Biography

I studied physics in Bayreuth and got my PhD there in 2002. After post-doc positions at the Max Planck Institute for the Physics of Complex Systems in Dresden, the University of New South Wales in Sydney and the University of Greifswald, I was a junior professor for computational physics in Greifswald. Since 2009 I’m a tenured researcher at the Max Planck Institute for Mathematics and its IT coordinator.

my photo

Publications

Most of my publications can be found on the arXiv.

Articles

  1. Weiße, A., & Fehske, H. (1998). Peierls instability and optical response in the one-dimensional half-filled Holstein model of spinless fermions. Phys. Rev. B, 58, 13526–13533. [ DOI | arXiv ]
  2. Weiße, A., Bouzerar, G., & Fehske, H. (1999). A new model to describe the physics of (VO) _2 P _2 O _7 . Eur. Phys. J. B, 7, 5–8. [ DOI | arXiv ]
  3. Weiße, A., Wellein, G., & Fehske, H. (1999). Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain. Phys. Rev. B, 60, 6566–6573. [ DOI | arXiv ]
  4. Ihle, D., Schindelin, C., Weiße, A., & Fehske, H. (1999). Magnetic order-disorder transition in the two-dimensional spatially anisotropic Heisenberg model at zero temperature. Phys. Rev. B, 60, 9240–9243. [ DOI | arXiv ]
  5. Weiße, A., Fehske, H., Wellein, G., & Bishop, A. R. (2000). Optimized phonon approach for the diagonalization of electron-phonon problems. Phys. Rev. B, 62, R747–R750. [ DOI | arXiv ]
  6. Fehske, H., Schindelin, C., Weiße, A., Büttner, H., & Ihle, D. (2000). Quantum to classical crossover in the 2D easy-plane XXZ model. Brazil. Jour. Phys., 30, 720–724. [ PDF ]
  7. Weiße, A., Loos, J., & Fehske, H. (2001). Considerations on the quantum double-exchange Hamiltonian. Phys. Rev. B, 64, 054406. [ DOI | arXiv ] Erratum
  8. Weiße, A., Loos, J., & Fehske, H. (2001). Two-phase scenario for the metal-insulator transition in colossal magnetoresistance manganites. Phys. Rev. B, 64, 104413. [ DOI | arXiv ]
  9. Fehske, H., Wellein, G., Weiße, A., Göhmann, F., Büttner, H., & Bishop, A. R. (2002). Peierls-insulator Mott-insulator transition in 1D. Physica B, 312–313, 562–563. [ DOI | arXiv ]
  10. Weiße, A., & Fehske, H. (2002). Numerical study of quantum percolation. Physica B, 312–313, 721–722. [ DOI | arXiv ]
  11. Weiße, A., & Fehske, H. (2002). Interplay of charge, spin, orbital and lattice correlations in colossal magnetoresistance manganites. Eur. Phys. J. B, 30, 487–494. [ DOI | arXiv ]
  12. Weiße, A., Loos, J., & Fehske, H. (2003). Mixed-phase description of colossal magnetoresistive manganites. Phys. Rev. B, 68, 024402. [ DOI | arXiv ]
  13. Fehske, H., Wellein, G., Hager, G., Weiße, A., & Bishop, A. R. (2004). Quantum lattice dynamical effects on single-particle excitations in one-dimensional Mott and Peierls insulators. Phys. Rev. B, 69, 165115. [ DOI | arXiv ]
  14. Weiße, A., & Fehske, H. (2004). Lattice and superexchange effects in doped CMR manganites. J. Magn. Magn. Mater., 272–276, 92–93. [ DOI | arXiv ]
  15. Weiße, A. (2004). Chebyshev expansion approach to the AC conductivity of the Anderson model. Eur. Phys. J. B, 40, 125–128. [ DOI | arXiv ]
  16. Sirker, J., Weiße, A., & Sushkov, O. P. (2004). Consequences of spin-orbit coupling for the Bose-Einstein condensation of magnons. Europhys. Lett., 68, 275–281. [ DOI | arXiv ]
  17. Weiße, A., & Fehske, H. (2004). Microscopic modelling of doped manganites. New J. Phys., 6, 158. [ DOI | arXiv ]
  18. Schubert, G., Weiße, A., & Fehske, H. (2005). Localisation effects in quantum percolation. Phys. Rev. B, 71, 045126. [ DOI | arXiv ]
  19. Weiße, A., Schubert, G., & Fehske, H. (2005). Optical response of electrons in a random potential. Physica B, 359–361, 786–788. [ DOI | arXiv ]
