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1 Introduction

In the last few years solid state physics has increasingtgtited from scientific comput-
ing, and the importance of numerical techniques is likekgtep on growing quickly in this
field. Because of the high complexity of solids, which are enad of a huge number of in-
teracting electrons and nuclei, a full understanding of f@perties cannot be developed
using analytical methods only. Numerical simulations dbardy provide quantitative re-
sults for the properties of specific materials but are alstelyiused to test the validity of
theories and analytical approaches.

Unbiased numerical approaches, like exact diagonalis@&b)!, or the density matrix
renormalisation group (DMRG)re of particular importance for the investigation of low-
energy and low-temperature electronic, optical, or magr@bperties of various novel
materials, which cannot be understood within traditionahgparticle theory. In such
strongly correlated systems, the interactions betweemrahstituents of the solid are so
strong that they can no longer be considered separatelyddiedtive effects emerge. As a
result, these systems may exhibit new and fascinating reacpic properties. Quasi-one-
dimensional (1d) electron-phonon (EP) systems like MXktlcampounds are prominent
examples of electronic systems very different from tradisl oned. Their study is par-
ticularly rewarding for a number of reasons. First they bitra remarkably wide range
of competing forces, which gives rise to a rich variety ofeliént phases, characterised
by symmetry-broken ground states and long-range ordecar@e 1d models allow us to
investigate this complex interplay, which is important pabrly understood also in 2d and
3d highly-correlated electron systems, in a context moreueable to numerical simula-
tions. Because the complexity of the systems leads to hugeresments of memory and
CPU time, access to large computational resources is rezgess

2 Models

Experiments on a variety of novel materials, ranging frorasitid MX solid$, organicé
and quasi-2d higlf, cuprate3to 3d colossal-magnetoresistive mangafitpsovide clear
evidence for the existence of polaronic carriers, i.e.sgparticles consisting of an electron
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and a surrounding lattice distortion. This has motivatedsaderable theoretical efforts
to archive a better understanding of strongly coupled EResys in the framework of
microscopic models.

To describe the interplay between electrons and the dyrsaofithe lattice, which is
known to play a key role for instance in quasi-1d metals aradgdrdensity-wave (CDW)
systems, one of the simplest model is the Holstein-Hubbadeh(HHM):

H=-t Z CIUCJ'U — gwo Z(bj + bi)nia + wo ijbz + UZniTnil . (1)
(i,j)o ic i i

Here cja (c;,) denote fermionic creation (annihilation) operators afcglons with spin

o =1, | on sitei of a 1d lattice withN sites,n,, = c!_c;,, andbj (b;) are the corre-
sponding bosonic operators for dispersionless opticahphs. The physics of the HHM

is governed by three competing effects: The itinerancy efdlectrons« t), their on-site
Coulomb repulsiong U), and the local EP couplingq g). Since the EP interaction is
retarded, the phonon frequencyyj defines a further relevant energy scale. Hence, besides
the adiabaticity ratiol, /t) we need two dimensionless coupling constants-(U /4t and

A\ = 2¢,/2t or g2 = g, /wo). In the single-electron case, where the spin degree oddmee

and the Coulomb interaction are irrelevant, the Holsteinleilo

H=—tY"cle;— /&m0 > (bl +b;)n, +wo Y blb,, ?)
(i,5) i i

has been studied extensively as a paradigmatic model far@oformatio. Heree,
gives the polaron binding energy.

As yet, none of the various analytical treatments, basedeakwand strong-coupling
adiabatic and anti-adiabatic perturbation expanSioae suited to investigate the phys-
ically most interesting polaron transition region. Het®e tharacteristic electronic and
phononic energy scales are not well separated and nonaidiaffects become increas-
ingly important. This implies a breakdown of the standarddiil approximation. Quasi-
approximation-free numerical methods like quantum Morae(QMC):% 1 or ED and
DMRG can, in principle, bridge the gap between the weak- &othg-EP-coupling limits,
and currently represent the most reliable tools to studgnpals close to the cross-over
regime?.
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Figure 1. Schematic representation of the 1d Holstein-ldtdbmodel.
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3 Implementation of Matrix Vector Multiplication (MVM)

The core operation of most ED and DMRG algorithms is a MVM.sltguite obvious,
that our matrices are extremely sparse because the numipenefero entries per row
of our Hamilton matrix scales linearly with the number ofattens. Therefore a stan-
dard implementation of the MVM step uses a sparse storageafioior the matrix, hold-
ing the non-zero elements only. Two data schemes are in vddetbhe compressed row
storage (CRS) and the jagged diagonal storage (JDS) fomhate the latter one is the
method of choice for vector computers. The typical storaggiirement per non-zero
entry is 12-16 Byte for both methods, i.e. for a matrix dimensof D = 10° about
one TByte main memory is required to store only the matrixnelets of the EP Hamil-
tonian. Both variants can be applied to any sparse matnictsire and the MVM step
can be be done in parallel by using a parallel library suchE8E3e (seéht t p: / / wwww
uni x. nts. anl . gov/ pet sc/ pet sc-as/).

