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1. Introduction and statement of theorem 

co 
The period polynomial of a cusp form f ( r ) =  ~.l=1 af(  l)ql (teSS = upper half- 
plane, q = e 2~i~) of weight k on F = PSL2(TI) is the polynomial of degree k - 2 
defined by 

r f ( X )  = f f ( z ) ( z  - X )  k-z dr (1) 
0 

or equivalently by 

k-2 ( k - 2 ) !  L ( f n +  l ) x k _ z _ . ,  
r f (X )  = - ,~o ( k ~ - - n ) !  (2~zi) "+'  (2) 

co 
where L ( f  s) denotes the L-series o f f ( =  analytic continuation of ~ =  1 a:( l ) l - s ) .  
The Eichler-Shimura-Manin theory tells us that the maple--, r: is an injection from 
the space Sg of cusp forms of weight k on F to the space of polynomials of 
degree _-< k - 2 and that the product of the nth and ruth coefficients of r: is an 
algebraic multiple of the Petersson scalar product ( f , f )  i f f  is a Hecke eigenform 
and n and m have opposite parity. More precisely, for each integer l > 1 the 
polynomial in two variables 

(r f(X)r:(  Y ) ) -  
2i k-3 a:(l), (3) :~s. ( ) ( f , f )  

e i g e n f o r m  

has rational coefficients; here (r: (X)r:(  Y)) ~ = �89 X)r : (  Y) - r : ( - X ) r : ( -  Y)) is 
the odd part of r:( X)r:(  Y) and the sum is taken over a basis of Hecke eigenforms of 
Sk. A rather complicated expression for the coefficients of these polynomials was 
found in [3]. 

In this paper we will give a much more attractive formula for the expressions (3) 
by means of a generating function. First we multiply each expression (3) by qt and 
sum over l, i.e., we replace a:(l) in (3) by the cusp form f (z )  itself. Secondly, we 
extend the definition of t :  (and o f ( f  f ) )  to non-cusp forms, the function r : (X)  now 



450 D. Zagier 

being l / X  times a polynomial of degree k in X, and include the Eisenstein series in 
the sum (3). Then we define 

(r l (X)rr(Y)) - f (r ) ,  (k > 2 even, l ~ 0) (4) ck(X, Y; z) = ~ (2i)k_3(f f)  
feMk 

eigenform 

where the sum is now over all Hecke eigenforms in the space Mk of modular forms 
of weight k on F. The function Ck(X, Y; ~) is identically 0 for k = 2 or k odd and in 
general belongs to M~ | X - 1 Y - 1 ~  I-X, Y], where M~ = Mk c~ Q [ [ q ] ] ;  for 
instance, 

c4(X , Y'~T) = - 1 ( ( X 2  - -  1 ) ( r  3 + 5 Y +  Y 1) ~_ ( x  3 -l- 5 x  ~- x - 1 ) ( Y  2 - 1))G4(-g ) 

Bk ~ d k - where Gk(r) = - - ~  + ~l=1 (~a/t 1)ql (k even) denotes the normalized Eisen- 

stein series of weight k on F. We combine all these functions into a single generating 
function 

C(X, Y ; r ; T ) =  ( X Y -  1 ) ( X +  Y) T_ 2 ~ T k-2 
X 2 y2 + 2 Ck(X, Y; r ) - -  

k=2 (k - 2)! " 

Then the result we will prove is 

Main Theorem. The function C(X, Y; z; T )~ (X  Y T ) -  211~[X, Y][[q ,  T ] ]  is 9iven 
by 

0 . . . .  2 0 ( ( X Y -  1)T)O((X + r ) r )  c(x, r ) =  ' (5) 

where O(u) denotes the classical Jacobi theta function 

O(u) = O~(u)= ~ (-1)"q~("+~)2e("+~)" . (6) 
n~2~ 

From the Jacobi triple product formula 

1 u u 
O(u) = @(e~ - e-~) [I  (1 - q")(1 - q"e")(1 - q"e-") 

n = l  

one easily finds 

O(u) ( u k)  
uO'(O)=exp - 2  ~ Gk(Z)~. , (7) 

k>2 

so (5) can be rewritten in the form 

Main Theorem (Second version). 

xexp 2 k [(X~+I)(Y~+I)-(XY-I)~-(X+Y)~]G~(~)~.. (8) 

Notice that the coefficient of G2, which is not a modular form, vanishes in (8). In 
fact, the right hand side of (5) is the simplest combination of theta-series in which 
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G2 drops out and thus whose Taylor coefficients in each degree are modular forms 
in r. 

Formula (8) is surprisingly simple: the coefficient of T k in the exponent on the 
right, which a priori could be an arbitrary polynomial of degree k in X and Y with 
coefficients in M~, is just the product of the Eisenstein series Gk(z) with a very 
simple polynomial. Yet either (8) or the equivalent formula (5) contains complete 
information about all modular forms on F and their periods: expanding the 
right-hand side of either formula as a power series in T, by hand or using 
a symbolic algebra package, we automatically obtain the Hecke eigenforms and 
their period polynomials in any desired weight. 

The contents of the paper are as follows. In w we define the period functions r I 
forf~ Sk and prove the basic properties of the extended period mapping. Section 3, 
which does not use the theory of periods and may be of independent interest, 
contains the construction of a certain simple function of three variables r e~5, 
u, v ~ C which has nice transformation properties (modular in T, elliptic in u and v) 
and nice expansions with respect to the variables q, u and v. This function is used in 
w to prove the main theorem, while w contains some consequences and numerical 
examples. 