  20. Fehske, H., Wellein, G., Hager, G., Weiße, A., Becker, K. W., & Bishop, A. R. (2005). Luttinger liquid versus charge density wave behaviour in the one-dimensional spinless fermion Holstein model. Physica B, 359–361, 699–701. [ DOI | arXiv ]
  21. Weiße, A., Fehske, H., & Ihle, D. (2005). Spin-lattice coupling effects in the Holstein double-exchange model. Physica B, 359–361, 702–704. [ DOI | arXiv ]
  22. Alvermann, A., Schubert, G., Weiße, A., Bronold, F. X., & Fehske, H. (2005). Characterisation of Anderson localisation using distributions. Physica B, 359–361, 789–791. [ DOI | arXiv ]
  23. Schubert, G., Weiße, A., & Fehske, H. (2005). Delocalisation transition in chains with correlated disorder. Physica B, 359–361, 801–803. [ DOI | arXiv ]
  24. Sirker, J., Weiße, A., & Sushkov, O. P. (2005). Bose-Einstein condensation of magnons in TlCuCl _3 . Physica B, 359–361, 1318–1320. [ DOI | arXiv ]
  25. Sirker, J., Weiße, A., & Sushkov, O. P. (2005). The field-induced magnetic ordering transition in TlCuCl _3 . J. Phys. Soc. Jpn. (Suppl.), 74, 129–134. [ DOI | arXiv ]
  26. Schubert, G., Wellein, G., Weiße, A., Alvermann, A., & Fehske, H. (2005). Optical absorption and activated transport in polaronic systems. Phys. Rev. B, 72, 104304. [ DOI | arXiv ]
  27. Weiße, A., Wellein, G., Alvermann, A., & Fehske, H. (2006). The kernel polynomial method. Rev. Mod. Phys., 78, 275–306. [ DOI | arXiv ]
  28. Weiße, A., Bursill, R. J., Hamer, C. J., & Weihong, Z. (2006). t-J _z ladder: Density-matrix renormalization group and series expansion calculations of the phase diagram. Phys. Rev. B, 73, 144508. [ DOI | arXiv ]
  29. Weiße, A., Hager, G., Bishop, A. R., & Fehske, H. (2006). Phase diagram of the spin-peierls chain with local coupling: Density-matrix renormalization-group calculations and unitary transformations. Phys. Rev. B, 74, 214426. [ DOI | arXiv ]
  30. Hager, G., Weiße, A., Wellein, G., Jeckelmann, E., & Fehske, H. (2007). The spin-Peierls chain revisited. J. Magn. Magn. Mater., 310, 1380–1382. [ DOI | arXiv ] Erratum
  31. Boos, H. E., Damerau, J., Göhmann, F., Klümper, A., Suzuki, J., & Weiße, A. (2008). Short-distance thermal correlations in the XXZ chain. J. Stat. Mech., P08010. [ DOI | arXiv ]
  32. Weiße, A. (2009). Green-function-based Monte Carlo method for classical fields coupled to fermions. Phys. Rev. Lett., 102, 150604. [ DOI | arXiv ]
  33. Brockmann, M., Göhmann, F., Karbach, M., Klümper, A., & Weiße, A. (2011). Theory of microwave absorption by the spin-1/2 Heisenberg-Ising magnet. Phys. Rev. Lett., 107, 017202. [ DOI | arXiv ]
  34. Brockmann, M., Göhmann, F., Karbach, M., Klümper, A., & Weiße, A. (2012). Absorption of microwaves by the one-dimensional spin- \frac{1}{2} Heisenberg-Ising magnet. Phys. Rev. B, 85, 134438. [ DOI | arXiv ]
  35. Weiße, A. (2013). Divide and conquer the Hilbert space of translation-symmetric spin systems. Phys. Rev. E, 87(4), 043305. [ DOI | arXiv ]
  36. Borot, G., Eynard, B., & Weiße, A. (2017). Root systems, spectral curves, and analysis of a Chern-Simons matrix model for Seifert fibered spaces. Selecta Math., 23, 915–1025. [ DOI | arXiv ]
  37. Zeisner, J., Brockmann, M., Zimmermann, S., Weiße, A., Thede, M., Ressouche, E., … Göhmann, F. (2017). Anisotropic magnetic interactions and spin dynamics in the spin chain compounds Cu(py) _2 Br _2 : An experimental and theoretical study. Phys. Rev. B, 96, 024429. [ DOI | arXiv ]
  38. Heim, B., Neuhauser, M., & Weiße, A. (2018). Records on the vanishing of Fourier coefficients of powers of the Dedekind eta function. Research in Number Theory, 4(3), 32. [ DOI | arXiv ]
  39. Adam, A., Pohl, A., & Weiße, A. (2018). Zero is a resonance of every Schottky surface. [ arXiv ]

