Twisted Whitney towers and higher-order Arf invariants

Rob Schneiderman \& Peter Teichner, (with J. Conant)
Lehman College CUNY \& MPIM (and AGS Labs)

Fall 2022

Recall that the following are equivalent:

- $L=\cup_{i=1}^{m} L_{i} \subset S^{3}$ is link-homotopically trivial.
- Non-repeating Milnor invariants $\mu_{k}(L)$ vanish for $k \leq m-2$.
- L bounds an order $m-1$ non-repeating Whitney tower $\mathcal{W} \subset B^{4}$.
- Intersection invariants $\lambda_{k}(\mathcal{W})=0 \in \Lambda_{k}$ for $k \leq m-2$.
- L lifts to the m th level of the Goodwillie-Weiss link map tower.

Invariants here are torsion-free, and ignore twisted Whitney disks.

Recall that the following are equivalent:

- $L=\cup_{i=1}^{m} L_{i} \subset S^{3}$ is link-homotopically trivial.
- Non-repeating Milnor invariants $\mu_{k}(L)$ vanish for $k \leq m-2$.
- L bounds an order $m-1$ non-repeating Whitney tower $\mathcal{W} \subset B^{4}$.
- Intersection invariants $\lambda_{k}(\mathcal{W})=0 \in \Lambda_{k}$ for $k \leq m-2$.
- L lifts to the m th level of the Goodwillie-Weiss link map tower.

Invariants here are torsion-free, and ignore twisted Whitney disks.

- Will generalize the above to give a classification of links bounding order n twisted Whitney towers in terms of Milnor invariants with repeated indices allowed (still torsion-free) and higher-order Arf invariants (2-torsion related to Whitney disk twistings).

Recall that the following are equivalent:

- $L=\cup_{i=1}^{m} L_{i} \subset S^{3}$ is link-homotopically trivial.
- Non-repeating Milnor invariants $\mu_{k}(L)$ vanish for $k \leq m-2$.
- L bounds an order $m-1$ non-repeating Whitney tower $\mathcal{W} \subset B^{4}$.
- Intersection invariants $\lambda_{k}(\mathcal{W})=0 \in \Lambda_{k}$ for $k \leq m-2$.
- L lifts to the m th level of the Goodwillie-Weiss link map tower.

Invariants here are torsion-free, and ignore twisted Whitney disks.

- Will generalize the above to give a classification of links bounding order n twisted Whitney towers in terms of Milnor invariants with repeated indices allowed (still torsion-free) and higher-order Arf invariants (2-torsion related to Whitney disk twistings).
- We hope to find a corresponding relationship with the

Goodwillie-Weiss concordance tower.

Outline (see 'Intro to Whitney towers' notes for ref's and details)

- Twisted Whitney towers and their trees
- Intersection invariants for order n twisted Whitney towers
- Classification of order n twisted Whitney towers in B^{4}
- The Higher-order Arf invariant Conjecture

Successful Whitney move: W is 'clean' and 'framed'

Eliminates $p, q \in A \pitchfork B$ without creating new intersections in A or B :

W is clean $=$ embedded $\&$ interior disjoint from all surfaces.
W is framed $=W$ has appropriate parallels.
W not clean \rightsquigarrow Whitney move creates new intersections:

$$
r \in W \pitchfork C \quad \rightsquigarrow \quad r^{\prime}, r^{\prime \prime} \in A \pitchfork C \text { after } W \text {-move on } A \text { : }
$$

Whitney move uses two parallel copies of W :

Framed Whitney disks and twisted Whitney disks

The twisting $\omega(W) \in \mathbb{Z}$ of W is the relative Euler number of a normal section $\overline{\partial W}$ over ∂W determined by the sheets:

If $\omega(W)=0$, then W is framed.
If $\omega(W) \neq 0$, then W is twisted.

Framed Whitney disks and twisted Whitney disks

The twisting $\omega(W) \in \mathbb{Z}$ of W is the relative Euler number of a normal section $\overline{\partial W}$ over ∂W determined by the sheets:

If $\omega(W)=0$, then W is framed.
If $\omega(W) \neq 0$, then W is twisted.

