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w 1. Introduction 

A famous theorem, proved by Euler in 1734, is that the sum 
rational multiple of ~2m for all natural numbers m: 

. = l n ~  is a 

] / I  .2 

1 H2 6 '  
1 _x4  ~ 1 _ 691g 12 

' 7112 638512875 . . . . .  n 4 90 . . . .  1 

This result was generalized some years ago by Klingen [3] and Siegel [5], who 
showed that for an arbitrary totally real number field K the value of the 
Dedekind zeta function 

1 
N(a) s (sum over non-zero integral ideals a of K) 

at a positive even integral argument s = 2 m  can be expressed by a formula of 
the form ~2,,, 

(K(2m) = rational number x j ~ _ ,  
D V  

where n and D denote the degree and discriminant of K, respectively. However, 
little is known about  the numbers (~(2m) for K not totally real. We will prove 
the following theorem which describes the nature of these numbers for m = 1. 

Theorem 1. Let A(x) be the real-valued function 

A(x)= ! 1 l ~  log dt (xelR) (1) 

(see Fig. 1). Then the value of ( r ( 2 ) f o r  an arbitrary number field K can be 
expressed by a formula of the form 

7E2r + 2s 
~ r ( 2 ) = ~ -  x ~ cvA(x~,l)...A(xv,s) (finite sum), (2) 
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where D, r and s denote the discriminant and numbers of real and complex places 
of K, respectively, the c v are rational, and the x~,j are real algebraic numbers. 

The proof will show that the xv,~ can be chosen of degree at most 8 over K, 
and will in fact yield the following stronger statement: Let al ,  tY 1 . . . .  ,as, tY S 
denote the distinct complex embeddings of K; then for any totally imaginary 
quadratic extension K I / K  and embeddings 6 j : K t ~  extending aj (1 <j<s)  

there is a formula of the form (2) with x,,,~]/~- 1 of degree <2  over ~j(K 0. 
More picturesquely stated, the Klingen-Siegel theorem says that a single 

transcendental number, z~ z, suffices to give the contribution of each real place of 
a field to the value of its zeta-function at s = 2, and our result says that a single 
transcendental function, 7zZA(x), evaluated at algebraic arguments, suffices to 
give the contribution of each complex place. 

The proof of Theorem 1 will be geometric, involving the interpretation of 
(r(2) as the volume of a hyperbolic manifold (the function A(x) is equivalent to 
the dilogarithm and Lobachevsky functions occurring in the formulas for the 
volumes of 3-dimensional hyperbolic tetrahedra). Since it is only (K(2) which 
can be interpreted geometrically in this way, we did not get a formula for 
(r(2m), m > l .  However, we conjecture that an analogous result holds here, 
namely: 

Conjecture 1. For each natural number m let Am(x ) be the real-valued function 

22m-  1 o~ t2m- 1 dt 

Am(X)-(2m-l)~V. J x sinh 2 t + x -  1 cosh 2 t" 
(3) 

0 

Then the value of ~K(2m)for an arbitrary number field K equals ~2m~'+s)/V/~ 
times a rational linear combination of products of s values of Am(x ) at algebraic 
arguments. 

The formulation of this conjecture, and the choice of A m, are motivated by: 

Theorem 2. Conjecture 1 holds if K is abelian over if); in fact, in this case the 
7zn 

arguments x can be chosen of the form x = cot ~ - ,  where N is the conductor of K 
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(the smallest natural number such that Kc~(e2~i/N)). For m = l ,  the function 
defined by (3) agrees with the function A(x) in Theorem 1. 

Theorems  1 and 2 and the Siegel-Klingen Theo rem show that  Conjecture  1 
is true if K is totally real (i.e. s = 0), if m = l, or if K is abelian, special cases of 
a sufficiently varied nature  to make  its t ruth in general very plausible. The 
p roof  of Theorem 2, given in w uses routine number- theore t ica l  tools, and it 
is worth  noting that, even for abel ian fields, the geometr ical ly  p roved  Theorem 
1 gives a s tronger  s ta tement  (for m = 1), namely that  the a rguments  of A(x) can 
be chosen to be of bounded  degree over  K. Thus,  in the simplest  case of 
imaginary  quadrat ic  fields (r = 0, s = l), the proof  of Theorem 2 gives 

A cot , (4) 
~ K ( z ) = 6 I / ] D ]  o< iol 

where the a rguments  of  A(x) for (n, D ) =  1 are of degree qS(lDI) or qS(ID[)/2 over  
~ .  For  example,  when D = - 7  it gives 

rc 4~t 
~(/~(2) = ~ 

whereas the p roof  of  Theo rem 1 will lead to the formula  

27Z 2 , -  
~ Q ~ ) ( 2 ) = ~ ( 2 A ( ] / 7 ) +  A(1/~ + 2],/3)+ A(~/7-2]/3) ), (6) 

where now the a rguments  of A(x), multiplied by l / / - 1 ,  are quadra t ic  ra ther  
than  cubic over K. In this connect ion we observe that  the values of A(x) at 
algebraic a rguments  satisfy m a n y  non-trivial  linear relat ions over  the rat ional  
numbers ;  I know of no direct proof, for instance, of the equality of  the right- 
hand  sides of  Eq. (5) and (6). 

