a0 polf)- (6)

The factor in square brackets is holomorphic at s =0 and has the value I'(})I'(k— 1)
there. On the other hand, L(f, k+2s) vanishes at s=0. Hence

0 0
(fs 5“(€k—1Esis—-0> = %(f’ (gk_ lES)IS:O

N
=2IQI (k=A™ 2Lf, K)ri w, 4,0.00f )5

and this is equivalent to the statement of the theorem.
Using the formula for P, {s) stated after the lemma, we can compute the factor
in square brackets in (6) and hence rewrite this equation more explicitly:

(fs o€ - E)=(/, Cr-1E)

:2_2k+22s<2k12>£(k+2s) S

k=1 )T+ 12" TN, 4,000 VLA k4 25) .

In other words, one can express the cycle integral of f times the value of L(, s) for
any s, not just its derivative at s =k, as the scalar product of f with a modular form
whose Fourier coefficients can be calculated in closed form.

IV. Height Pairings of Heegner Divisors

In the introduction we briefly defined Heegner divisors y} , of degree 0 on X ((N)
over Q. These are indexed by negative discriminants D of conductor prime to N
and classes r (mod2N) with r?= D (mod4N). Their precise definition will be given
in Sect. 1. Our main aim in this chapter is to compute the global height pairing
Yoo Yb..r,» On the Jacobian JEN) over Q. In the height computation we shall
assume that D, and D are relatively prime. The global height depends only on the
classes of the divisors y} , in the Jacobian of X ¥(N), but using Néron’s theory we
will express the pairing as a sum of local symbols {y}, ,..v5, , >, indexed by the
places v of @, which depend on the divisors representing the classes. We will
compute the archimedean symbol using Green’s functions for the Riemann surface
$/I3F(N) and the non-archimedean symbols using intersection theory on a regular
model for X¥(N)} over Z.

1. Heegner Divisors
Let D be a negative discriminant which is a square (mod4N) and has conductor
prime to N and let r be a class (mod 2N) with r*=D (4N). We define a rational

divisor P, , on X o(N) over K=(Q(]/B). Recall that the affine points of X (N) are
given by x =(n: E—»E’), where E and E’ are elliptic curves and  a cyclic N-isogeny.
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D . L . o
LetOp,=Z+7Z d +2‘/ be the ring of discriminant D in K and n the primitive ideal
D
ZN+z"* 2f

endomorphisms by @, [i.c., O, maps into End(F) and End(E’) with the obvious
diagram commuting] and such that the kernel of 7 is annihilated by n. The point x
is counted with multiplicity 1/e, where e is the order of Aut(x)/+1.

If ¢ denotes the non-trivial automorphism of K over Q), then (P, =Py _,
=wp(Pp.,) [5]. Hence the image P¥, of P, , on the quotient curve X§(N)
= X o(N)/wy is rational over @ and depends only on +r (mod2N). By [ 5], or by the
proposition in Sect. 1 of Chap. I, the degrees of P, , and P}, are both equal to
H(D), the Hurwitz class number. We define the divisor yj , of degree zero on X§(N)
over Q) by

of index N. The points x in P,, are those which admit

ylﬁ,r:PIﬂ;,rAH(D)(w*)’

where co* is the rational cusp on X§(N) which is the image of the cusp oo (or 0) on
X o(N).

Over the complex numbers, X o(N)=/T(N) and XEN)=9H/I(N), where
_ 1 /0 —1
H=HUP Q) and IF(N)=I(N)uwyIo(N)CPSL,(R), wy= v <N 0> [We
are assuming that N> 1, so I5F(N) contains I,(N) with index 2.] The divisors Py, ,
and P}, are given by

Pp =2 /JIi(N),  P§,=25,/I¢(N), (M
where #;, , and &f5 , are the infinite subsets of $ defined by
Py, ={1€9|aNt* +bt+c=0 for some [aN,b,c]€ 2y p, With a>0},
P =Pt Py, -,

(2y.p.rasin Chap. I). These equations are to be interpreted as equalities of divisors
with rational coefficients, so a common point of &, , and #,, _, has multiplicity 2
in 2% . and a point of /I represented by Te Z is counted with multiplicity equal
to the multiplicity of 7 in £ divided by the order of the stabilizer of 7 in I'. The point
ao* over @, of course, corresponds to the cusp icc (or 0) in H/IF(N).

Finally, by the formula at the end of Sect. 1 of Chap. I, we sce that

D
Tm(Pl),r): Z <E> PDdz,rd 3)
m=dd’
for D fundamental and (m, N)=1. Since T,, commutes with wy and sends «0* to a

multiple of co*, the same formula holds for P} , and yj ..

2. Review of Local Symbols

We review the basic ideas of Néron’s theory; for more details see [6]. Let X be a
non-singular, complete, geometrically connected curve over the locally compact
field k,. We normalize the valuation map | |,:k, >R} so that for any Haar
measure dx on k, we have the formula a*(dx)=|al, - dx. Let a and b denote divisors
of degree zero on X over k, with disjoint support; then Néron defines a symbol
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{a,b>,in R which is bi-additive, symmetric, continuous, and satisfies the property
Em(x),(f)),=log|[]f(x)"], when b=(f)is principal. These properties charac-
terize the local symbol completely.

When a and b have the point z (and no other) in common, one can extend
Néron’s definition by choosing a uniformizing parameter n at z and defining

<Q, b>v = }JI_I}} {<ay7 b> - Ordz(a) Ordz(b) 10g|n(y)|v} »

where a, is the divisor obtained from a by replacing z by a nearby point y notin the
support of b.

When v is archimedean, one can compute the Néron symbol as follows.
Associated to b is a Green’s function g, on the Riemann surface X(k,)—|b| which
satisfies 00g,==0 and has logarithmic singularities at the points in |b]. More
precisely, the function g, —ord,(b)log|n|, is regular at every point z, where 7 is a
uniformizing parameter at z. These conditions characterize g, up to the addition of
a constant, as the difference of any two such functions would be globally harmonic.
The local formula for a=} m,(x) is then

<C(, b>v = Z mxgb(x) .

This is well-defined since Y m,=0 and satisfies the required properties since if
b=(f) we could take g,=log|f},-

If vis a non-archimedean place, let @, denote the valuation ring of k, and g, the
cardinality of the residue field. Let Z be a regular model for X over ¢, and extend
the divisors a and b to divisors 4 and B of degree zero on &. These extensions are
not unique, but if we insist that 4 have zero intersection with each fibral
component of Z over the residue field, then the intersection product (4 - B} is well-
defined. We have the formula

{a,b),= —(4- B)logg,.