Close up of normal section $\overline{\partial W}$ in $\partial W \times D^{2}$:

Definition:

A Whitney tower on $A^{2} \rightarrow X^{4}$ is defined by:

1. A itself is a Whitney tower.
2. If \mathcal{W} is a Whitney tower and W is a Whitney disk pairing intersections in \mathcal{W}, then the union $\mathcal{W} \cup W$ is a Whitney tower.

Definition:

A Whitney tower on $A^{2} \rightarrow X^{4}$ is defined by:

1. A itself is a Whitney tower.
2. If \mathcal{W} is a Whitney tower and W is a Whitney disk pairing intersections in \mathcal{W}, then the union $\mathcal{W} \cup W$ is a Whitney tower.

The intersection forest multiset $t(\mathcal{W})$ of a Whitney tower \mathcal{W}

$$
\mathcal{W} \mapsto t(\mathcal{W})=\sum \epsilon_{p} \cdot t_{p}+\sum \omega\left(W_{J}\right) \cdot J^{\infty}
$$

'framed tree' $t_{p} \leftarrow p$ unpaired intersection with sign $\epsilon_{p}= \pm 1$, 'twisted tree' $J^{\infty}:=J-\infty \longleftarrow W_{J}$ with twisting $\omega\left(W_{J}\right) \neq 0 \in \mathbb{Z}$.

Paired intersections \longrightarrow rooted trees

Paired intersections \longrightarrow rooted trees

$W_{(i, j)}$ pairing $A_{i} \pitchfork A_{j} \quad \longmapsto \quad$ rooted tree $<_{i}^{j}=(i, j)$

Paired intersections \rightarrow rooted trees

Recursively: $W_{(I, J)}$ pairing $W_{I} \pitchfork W_{J} \longmapsto \quad<l_{I}^{J}=(I, J)$

Rooted trees $I, J=$ non-associative bracketings from $\{1,2,3, \ldots, m\}$ Notation convention: Singleton subscript W_{i} denotes component A_{i}.

Un-paired intersections \rightarrow un-rooted trees

Un-paired intersections \rightarrow un-rooted trees

Inner product 'fuses' rooted edges into single edge:

$$
p \in W_{(I, J)} \pitchfork W_{k} \quad \longmapsto \quad t_{p}=\langle(I, J), K\rangle=\prime_{J}^{\prime}>\kappa \kappa
$$

cs-trees ('twisted' trees) for twisted Whitney disks

cs-trees ('twisted' trees) for twisted Whitney disks

$$
W_{J} \quad \mapsto \quad J^{\infty}:=J-\infty \quad \text { if } \omega\left(W_{J}\right) \neq 0
$$

Example: Figure-8 knot bounds \mathcal{W} with $t(\mathcal{W})=(1,1)^{\infty}={ }_{1}^{1}>-\infty$

The Whitney disk $W_{(1,1)}$ is clean (since right picture is an unlink).

Example: Figure-8 knot bounds \mathcal{W} with $t(\mathcal{W})=(1,1)^{\infty}={ }_{1}^{1}>-\infty$

The Whitney disk $W_{(1,1)}$ is twisted (since blue and purple link once).

Obstruction theory for links bounding twisted Whitney towers

- \mathcal{W} is an order n twisted Whitney tower if $t(\mathcal{W})$ contains only framed trees of order $\geq n$ and twisted trees of order $\geq n / 2$, where order $:=$ number of trivalent vertices.

Obstruction theory for links bounding twisted Whitney towers

- \mathcal{W} is an order n twisted Whitney tower if $t(\mathcal{W})$ contains only framed trees of order $\geq n$ and twisted trees of order $\geq n / 2$, where order := number of trivalent vertices.
- Will define abelian groups \mathcal{T}_{n}^{∞} and intersection invariants $\tau_{n}^{\infty}(\mathcal{W}):=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}$ such that:
L bounds an order n twisted \mathcal{W} with $\tau_{n}^{\infty}(\mathcal{W})=0$
if and only if L bounds an order $n+1$ twisted Whitney tower.