To extend our EP studies to even larger matrix sizes we stmtenger the non-zero
matrix elements but generate them in each MVM step. Of cowatsthat point standard
libraries are no longer useful and a parallel code tailooeglatich specific class of Hamil-
tonians must be developed. For the Holstein-Hubbard EP hweeldhnave established a
massively parallel program using the Message Passingdnge(MPI) standard. The min-
imal total memory requirement of this implementation issthwectors with Hilbert space
dimension.

The parallelisation approach follows the inherent natpegdallelism of the Hilbert
space, which can be constructed as the tensorial product sifalectrons and phonons
{|p) = |&) ® |p)}. Assuming, that the electronic dimensioR.) is a multiple of the
number of processors usedV{,,) we can easily distribute the electronic basis states
among these processors, i.e. procesfdr< i < N, — 1) is holding the basis states
(& = iDe/Ncpu +1,...,(¢ + 1)D./Ncpu). As a consequence of this choice only the
electronic hopping term generates inter-processor corroation in the MVM while all
other (diagonal electronic) contributions can be compldedlly on each processor.

Furthermore, the communication pattern remains constéhinaa single run for all
MVM steps and the message sizes (at ldastwords) are large enough to ignore the
latency problems of modern interconnects. Using supercoang with hundreds of pro-
cessors and one TBytes of main memory, such as IBM p690 cbust&Gl Altix systems,
we are able to run simulations up to a matrix dimensioBk 10°.

4 Spectral Properties

4.1 Photoemission Spectra

Examining the dynamical properties of polarons, it is otigatar interest whether a quasi-
particle-like excitation exists in the spectrum. This islped by direct (inverse) photoemis-
sion, where a bare electron is removed (added) from (to) #reynparticle system contain-
ing N, electrons. The intensities (transition amplitudes) ofthprocesses are determined
by the imaginary part of the retarded one-particle Greamgfions,

GH(kw) = {(efs 6w = lim (olef [w+in — H]™' e o), 3)
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i.e., by the momentum resolved spectral functions

A5 (k) = T G* (k) = = S il )l ol = (B~ Bl @

and A(k,w) = A*(k,w) + A~ (k,w), with ¢ = cL andc, = ¢,. These functions
test both the excitation energiés: — F, and the overlap of the ground stdtg,) with

the exact eigenstateg::) of a (N, + 1)-particle system. Hence&; ™ (k,w) [G~(k,w)]
describes the propagation of an additional electron [a]hvaith momentumk [—k] and
energyw. The electron spectral function of the single-particlestieih model corresponds
to No =0, i.e., A~ (k,w) = 0. A(k,w) can be determined, e.g., by cluster perturbation
theory (CPT)®'2 We first calculate the Green’s functi@¥; (w) of a N.-site cluster with
open boundary conditions farj = 1,..., N, and then recover the infinite lattice by
pasting identical copies of this cluster along the edgeatitng the inter-cluster hopping in
first-order perturbation theory.

Figure 2 shows that atveak couplingleft panel), the electronic spectrum is nearly
unaffected for energies below the phonon emission thrdsktgnce, for the case consid-
ered here withug lying inside the bare electron bandwidth the renormalised dispersion
E(k) follows the tight-binding cosine dispersion (lowerede,) up to somekx, where
the dispersionless phonon intersects the bare electrah bidor & > kx, electron and
phonon states “hybridise”, and repel each other, leaditigeavell-known band-flattening
phenomenotf. The high-energy incoherent part of the spectrum is broadiene,,, with
the k-dependent maximum again following the bare cosine digpers

The inverse photoemission spectrum in g®ng-coupling cases shown in the right
panel of Fig. 2. First, we observe all signatures of the fasnpoiaronic band-collapse,
where a well-separated, narrow (i.e., strongly renorrad)iscoherent QP band is formed
atw ~ —¢,. If we had calculated the polaronic instead of the electrepiectral func-
tion (4), nearly all spectral weight would reside in the cam part, i.e., in the small-
polaron bandf. In contrast, the wave-vector renormalisation fackdik) is extremely
small and approaches the strong-coupling reguk= exp(—g?) for A, g% > 1. Note

‘Imo/tI:l.é, A=0.25; N_=16] ‘clooltzll.o, A2 NC:IG‘ '

— tight binding dispersion k=0
‘ — — phonon excitation threshold
WH ‘ —— ground-state dispersion
|