2. Periods of  cusp forms and non-cusp forms 

We begin by reviewing the classical theory of periods for cusp forms on 
F = P S L z ( Z )  (for more details, see [4], Chapter 5). Let k denote a positive even 
integer, Sk and Mk the spaces of cusp forms and modular forms of weight k on F, 
and Vk the space of polynomials of degree < k - 2. The periods o f f ~ S k  are the 
k -  1 numbers 

r.(f) = 5 . / ( O r "  d r  (0 _< n _< k - 2) 
0 

and equal i "+~L*( f  n + 1), where 

L*(f ,  s) = ~ f ( i y ) y  ~-' ay = ( - - l )k /2L*( f ,  k - s) 
0 

is the L-series of f multiplied by its gamma-factor (2rc)-~F(s). They can be 
assembled into the polynomial r i ( X ) =  Z]--~ ( - 1 ) " ( k ; Z ) r , ( f )  X k - z - " E  Vk as in 
(1). The group F acts on the space Vk by 

One checks easily that t?lT' is given by the same integral as in (1) but taken from 
7-1(0)  to 7-1(~176 �9 In particular, 

r s + r s l S =  I + I = 0 ,  r s + r j . l U + r j . l U Z =  ~ + + = 0 ,  
0 ioo O ice  1 

where S = (o 1), U = (~ -o 1) are the standard generators of F of order 2 and 3, 
respectively. Therefore r I belongs to the space 

w~ = {4,~ v~: 4,1(1 + s )  = ~[(1 + u + u ~) = 0 ) ,  



452 D. Zagier 

where we have extended the action of  the group F to one of the group ring 7z [ F ]  in 
the obvious way. If Vk + (resp. Vk-) denotes the space of even (resp. odd) polynomials 
in Vk, then ~7 can be written as r f  + rf with r f  ~ W~ = WRC~ V~. The map 
r -:f~-+rf is an isomorphism from Sk to Wk-, while r + is an isomorphism from Sk 
to a codimension ! subspace of Wk + which was determined in [3], 4.2. Finally, i f f i s  
a normalized Hecke eigenform, then there are non-zero numbers o~f ~ i~,, oof ~ IR 
such that the coefficients of r~ (X)/o)f  and the number oof oof/i(f , f)  belong to 
the number field (I~r generated by the Fourier coefficients o f f  and transform by 

i f f  is replaced by f ~ =  ~a~(1)~q l, erEGal(Q/(l~). For  instance, for k =  12, 
f =  A = q -- 24q 2 + 252q 3 -- . . .  we have 

r+(X)=(~_~l XIO XS + 3X6 3X4 + X 2 36~ + -- ~ ) o ~  , 

r2(X) = ( 4 X  9 - -  2 5 X  7 -}- 42X 5 -- 25X 3 + 4X)e)2 ,  where 

co~- co2 _ 21o e(l ~ = Qa - 
e)~ = 0.114379... i, co2 = 0.00926927 . . . .  i(A, A) 

Now suppose that f i s  a modular form of weight k but not a cusp form, say 
f = ~l=o az (l)ql with aI(0 ) 4= 0. The function L* ( f  s) is now defined for Re(s) >> 0 
by 

c~ oo 

L *( f  s) = I (f(iy) - af(O))y s-1 dy = (2n ) -~F(s )L( f  s), L ( f  s) = ~ af(l)l-~; 
0 l = l  

it still has a meromorphic continuation to all s and satisfies the functional equation 
L*(f,  s) = (-- l)k/2L*(f k -- s), but now has (as its only singularities) simple poles 
of residue -- a i(0 ) and ( -  lff/2as(0) at s = 0 and s = k, respectively. On  the other 

hand, the binomial coefficient (fl - 2'1 . . . .  F(fl - 1) has n ) '  lmerpretea as ]v~- + ~ - -  1 _ n)' 

a simple zero at all n~2g, nr 1 . . . . .  k -  2}, the values of its derivatives at 
n = - 1  and n = k -  1 being 1 / ( k -  1) and - 1 / ( k -  1), respectively. Hence the 

natura lway t~176  L * ( f n + l ) X k - 2 - " ~ Z  n 

(valid for cusp forms) is to define r I by 

k-2 / k  ) aI(O) ( Xk-1 Z i1-" { - 2 rI(X) = kT-_f + X-~) + g*(f, n + 1)X k -2 - " .  (9) 
n = 0  k /'l 

This is no longer in Vk but instead in the bigger space 

Vk = @ (I;X" ---- X - 1 '  {polynomials of degree < k in X } .  
--l<=n<~k-1 

Using the standard formula 

L * ( f s ) =  S f(it)--a~.(O) t~-~dt+ f ( i t ) - a f ( O ) ~ t S - l d t  
t o ( i t )  k ] 

- a f ( 0 ) [ ~ +  (--1)k/2t~-S]k~s J ( t ~  
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we can give an alternative formulation of the definition as 

i ~ ~o 

r f ( X ) = ~ ( f ( z ) - a y ( O ) ) ( z - - X ) k - 2 d z + ! ( f ( z , - a f r ( ~ O t } ) ( z - X ) k - 2 d y  

as(0) [ 1 ( X ~ k - ~ q  
-~- ~ - ~  ( X  --  "~0)k- 1 -~- ~ 1 - - - -  (Zo e ~ arbitrary) (10) 

% /  3 

(that the right-hand side does not  depend on T0 can be checked easilLby differenti- 
ation). Note that wo do not have to write ~I for our new element of Vk, since when 
/'is a cuspform the new definition agreeswith the old one. As before, we denote^by 
Vk + and Vk the even and odd parts of Vk and by r f  the component of rf in Vk -+ . 