Obstruction theory for links bounding twisted Whitney towers

- \mathcal{W} is an order n twisted Whitney tower if $t(\mathcal{W})$ contains only framed trees of order $\geq n$ and twisted trees of order $\geq n / 2$, where order $:=$ number of trivalent vertices.
- Will define abelian groups \mathcal{T}_{n}^{∞} and intersection invariants $\tau_{n}^{\infty}(\mathcal{W}):=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}$ such that:
L bounds an order n twisted \mathcal{W} with $\tau_{n}^{\infty}(\mathcal{W})=0$
if and only if L bounds an order $n+1$ twisted Whitney tower.
- $\tau_{n}^{\infty \rho}(L):=\tau_{n}^{\infty}(\mathcal{W}) \leftrightarrow$ Milnor and higher-order Arf invariants

Towards intersection invariants $\tau_{n}^{\infty}(\mathcal{W})=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}$ for order n twisted Whitney towers $\mathcal{W} \subset B^{4}$ bounded by $L \subset S^{3}$

Towards intersection invariants $\tau_{n}^{\infty}(\mathcal{W})=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}$ for order n twisted Whitney towers $\mathcal{W} \subset B^{4}$ bounded by $L \subset S^{3}$
$\mathcal{T}_{n}:=$ free abelian group on order n framed trees modulo local antisymmetry (AS) and Jacobi (IHX) relations:

AS relations \Rightarrow signs of the framed trees in $t(\mathcal{W})$ only depend on the orientation of $L=\cup_{i} \partial D^{2} \subset \cup_{i} D^{2} \xrightarrow{A_{i}} B^{4}$ after mapping to \mathcal{T}_{n}.

IHX trees can be created locally by controlled manipulations of Whitney disks.

The odd order target groups $\mathcal{T}_{2 j-1}^{\infty}$

Obstructions to raising twisted order from $2 j-1$ to $2 j$:

The odd order target groups $\mathcal{T}_{2 j-1}^{\infty}$

Obstructions to raising twisted order from $2 j-1$ to $2 j$:

Definition:

$\mathcal{T}_{2 j-1}^{\infty}$ is the quotient of $\mathcal{T}_{2 j-1}$ by boundary-twist relations:

$$
i<{ }_{J}^{J}=0
$$

where J ranges over all order $j-1$ subtrees.

Since via boundary-twisting (see next frame):

$$
i<{ }_{J}^{J} \mapsto \quad i \ll_{\infty}^{J}+\text { trees of order } \geq 2 j
$$

and the trees on the right are allowed in order $2 j$ twisted \mathcal{W}.

Boundary twist on W changes $\omega(W)$ by ± 1, creates intersection p between W and a sheet paired by W
'Side view' near a point in ∂W :

Boundary twist on W changes $\omega(W)$ by ± 1, creates intersection p between W and a sheet paired by W
'Side view' near a point in ∂W :

Can create any clean $W_{(I, J)}$ by finger moves, then boundary twist into J-sheet changes $t(\mathcal{W})$ by:

$$
I \ll_{J}^{J} \pm I<_{\infty}^{J}
$$

The even order target groups $\mathcal{T}_{2 j}^{\infty}$

Obstructions to raising twisted order from $2 j$ to $2 j+1$:

The even order target groups $\mathcal{T}_{2 j}^{\infty}$

Obstructions to raising twisted order from $2 j$ to $2 j+1$:

Definition:

$\mathcal{T}_{2 j}^{\infty}$ is the quotient of the free abelian group on framed trees of order $2 j$ and co-trees of order j by the following relations:

1. AS and IHX relations on order $2 j$ framed trees
2. symmetry relations: $(-J)^{\infty}=J^{\infty}$
3. twisted IHX relations: $I^{\infty}=H^{\infty}+X^{\infty}-\langle H, X\rangle$
4. interior-twist relations: $2 \cdot J^{\infty}=\langle J, J\rangle$

Next frame shows how to realize interior-twist relation. (See notes for realization of twisted IHX relation.)