Finally, if X, a, and b are defined over the global field k we have {a,b)>,=0 for
almost all completions k, and the sum

{a,by=7%<a,b>,

depends only on the classes @ and b of a,b in the Jacobian. This is equal to the
global height pairing of Néron and Tate. The same decomposition formula into
local symbols can be used even when the divisors a and b representing ¢ and b have
non-disjoint support, provided that the uniformizing parameter n at each point of
their common support is chosen over k.

We will apply this theory to compute the global height pairing of Heegner
divisors on X§(N) as a sum over places v of @Q:

<yﬁg,rn>y§,,r1>: Z<y;k)n.ro’y;k)1,n>v'

Since the divisors y} , have the cusp co* in their common support, we must fix a
uniformizing parameter = at this cusp. We let = denote the Tate parameter g on the
family of degenerating elliptic curves near co*, Thisis defined over @, and will even
give a uniformizing parameter over Z on the modular regular model 2*. Over €
we have g=e?"* on X(N)(€) = H/I(N), where z € H with Im(z) sufficiently large.
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3. The Archimedean Contribution

Let zy and z, be points of $ which are not in the same IGF(N)-orbit, and x, % x, the
corresponding points of XF(N)(C). Then the local symbol

{(x)—(00%), (x1) —(00*)) 6= G20, 21) (1

defines a bi-Ij¥(N)-invariant function G¥ on $ x $ minus the I3f(N)-orbit of the
diagonal. The archimedean part of the height pairing of y§, ,, and y} , is given by

ore Vbir D0 = 3GHPBo v PH,1) (2)

where we are using the convention that f(a) for a divisor a=} m(x) means
Y m, f(x). The factor § arises because @Q,, is R, not €.
We need a formula for the function G%. For se © with Re(s)> 1, define the
point-pair invariant
|26 —2,|?

gdz0,21)=—2Q, 4 <1 + 2Im(zO)Im(zl)> (20,2, €9, zoF24),

where Q, _,(t)is the Legendre function of the second kind. The function defined by
the convergent sum

GN,s(ZOaZI): Z gs(ZO=yZI)

yel'o(N)

is the resolvent kernel function for $/IL(N). It is bi-Iy(N)-invariant, finite on
(9/I(N))? except for a logarithmic singularity along the diagonal, and has
eigenvalue s(s—1) for the hyperbolic Laplacian. Another eigenfunction with this
eigenvalue is the Eisenstein series of weight O at the cusp oo:

Exl(z,5)= Y Im(yz)* (ze$, Re(s)>1),

re (g W)\ FotV)

which satisfies En(z,s)=y*+ @dn(s)y' *+0(e™?) as y—oo for a certain mero-
morphic function ¢ (s), specified below. Let G% ,, E%, ¢% be the corresponding
functions when I(N) is replaced by I3f(N). We have

G;;,s(zo’ Zl)= GN,s(ZO’ Zl) + GN,S(ZOa WNZI) ’ E]TI(Z’ S) = EN(Z’ S) + EN(WNZa S) . (3)

Proposition 1. The function G¥ defined by (1) is given by

4n

GHz0,21)= lim [G;s,s(zo,zl)— = (Efz0 )+ Efz1,5)— qs;s(s»]. @

Proof. The function G¥ of (1) satisfies
(i) G% is bi-If(N)-invariant, symmetric, and harmonic in each variable;
(i1) for fixed z,,
G¥(zo,21) =€, loglzo—z >+ 0(1) as z;—z,
GH(zp, 21)=4nIm(z,)+0(1) as z;—iow,
and G¥(z,,z,)=0(1) as z, tends to any point of § not IF(N)-equivalent to z, or to

any cusp not Igf(N)-equivalent to co. [Here e, is the order of the stabilizer of z, in
I§(N)]
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Indeed, from the axiomsin Sect. 2 and the choice of the uniformizing parameter
g=e*"* at oo we sec that

Gllzo,20)=flz)— lim (f(2) +logle*™¢)
=f(z))+ lim (f(z)—4nIm(2)),

where f is a Green’s function associated to the divisor (x,) —(00*) on X§(N). This
makes the harmonicity and the behavior as x, —cusp obvious, while for x, - x, we
have f(x,)=log|n(x,)lc + O(1) where n is a uniformizing parameter at x,, and one
can take 7 to be (z — z,)°=. The expression on the right-hand side of (4) also satisfies
(i) and (ii), by the same arguments as in [9, pp. 239-241] and [8, p. 208]. This shows
that the two expressions are equal, since their difference is globally harmonic,
hence constant, and vanishes at co*.

Combining (2) and (4) and recalling that yj .= P} ,— H(D}{(c0o*) with P}, of
degree H(D), we find

. 4n
<ylx;0.r(,9 yr)l,r1>oo :%11_{1’11[ ﬁ,s(P;k)g,m’ Pgl,rl)_ m;‘(H(DI)E?\:I(PEO,m? S)

+H(D)EX(P}, ,,.5)—H (Do)H(D1)¢>ﬁ(S))] - (5)
We now proceed to evaluate each of the four terms in the square brackets. From (3)
and Egs. (1), (2) and wyPp ,=Pp, _, of Sect. 1 we have
GR,{Pbo.ros PB1.r )= On. AP oyror Py )+ OnoPporos Poy. 1) (6)
so for the first term in (5) it suffices to evaluate Gy (Pp, .., Pp,.r,)-
Proposition 2. For neZ, n*=DyD, (4N), define
om)= 3 &d), (7

n2— DD,
4N

where ¢ is associated to the quadratic form [Dy, —2n, D] as in Sect. 3 of Chap. L.
Then for Re(s)>1,

n
G ’S(P o,ro’P 1."1): =2 Q(n)Qs— (_ ) (8)
N, s\p D ">[/21:70D1 1 /—DODI

n=—rori(2N)

Proof. From (1) of Sect. 1 and the definition of G ; we have
GN‘S(PDo,rOaPDl,n): Z GN,s(TOarl)

(t0,t11)E(P Dy, X PD,, rl)/FO(N)Z

= Z gs(TO’ Tl) s
(f0, TP ny, ry X P, 0N

where in the second equation Iy(N) acts diagonally on #), , x #p, . and in both
equations we are making our usual conventions about multiplicities [i.e., each
term Gy (1o, 7,) Or g4(70, T,) 1S to be weighted with a factor equal to the reciprocal of
the order of the stabilizer of (74, T,) in I(N)? or I(N)]. Associated to 7, (i=0, 1) we
have the positive definite quadratic form ¢;=[a;N, b;, ¢;] of discriminant D,, with
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b;=r;(2N), with g{t;,1)=0. Then

lto—.f > n
(T, T)= =20, <1+—‘ — 20, |
8iTo- T "\" " 2Im(r) Im(t,) ‘\[/DoD,
with n=2N(agc, +a,co) —bob;, ie., n=— B, (q,.4,) in the notation of Chap. I,
Sect. 3. Clearly n>]/DyD, and n= —ryr, (2N). This proves (8) with g(n) replaced
by
on)=# {(To, 71)6(9)1)0,”, X Py, e HTo(N)| BAN(qO, q,)= _n}

or equivalently — since there is a 1:1 correspondence between positive definite
forms in 2y , and their roots in § —

@) =3 % {(d0, 41) €(2x, py.ry X 2w 0,1/ To(N) | B (do, 41)= —n}.