We will discuss (6) and other  examples  of T h e o r e m  t later, after giving its 
proof.  

w 2. Proof of Theorem 1 

Assume first that  s = l ,  i.e. K is a field of degree r + 2  with r real places and 
one complex place. Let B be a quatern ion algebra over  K which is ramified at 
all real places (i.e. B | R-------Hamiltonian quaternions  for each real comple t ion  
F, of  K), C an order  in B, and F a torsion-free subgroup  of finite index in the 
group  (9 ~ of units of  (9 of reduced n o r m  1. Then choosing one of the two 
complex embeddings  of  K into 113 and an identification of B | r with m2(~ ) 
gives an embedding  of F into SL2(~  ) as a discrete subgroup  and hence, 
identifying SL2((I~)/{ + 1} with the group of isometries of hyperbol ic  3-space 93 ,  
a free and proper ly  discont inuous act ion of F on -~3. The  quot ient  .~3/F is 
smooth  and is compac t  if B@Mz(K ) (which is au tomat i c  if r > 0  and  can be 
assumed in any case) and its vo lume is wel l -known to be a rat ional  mult iple  of 
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~K(2)//t2r+Zr (see e.g. [8], IV, w 1 or [1], 9.1(1)). We therefore have to show 
that this volume can be expressed as a rational linear combination of values of 
A(x) at algebraic arguments x. 

[-The choice of B, (9 and F plays no role; the reader not familiar with 
quaternion algebras can take 

F ~ ~(a+bi c+di\] 
finite(\_c+di a_bi~la, b,c,d~R, a2+b2+c2+d2=l}cSL2(•), (7) 
index 

where R ~ K  c C  is the ring of integers of K or a subring of finite index (e.g. 
the ring Z[~] ,  where ~ is one of the two non-real roots of a polynomial 

f ( x ) =  x n + . . . 6 Z [ x ]  defining K) and i=]/ / -~l ,  corresponding to 

(9=R+Ri+Rj+RijcB=K+Ki+Kj+Kij ( i 2 = j 2 = - 1 ,  / j = - j i ) .  

With this choice of B, the field K~ occurring below can be taken to be K(i).] 
Choose a quadratic extension K~ of K which is a splitting field for B, i.e. 

such that B | K~ ~M2(K1) , and choose an embedding K1 c C extending the 
chosen complex place of K and an identification of B |  with M2(C ) extend- 
ing the isomorphism B| 1 ~ M 2 ( K  0. Then SL2(K 0 is embedded into SL2(~ ) 
as a countable dense subgroup containing the discrete group F, and F acts on 
-~a preserving the dense set of points whose coordinates z, r in the standard 
representation of -~3 as C x ~ +  belong to K 1. Hence if we choose a geodesic 
triangulation of ~3/F with sufficiently small simplices, then by moving the 
vertices slightly to lie on this dense set we can get a new geodesic triangulation 
whose vertices have coordinates which are algebraic and in fact lie in the 
chosen splitting field Kx. To prove the theorem (still for s= l ) ,  it therefore 
suffices to show that the volume of a hyperbolic tetrahedron whose four 
vertices have coordinates belonging to a field K I C C  can be expressed as a 
rational linear combination of values of A(x) at arguments x of degree <4  
over K 1. In fact, we will show that it is a combination of at most 36 such 
values, with coefficients ___-~ or _�88 

Let, then, A c.~3 be a tetrahedron with vertices Pi=(zl, rl)~K ~ x(K 1 c ~ ) +  
c ~  x ~ +  (i=0, 1,2,3). The geodesic through Po and P1, continued in the 
direction from Po to 1~ meets the ideal boundary I P I ( ~ ) = C u { ~  } of -~3 in a 
point of IPx(K0, and by applying an element of SL2(K 0 (which does not 
change the volume of A) we may assume that this point is ~ ,  i.e. that Po is 
vertically below P~. Then A is the difference of two tetrahedra with three 
vertices P/6-~3 and one vertex at ~ (Fig. 2). Such a tetrahedron is bounded by 