=
3
S==-—— — —————
==

M

w/t w/t
Figure 2. Spectral function of the 1d Holstein polaron citad within CPT in the weak (left) and strong (right)

non-adiabatic EP coupling regime. CPT is based on ED of &faitster withN.. sites and\/ = 7 (A = 0.25)
andM = 25 (A = 2) phonon quanta.
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that the inverse effective mass* /m and Z (k) differ if the self-energy is strongly-
dependent. This discrepancy has its maximum in the inteiateedoupling regime for 1D
systems, but vanishes in the limit— oo and, in any case, fab = co'®. The incoherent
part of the spectrum is split into several sub-bands sep@iatenergy by, correspond-
ing to excitations of an electron and one or more phonons gig

4.2 Optical Response

We apply the ED-KPM scheme outlined#nt” 18to calculate the optical absorption of the
single-electron Holstein model. The results for the (raguleal part of the conductivity,

& .
Reo(w) = —= > [(¢umlildo)|* 8w — (Em — Eo)] 5)
En>Eo
(herej = —iet Zi(CICiJrl - cjﬂci) is the current operator), and possible deviations from

established polaron theory are important for relating théwm experiment. Fot” = 0 the
standard description of small polaron transpbyields (in leading order) the ac conduc-
tivity Re o (w) = (00/w,/Epwo) exp [—(w — 2¢,)? /4epwo] , which for sufficiently strong
coupling predicts a weakly asymmetric Gaussian absorpiéak centred at twice the po-
laron binding energy.

Figure 3 shows Re(w) when polaron formation sets in (left panel), and above the
transition point (right panel). Fok = 2 andwy/t = 0.4, i.e., at rather large EP cou-
pling but not in the extreme small-polaron limit, we find a poanced maximum in the
low-temperature optical response, which, however, istetdelow2e,, the value for
small polarons ai” = 0. At the same time, the line-shape is more asymmetric than in
small-polaron theory, with a weaker decay at the high-gnside, fitting even better to
experiments on standard polaronic materials such as?¥iOAt smaller couplings, sig-
nificant deviations from a Gaussian-like absorption areéqu.e., polaron motion is not
adequately described as hopping of a self-trapped cain®rsalocalised on a single site.

0.6 2 1F 2 - 0.1
oel g =10 g°=10 |
f et A=10 |1 )\=2.O*0-08§
04} _ 1t ]
! wW,/t=0.2 B {0.06 3
oo ] 1o.04 H
[0 B 1Y (O]
@ 021 i 4
0.1} 1r H0.02
% 05 1 15 0 05 1 15 0

(;3/28p (,O/ZEp

Figure 3. Optical conductivity (red, in units afe2t2) of the 1d Holstein model aI’ = 0 compared to the
analytical small-polaron result (blue). ED data are for steyn with six sites and 45 phonorns; is determined
to give the same integrated spectral weight agRke > 0).
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5 Quantum Phase Transitions in 1d Electron-Phonon Systems

Most notably quasi-1d materials are very susceptible tacsiral distortions driven by EP
interaction. Probably the most famous one is the Peiertaliilgy?® of 1d metals: As
the temperature is lowered the system creates a periodatiearin the carrier density
by shifting the ions from their symmetric positions. For thalf-filled band case this
CDW is commensurate with the lattice, the unit cell doubdeg] the system possesses a
spontaneous broken-symmetry ground state. Since a statizidation of the lattice opens
a gap at the Fermi surface the metal gives way to a PeierliabosP!) [see Fig. 4].

The on-site Coulomb interaction, on the other hand, tendmtoobilise the charge
carriers and establish a Mott insulating ground state. Tlodt Wisulator (MI) exhibits
strong spin density wave (SDW) correlations but has contistsymmetry and therefore
shows no long-range order in 1d. Then, of course, the queatises, whether the Pl and
MI phases are separated by one (or more than one) quantuicalgpivint(s) atl’ = 0, and
if so, how the cross-over is modified by quantum phonon effect

The challenge of understanding such quantum phase t@rshas stimulated intense
work on the Holstein Hubbard model. As yet there exist almostxact (analytical) results
for this model. At least at half-filling, however, it has bew® generally accepted that the
interplay of charge, spin and lattice degrees of freedoregyivse to the phase diagram
sketched in Fig. 5. This scenario is supported by dynamieamfield investigations of

Figure 4. Peierls scenario: A g&p\ opens in the electronic band structuté¢k) [density of statew(E)] of an
1d metal if, as a result of the EP coupling, a static latticgadtion occurs, implicating a new lattice peridd in
real space.