[The 3 arises because the condition B, (g, q;)= —n forces g, to both be positive
definite or both negative definite, and we want to count only the former.] Let ¢
denote the number of prime factors of N. Then

2'9(n)= % # {(QO’ ql)e("QN,Dg X "@N,Dl)/FO(N) | BAN(QOs qy)= vn}

because the group W=(Z/2Z)' of Atkin-Lehner involutions acts freely on the set of
pairs (ro,r;) (mod2N) with r? =D,(4N) and with a fixed product ryr, (mod2N),
since D, and D, are coprime. This last expression equals 2'g(n) by the Corollary to
Proposition 3 of Chap. I, Sect. 3, so g(n)=g(n). This proves (8).

We now turn to the Eisenstein series E¥(z, s). Here we must evaluate, for D=D,

or Dy, the sum
E;\';(T, S) = Z EN(T: S) N

tePh /THN) te?h, o/To(N)

To do this, we recall that Ey(z,s) can be expressed [9, (2.16)] as

Exzs)=N"[[(1—p 1y H;?E(%Z,S), 9)
PIN dIN

where E(z,s) is the Fisenstein series for SL,(Z). Hence our sum becomes

d N N
N*T[=p ! i}( Y E<-—1:,S>+ ) E(r,s)).
pIN d|N d te Py, »/To(N) d te?n, - »/To(N) d

N
The association [Na,b, C]H[:d(l, b, dc:l identifies 2, ,/T,(N) with 2,/I}(1) for

any divisor d of N, by the proposition of Chap. I, Sect. 1. Hence each of the inner
sums is independent of d and equal to y E(z, s). But this sum is given by the
“zeta-function” eIniSLa@)
E(t,5)=2""ID"?{(25)" '{p(s) =27*|D|*((25) " " L(s)Ls)
te P p/SLAZ)

where L (s) is the holomorphic function of s introduced in [21] with L,(1) = H@—)

D]
[If D is fundamental, then {(s) is the Dedekind zeta function of QQ/D) and Ly(s)

D ) . . .
= L(s, ()) , while for general D it differs from this by a finite Euler product over
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prime factors of the conductor] Since Y u(d)d °= ]] (1 —p~°), we find that
d|N pIN
21 DP2 L)
EXP. )= i s 5 Lol

and consequently

6 H(D) 1 |D}'2 logp
EXP¥%  s)=— 1 —
WP, ) TN (1+p‘)[s—1 (og 2N +13;NP+1+))
pIN

729(2)+ Ly (1)) +O(s—1)] as s—1 (10)
¢ L,
(y=Euler’s constant).
Finally, we must obtain an expression for ¢¥(s), the coefficient of y! ™% in the
Fourier expansion of Ef(z, s} at co. But E¥(z, s) is given in terms of E(z, s) by (3) and
(9). For the Eisenstein series of level 1, we know that

rérs—Hes—1y ,
s

E(z,5)=y"+ O(e™)

as y—oo. Hence

et a1 TN = 50— D[ | pld) {(g) H
=N L= ke Lm )
1

F(%)F(S—E)C(Zs—l)[ e - —p‘““]
= ——— | N7 — + N[ ———|-
I (s)¢(2s) ﬂv 1—p 2 v 1—p %
For s near 1 this gives
6 1 1 3 logp
+| —ZlogN+ Yy —=C
PR N|(+p [H ( RN
pIN
—10g4+2y—2%(2)> +0(SA1):| as s—1. (11)

Combining (5), (6). (8) [applied to both (Dy, ro), (D, r1) and (Dy, o), (D, —r4)],(10),
and (11), we obtain our final result:

Theorem.
£ *
<yD0,ro’ yD1~r1>fX>

A
“m | g w0 ) -]

n=rgri(2N)

N logp . C L’,,O L }

— 5 2Rt - - ()42

1
+4l zlo
|:2 gDODl piv p+1 { LDO Lp,

with 2= —12H(Dy)H(D,)/N ﬂ ( ;) and g(n) as in (7).
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4. The Contributions from Finite Places

We fix a finite prime p of Q. To calculate the local symbol <y} ., V5, ,,>,in terms
of intersection theory, we need a regular model * for X}¥(N) over the valuation
ring Z, of Q,.

A modular model X for X (N) over Z was constructed by Katz and Mazur
[11], using ideas of Drinfeld. The scheme X is smooth over Z[1/N] and regular
except at closed points x in characteristic p|N where Aut(x)+{+1}. We let 2°*
denote the minimal desingularization of the quotient of X by the Fricke involution
wy. Then Z™* is smooth over Z, when p/N. When p|N the curve F*®Z/p may
have several components.

Let P}, be the multi-section of £* over Z, which extends P}, and «o* the
section corresponding to the cusp co*,

Proposition 1. (y3, ., V5,..,2p=— (P, s, P, 1), logp.

Proof. Since the discriminants D, and D, are relatively prime, we may assume that
pADy. We then claim that the divisor P§_ , —H(D,)co* has zero intersection with
each fibral component of #* over Z/p. This is clear when p /N and Z* is smooth,
with a single component over Z/p, so assume that p|N. Since ptD, and

D, =r}(4N), we see that p must split in the imaginary quadratic field Q(}/Dy). Letp

be the unique factor of p which d1v1des et [0 . Then the points x in the divisor

Py, .., all reduce (modp) to the component ./,l,o of X®Z/p containing the cusp o
[9, (3.1)] and all reduce (modp) to the component %, , of X ®Z/p containing the
cusp 0. These cusps, and the corresponding components, are interchanged by wy,
and give rise 1o a single component Z* containing o (modp) on X/wy. Since the
reduction is ordinary, the points in P,,O r, all reduce to regular points on # *, so lie
in the same component as co* in Z* Hence P} , —H(Dg)oo* has zero
intersection with this special component; it clearly has zero intersection with all
others.
From the general theory described in Sect. 2, we have the identity

<y30,r[pyl=§1,r1>p: (( Do, ro H(DO)OO*) (PDl r H(Dl)®*))p10gp

But the points in P}, have no intersection with co* (mod p), since they correspond
to elliptic curves with complex multiplication and hence have potentially good
reduction at all primes. Finally, since g is a uniformizing parameter at co* over Z,,,
we find that the local symbol is calculated using the convention that (0* - 00 *),=0
[6]. Hence the intersection product on the right-hand side reduces to
~(Phoro- PB..r) l0gD.