(parts of) three vertical planes and one hemisphere with base on ~ x 0=  ~(-~3). 
Let P be the top point of this hemisphere. Looking down from infinity, we see 
a triangle and a point P; drawing the straight lines from P to the vertices and 
the perpendiculars from P to the sides of this triangle decomposes the triangle 
into six right triangles and the tetrahedron into six tetrahedra of the kind 
shown in Fig. 3 (Fig. 4). The volume of the tetrahedron of Fig. 3 is given by 
the formula 

1 (,Yl (~ + , )  + ~ ( ~ -  7) + 2,Yl ( 2 -  ~))  (8) Vot(%,,)=~ 
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(cf. Chap. 7 of [6], by Milnor, Lemma 7.2.2), where 3I(0) is the "Lobachevsky 
function" (actually introduced by Clausen in 1832, and discussed extensively in 
Chap. 4 of [4]), defined by 

0 
,Fl(O) = ~ sin/122n 0 _ 5 log 12 sin tl dt. (9) 

n = l  0 
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From 
d 

dxx M(arc cot x) - 
1 1 1 4 

1 "-~X 2 3I'tarc c~ x) = 2  ' ' 1 -'[-X 2 log 1 " ~ X  2 

we deduce that 

Hence (8) is equivalent to 

A ( x )  = 2 YI(arc cot x). (10) 

l ( A ( 1 - a c ] + A ( l + a c ] + 2 A ( a ) )  (a- - tans ,  c = t a n  y), V o l ( ~ , ~ ) = ~  \ a + c  / \ a - ~ /  (ll) 

so to complete the proof we need only check that the tangents of e and 7 for 
the particular tetrahedra ~,,~ occurring in the decomposition of Fig. 4 are 

algebraic and satisfy a ~ - l e K  l, c 2 e K t  (so that the three arguments of A ( x )  

in (11), multiplied by 1 / - 1 ,  are at most quadratic over Kx). This is a question 
of elementary analytic geometry. Let (Z, R) be the coordinates of the point P in 
Fig. 4. Then the point (Z, 0) is at a distance R from each Pi = (zi, rl), so 

[7,i--Zl2-.[-ri2--~.R 2 (i= 1,2,3). 

This leads to the linear system of equations 

z 

22  Z 2 ~--- . 

~3 z3 R2-1ZI \r~+lz312/ 

Since the numbers r i and z i belong to K1, these imply that Z and R 2 belong to 
7~ 

K 1. Referring to the picture, we see that the angle ~ - ~  is the argument of 2 

2+2 .. 
= ( z j - z i ) / ( Z - z i ) e K  1 for some i, j, from which ~ - 1  tan = = ~ L ~ e ~ l .  We also 

D 
find cosT= ~ and hence tanEy=(R 2 - D Z ) / D  2, where D is the distance from Z 

to the line joining z i and z j, and a simple calculation shows that 

D 2 = - � 8 8  - Z-~ i + Z 2 j  + Z z  i - zZzj + 2 i z i - z i -~j)2/Iz i - zj] 2 e K 1, 

as claimed. This completes the proof of the theorem for s = 1. 
Now let s be arbitrary. We choose B, (_9 and F as before (i.e. B # - M z ( K  ) a 

totally definite quaternion algebra over K, (9 an order in B, and F c (91 torsion- 
free and of finite index). The embeddings a 1 . . . .  , a , : K r  give a map 
a: B ~ M z ( ~ )  ~ such that a(F) is a discrete subgroup of SL2(r ~, and this gives a 
properly discontinuous, free action of F on ~ .  Let M = . ~ / F  denote the 
quotient; then M is a smooth, compact 3s-dimensional hyperbolic manifold 

whose volume is a rational multiple of {K(2)/nE'+2*v/(D~ (loc. cit.). We will 
show that M can be decomposed as the union (with multiplicities) of sets of 
the form n ( A ~ x  ... x A{*)), where n : . ~ + M  is the projection and A~J)c Oa is a 



Hyperbo l i c  mani fo lds  and  special  values  of D e d e k i n d  zeta-funct ions 291 

hyperbolic tetrahedron each of whose four vertices has both coordinates in 
~j(Kl) (K1 a splitting field of B over K, #j as in the remark following Theorem 
1). Then by the calculation just given, Vol (A (j)) is a rational linear combination 

of values A(x) with x 1 / - 1  quadratic over ~j(K~), and the desired result will 
follow. 