Contributions to books & proceedings

  1. Fehske, H., Holicki, M., & Weiße, A. (2000). Lattice dynamical effects on the Peierls transition in one-dimensional metals and spin chains. In B. Kramer (Ed.), Advances in solid state physics 40 (pp. 235–250). Wiesbaden: Vieweg. [ DOI | arXiv ]
  2. Fehske, H., Weiße, A., & Wellein, G. (2002). Exact diagonalization results for strongly correlated electron-phonon systems. In H. Rollnik & D. Wolf (Eds.), NIC symposium 2001, proceedings (NIC series, Vol. 9, pp. 259–269). Jülich: John von Neumann Institute for Computing. [ PDF ]
  3. Weiße, A., Wellein, G., & Fehske, H. (2002). Density-matrix algorithm for phonon Hilbert space reduction in the numerical diagonalization of quantum many-body systems. In E. Krause & W. Jäger (Eds.), High performance computing in science and engineering 2001 (pp. 131–144). Heidelberg: Springer-Verlag. [ DOI | arXiv ]
  4. Weiße, A., Wellein, G., & Fehske, H. (2003). Exact diagonalization study of spin, orbital, and lattice correlations in CMR manganites. In E. Krause & W. Jäger (Eds.), High performance computing in science and engineering 2002 (pp. 157–167). Heidelberg: Springer-Verlag. [ DOI | PDF ]
  5. Fehske, H., Wellein, G., Kampf, A. P., Sekania, M., Hager, G., Weiße, A., … Bishop, A. R. (2002). One-dimensional electron-phonon systems: Mott- versus Peierls-insulators. In S. Wagner, W. Hanke, A. Bode, & F. Durst (Eds.), High performance computing in science and engineering, munich 2002 (pp. 339–350). Heidelberg: Springer-Verlag. [ DOI | PDF ]
  6. Schubert, G., Weiße, A., Wellein, G., & Fehske, H. (2005). Comparative numerical study of anderson localization in disordered electron systems. In A. Bode & F. Durst (Eds.), High performance computing in science and engineering, garching 2004 (pp. 237–250). Heidelberg: Springer-Verlag. [ DOI | arXiv ]
  7. Schubert, G., Alvermann, A., Weiße, A., Hager, G., Wellein, G., & Fehske, H. (2006). Spectral properties of strongly correlated electron phonon systems. In G. Münster, D. Wolf, & M. Kremer (Eds.), NIC symposium 2006, proceedings (NIC series, Vol. 32, pp. 201–210). Jülich: John von Neumann Institute for Computing. [ PDF ]
  8. Weiße, A., & Fehske, H. (2008). Exact diagonalization techniques. In H. Fehske, R. Schneider, & A. Weiße (Eds.), Computational many-particle physics (Lecture notes in physics, Vol. 739, pp. 529–544). Heidelberg: Springer. [ DOI ]
  9. Weiße, A., & Fehske, H. (2008). Chebyshev expansion techniques. In H. Fehske, R. Schneider, & A. Weiße (Eds.), Computational many-particle physics (Lecture notes in physics, Vol. 739, pp. 545–577). Heidelberg: Springer. [ DOI ]