Theorem. The function ry( X) belongs to the subspace 

~ = {4'e P~: 4'1~-~(1 + s )  = 4'1>~(1 + v + v =) = o} 

of 17k. This space is the direct sum of the two subspaces ~'ff = if4 c~ I2~ ; liz~ 
equals W~, while ff/[ contains W[ with codimension 1 unless k = 2, when 
liZk-+ = Wff = {0}. The maps r • Mk ~ I~k ~ are both isomorphisms. 

Remarks. Note that the result here is simpler than the corresponding result for cusp 
forms, where only one of the two maps r :~ : Sk -* W~ was an isomorphism and the 
determination of the image of the other was a difficult problem. This simplification 
on passing from Sk to Mk is a main theme of this paper. We should also remark that 
Vk is not  a F- or  7Z [F]-module,  since 4'12-kY for 4' e Vk and 7 ~ F is not in general 
in Vk; nevertheless, 4'[7 is a well-defined rational function and the definition 
of Wk makes sense. 

To  prove the relations rs[(1 + S) = rfl(1 + U + U 2) = 0 f o r f eMk  we could 
proceed as before, writing rs[y as an integral from y-1(0)  to y-1(o0) via 7- l (Zo)  
and worrying about the contribution from as(0 ). However, since Mk = Sk 0 (Gk) 
and we will need the period polynomials of the Eisenstein series anyway, it is more 
convenient to simply check the assertions of the theorem directly for Gk. Thus we 
will deduce the theorem from 

Proposition. (i) For k > 2 the functions 

B.+I Bk-.-1 X" (11) 
p ~ ( X )  = X k - 2  - -  1, p k - ( X )  = 2 (/I  ~- 1)!  ( k  - -  n - -  1)! 

- l ~ n < k - 1  
n odd 

belong to I ~  and if/k, respectively. 
(ii) The period polynomial of the Eisenstein series G, is given by 

+ + _ ( k - 2 ) !  + ( ( k - l )  _ 
rok(X) = to&Pk + tookPk , where took = 2 ' took (~ni~ :7 c~176 

Proof For (i) we must check that  pk ~ e ffZk, since pk +- e l~k~ is obvious. The condition 
pk ~ 1(1 + S) = 0 just says that the coefficients of X"  and X k-2-" in pk ~ differ by 
a factor ( -  1)" + 1, which is clear. Hence we need only check pk ! I (1 + U + U 2) = 0. 
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For  pk + this is immediate, since p ~ - [ U = ( X - 1 ) k - 2 - - X  k-2, pd lU 2= 
1 - (X - 1) k-2. For  p ;  it is convenient to introduce the generating function 

1 o0 
P(X, T ) = ~ 5  + ~ PF(X) Tk-2 (12) 

k = 2  
k e v e n  

~_o Bn T)n- 1 B,. T" -  1 ~ coth ~ -  coth ~ .  = ~ ( x  ~ = 
."o~ . . . .  : o  

The addition law for the hyperbolic cotangent function, which can be written in the 
form 

c~ + fl + 7 = 0 ~ c o t h ~ c o t h f l  + co th f l co th7  + coth 7co th~  = - l , 

now tells us that 

1 

and comparing the coefficients of T k-2 (k :~ 2) on both sides gives the desired 
conclusion. Note  that for p s  = ~2(X + X - l ) w e  havep2 ]0 (1 + U + U z) = �88 
Thus p ]  =-0 and p~-r I, V2; for k = 0, on the other hand, both functions 
p +  ( X )  = X - 2 _ i and Po (X) = X - 1 do satisfy the period relations. 

Fo r  (ii) we use the definition (9) of rl ,  observing that aa (0) = - B k / 2 k  and 
L(Gk, s) = ((s)((s - k + 1). The assertions follow after a sho]'t calculation using 
the values ~ ( 1 -  n ) = - - B , / n ,  ~(n)=--(2ni)"B,/2n! (n > 0 even), ( ( 1 -  n ) =  
0 ( n >  lodd).  

The proof of the theorem is now immediate: rf e I,V~ for any f~  Mk because Mk is 
the direct sum of Sk and (Gk) ,  W~ = W + because V + = V + , Wk- has codimen- 
sion 1 in Wk for k > 2 because p [ r  Vk and because the codimension of Wk in WR 
is < 1 (since q~l(1 + S) = 0 implies that the coefficients of X -  1 and X ~- 1 in any ^ 

4~ Wk are equal), and r +:Mk--* Wk ~ is an isomorphism because 
r+:  Sk --* W~ / ( p  + ) and r - :  Sk --* Wk are isomorphisms. 

We have now extended the definition of r f  to a l l f~  Mk. In [7], w we defined 
the Petersson scalar product of arbitrary modular  forms in Mk by Rankin's 
method, i.e., 

3 (4n) k ReS,=k (f, geMk) .  
1 =  

For the Petersson norm of the Eisenstein series this gives 

~ r ( k -  1)! [ ~ ( s ) ( ( s - k + l ) 2 ~ ( s - 2 k + 2 ) ]  
(Gk, Gk) - ~ ~4 -~  Res~=k ~ s ~ 2 - ~  5 

( k -  1)! 
- 2T~--TnT~ 1 ~(k)( '(2 -- k) 

( k -  1 ) ! ( k -  2)! 
~ _ 2 - ~ Z ~ i a _  2 ( (k)( (k  - l)  

_ (k - 2)!  ~ ~ (k  - 1 ) .  (13) 
(4n)k- 1 Z K  
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(The formula given on p. 435 of [7] contains a misprint: 2 3k-~ should be 2sk-2.) 
Comparing this with part (ii) of the proposition, we see that we have the same 
assertion o~f ~o 2 / i ( f , f )  ~ Qy for GR as for Hecke eigenforms f e  Sk. 