Since M is compact, we can choose compact sets F~ . . . . .  F~c,~3 so large 
that F 1 x ... x F~ contains a fundamental domain for the action of F on ~ .  We 
can clearly assume that Ei is triangulated by finitely many small tetrahedra A~ ) 
whose coordinates lie in the dense subset bj(Kl) X(6j(K1)nN+) of 93; here 
"small" means that each product A ,=  A~)x x A (~) is mapped isomorphically 

a l  " � 9  a s  

onto its image in M by n. Hence M is covered by finitely many such products 
zt(A,), and by the principle of inclusion-exclusion 

V o l ( M ) = ~ V o l ( A , ) -  ~, Vol(Aj~Ab)+ ~ Vol(A,nAbC~A~)-..., 
a a < b  a < b < c  

where we have ordered the multi-indices a in some way. But each intersection 
... (A(~)c~A~)n...), and each A,nAbn...  is itself a product (A~)nA~)n...)• •  b~ 

factor A~J)nAl]~lc~... can be further subdivided into small simplices with coor- 
dinates in 8~(K~), giving a decomposition of the type claimed. This completes 
the proof of Theorem 1. 

w 3. Numerical examples 

Various examples of arithmetic hyperbolic 3-manifolds with explicit triangu- 
lations are given in Thurston's notes [6]. Consider, for instance, the knot 
shown in Fig. 5(a). It was shown by Gieseking in 1912 that the complement M 
of this knot in S 3 can be triangulated by two 3-simplices (minus their vertices), 
the triangulation being such that six tetrahedron edges meet along each of the 
two 1-simplices of the triangulation. Hence, if the two 3-simplices are given the 
structure of ideal hyperbolic tetrahedra (=  tetrahedra with vertices in ~ 93) with 
all dihedral angles equal to 60 ~ then M acquires a smooth hyperbolic structure 

with volume 2 x 3 3 I  ( 3 ) = 3 A  ( ~ )  (cf. (10); we have used the fact, proved in 
g . . .  

[6], that the volume of an ideal hyperbolic tetraheron with dihedral angles ~, 
fl, 7 is ~(~)+ 3I(fl)+ 3I(7)). On the other hand, Riley showed in 1975 that the 
same knot complement M has a fundamental group isomorphic to a subgroup 

F of PSLz(R ) of index 12, where R = Z + T / l + i V ~  is the ring of integers of 
2 

~(1/--3) ,  so 

31/5 Vol(M)=VoI(~3/F)= 12 Vol(~o3/SLE(R)) = 12 x ~ ~V:]~(2). 

Comparing these formulas, we find 

2 2rt2 /~ \ ~2 A 1 
�9 
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Fig. 5 

This formula is not too interesting since it agrees with the formula (4) obtained 

by straight number-theoretical means (indeed, ~(v_~4,(s)/~(s)= 1-1 /2s+1/4  ~ 

, whic  at to seri s d  inin  " o w e v e r  

take M instead to be the complement of one of the links is 5(b) or 5(c), then 
Thurston [6, pp. 6.38, 6.40] shows Vol(M)=6Vol(,~3/SL2(R)), where now R is 
the ring of integers of II~(IS~). On the other hand, for the manifold of 5(b) he 
gives a decomposition into two pieces of the form 

O{ 

Fig. 6 

= COS-1 ( 2--~ )" 

: ~:-2~, 

and applying the volume formula on p. 7.16 of [6] we find that each of these 
pieces has volume 

2A (1/7) + A (1/~ + ]fi2) + A (t/7 - ] /~ ) .  

Comparing these two formulas (and using the formula for Vol(~3/SLz(R))), we 
obtain Eq. (6) of the introduction. This time, as we remarked at that point, the 
result is quite different from the formula (5) obtained number-theoretically; as 
a numerical check, we have the values 

~,~, ~ ~icot~) 

A(V~+I/-~)  = A c o t ~ -  

A ( e - V ~ ) - ~ - 0 . 8 3 7 6 6 4 4 v 3 ~ 8  A(co ,4~)  

0.962673014617 

0.690148299958 

1.004653150540 

0.826499033472 

-0.307298022053 

so that both (5) and (6) give the value ~e(r to twelve 
places. (We explain in Appendix 1 how to calculate A(x) numerically.) We can 
also compute ~(r directly by the method explained in Appendix 2 and 
check that this is the right value. 