We now turn to the computation of the relevant intersection multiplicities.
First we have:
Proposition 2. If p|N then (P} , - P}, ,),=0.

Dg,ro % Di,ry

Proof. We may assume p.f D,,so the pointsin P, , haveordinary reduction on X.

If p is split in Q) [/‘ the same is true for the pointsin P, , . By Deuring’s theory
[3], singular points with ordinary reduction and distinct quadratic ficlds of
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multiplication reduce to distinct points (modp). If p is not split in (D(\/Dl), the
pointsin P,  have supersingular reduction on X, so are disjoint from the points
in the reduction of Py, . , which are ordinary. Hence the intersection number is
zero in all cases.

We henceforth assume that pyN, so X is smooth over Z, and 2* = X /w,.
Denote the projection map by F:X—-Z*; then F, (P,,)=P}, and F*P})
=Py, + P, _,. Since D, and D, are relatively prime, we may re-order them so
p¥D,.Fix asquare root m of Dy in the completion W of the maximal unramified

extension of Z, A Heegner point x=(n:E—FE') lies in the divisor P, , if

Oy=Z+7Z- Do +2l/ = embeds into End(x) and o, = fo +l/ € End(x) annihilates

kern. Here, and in what follows, we will write \/‘0 for the endomorphism which
gives multiplication by our fixed square root of D, on the tangent space. The points
xin Py, ,, areall rational over W. A point y lies in the divisor P}, , + P,  _,, if the
order ¢, of discriminant D, acts on y and the cyclic subgroup of order N in its
diagram is annihilated by an element o, € @, of trace r, (hence also by —a, of trace
—ry). The divisor Py, , + Pp, _,, is always rational over W; its points y are all
rational over W iff pyD,. We have

(1—)30,7() ’ Plﬂ;l,n)p :(PDU,VO ’ (PDl,rl +PD;. —rl))W (])

and we now turn to the intersection product on X over W.

Assume first that p¥D,. Then we may fix a square root ]ﬁ in W. A pomt
Iy + l/ Dl

2
annihifates kery. Suppose that (x- y)y >0 for xe Py, , and ye Py, .. Then our
diagrams reduce to the same 1sogeny z=(¢p:E—-E)= (1,0 F—-F')on X® W/pW.
Write R for the endomorphism ring Endy, i (2). The reduction of endomorphisms
gives injections Endy (x) ¢ R, Endy(y) o R. Since D, and D, are coprime, R
cannot be an order in a quadratic field, so it follows from Deuring’s theory that z is
a supersingular point on X® W/pW, that R®Q is a quaternion algebra over @
ramified only at p and at infinity, and that R is an Eichler order of index N in this
quaternion algebra. Moreover, the embeddings of Endy (x) and Endy (y) give

elements VD: and ai:(ri+VE)/2 (i=0,1) in R satisfying

/DO\/I_)T—H/E]/D =2n forsome neZ, n=ror,(mod2N), n><ryr,.

|:Pr00f ]/D0 D, +1/D Dy =4Tr(xgo)—2ryr, is an even integer 2n with

y=(p:F-F)lies in the divisor P, , over W if the endomorphism a; =

n=ryr; (2). The elements o, and a, liec in the annihilator of ker(¢)=ker(y), which is
a two-sided ideal I CR of index N. Locally at a prime /|N we can identify RQZ,

ZzZ, Z, NZ, Z, Z, Z,
/ d
with (NZ Z,) and IRZ,, IQZ, with <NZ( Z) an (NZ NZ, , respec-

tively. This shows that Tr(IT)C NZ and hence N|Tr(aqa,), which is equwalent to
the congruence n=ryr, (2N). Finally, n> <D,D, since R®Q is a definite quater-

nion algebra and }/D,]/D, a non-central element of trace 2n and norm DODl.]
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Thus we get an embedding of

ro+eg +Zr, +e; ~+_Zrorl +roe, triepgtege,

SZS[DQ.Z",1)1]:Z+Z 2 2 4

2_ 2_ =
(e6=Dy, e1=D,, ege, +e,e0=2n),

the Clifford order studied in Sect. 3 of Chap. 1, into R by sending ¢; to ]/ﬁ

i

Actually, the intersection of x and y gives two embeddings of § into R, as we could

also have mapped ¢, to — 1/—1): and e, to —]/D, . Finally, the intersection number
(x - y)w is given by

D _ 2
(v =Hord, (M) 1), where M= D021

if we assume R has no units besides + 1. Indeed, by [9, Proposition 6.1] we have
(lC !)W: _ZL ‘;1 Card HomW/p‘W(lCaX)degl s

and when |[R*|=2 the i"® summand equals 2 for i <k and 0 for i > k, where k is the
largest integer such that x =y (mod p*). The condition x =y (modp’) means that S
embeds into Endy,,.u(x)=Endy .w(y), which is the unique suborder of index
p*~?in R containing the ring of integers in a quadratic field inert at p [ 7], and this
happens if p**~?|M. Hence k=(ord,(M)+1)/2, and this proves our claim.

We now consider the converse. Pick a supersingular point z on X ® W/pW and
let R=Endy,,»(z) and ICR the ideal annihilating the kernel of the cyclic
N-isogeny defined by z. Fix a binary quadratic form [D,,2n, D,] with n*<D,D,
and n=ryr, (mod2N), let S be the associated Clifford order and
M =(D,D,—n?*/4N. To each embedding ¢ of S into R, normalized by insisting

that ¢(ey) = 1/5; on the tangent space, we wish to attach a certain contribution to
the intersection pairing of the divisors P, and P, on X over W. Write

. . /D
¢le)=¢]/D, with ¢= +1. The ideal I contains the elements LLO?} ° and

D
LV 7L for some integers s, 5, (well-defined modulo N), and the proof above

shows that s,s; =n(2N). Via the lifting theorem [8, Proposition 2.7], which also
holds when the conductor of the order is prime to the characteristic, the given
embeddings of @, and ¢, into R correspond to points xe P, ., ye P, ., which
reduce to z (modp) and are congruent modulo p* where k=(ord,(M)+1)/2.