It follows from (13) and part (ii) of the proposition that, if we decompose the 
expression (4) into a cuspidal part c~ Y; T) and an Eisenstein part c~(X, Y; z), 
then the latter is given by 

cff(X, Y; ~) - 2k(k - 2)! (p] (X)pk (Y) + Pk (X)p[  (Y)) Gk(z). 
Bk 

Splitting up the generating function C(X, Y; ~; T) as a sum C o + C ~ in the 
corresponding way, we find for the value at the cusp z = ioo, q = 0, the value 

C(X, Y; i~;  T) = C~(X, Y; ioo; T) 

( X Y -  1)(X + Y) + 
= X2Y2TZ ~ [ ( X  k - 2  --  1)pR(Y) 

k=2 

+ (yk-2 _ 1)pk(X)]  T k-2 

= P(X, T) + P( Y, T) - P( Y, X T) - P(X, YT) 

(with P(X, T) defined as in 02)) 

= - 4 1 ( c ~ 1 7 6  c~176 

sinh (X + Y) T sinh (X Y - 1 ) T 
2 2 

T X T  YT  X Y T "  
4sinh ~- sinh ~ -  sinh ~ -  sinh 2 

�9 0 ( ~ ) 1  u 
This proves (5) in the limit as z ~ i ~ ,  since ~,~,L0 (0)[q=o = 2sinh ~. 

3. A meromorphic Jacobi form 

In this section we study the function of three variables z ~.~, u, v ~ �9 defined (for 
9t(u) < 2 ~ ( z )  and - ~ ( v )  < 2 ~ ( z ) )  by 

~=o q-" ~ ~"q ( q = e 2 ~ i ~ , ~ = e , , r l = e , ) .  F~(u, v) = = q =;~-_  1 q - ~ C  
n m = O  

We write Ga(r) for the Eisenstein series defined in w 1 if k > 0 is even and set Gk -- 0 
for k odd. 

Theorem. The function F,( u, v) has the following properties: 
(i) (Symmetry) F~(u, v) = F~(v, u) = - F ~ ( - u ,  - v ) .  
( ii) (Analytic continuation) F~( u, v) extends meromorphically to all values of u, v. 

It has a simple pole in u of residue q -" at 2ni(n~ + s) (n, s6 7Z) and a simple 
pole in v of residue ~ -"  at 2gi(mz + r) (m, re7~), and is holomorphic for 
u, v(~A = 2ni(Zz + 7/). 



456 D. Zagier 

(iii) (Fourier expansion) The coefficients of  F~ as a power series in q are elemen- 
tary hyperbolic functions of  u and v: 

F~(u , v )=~  c o t h ~ + c o t h  - 2  sinh d u + ~ v  q . (14) 
= 

1 1 
(iv) ( Laurent expansion) The Taylor coefficients ofF,(u,  v) . . . .  are derivat- 

U 1) 

ires of  Eisenstein series: 

F,(u, v) = ! + _lv - 2 r. =o ~n/dzzJ Glr- ,I  +1(0  r-~ s~" (15) 

(v) (Elliptic property) F,(u + 2~i(nz + s), v + 2~i(mz + r)) = 
q-~'"~ -"tl -" F,(u, v) for m, n, r, se  7l. 

(vi) (Modular property) FaT+b U 9 = (CZ + d)e ~-~g F~(u, v) for 
.+d c~-+ d'c~-+ d 

(vii) (Relation to theta functions) Let O(u) = Or(u) be as in (6). Then 

O'(O)O(u + 9) 
F~(u, 9) 

O(u)O(9) 

Proof By expanding the fractions in the terms n 4: 0, m 4:0  in the definition o f F  as 
geometric series, we can express F as a double series 

o o  

F~(u,v)-- ~ t / - 1  ~ (~"r/" -- ~ - mr/-")q"" ; 
(~ - 1 ) ( , 7  - 1 )  . . . .  

this makes the symmetry properties (i) obvious and also gives the Fourier  expan- 
sion (iii). The double series converges if f~(u)] and 19~(v)] are less than 2~z[~(z)[. 
To get the analytic continuation in u and v, we choose a positive integer N, break 
up the double series into the terms with n < N and those with n > N, and sum over 
m in the former and n in the latter terms. This gives 

F~(u, 9 ) =  _--- - -~-  =~ 1 - q " ~  1 - q " ~ - ' J  

t/------I-- 1 - -qmt /"  l~--q'~q -1 qm,.  
m = l  

The infinite sum converges for I~fl(u)l < 2toNI ~(T)I, since then ~qN and ~ -~qN are 
less than 1 in absolute value. Taking N large enough thus gives the meromorphic 
continuation to all values of u and v, the positions and residues of the poles being as 
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stated in (ii) of the proposition. The elliptic property (v) 
taking N = 1 and replacing r /by qr/, we find 

~F~(u, v + 27ziz) = ~ + 
q~rl 

q q -  1 

- r  1 + - q - 1  

which proves (v) for m = 1, n = 0; the general case follows 
v and by induction on m and n. 