. . 77
ke Tk p(E)

metal

g U ili'
e W W

Figure 5. Schematic phase diagram of the 1d Holstein Hubiverdel. At half-filling, Peierls (left) or Mott
(right) insulating phases may be favoured over the metsiéite. In the case of localised electrons interacting via
antiferromagnetic exchange and magneto-elastic coupkugn a spin-Peierls distorted state can emerge (right,
lower panel).
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the HHM, which become reliable at least in infinite spatiahensior?.

Besides the properties of the ground state, the nature pitysical excitations is puz-
zling as well, especially in 1d. While one expects “normad€atron-hole pair excitations
in the PI phasel{ = 0), charge (spin) excitations are known to be massive (gapieshe
MI state of the Hubbard modeh(= 0). Thus, varying the control parametef), a cross-
over from standard quasi-particle behaviour to spin-chaeparation can be observed in
the 1d HHM.

Since many-body gaps to excited states form the basis fommakntact with exper-
imentally measurable excitation gaps and can also be usgthtacterise different phases

LI I LI I LENLEL LB I TT T I LI LI I LI I LI LB I LB I LI
- PI(B) rf PIBP) T ~QCP 1 M ]
0-6Flum=05| / T [ur=05 T [un=0.93 T [un=4.29 .
[ot=01] /T |w/t=1.5 T |wy/t=0.1 T | wy/t=0.1 1
05F <+ + + .

o4 I T T T A—ANJ10
woal 1 1 1 _
4_ ' | 1 1 1 \ 2l 4 As |

(&)

< 0.3f -+ -+ —ﬁ_A/A/A n
N 1 aeae——x | ik |

b4
02F + + + S
L 4 4 4 // 4

o1 A—AN A—ANAJIO A—AN N

A - - s -
| v -vA v-vAJ10 | vvi | oy |

0 0 11 1 1 I 11 1 1 I 11 1 11 1 1 I 11 1 1 I 11 1 11 1 1 I 11 1 1 I 11 1 Y'I 11 I 11 1 1 I 11 1

“0 005 01 O 005 01 0O 005 01 O 005 0.1
1/N 1/N 1/N 1/N

Figure 6. DMRG finite-size scaling of spin- and charge exicitagaps in the HHM ai = 0.35 andwo /t =

0.1). Open and filled symbols denote DMRG results for PBC and O&@tbary conditions, respectively. The
accessible system sizes are smaller at ladger, where an increasing number of (phononic) pseudo-sites is
required to reach convergence with respect to the phonoters 8present the ED results for the eight-site
system. The arrow marks the value of the optical gap, for the Bethe ansatz solvable 1d Hubbard model,
which is given byAopt /4t = u — 1 4 In(2)/2u in the limit of largeu > 123,

Ac,As : Mott Insulator
parity i charge
Aopt=0 tseparatiow
l © spin SDW : no LRO
QPT U

Figure 7. Sketch of the PI-MI quantum phase transition inHbéstein Hubbard model.
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of the HHM, we have determine the charge and spin gaps,
Ac = Eq (1/2) + Eq (—1/2) = 2Eo(0) (6)
As = Eo(1) — Eo(0), (7

using DMRG, supplemented by a finite-size scaling. HE&?(SZ) is the ground-state
energy of the HHM at half-filling (withV, = N + 1) particles in the sector with total
spin-z componenis~Z.

Obviously,A. andA, are finite in the Pl and converge to the same valué\for> oc.
Both gaps seem to vanish at the QCP of the HHM with finite-fezgy phonons, but
the finite-size scaling is extremely delicate in the critieggion. In the MI we found a
finite charge excitation gap, which in the limif A > 1 scales to the optical gap of the
Hubbard model, whereas the extrapolated spin gap remaias Zéis can be taken as a
clear indication for spin charge separation.

From our conductivity data for the half-filled band case @taawn) we found evidence
for only one critical point separating Peierls and Mott ilasimg phases in the Holstein
Hubbard model with dynamical phonons (by contrast in thalaalic limit (w, = 0) two
successive transitions have been detected for weak cgsplit\ < 12%). We have ex-
plicitly verified that the parity is? = +1 (P = —1) in the PI (MI) phase. The emerging
physical picture can be summarised by the phase diagranmsindwig. 7.

6 Summary

In this contribution, we have analysed the spectral progeedf Holstein polarons as well
as the transition from a Peierls- to Mott-insulator by meafripuasi-exact numerical meth-
ods, such as Jacobi-Davidson based exact diagonaliskgomel polynomial expansion
techniques, density matrix renormalisation group andtetyserturbation theory, imple-
mented on the NIC supercomputers. Our numerical approg@idsinbiased results in all
parameter regimes, and are of particular value in the néaibatic intermediate-coupling
regime, where perturbation theories and other analyticdiniques fail.
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