Since the total intersection is given by the sum over all the supersingular points
in the special fibre, which correspond to the right orders R; of the distinct left ideal
classes for a fixed Eichler order of index N in the quaternion algebra B(p) ramified
at p and oo, we find that

(Pno,so ’ (EDl.sl +BD|, —s,))W

sosy=rori(2N)

> 1
R; n=rori(2N) 2
n2<DoD;

M
 Sim e Rmod 7 1) TS0
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The factor 1/2 in the last sum comes from the fact that we are taking only the

normalized embeddings [those with d)(eo):]/Dioj. The left-hand side is equal to
2(Ppyro (P, +Pp, —,)w, where tis the number of prime divisors of N, because
the group of Atkin-Lehner involutions has order 2' and acts freely on the pairs
(8¢5 $1) (mod2N) with product ryr, (mod2N). Hence we obtain the formula

(1—)Du,ro ' (BDl,rl +I_)D1, ~r1))W

1 d (M
= 5i+1 )3 Z#{S[l)g 2n Dl]—)RimOdRix/i1}'\or ol Aﬁ)+1. 2)
2 nEzrotbl(%)N) R, e 2
n=<DoD,

We have proved (2) under the assumption that all R; have only the units +1,
but in fact the formula as written (i.e., with the embeddings being counted only up
to conjugation by R,/ + 1) is true without this assumption. We omit the proof. We
have also been assuming that pfD,, but in fact (2) remains true also if p|D,. We
now indicate the changes in the argument which must be made in this case. If p
does not divide the conductor of D, then the pointsin P}, , are pointwise rational

over the ramified quadratic extension W[]/Hl] and are conjugate, over W, to the
points in the divisor P, _, . Hence the left-hand side of (2) is equal to
(Ppo.ro” Pp,.r))s» Where mis a prime in W[]/E]. Again, such an intersection gives
an embedding of SEDO’Z,I'DI] into an Eichler order R in B(p); in this case ord (M)
=ord, <9£Lﬂ» =1 as p*|n® so the relevant points x and y in these divisors
are congruent (modn) but not (mod n?). Here, however, when we consider the
converse, an embedding S— R always lifts to an intersection in P, - Pp,  with
5081 =rory (mod2N), as 8‘/EE[/D1 =0 (modn). Hence (2) continues to hold in
this case. If, on the other hand, p divides the conductor of D, then p is prime to N
and D, =p*D}, r, =p'r} (mod2N) with s > 1 and the conductor of D', prime to p.
As before, an intersection of xe Pp, , and ye Py, , gives rise to an embedding of
the Clifford algebra Syp, 5, p,yWithn=ryr; (2N)into an Eichler order of index N in
B(p). If M=(D,D,—4n?)/4N, then ord (M) is odd. Hence n=p*n’, M =p**M’ and
any embedding of S, ,, p,; extends to an embedding of the larger order
Sipy, 2, pj1- Our previous arguments show that embeddings of the larger order
contribute to the intersection pairing of P, . withP, .+ Py, _,., with multiplic-
ity 3(ord,(M’)+1). On the other hand, the divisor P, , has the form Py, ,, + Y ()
where the points y are locally quasi-canonical liftings of levels 1 <r<s of points
Y €Pp, ., [7, Sect. 5]. Since each quasi-canonical lifting y is congruent to y’ with
multiplicity 1, the total contribution of an embedding of S, ,, p, to our
intersection pairing is 3(ord,(M")+ 1)+ s=4(ord ,(M)+1) as before.

We now combine Proposition 1 with formulas (1) and (2) to obtain the
following formula for the local height pairing:

<y§0"‘n’y;k)1,r1>17: Z 27[“12#{¢:S_)Rim0dRix/i1}
ord (M) +1
X (= logp).
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We can simplify this formula by applying the results of Sect. 3 of Chap. I, which
count the number of embeddings of S, the Clifford order of [Dg,2n,D,], into

Eichler orders in S® Q@ in terms of the Dirichlet series /(sj= ) s(d)d’. Since we are
dim

assuming that Dy, D, <0 and n*><D,D,, the algebra B=S®Q© is definite and

hence ramifies at at least one finite place. Hence /(0)=0 and the derivative /'(0)

=) &(d)logd is non-zero precisely when B is isomorphic to some B(p). In this
d
case, we showed in Proposition 3 of Chap. I, Sect. 3, that

£(0)=2""1% #{S>R” modR,/+ 1} -3(ord,(M)+1) - (—logp).
R;

Comparing this with our formula for the local height, we obtain our final result:

Theorem. The total non-archimedean contribution to the height pairing of the
Heegner divisors yj, ,, and y}, ,, is given by

S Vo Vhrde= % < s(d)logd) :
p prime n=ror1(2N) DoDy—n2
n2<DoD, ’ 4N

where ¢ is the (+1)-valued function associated to the quadratic form [D,, -, D,].

V. Heights and L-Series

In this chapter we combine the results of Chaps. 1I-1V to obtain the principal
results as stated in the introduction. The final section discusses the form these
results take for elliptic curves parametrized by modular forms.

1. Hecke Operators and the Main Identity

Let D, and D, be coprime negative fundamental discriminants with
D;=rZ (mod4N) and F=F, N pop,.ror.po= 2. amd™ the cusp form in S,(N)~
constructed in Chap. III. In this section we combine the results of Chaps. Il and
1V to relate the coefficients a,, to height pairings and to values of Green’s functions
for X ¢(N). Our main interest is in the case k=1.

Theorem L. Suppose k= 1. Then for m>1 prime to N, the Fourier coefficient a,, of F
is equal to the global height pairing (v}, ,., TV%, >, where T, denotes the m"
Hecke operator on XE(N).

Proof. We will compute the non-archimedean and archimedean parts of the height
pairing separately. In particular, we will show that the finite part is given by

Z<y;k)o."0’ Tmy;;x,n>17= Z G;(<<n\_|—l2‘l/*z>>n-1>? (1)

n=mg(2N)
n2<m24

where 4 and ¢ denote DD, and ryr; (mod2N)and x, n, o’ are asin Chap. I1I (X the

genus character of K = Q(]/Z) corresponding to 4= D - D, n the primitive ideal
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o+|/4 . , . . ..
ZN+Z BT I of norm N in K, ¢'(a) for an integral ideal a of K the derivative at

s=00of o, (o)=Y X(b)N(b)s> . The expression on the right of (1) is the first term in
bla

the formula for a,, given in Proposition 2 of Chap. III, Sect. 2. The archimedean
part of the height pairing will then be shown to give the remaining two terms of
that proposition (i.e., the infinite sum of Legendre functions and the term with the
factor 1).

The first observation is that

Iborre Tnd v o= TusVbo.re TV Do V0

for any place v and any decomposition m=m,m, with m, and m, coprime, since
I,=T,,T,, and T, is self-adjoint with respect to the local height pairing. We
choose my and m, such that my, is prime to D, and m, to D,,. (This is possible since
Dy and D, are assumed coprime; the splitting is not unique and some of our
intermediate formulas will depend on it, but the final result will not.) By formula (3)
of Sect. 1 of Chap. IV and the remark following it, we deduce that, for any place v

of Q,
D D
<y30,r0’ Tmy;hr1>v: Z <E79—> <71”> <yf)(,d(2).r0do’ yzld%,r1d1>u . (2)
0

mo=dod{ 1
my=dd|

The point is that the discriminants Dod3 and D, d} occurring on the right-hand side

of (2) are coprime and have conductor prime to N, so we can apply the results of
Chap. V.