Hyperbolic manifolds and special values of Dedekind zeta-functions 293 

Finally, we consider the field K =11~ (]/3 + 21/5) of degree 4 with r = 2, s = 1, 
lDl = 275 (this is the smallest discriminant for this r and s). Taking an appropri- 
ate F here gives a quotient ~3/F which can be triangulated by a single 
tetrahedron A with angles as shown in Fig. 7, while the arithmetic description 
of F leads to 

p, 

P0 90 ~ 
Fig. 7 

2753/2 
Vol (.~3/r)=-~7S ~K (2)" 

This example, due to Thurston, is discussed in Borel [1], p. 30. The group F 
has torsion, so O3/F is only an "orbifold" rather than a smooth hyperbolic 
manifold; it is of special interest because it has the smallest known volume of 
any orientable hyperbolic orbifold, arithmetic or otherwise. We can compute 
this volume either number-theoretically or geometrically. The number-theoreti- 
cal method is described in Appendix 2. The geometrical method is the one 
used in the proof of Theorem 1. If we choose Po, P~ as in Fig. 7 and extend 
PoP~ to c~ as in Fig. 2, then because of the many right angles in A we can 
subdivide A into four simplices ~ . ~  of the sort shown in Fig. 3 rather than the 
usual twelve. Their angles can be computed in a straightforward way, and we 
find 

A = ~- .0  - ~ , 0 -  ~- - ~ , "  + ~=-+ ~, ~- 
3 3 6 5 6 5 

with 

o =  arc cot ( arc cot 7+3 
2 ~ / '  

Now Eq. (8) gives a formula for VoI(A) as a sum of 12 values of A(x) at 
(complicated!) algebraic arguments. Computing these values by the method 
given in Appendix 1, we find Vol(A)~0.039050286, in agreement with the 
number-theoretical calculation. 

We have discussed this last example in some detail because it shows how 
complicated the formula promised by Theorem 1 can be, even when the 
geometry of the hyperbolic manifold is very simple (in this case triangulated by 
a single, and very special, hyperbolic tetrahedron). In general, it is very hard to 
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find examples of arithmetic hyperbolic manifolds for which one has both a 
good arithmetic and geometric description. Thus it is clear that getting actual 
formulas for ~K(2) by this method is usually impractical, so that, unless an 
arithmetical proof giving an explicit formula of the form (2) is found, Theorem 
1 must be considered as of mostly theoretical interest. 

Appendices to w 3 

1. Computation of  A(x) 

By (10), calculating A(x) is equivalent to calculating the Lobachevsky function 
gl(0). Neither the sum nor the integral in (9) are very convenient for numerical 
work, but there is a very rapidly convergent method. By periodicity, we can 

assume 10[ <~ .  Then gI(0) is given by 
Z 

1 N n + t  
- 3I(~ t) = t (2N + 1 --log [2 sin gtl) - ~ n 1 o g - -  

n = l  n- - t  

k = l  - 1  ~ k 't- 1 

for any N=>0. This formula, which is easily proved by differentiation, is a 
special case of the results of [2]. The series converges for Itl=<N+l and 
therefore converges very rapidly for It[=<_�89 and quite modest N. Taking N = 4  
and breaking off the series at k = 4, for example, we get 

1- 3 I ( n t ) = t ( 9 - 1 o g l 2 s i n n t [ ) -  c, t2"+l + n l o g ~ _ t ) + ~  
n = l  

with 
c 1 =0.147548637158, c 2 =0.00142852188, 

c 3 =0.00002919407, c4=0.00000076258 

and IE]<I.2 • 10 -11 for It]~�89 

2. Epstein zeta functions 

Let Q(x, y ) = a x 2 +  b xy  + c y 2 be a positive definite binary quadratic form with 
integer coefficients and for n~lN let 

r(Q, n)= ~ {(x, y)eZ2/{  +_ 1} I Q(x, y)=n} 

denote one-half the number of representations of n by Q. The series 

~ r(Q,n)n -s is called an Epstein zeta-function, and the zeta-functions of 
n = l  
imaginary quadratic fields are finite sums of such series. For instance, since 
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II~(v/~7) has class number 1, the norms of ideals are just the values of the 
norm form xZ+xy+2y z, so 

r(xZ + xy+ 2y2, n) 
~ ( s )  = n ~ 

n = l  

The Epstein zeta-functions have a well-known Fourier expansion, which at 
s = 2 becomes 

~, r(ax a +bxy+cy 2,n) 
n 2 

n = l  

~4 a 8~ ~ ( a) -~"~ rtnb 
-90a2  4 - 4 ~ ( 3 ) ~ + ~ -  7zn+~ a 3(n)e , cos (12) 

n = l  a 

with ( 5 = ~ b  2, a_3(n)= • d -3, ~(3)= E d 3=1.202056903 .. . .  The series 
din d__>l 

d > l  

converges exponentially, and four terms of (12) suffice to compute ~r  to 
twelve places. 