Inserting the Taylor expansions 

B 
l c o t h 2 =  V ~"u  "-1 
2 z., v ' n=O n .  

into (14), we find 

is also easily deduced: 

~,,+ lq,,+ it/ ~ ~ - r n + l q m - l t / - 1  

m~=l: i : qmtl l'- m~=:l 1 -  q,,rl_l= F~(u, v), 

by interchanging u and 

oo 

s i n h ( u + v ) =  ~ (u + v)' u ~ v ~ 
t= ~ t! ~" r! s!' r,s> O 
t odd r + s  odd 

1 1 ( B,+I 6~,o-- B~+I 6 
Fdu, v ) = - + - - 2  Z 2 r + 2  2 ~  , .o+  Z m'n~q m"~u'v~ 

u v ,,~>_o , , . ,~ t  / ~  s! 
r + s  odd 

(16) 

and the expression in brackets is clearly (2ni)-VG~k~(z) with v = rain{r, s} and 
k = Ir - sl + 1. This proves formula (15). We can rewrite (15) as 

F , ( u , v ) = - 2  ~ GR(Z,~.~(u k-1 + v  k-t  ) 
k _--> 2 \ ZT~I] 

with 
oo /Iv (~k,2 

dk(~, 2) 
v~o'-~ v!(v - ~  - 1)! ~vl(~) 2~ 

D 

A result of H. Cohen and N. Kuznetsov (cf. [2], p. 35) implies the transformation 

law t . .rk~-~d,(czq_d)2 =(cz+d)keCM(c~+a)dk(r,~,) for e F .  The 

modular transformation property (vi) follows. 
The closed formula (vii) is an easy consequence of the elliptic transformation 

properties of F~. Indeed, it is well-known (and elementary) that O(u) has simple 
zeros at all points of the lattice A and no other poles. Since F~(u, v) has simple 
poles for u or v in A, is otherwise holomorphic, and vanishes for u + v s A (because 
of the antisymmetry property F d u , - v )  = -F~(v , -u ) ) ,  the quotient 
O(u)O(v)F~(u, v)/O(u + v) is holomorphic in u and v. Now using (v) and the 
transformation properties O(u + 27zi) = O(u), O(u + 2~iz) = - e -~ ' - "O(u ) ,  both 
of which are obvious from the definition of 0 as either a sum or a product, one finds 
that the quotient in question is invariant under u ~ u + co or v ~ v + co for all 
r ~ A. It must therefore be a constant (for z fixed); taking the limit as u ~ 0, we find 
that this constant equals 0'(0). This proves (vii) and a lso- - in  view of the known 
modularity properties of 0(u)--leads to another proof of (vi). Finally, the identity 
given in (viii) follows from the formula (7). This identity again makes the modular 
transformation properties of F, clear, since Gk(~Z ) is equal to (cz + d)kGk(r) for 
k > 2 but  to (cz + d)EG2(z) + ic(cz + d)/4n for k = 2. 
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Remark. Parts (v) and (vi) of the proposition say that the function F~(27zizl, 27ziz2) 
(z e .~, zl,  z2 e I13) is a two-variable meromorphic Jacobi form of weight 1 and index 

(0 0) m = �89 (for the theory of Jacobi forms, see [2], where, however, only Jacobi 

forms of one variable were considered). Equation (14) says that this Jacobi form is 
singular in the sense that for each term q" ~'~ t/'~ occurring in its Fourier develop- 

m e n t t h e m a t r i x ( 2 n  r ) ( r = ( r l r 2 ) ) h a s d e t e r m i n a n t z e r O ' r *  2m 

4. Proof of the main identity 

In view of part (vii) of the proposition of the last section, the theorem stated in w 1 is 
equivalent to the identity 

C(X, Y; z; T) = F~(T, - X Y T ) F ~ ( X T ,  YT). (17) 

T k - 2 

Denote the coefficient o f ~  in the expression on the right-hand side of (17) by 

bk(X, Y; ~). We must show that bk = Ck for every k > 2, the equality of the leading 
terms in (17) being obvious. 

Because the term k = 2 dropped out in (8), and the functions GR for k > 2 are 
a r + b  

modular forms, the right-hand side of (5) (or of (17)) is invariant under z ~--* ~ ,  
cz q- 

T~-*(cz+d)Tfor  every (~  bd)~F. Thisis  equivalent to the assertion that 

bk(X, Y; z) is a modular form of weight k (with coefficients in ~ [ X ,  X - t, y, y -  1]) 
for every k > 0. But we already checked the correctness of (17) in the limit z ~ i ~  
at the end of w so the Eisenstein parts of the modular forms bk(X, Y; T) and 
CR(X, Y; z) agree. We therefore need only check the cuspidal parts, i.e., the assertion 
that bk and Ck have the same Petersson scalar product with each cusp formfe  Sk. In 
view of the definition of Ck, this is equivalent to proving that 

1 
(bk(X, Y;-) , f ( ' ) )  -- ~ (rj-(X)ri(Y)) - (18) 

for each normalized Hecke eigenform f e  Sk. 
For  brevity of notation, write the Taylor expansion (15) as 

F,(u, v) = Zgh , , ( r ) (u*v  ~+h-1 + u l + h - l v  z) 
h,l  

with 

I 
t if h = 2 ,  I =  - 1 ,  

- 2 ( 2 n i )  - l  
gh, l=~lT-~l+-~S~) ' Gh(t'(z) if h > 2 ,  l > 0 ,  

otherwise. 
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Then 

1 
(k - 2)~ bk(X, Y; ~) = ~, gnd(Z)gh,,r(z) 

l , h , l ' , h '  
h + h '  + 2 ( l + l ' ) = k  

x [  ( - X Y )  '+h-1 + ( - X Y ) * ] [ X " Y  ''+h'-I + X* '+h' - IY"] .  (19) 