. . . Am?
For integers M all of whose prime factors p satisfy (——ZL> £ —1 we define

(M, s)= Y e(d)d®, where ¢ is the multiplicative function on such integers given on
diM
2

A D,
primes p with <—;1~> + —1byep)= <~p'> if p¥D;m,. I:This depends on our chosen

. . A . .
decomposition of m in the case when pjmand | — ) = — 1.] Combining (2) with the
theorem of Sect. 4 of Chap. IV, we find

D\ (D Ad3d? —x?
Sore TV Birdp= LRl s % (-m-"—lﬁﬁ 0)
%<yDo.ro myDl,r1>P mozigd(;(d(()) <df1 )x:edgl(ZN) 4N
i x2 < Adgd}

my=didj d
Dy\ (D Am? —n?
B Z z < /0>< ’1>{,<_‘-‘ﬂ" 0)’
n=rig2) Z(}{:n,mg; dy / \ d; 4Ndid,

where in the second line we have set n=d,d|x and interchanged the order of
summation. This is equivalent to (1) by virtue of the following lemma.

2A n2
Lemma. Fix n=mg (2N) and define ¢(k,s) for k|M = m—4N—n— as above. Then

Do\ (D, M B n+mp/A\ _,
.2<7) (@)oot (g o) o (“57)) 0

1l(n.my)
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If |n| <m]/Z then each term in this formula vanishes for s=0 and

s () (0) G )= (45))
i \do ) \dy )" \dsd] 2

n,mj

Proof. The second statement follows from the first by differentiating at s=0, since
if M is positive then &(M)= — 1 and hence #(M/d?*,0)=0 for all d*|M. We therefore

. . A .
need only prove (3). Write a for the ideal <ﬁ—rgl—i> n~ !, with norm N{a)= M.

Both sides of (3) are clearly given by Euler products extending over primes p
dividing M, so we need only prove that the Euler factors for such p are the same.
Write p* for the largest power of p dividing a; since (N/n), m)=1, this is just the
power of p dividing the g.c.d. of m and (n+mA)/2. Also write p>**? for the exact
power of p dividing M and ¢ (= +1) for &(p). We distinguish three cases,

according to the splitting behavior of p in K :(D(]/Z).

A .. . .
Case 1. (p) = —1. Here (p)=p is inert in K, so we have p'|la and 4 =0. Since m,
and m, are coprime, we have (after possible renumbering) ptm,, p*|m,,

D .. ..
&(p)= <7°> . [Recall that this is the one case when the definition of ¢(p) depends on
D
the splitting m =mym,.] Hence <71> = —¢. The p-Euler factor on the right of (3)

is just 1+ p>*+p** + ... +p?* [since a is divisible by 1,p,p?,...,p and p=(p)is a
principal ideal with y=1 and norm p?], while that on the left is

v D . A v . ) ) ) .
> <,1> PP T )= Y (—epY (L +ep*+e2pP L+ (ep”) )
=0\ P j=0
and using the identity
v ) ) v j 2v+1—2j 1 2v+1 ) 1'_ 2v+2
Z x’(1+x+...+x2”“2’)z ﬁf;* = J= . A)'C'—T—f—,
j=o j=0 14+x 14+ x j=o 1—x

we see that these agree. (Notice that the final expression involves only powers of x?,
which is why the choice of ¢= +1, which was arbitrary in this case, does not
matter.)
4 25 ; ; 2v+é N
Case 2. ; =0. Here (p)=p~ is ramified in K, so we have p**"°|laand 0 =0or 1.
Since D, and D, are coprime, p divides exactly one, say Dy; then pyD and
»
D

m, is prime to Dy, pYd,, and the terms with p|d, give zero since <p0> :0:| , so the

2v+éd
p-Euler factor is just £(p>**%,s)= Y (¢p®). The p-factor on the right is the same

D e
since p>**?|a, x(p)= <~p—1> =¢, and N(p)=p.

D
< ! ) =¢. In the left-hand side of (3) only the terms with pyd,d, contribute | since
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A .. . .
Case 3. <~> = + 1. Here (p)=pp’ splits in K and we have (possibly after renaming

pand p) p* %a, p"la. Also (9—9> = <9L> =¢, 50 z(p)=yx(p")=¢, and, of course,

N(p)=N(p')=p. Therefore the I;))~Euler fIE)lCtOI‘ on the right-hand side of (3) is
(14ep +e2p™ + ... +(ep) )1 +ep +62p™ + ... +(ep*) ")

and that on the left is

Z (Bps)j“+8ps+£2p2s+...+(gps)2v+6f2j).
j=0

The equality of these two expressions follows from a calculation like the one for

he

This completes the proof of the lemma.
We now turn to the archimedean part of the height pairing. In Sect. 3 of
Chap. IV we wrote {y3, ,,» V5, .r.)« 88 the sum of two terms

, A
Ci=HCi +C0), C%=l‘l‘}[GN.S(PDO,m,PD,,m)—;:T} “)
and
Cp =i [;27[ E(P H(D,)EX(P
2= lim ) 3 ((HDGEX(PS, )+ HD)EX(PE, )
A
— H(Do)H(D)¢3(s ))+Sj1“], (5)

where A= —12H(Do)H(D,)/N [] (1 +p~'); evaluating them gave the two terms
pIN
lim[...] and A[...] in the theorem of that section. Now applying T,, to y3, ,,
s—=1
multiplies EX(P}§_, ) bym' =* ¥ d*~ ' (since E}, is an eigenfunction of T,, with this
d|m

eigenvalue) and multiplies the other three terms in the square brackets in
(5) by Z d=a(m) (since 1 i1s an elgenfunctlon of T,, with this eigenvalue). Hence it

repldces C, by a(m)C,+ 4 Z log iR which, in view of the formula for C,, is equal

to the final term A[...] in the formula for a,, given in Sect. 2 of Chap. I1l. On the
other hand, the effect on (4) of dpplymg T, to P}, . is to replace C{ by
. y)

hm[GN,s,m(PDo,ro‘ PDI. irl) O”(Ln—%\] where GN s, m(ZOa Zl) GN,S(ZO7 Tmzl)' There-

s 1

fore Theorem 1 will follow if we show

A R (L e

n= —mg(2N)

But this follows, by the same argument as used above for the finite places, from

Proposition 2 of Sect.3, Chap. IV [the o(n) occurring there 1is just
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D,D,—n? . .
/( 41]_\]_”"7, , SO we can apply our Lemma with s=0:| if we observe that the

analogue of (2) holds with {, >, replaced by G ,, which also satisfies Gy (z,, T,,2{)
=Gy (T20> Tn,21). This completes the proof of Theorem 1.