Epstein zeta-functions can also be used to compute zeta-functions for num- 
ber fields other than quadratic fields. For example, the field K = Q ( ] f ~ 2 ] f 5 )  
is related to the genus field of the imaginary quadratic field ~ ( ] / / -  55), and using 
this relationship one can prove the formula 

r(x 2 + x y  + 14y 2, n) - - r ( 4 x  2 + 3 x y + 4 y  2, n). 
~ ( s )  = ~ , ) w ~ ( s )  x n s , 

n = l  

(13) 

2 ~  4 

since ~r  this permits us to calculate ~K(2) easily using Eq. (12) (in 

fact, very easily, since e - ~ r  10 -1~ so the series in (12) is negligible for x 2 
+ x y + 14y 2 and extremely rapidly convergent for 4X 2 + 3X y + 4y2). We find 

2r? 
~K(2) ~ - - 2 7  (1.1193564009 -0.2122647724) - 1.053742217 

751/5 

and hence Vol(.~3/F)~-0.0390502856 for the group F discussed at the end of 
w 

w 4. Proof of Theorem 2 

We begin by proving the special case (4), even though this is well-known (see 

e.g., Milnor [6], p. 7.19), since it illustrates the general case. Let K=II~(I/D) be 

an imaginary quadratic field with discriminant D < 0  and z(n)= (D) the as- 

sociated character. Then ~(s) factors as ~(s)L(s,)O, where L(s, Z)= ~ z(n)n -s, 
n = l  



296 D. Zagier 

71;2 
so ~K(2)=~-L(2, Z). The function z(n) is odd and periodic with period [DI, so it 

has a Fourier sine expansion, well known to be 

1 2rckn 
z(n)= [] / /~ O<k~<lDiZ(k )sin IDa- 

Hence, by (9) and (10), 

J I ( ~ Z k ] l ~ o  < k < ,o, X (k) A (c~ ~1  )" I/'11)12 Z x(k) \ [ ~ ] = l / ~  L(2, X) 

Now let K be an arbitrary abelian field. Then ~K(S) is the product of [K :Q ]  
L-series L(s,z), where the Z are primitive Dirichlet characters whose con- 
duc to r s f  divide the conductor N of K. If X is an even character, then x(n) has 
a Fourier expansion 

1 f 2~zkn 
z(n) = Gx kE '= z(k) cos 7 -  

where G x (defined by setting n = 1 in this formula) is a certain algebraic integer, 
the Gauss sum attached to Z- Therefore 

g2m f 

L(2m, z)= Gx k21Z(k) (Z even) 

- 2 m  ~ 1 2rtkn 
where b,,, k, y---- n ,.., 7 ~  c o s ~ - ,  which is known to be a rational number 

n = l  

b"'k'~--(2m)! B2" , where B r denotes the r-th Bernoulli polynomial . If Z 

is an odd character, then instead 

i y- a 2rtkn 
z(n) = ~  k2 l= z(k) sin ~ -  

(where again G x is defined by setting n = 1). But 

( 2 m - l ) !  ~ sin2n0 
~ 1 -  /12m 

r l=l  
- 2  ~ sin2nOSe-2"'tem-ldt 

n = l  0 

=2  ! Im n 2inO--2nt 2m--1 dt 

oo t 2 m -  1 dt 
=sin20  S cos~7--coos20 

0 

= ~ t2m- 1 dt 

0 c~ t tan O-+-s~nh 2 t cot O' 
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and comparing this with the definition of Am(x) (Eq. (3)) we find 

Am(cOtO) = ~ sin2n0 
n= 1 H2m 

(which in view of (9) and (I0) proves that A I =A) and 

i I-~ (~k) 
L(2m, z ) = ~ -  k~z(k) A,n c~ T (Z odd). 

O Z = 

Since K is abelian, it is either totally real ( r= [ K : ~ ] ,  s=0)  or totally imaginary 
(r=0,  s=�89 In the first case all of the Z are even, so 

f z  
7~2m[K:@] 1 ]  ( E z (k)  bm,k,fz) ,  ~,,(2m) 1 

z 

7[ 2mr 
and this has the form ~ x (rational number) because Iq[ G z =I//D, D >0, and 

V IVl z 
the set of Z is closed under the action of Gal(~/Q).  (We could also have 
appealed to the Klingen-Siegel theorem.) In the second case half of the Z are 
even and half are odd, so 

7[2msi s f z / f  z -  1 

~((2m)= FI Gz z~I2Je~ Q~-, Z(k,6~'k'f~) zUdO [k~ z(k)Am(c~ ~ ) )" 
z 

The factor in front equals ~2"~/]/LD]- because I~Gx : I / /D  and ( - I ) ~ D > 0 ;  the 
second factor is rational for the same reason as before, and for the same reason 
the third factor is a rational (in fact, integral) linear combination of products of 

~n 
s values of Am(x ) at arguments x = cot ~ - .  This completes the proof. 

w 5. Partial zeta-functions and decomposition of the volume 

The zeta-function ~K(S) splits up naturally into h summands ~K(~', S), where h is 
the class number of K and for each ideal class ~ '  the partial zeta-function 
~K(d,s) is defined as ~ N(a) -~. From a number-theoretical point of view, 

a ~  

these partial zeta-functions are just as good as Dedekind zeta-functions, so it is 
natural to make 

Conjecture 2. Conjecture 1 remains true with ~K(2m) replaced by (K(~, 2m)for  
any ideal class ~ of K. 