The coefficients of X "  Y" with m or n equal to - l or to k - 1 involve only the 
Eisenstein series Gk and have already been taken care of. Also, it is clear that the 
coefficient of X m Y" on the right of (19) is invariant under m ~-* n and ( - 1 )  m+l- 
invariant under m~--~k- 2 -  m, so we may assume 0 =< m < n =< ~ ( k -  2). (The 
middle relation is < rather than =< because m and n always have opposite parity.) 
For  such m, n, the coefficient of X m Y" on the right hand side of (t9) equals 

4 
( -- 1)lgk-"-m-1'l(Z)gn-m+l'r('C) -- m!n!(k -- n -- 2)! Fm(G,-m+l, Gk-n-m-1), 

l,l'>= - 1  
l + l ' = m  

where 61j denotes the Kronecker delta and Fm(Gh, Gh') for h, h' > 2 is defined by 

I " , , , t ( m )  ( m + h - 1 ) , ( m + h ' - l ) ,  G~ht)(.r)G~h,,,_t)(z ) 
F " ( G h ' G h ' ) = ~  ~ ( - 1 )  l ( l + h - 1 ) ! ( m - l + h ' - l ) !  

1=0  

m[ f 6h'.2 (m+ (--1)mbh, 2 G(h,,n+l)(z)) " 
+ 2(2ni)m+l ~ m  Gh 1)(z)+ h' + m 

/ 

Ifm = 0 and h and h' are both greater than or equal to 4, then F,.(Gh, Gh,) is simply 
the product of the Eisenstein series Gh and Gh,, and it was shown by Rankin ([9], 
Theorem 4) that (at least for h # h') this product satisfies 

1 
(GhGh',f) = ~ r k - 2 ( f ) r h ' - l ( f )  

for all normalized Hecke eigenforms in SR, k = h + h'. If m > 0 and h and h' are 
both > 4, then ffm(Gh, Gh') is the result of applying to the Eisenstein series Gh and 
G h' the operator introduced by H. Cohen in [1] and is a cusp form of weight 
k -- h + h' + 2m; here it was shown in [6] (Proposition 6, Corollary) that the 
scalar product of Fm(Gh, Gh') with a normalized Hecke eigenformf~ Sk is given by 

( k -  2)! 
(Fm(Gh, Gh,),f) -- (2i)k-~( k -- 2 -- m)! rk -2- , , ( f ) rh '+m-l ( f ) .  

The case when h or h' equals 2 is not mentioned explicitly in [1] or [6], but the 
above assertions remain true then also, as one proves by the same method as in the 
general case but using "Hecke's  trick" to define G2 as lims~o ~ ( ' " ) - 2 1 " - I - s .  
Putting all this together gives the desired result (18). 

Remarks. 1. The calculation we have given and the result we have proved are 
essentially restatements of Theorem 3 of [3] and its proof. The difference is that 
there we insisted on obtaining cusp forms and therefore had to modify F,,(Gh, Gh,) 
by subtracting a multiple of Gk when m = 0, with the consequence that the final 
formulas obtained were much more complicated and could not be combined 
conveniently into a generating function. 
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2. By combining (16) and (17), we get a simple closed formula for the Taylor 
coefficients of C(X, Y; z; T) with respect to both q and T (i.e., for the expression (3) 
with "Sa" replaced by "Ma"). We state this as 

Main Theorem ( Third version). For k > 2 and I > 0 let Ckl ( x ,  Y) ~ @ Q X "  Y" 
denote the coefficient of q I in ck(X, Y; z). Then -1 <_m,,<=k-1 m ~n (rood 2) 

eko(X, Y) = - ( k  - 2)![p; ( X ) p f  ( Y) + p f  (X)p~ ( Y)] 

with pff as in the proposition ofw while for I > 0 

eal(X,Y)=(.d+b~=tY'. ( - c X Y + d Y + a X  +b)k-2 

a,b,c,d>O 

k -  1 ~" B L ~ ( a X  + d r )  (1 - &)(1  - S~), 
ad=l 

a , d > 0  

k - 2  

where B ~  ~ (k~l)BtXk-l-1 is the ( k - 1 ) s t  Bernoulli polynomial 
/ = 0  

l even 

with the term ( k - 1 ) B 1 X  a-2 removed and ISx, [Sr are the operators 
4~(x, Y ) ~  xa-24~( - x -1, r'), ca(x, r 3 ~  r a -  2 4~(x, - r - ~ ) .  

The two formulas of this theorem give a closed formula for the polynomial (3), 
2k 

which is just  the cuspidal part c~ = cat + ~-(ra-~(l)cao of cat (X, Y). tla 

5. Properties of C(X, Y; ~; T) and examples 

In  this section we take the main theorem in the form (5) or (8) and discuss what 
consequences can be drawn from it. 

In the first place, since O,(u) and Gk(~) have rational coefficients as power series 
in u and q, it follows immediately from either version of the identity that all of the 
coefficients of X m Y" in (3) are rational for all m and n lying between 0 and k - 2 
and hence that r m ( f ) r , ( f ) / i ( f f ) e  QZ for all Hecke e igenformsfand for all m and 
n of opposite parity. We also get integrality statements, e.g., that the coefficients of 
(4) with respect to X, Y and q are p-integral for all primes p > k. (Numerical 
examples will be given at the end of this section.) Moreover, as already mentioned 
in the introduction, either (5) or (8) gives a completely algorithmic way of obtaining 
a basis of Hecke eigenforms for Sa and their period polynomials for any k. 
Specifically, either of these formulas gives a formula for 