Substituting Eq. (6) with s=k into Proposition 1 of Sect. 2, Chap. III, we
obtain the analogue of Theorem 1 for higher weights:

Theorem 2. Let k>1and F=F, y 4, p,= ): a,,q" the modular form constructed
in Chap. 111. Then for m=1,

ey 5

n=mg(2N)

+%[GN.k,m(PDU.rO’ PD;.r1)+(_1)k7IGN,k,m(PDO,rU’ PD;, *rl)] ’

Because (mﬂ)k‘ P <rEZ> is an integer (P, _, is a polynomial of degree and
ml/ /

parity k —1 with integral coeflicients) and o(a) for an ideal a with y(a)= —1is an
integral linear combination of logarithms of prime numbers (in fact, always a
nonpositive integer multiple of the logarithm of a single prime number), we can
write this as

a :%Gik,m(Pl)Q,r(,, Py, )+ Y n(p)logp, (7)
P

where + 1 =(—1Y"! and signifies ( + 1)-symmetrization with respect to r,, the sum
. e . . ) m?
runs over primes p and is finite | indeed, contains only primes < 4N>’ and
n(p)e Z. This formula suggests two problems:
1. Interpret the right-hand side of (7) as a higher weight height pairing defined
on Heegner sections of a certain local coefficient system over X ,(N).

2. If {4,} > 1 is afinite collection of integers such that }’ 4,,a(m)=0 for all cusp
forms ¥ a(m)q™ e S, (N)~, then (7) implies that "

Z GN k, m D(),ro’ Pl)l.rl): Z Z Z)”mGlik,m(TO’Tl)

tw0ePpy, r,t1€Pp,,, m

is the logarithm of a rational number; show that each summand Z AmGr romlTosT1)
is the logarithm of an algebraic number.

The analogues of both these questions for the case Dy=D,, ro=r, were
discussed in the last section of [9], so we say nothing further about them here.
Evidence for the algebraicity conjecture 2. will be presented in a later paper.

2. Consequences

In this section we prove Theorems B and C of the Introduction and discuss some
extensions.
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Let D;=r? —4n;N <0(i=0, 1) be coprime fundamental discriminants and write
yi for y§ . eJ¥Q), where J* =Jac(X¥(N)). The power series

G(z)= Z GETYH  (g=e>™)

defines a modular form in S,(IgF(N))=S,(N)~ by the formal argument given on
p. 306 of [9]. Theorem 1 of Sect. 1 says that the coefficients of g™ in F and G agree
for all m prime to N. In particular, F — G is an oldform, so (G, f)=(F,f)if fisa
normalized newform in S,(N)~. The argument on p. 308 of [9] shows that (G, f)
equals (f,f) times the height pairing <{(y§),,(v¥);>, where (yF), is the
f-eigencomponent of y} on J*(@Q)®R [obtainable as . o, T, y¥ where Y o, T,, is a
finite linear combination of Hecke operators which is the identity on f and O on its
orthogonal complement in S,(N)™]. Hence

8012 =172 F0),

I
and substituting for (F, f) the expression

(FN)= o D W venand = 1 LU T [

(Do, D1, 0)

obtained in Sect. 3 of Chap. HI we obtain

8NP = 7 § o fl2)dz, (1)

Hf“ Do D1, @)
which is Theorem B. Here 4 and ¢ denote DD, and ryr, (mod2N) as usual, and
(Dg, Dy, @) is the cycle Y Xpo(@)7o 0N X ((N) as in the Introduction and

. Qeln, a, o/ To(N)
in Sect. 1 of Chap. 11
Next we observe that (1) remains true when Dy =D,, ro=r,, at least if D, is

prime to 2N. Indeed, in that case we have

sedz= " g Do)

(Do, Do, @) 2n
D,
[Where L(f, Dy, s) denotes the twist of L( £, s} by <~~>:| by the proof of Corollary 1

in Sect. 4 of Chap.II, and

) (o IDol'?
<(y0)fa (YO)f> = —T”‘fF L'(f, )L(f, Do, 1)
by the main theorem of [9]. Now applying the theorem of Chap. I1, Sect. 4, to the
pairs (D, D,), (Do, D), and (D, D,), we obtain

80N =cocil, 088> =ciL,  ODH0D=ciL
where ¢;=c(n;, r;) is the coefficient of ¢™("* in a non-zero Jacobi form ¢ =¢ e J, y

L{f, 1)

with real coefficients having the same Hecke eigenvalues as f and L= -2

dnf ol
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These formulas imply that c,(yT), —c¢;(v§), has height 0 and hence vanishes, since
the height pairing on J*@Q)®R is positive definite. Hence (y§), and (y}), are
collinear. To obtain Theorem C we need the same statement when D, and D, are
not necessarily coprime. But this follows, since by Lemma 3.2 of [15] we can
choose a fundamental discriminant D, =r3—4n,N prime to D,, D,, and 2N with

cy=c(ny,ry)+0, and then (y§),= ?(y’z")f, 0N, = Z—‘(yz‘)f by the special case of
2 2

coprime discriminants. We deduce that ¢;” (y¥), is independent of i (for ¢;+0), i.e.,

that there exists a vector y,e(J*Q)®R), with height (y,, y,) =L such that

B.Dr=cnry, (r*—4nN=D) 2

for all fundamental discriminants D prime to 2N. This is Theorem C.

We observe that (2) remains true for D not fundamental (but still prime to 2N).
Indeed, start with (2) for D fundamental and multiply both sides by a(m), the
coefficient of ¢™ in f, for some m prime to N. Since a(m) is also the eigenvalue of f
under T,,, the left-hand side is (7,,y3 ,)  and similarly the right-hand side is y , times
the coefficient of ¢"{" in ¢|T,,. Equation (3) of Chap. 1V, Sect. 1, expresses T,y , as
the sum of y},,: ., and a linear combination of y§,. ,, with d <m, and the action of
T,, on Jacobi forms in J, y is given by exactly the same formula [4, Sect. 4]. It
follows by induction that (2)is true with D, n, r replaced by Dm?, nm?, and rm. But it
is easily checked that any R with R?= Dm? (mod4N) is congruent to rm (mod 2N)
for some r with r*=D (mod4N), so this proves (2) for general discriminants D
prime to 2N.

It is also doubtless true that (2) remains true when D is not prime to 2N (at least
if the conductor of D is prime to N). One could prove this either by proving the
main theorem in [9] without the restriction (D,2N)=1 or by proving Theorem B
of this paper without the restriction (Dy, D,)=1. We made this restriction to keep
the paper from being even longer. To remove it, one would have to make the
following changes:

Chapter II: No change [the assumption (D,, D,)=1 was not made here].