This conjecture can be verified in some cases. For instance, if K=Q(V/D) is 
an imaginary quadratic field with class number 2, then the theory of genera 
gives 

~K(do, s) + ~K(d,, s) = ~K(s)= ~(s) L(s, Z~), 

~K(~&o, S) --(K(~41, S)= L(s, ZD,) L(s, ZD2), 
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where d 0 and d 1 denote the trivial and non-trivial ideal classes and 
D 1 > 0 > D  2 are fundamental discriminants with D~ .D2=D;  the proof of Theo- 
rem 2 shows that for s=2m the right-hand side of both expressions is ~zzmlD]-�89 

times a rational linear combination of numbers A,, (cot g~) .  Similar formulas 

hold for any imaginary quadratic field with one class per genus. A less trivial 

example is provided by the field ~(]~---55), whose class group is cyclic of order 
4; here we can verify Conjecture 2 for m = 1 using Eq. (13). 

In the proof of Theorem 1, we obtained (K(2) as (essentially) the volume of 
s E S53/ , where F is a torsion-free group without parabolic elements contained in 

a totally definite quaternion algebra over K. However, the proof works even in 
the presence of elliptic or parabolic elements (provided we include cusps and 
elliptic fixed points as vertices of tetrahedra) and for quaternion algebras not 
ramified at the real places of K, except that then we have to take quotients of 
. ~  • ~ (0 < t <r)  and these may be non-compact. In particular, we can take F 
=SL2((gK) acting on . ~ •  (Hilbert modular group), in which case the 
quotient X has h cusps, but still has finite volume given as a simple multiple of 
(K(2) (cf. [1], 7.4(1)). The fact that X has exactly the same number of cusps as 
the number of summands (K(d,  2) into which (K(2) naturally decomposes 
suggests a possible geometric interpretation of Conjecture 2 for m = 1: it may 
be possible to break up X into h pieces, each containing one cusp, in such a 
way that the volumes of the individual pieces are proportional to the (K(d,  2); 
then if the pieces can be triangulated by simplices with algebraic coordinates, 
Conjecture 2 follows. There are in fact various natural decompositions of X 
into h neighborhoods of cusps, but I have not been able to find any which 
gives the right volumes. 

w 6. Sharpening of Theorem 1 for imaginary quadratic fields 

In Theorem 1, the arguments of A(x) could in general be chosen to be of the 

form ] / - 1  times a number quadratic over K l, where K 1 was an arbitrarily 
chosen totally imaginary quadratic extension of K. Looking at the proof, we 
see that K I had to be introduced only in order to split the quaternion algebra 
used to define the group F. Hence if K is imaginary quadratic and we take F 
to be SL2((_gK) or a torsion-free subgroup of finite index as in w we do not 
need K1, so the same proof yields a formula of the form 

7~ 2 

with c~e~ and x ~ / - 1  of degree at most 2 over K. But in fact we can do 
better, namely we can find a representation of (K(2) of this type with 

x ~ - l ~ K  and hence (since x~ is real) x~e~ .  I]//DL. More precisely, we have: 
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Theorem 3. Let K = I I ) ( 1 F ~  ) be an imaginary quadratic field of discriminant 
-d .  Then 

for some finite collection of numbers nv~Z , 2~01~ with 1~(2~ +l//~dd)"v~ll~. 
v 

Proof We first prove (14) with "6"  possibly replaced by a larger denominator 
and under the assumption that M=~33/F admits an ideal triangulation for 
some torsion-free subgroup F of PSL2(CK) of finite index. Here "ideal tri- 
angulation" means a triangulation of Mu{cusps}  into geodesic tetrahedra all 
of whose vertices lie at the cusps, i.e., there is a fundamental domain for the 
action of F on -~3 which is a union of hyperbolic tetrahedra, disjoint except 
along their boundaries, with all vertices in K u {oo}=l12w {oo} =~-~3. An ideal 
tetrahedron is described by three angles ~, /3, 7 with sum ~z which are the 
angles of the cross-section of the tetrahedron seen from any vertex (if one 
vertex is chosen at infinity, then the tetrahedron seen from above will look like 
a Euclidean triangle with angles e, fl, 7). The volume of such a tetrahedron is 
31(c 0 + 3I (fl) + 31(7) = �89 [A (cot c~) + A (cot fl) + A(cot 7)] ([6-1, Theorem 7.2.1). Since 

the angles of a triangle with vertices in K w {oo} have cotangents in Q . t /d  (by 
translating and rotating the triangle we can put its vertices at 0, 1 and x 