1 
c~(m, n, l) = ~ (2i)k- 3(k - 2 ) ! ( f  f )  r~(f)r.(f)ay(1) (20) 

fESk 
eigenform 

for any four integers k, m, n and I satisfying 0 < m, n < k - 2, m ~ n (rood 2), l >= 1. 
The fact that knowing these numbers permits one to find the Fourier coefficients 



Periods of modular forms and Jacobi theta functions 461 

as(l ) and periods rm(f) of the individual Hecke eigenformsf(z),  which at first sight 
may appear surprising, is a consequence of the following lemma, applied to 
1/1 = Sk, V2 = r + ( SD c W~ , and V3 = Wk-: 

Lemma. Let l/i( t < i < 3) be three complex vector spaces of the same dimension d 

and suppose given an element ~ of V1 | V2 | I/3. If  ~ has the form ~ a~ | a 2 | a 3 
v = t  

with respect to some bases {a/} of V, (i = 1, 2, 3), then these bases are uniquely 
determined u9 to simultaneous permutation and scalar multiplication 

i i i 3 i 

The proof is easy, either by using the matrix representation of a transition 
between two bases with the given properly o r - -more  invariant ly--by observing 
that the elements of the dual basis of {a 3 ) are (up to scalars) the unique elements 
~b e V* = Horn(V3, I17) for which (l | 1 | ~b)(~)~ 1/i | Vz | �9 ~ Horn(V*,  Vz) 
corresponds to a homomorphism of rank 1. The process of finding the bases {a~} 
from ~ is algorithmic and will be illustrated numerically in our context at the end of 
the section. 

Secondly, as already mentioned in w the fact that the non-modular form G2 
cancels out in substituting equation (7) into (5) implies that the right-hand side of 

a z + b  
(5) is multiplied by (cr + d) z under z~--~ T~-+(cr + d ) - l T  for every 

c z + d '  

(~ ~ )  eFandhencethat thec~176176176176 

for every k. (One must also check that this coefficient contains no negative powers 
of q, but this is clear from (8).) 

Thirdly, one sees directly from (8) that C(X, Y; r; T) is the product of co(X, Y) 
and a power series in T, X T, and YTwhich is invariant under (X, Y)~-~(-X, - Y) 
or (X, Y)~--~(K X) and is congruent to 1 modulo X or Y. This shows that each 
coefficient Ck(X, Y; r) (k > 0) is symmetric in X and Y and contains only mono- 
mials X ~ Y" with m ~ n (mod 2) and - 1 <_ m _< k - 1, - l -< n < k - 1. Moreover, 
by looking at the extreme coefficients in the exponent in (8), we easily find the 
coefficients of all monomials with m or n equal to - 1 or k - 1 ; these coefficients 
are multiples of Gk as calculated in w For  instance, expanding (8) to the first two 
terms in Y gives 

C(J(, Y; z; T) = 

( 1 - X Y ) ( I + X - ~ Y )  1 -  ( X ( X ~ - ~ - I ) Y T ~ + O ( Y 2 )  , 
X y2 T 2 k = 

�9 2Gk(Z) , .  k-2 
s o t h e c o e f f i c i e n t o f Y - l i n c k ( X , Y ; ~ ) l s ( ~ _ l ) ~ . ~  - 1)if  k > 2 .  

Fourthly, one can "see" the period relations rll ( 1 + S) = @(1 + U + U 2) = 0  
( fe  Mk) directly from equation (5), although not without some work. These two 
relations are equivalent to the two identities 

C(X, Y;'c; T) + C ~X-' Y; T; TX  = 0 ,  

( 1 Y ; z ; T X ) + C ( 1  ~ Y ; v ; T ( I - X ) ) = 0 .  C ( X , Y ; z ; T ) + C  I - - X ,  
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The first of these is immediately obvious from (5) or (8) (using O(-u)  = -O(u)  in 
the former case). The second, after multiplying through by the common denomin- 
ator (a product of six theta functions), is the special case 

flo fll f12 = T" 1 Y--  1 

of the following theta series identity: 

Proposition. Let ~i, fli (i62g/32g) be six numbers satisJ~;iny ~ i  ~i = ~ i  fli = O. Then 

o(~, )o(Bi)o(c~,_  l + ~ , + 1 ) o ( ~ , + 1  - [~,-1) = o .  
i 

Proof. One of Riemann's theta formulae (cf. [5], formula (Rs), p. 18) says 

2011(x1)Oll(yl)O11(ul)Oll(vl) = 
1 

( -  l)i+sO,s(x)O,s(y)O,s(u)Oij(v), (21) 
i , j = O  

where x, y, u and v are arbitrary and 

x,=�89 y l=k(x+y-u-v ) ,  

ul=�89 vl=�89 

The 0ij are Jacobi theta functions whose definition is irrelevant here except that 
01~(u) = O(u) and that the other three Oij(u) are even functions of u. Therefore 
replacing v by - v  in (21), subtracting, and dividing by 2, we get 

O(xl)O(ya)O(ul)O(vl) -- O(xz)O(yz)O(u2)O(v2) = O(x)O(y)O(u)O(v), 

where x2 . . . .  , v2 are defined like xl . . . .  , vl but with v replaced by - v .  Up to 
renaming the variables, this identity is the same as the one in the proposition. 

Finally, in support of the claim made in the introduction that the identity (5) 
contains all information about Hecke theory for PSL2(7/), we mention that it is 
possible to derive the Eichler-Selberg trace formula for the traces of Hecke 
operators on Sk from (5). The formula that comes out is rather different from the 
standard one and in some ways more elementary (for instance, no class numbers 
appear explicitly), and the calculation that relates it to the classical formula is 
rather amusing. Since the derivation is somewhat intricate, we have given it in 
a separate paper [8].  As a further application of (5), we also give in that paper an 
explicit formula for the action of Hecke operators on period polynomials of 
modular forms, generalizing a result of Manin on r0(f l  Tz). 