Books edited

  1. Fehske, H., Schneider, R., & Weiße, A. (Eds.). (2008). Computational many-particle physics (Lecture notes in physics, Vol. 739). Heidelberg: Springer. [ DOI ]
  2. Oberreuter, A., Vollmar, S., & Weiße, A. (Eds.). (2011). 27. DV-Treffen der Max-Planck-Institute (GWDG-Berichte, Vol. 77). Göttingen: Gesellschaft für wissenschaftliche Datenverarbeitung. [ PDF ]

Qualification theses

  1. Weiße, A. (1998). Peierls-Instabilität und niederenergetische Anregungen in ein- und zwei-dimensionalen Elektron- und Spinsystemen (Diplomarbeit). Universität Bayreuth. [ PDF ]
  2. Weiße, A. (2002). Theoretische Untersuchung magnetoresistiver Manganate – Modelle und Methoden (PhD thesis). Universität Bayreuth; Mensch und Buch Verlag, Berlin. [ PDF ]

Projects

My research interests changed a bit over the years. I graduated in condensed matter physics, turned to mathematical physics, in particular, integrable systems, and now occasionally work on pure math problems. The common theme of all my projects is that I like to solve problems with a computer, using both, numerical simulations and computer algebra.

Due to my administrative responsibilities as IT coordinator I’m also interested in many IT topics and some computer science.

Spin systems

For a few years I’ve been collaborating with the mathematical physics group at Bergische Universität Wuppertal (Hermann Boos, Frank Göhmann and Andreas Klümper) in a long term project on correlation functions of integrable spin models, in particular, the one-dimensional XXZ Heisenberg chain, H = J \sum_{\langle ij\rangle} \Bigl( \sigma_{i}^x \sigma_j^x + \sigma_{i}^y \sigma_j^y + \Delta \sigma_{i}^z \sigma_j^z \Bigr) + h\sum_j \sigma_j^z\,.

This model is exactly solvable by Bethe ansatz, i.e., the structure of its eigenfunctions is known for quite some time. However, calculating correlation functions is a challenging task and an active field of research. It requires tools from representation theory (quantum groups) and analysis (non-linear integral equations).

Disorder

I repeatedly worked on problems involving disorder or randomness. In condensed matter physics I studied disordered electron systems and localization, and I used and developed Monte Carlo methods. Some of this know-how became useful recently, when I did numerical simulations of random matrix models in a joint project with Gaëtan Borot.

Programming

The condensed matter problems I initially worked on required efficient tools for large, sparse matrices, namely eigenvalue solvers and Chebyshev expansion methods, which I implemented on parallel high-performance computers. The exactly solvable spin systems, on the other hand, present an interesting mix of large scale computer algebra, the solving of non-linear integral equations and high-precision numerics. Most of the performance critial code I write in good old C or in Form, but I also enjoy learning new languages like Go or Julia.

Teaching

Here’s an archive of lectures and courses I gave or contributed to:

Contact

Phone: +49-228-402236
Fax: +49-228-402277
Mail: Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
Email: weisse @ mpim-bonn . mpg . de