+ y l / - d  with x, ye~ ,  and then the cotangent of the angle at 0 is x/y]/~), we 

can write this volume as ~ A + A  +A with 2,#,vell~, 

(2+I / - -d ) (#+l / -d ) ( v+] /~ )Ol~ .  Since the volume of go3/PSL2((gK) equals 
d3/2 
4rc2 (K(2) [6, Theorem 7.4.1], this proves the theorem under the assumption 

stated and with 6 replaced by �89 [PSLz(~IK): F]. 
Now in fact any hyperbolic 3-manifold with at least one cusp admits an 

ideal triangulation. This has been stated by Thurston and others and can be 
proved using the dual complex of a Ford domain subdivision, but we could 
not find a suitable reference. However, in [7] Thurston shows that any such 
manifold M admits a generalized ideal triangulation which is allowed to "fold 
back" on itself, so that some of the ideal tetrahedra are counted with multiplic- 
ity - 1 instead of + 1 (more precisely, given any geodesic triangulation of ~33/F 
we can find a F-equivariant map from .~3u{cusps} to itself, equivariantly 
homotopic to the identity, such that the images of the original simplices are 
ideal tetrahedra, possibly degenerate). This is sufficient for our purposes since it 
implies that VoI(M) is an integral linear combination of volumes of ideal 
tetrahedra with vertices at the cusps, and hence in our situation of expressions 

A +A +A with 2, #, v and ( 2 + ~ ) ( # + ] f l - d ) ( v + ] / ~ d )  

rational. The fact that some of the tetrahedra are counted with multiplicity - 1 
means that some of the coefficients n v in (14) may be negative, but we do not 
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care about this and anyway could achieve n~ > 0  (by changing the sign of 2 0 or 
even n~= 1 (by repeating some 2~). Moreover, Thurston's construction has the 
property that it can be carried out equivariantly with respect to the (finite) 
group of isometries of M, at least if we allow ideal polyhedra rather than just 
ideal tetrahedra in the decomposition. Apply this to M=~3/F where F is a 
torsion-free normal subgroup of PSLz(CtO of finite index (e.g. the full cong- 
ruence subgroup F(n) for some n > 3). Then the polyhedra of the subdivision of 
M are permuted by the finite group G =PSLz(Cr)/F and we have 

1 ~+_Vol(~)=Z+_Vol(a)/N, ' Vol (~3/PSLz ((gr)) = ~ E,,I 

where a ranges over all polyhedra of the subdivision in the first sum and over 
all G-orbits of such in the second, and where N~ denotes the order of the 
stabilizer of a in G or equivalently (since an element stabilizing a polyhedron 
has finite order and F is torsion-free) of the stabilizer in PSL2((~oK) of a 
representative of ~ in -~a. But the order of a torsion element of PSLz((gK) is at 
most 3 (this follows easily by looking at its trace), so this stabilizer is a finite 
group of PSL2(II2 ) whose elements all have order 1, 2 or 3 and hence (by the 
classification of finite subgroups of PSL2(~7)) is isomorphic to a subgroup of the 
alternating group A 4 of order 12. It follows that 12.Vol(~3/PSL2((9K) ) is an 
integral linear combination of volumes of ideal polyhedra and hence (tri- 
angulating these polyhedra arbitrarily) of ideal tetrahedra. This proves Theo- 
rem 3 with the denominator stated. 

As an example of the theorem, we can subdivide the polyhedra in Fig. 6 
into three tetrahedra, and working out their dihedral angles we obtain the 
formula 

with I - I ( 2 ~ + l f ~ ) " ~ = ( l + l / - 7 ) 1 2 ( 3 + l f - ~ ) t 2 ( 5 + ] / - 7 ) 4 = 2 5 2 .  In this exam- 
v 

ple the factor 1/6 in (14) can be replaced by 2/3, and this may well be true in 
general. Other questions one can ask about Theorem 3 are whether it extends 
to partial zeta-functions as discussed in w 5, whether there is a formula of the 
same type for ~K(4), ~K(6), etc. (with A replaced by A,. as in Conjecture 1), and 
whether Theorem 1 can be sharpened in general to have arguments 

x~,je~,c~lfTl-l.~j(K) for arbitrary number fields K. Probably the answers to 
all of these questions will have to wait until there is a proof of Theorems 1 and 
3 by the methods of analytic number theory, since it does not seem possible to 
push the geometric approach much further. 
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