We end with a few numerical examples in weights k < 18. Since dim Mk < 2 in 
this range, we need only expand (5) up to terms in q l ,  and the calculation of 



Periods of modular forms and Jacobi theta functions 463 

Ck(X, Y; z) up to this order is obtained immediately from the expansions given in 
w Subtracting the Eisenstein part c~ as given in w we find the values 

12 

16 

18 

r S (X)r f  ( Y)/(2W- 3(f  f )  

- ~ 1 3 ~ q S p ~ 6 (  ) - ( 2 x  ~ _ x 2 + - + - 

4 , 000 + ][ ] 
~ L 4 ~ p l s ( X ) - ( 8 X ~ -  9XZ +8)q~-(X) ( 6 Y 4 -  7YZ +6)qo(Y)  

for the unique normalized cusp fo rm/o f  weights 12, 16 and 18 (we have given only 
rS(X)r f (Y) ,  since (rs(X)rj.(Y))- is the sum of this polynomial and the one 
obtained by permuting X and Y). Here p~-(X) denotes the polynomial X k-2 - 1 
as in w and the polynomials q • qo • are defined by 

q + ( X ) = X 2 ( X  z -  1) 3, q - ( X ) = X ( X  2 -  1)2(X 2 -- 4)(4X 2 -  1) 

and qg(X) = ( X  2 -~ 1)q• The fact that rT(X ) modulo p~-(X) and r f ( X  ) are 
divisible by q + (X) and by q (X), respectively, and also by X 2 + 1 if k/2 is odd, is 
an exercise in the use of the period relations rs](l + S) = rfl(l + U + U 2) = 0 
and is left to the reader. These properties can be translated using (5) into identities 
for theta series which can of course also be proved directly; for instance, the fact 
that rs(X ) is divisible by X - 1 for all cusp formsfsays  that the function 

O ( X T -  T)O(XT + T)O'(O) 2 
C(1, Y; z; T ) -  O(T)20(XT) 2 

has no cuspidal part, which is true because the elliptic function O(u - v)O(u + v) 
O(u)20(v) 2 

equals 0'(0)-2(ga(v) - ga(u)) (compare poles and zeros!) and because the 
Weierstrass fj-function has a Laurent expansion involving only Eisenstein 
series. Notice also that the only large denominators occurring in the table are the 
numerators 691, 3617 and 43867 of Bk which occur as denominators in the 
coefficient of p~-(X) in r f (X)  . These are cancelled by the Eisenstein part 
2kf  + ) ~kPR (X)pk-(Y) + Pk-(X)p~-(Y) , in accordance with the integrality properties 

mentioned at the beginning of the section. 
We also give one example for k = 24, the first case with dim Sk > 1, to illustrate 

the lemma at the beginning of the section. We will not give all of the periods of the 
two Hecke eigenforms, since there are many of them and they involve rather large 
numbers, but just enough data to show how the calculation works. If 2 = ai,(l ) is 
the eigenvalue of one of the normalized Hecke eigenforms f~ ~ $24 under some 
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Hecke operator Tt, then for any even integers m, m' and odd integers n, n' between 
0 and 22, the matrix 

c~ c~ ) - 2 ( c ~  c~ ) (22) 
e~ ', n, l) c~ ', n, l)J \c~ ', n, 1) c~ ,n ,  1)]  

(with e~ n, l) as in (20)) is proportional to the rank 1 matrix 

( ry2(mlrf=(n) rf~(rnlrf~(n') 
rs2(m')%(n) rr2(,n')rr2(n')J' 

where)~ is the other eigenform, and hence has determinant 0, Taking m = 0, m' = 2, 
n = 1, n'  = 3, and l = 2, we find from (5) and a computer algebra package that the 
matrix (22) equals 

101654607492 - 1426218953304 - 2 2 3 0 0 3 7 2 +  345194520 \ 

922477119112821838325760000 30751372815761822515200| 

-1528192  + 22554024 129072 - 2092008 / 
~ /"  

The determinant of this is 569(2 2 - 10802 - 20468736) 
7036748155093533439087212252364800000000' giving 

the two eigenvalues 2 = 540 + 12 1 ~ / 1 ~ ] ~  of T2 on $24. Once one has these, the 

~ t ' e  u m ' e  rf(m)rf(n) rest of the computation o~ n n o r s  2 2 ! ( 2 0 ~ ( f ~ , ~ ) r  (v = 1, 2) is 

straightforward, although the numbers are too messy to give here. 
Finally, we remark that a more natural way of writing period polynomials is as 

homogeneous polynomials in two variables. We can identify Va with the space of 
homogeneous polynomials ~(X1, Xz) of degree k - 2 (and similarly Vk with the 
space of functions X~- 1Xz- a ~(X1,  X2), q~ a homogeneous polynomial of degree k) 
by 

~ ( x ) ~ ( x l ,  x~) = x ~ - % ( x ~ / x ~ ) ,  ~,(x~, x ~ ) ~ i ~ ( x )  = ,p(x, l). 

Under  this identification the action ~b ~-~ q~Iz-a7 becomes simply 4)~-, ~ o 7, where 
7 acts as a matrix on the column vector (x~), and the formulas for r f  and p~,  as 
well as the main theorem (in any of the three versions), become more symmetrical 
and more natural. We have preferred to use the inhomogeneous language because 
it is notationally somewhat simpler. 
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