Chapter II1: The definition of E(z,z") must be modified by replacing

2. x(a) Y

[al (m,n)e(na xa)/Og
by

’

XDU(Q)

[Qle 2N A, o/To(N) (m,n)e(Lg x L)/ To(N)g

4
where L, and Lj, for Q=[aN,b,c] denote the Z-lattices ZaN+Zb+~21f~ and

A . .
Za+Z LZ[- Then the definition of F and the calculation of (F, f) in Sect. 3 are

unchanged, as is the analytical part of the computation of the Fourier coefficients

: e , +m)/A\
of F in Sect.2, but the arithmetic functions ao'x<<nm>n 1) and

fmy/d ?
o, ((n_r;z_*> n” 1) would have to be recomputed.
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Chapter IV: Here, too, the general setup and the analytic part of the
computation (Green’s functions) are unchanged, but the arithmetic part would
have to be generalized. In particular, the results of Sect. 3 of Chap. I concerning the
number of embeddings of Clifford orders the Eichler orders would have to be
extended to the case when the quadratic form g=[D,,2n, D,] is not primitivc.

If one knew (2) for all D and r, one could restate it in the form

Y Wk *4Nn,r)fqné’r = ¢f(f, z) Yy (3)

n,re
r2<4Nn

Summing this over all new forms would say that the power series
S E —avn Jnewtd ¢ belongs to JX@QT @SN V. Presumably the same relation

would hold for the old parts by induction on N; this would then give the “ideal
statement” formulated at the end of the Introduction.

3. Relations with the Conjecture of Birch and Swinnerton-Dyer

Let feS,(I5(N)) be a normalized eigenform, ¢,=3 c(n,r)q"{"€J, y a non-zero
Jacobi form with real coefficients corresponding to it. By the results of Sect. 2, there
are elements

rETHQ®R),, e e H(XFHNNT); R),

[where the minus on H, indicates the eigenvalue — 1 for the involution induced by
complex conjugation on XFNWC)] such that

Vp.)y=clnr)y, (1)

for any fundamental discriminant D =r*—4nN <0 prime to 2N and
(WD, Dy, ror )]y =clng, ro)c(ny, ride;

for any fundamental discriminants D,=r?—4n,N <0, where [y(D,y, D,,0)] is the
homology class represented by the cycle y(Dy, D, ). The last statement is true
without the assumption (D, D |)=1 0ot (D D,,2N}=1 (it was proved in Chap. [l in
full generality), but to make sense of it we must check that y(D, D, ¢) is a closed
cycle and hence really represents a class in H (X §(N); Z). This is obviousif D, + D,
[eachyy, Q€ 2y , o, isaclosed geodesicin X o(N)], but remains true alsoif Dy =D, .
Indeed, for D, =D, = D the endpoints of the semicircle y, for Q=[aN, b, c] are the

—b+D
cusps mi;i?_\lw;’ and these are [(N)-equivalent to the endpoints of y,, where

Q=[—aN,b, —c], with the same induced orientation. Hence y,—7, is a closed

oriented cycle in X 4(N), and (D, Dy, ¢) is a sum of such because y,(Q)= — yp(Q)

for every Q. { Interestingly, each y, defines a closed cycle in X§(N) if D is prime to

N, because the endpoints 5 TN are always interchanged by wy in that case.)
a

The vector space H(XE(N)(T); R), is one-dimensional, as is the space
(J*@Q)®R), if the Birch-Swinnerton-Dyer conjecture is correct and L'( £, 1)#0. In
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this case y; and e, are generators and Eqg. (1) of Sect. 2 gives the relation

L(f, 1)
Opppy= g 1 S0z @

between them. If ¢ is chosen to have coefficients in K ,, the totally real number
field generated by the Fourier coefficients of f, then y, and e, belong to
(JHQ)®K,), and H,(XF(N); K();, which are 1-dimensional over K. The
differential w ;= f(z)dz is also defined over K, [on the canonical model of X§(N)
over Q], and | l>:= o 1&;(0 lw,|? equals 47?| f{|>. Hence (2) can be written

ol

L(f1)= ”%W~<pn> 3)
21 jwf

er

in which the first factor is a K ;-multiple of the “+”-period of f and the second,
assuming that rkJ*(@Q),=1,a K ~multiple of the f-part of the regulator of the
Jacobian.

Equation (3) is an identity of the same sort as that predicted by the Birch-
Swinnerton-Dyer conjecture. We now make the comparison between the two
more explicit in the case when f corresponds to an elliptic factor E of J* over .
This is the case exactly when K ,=@; then ¢, can be chosen uniquely up to sign by
requiring that the coefficients c(n, r) are integers with no common factor. [ By using
the action of Hecke operators, we see that this 1s equivalent to making the same
assumption on the c(n, r) with r> — 4Nn fundamental.] Changing the choice of sign
replaces y, by —y, and has no effect on e,. Let p: X§(N)— E be a non-trivial map
defined over @ and taking the cusp oo to Oe E. The image of e, in H,(E, Q)™ lies in
H(E,Z)” ~7Z, because c(ng,ro)c(n,,r,) times it 1is the integral class
P (Do. Dy, rory)] and the integers c(ng, ro)c(ny, ry) have no common factor (take
Ho=Hy, ro=r;). Let n denote the index of the subgroup it generates. Similarly, let
Pe E(Q)®Q be the image of y, under p,. [If we knew (1) for all D, then an
argument like that just used would show that P belongs to E(Q). Since we haven’t
proved this fact and don’t know that the coefficients ¢(n, ) for r prime to N have no
common factor, we cannot exclude the possibility of a denominator.] Finally, let
wg be a Neron differential on E, normalized so that p*w,=cw, with ¢>0 {(c is

automatically an integer), and Q, = | |wy the real period of E. If h denotes the
E(R)

canonical height function on E@Q)®®, then we have the relation
2

o
deg(p)

wy over a generator of H,(E; Z)~. Hence

h(P)y=deg(p)<y,, y,>- Moreover, |wg||*: = j IwElzisequalto w,|* and is

also equal to Q2 times the integral of —

(3) becomes: 2

1
Proposition. With the above notations, L'(E/®, 1) = Er-lQ+ﬁ(P).
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Suppose L'(E/@Q,1)+0. Then the Birch-Swinnerton-Dyer conjecture predicts
that rk E(®)=1 and that

__|thim
- [E@:zPP

where III is the (conjecturally finite) Shafarevich-Tate group and
m= [] [E@,): E°(@,)]. Hence we are led to
pIN

L(E/Q,1) Q. h(P),

Conjecture. If L(E/Q,1)#0 then [E(Q):ZP]*=c-n-m-|111|.

The numbers ¢, n, and m are easily determined in any given case and typically
involve only a few small primes, so the essence of this conjecture is that the index of
the canonical 1-dimensional subgroup of the Mordell-Weil group which we have
constructed using Heegner divisors is roughly the square-root of |ILI|. On the
other hand, since IL1, if finite, has square order, our conjecture also predicts that,
when L(E/@Q,1)+0, the integer ¢-n-m is a perfect square.
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