\pm-interior twist on W changes $\omega(W)$ by ∓ 2 and creates $p \in W \pitchfork W$

After the interior twist, near an arc in W that runs between the two sheets:

Can create any clean W_{J} by finger moves, then \pm-interior twist changes $t(\mathcal{W})$ by:

$$
\pm\langle J, J\rangle \quad \mp \quad 2 \cdot J^{\infty}
$$

Definition:

For an order n twisted W hitney tower \mathcal{W} define

$$
\tau_{n}^{\infty}(\mathcal{W}):=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}
$$

Intersection/obstruction theory for order n twisted Whitney towers

Definition:

For an order n twisted W hitney tower \mathcal{W} define

$$
\tau_{n}^{\infty}(\mathcal{W}):=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}
$$

Theorem:
$L \subset S^{3}$ bounds an order n twisted $\mathcal{W} \subset B^{4}$ with $\tau_{n}^{\infty}(\mathcal{W})=0 \in \mathcal{T}_{n}^{\infty}$ if and only if L bounds an order $n+1$ twisted Whitney tower.

Intersection/obstruction theory for order n twisted Whitney towers

Definition:

For an order n twisted W hitney tower \mathcal{W} define

$$
\tau_{n}^{\infty}(\mathcal{W}):=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}
$$

Theorem:

$L \subset S^{3}$ bounds an order n twisted $\mathcal{W} \subset B^{4}$ with $\tau_{n}^{\infty}(\mathcal{W})=0 \in \mathcal{T}_{n}^{\infty}$ if and only if L bounds an order $n+1$ twisted Whitney tower.

Idea of proof: Realize relations by geometric constructions to turn 'algebraic cancellation' in \mathcal{T}_{n}^{∞} into 'geometric cancellation' by new layer of Whitney disks.

Quick review of Milnor invariants

For $L=L_{1} \cup L_{2} \cup \cdots \cup L_{m} \subset S^{3}$ and $G=\pi_{1}\left(S^{3} \backslash L\right)$:
$\left[L_{i}\right] \in G_{n+1}(n+1)$ th lower central subroup $\Longrightarrow \frac{G_{n+1}}{G_{n+2}} \cong \mathcal{L}_{n+1}$
$\mathcal{L}=\oplus_{n} \mathcal{L}_{n}$ the free \mathbb{Z}-Lie algebra on $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$.

Quick review of Milnor invariants

For $L=L_{1} \cup L_{2} \cup \cdots \cup L_{m} \subset S^{3}$ and $G=\pi_{1}\left(S^{3} \backslash L\right)$:
$\left[L_{i}\right] \in G_{n+1}(n+1)$ th lower central subroup $\Longrightarrow \frac{G_{n+1}}{G_{n+2}} \cong \mathcal{L}_{n+1}$
$\mathcal{L}=\oplus_{n} \mathcal{L}_{n}$ the free \mathbb{Z}-Lie algebra on $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$.
Define the order n Milnor invariant $\mu_{n}(L)$:

$$
\mu_{n}(L):=\sum_{i=1}^{m} X_{i} \otimes \ell_{i} \in \mathcal{L}_{1} \otimes \mathcal{L}_{n+1}
$$

where ℓ_{i} is the image in \mathcal{L}_{n+1} of the i-th longitude $\left[L_{i}\right] \in \frac{G_{n+1}}{G_{n+2}}$.

Quick review of Milnor invariants

For $L=L_{1} \cup L_{2} \cup \cdots \cup L_{m} \subset S^{3}$ and $G=\pi_{1}\left(S^{3} \backslash L\right)$:
$\left[L_{i}\right] \in G_{n+1}(n+1)$ th lower central subroup $\Longrightarrow \frac{G_{n+1}}{G_{n+2}} \cong \mathcal{L}_{n+1}$
$\mathcal{L}=\oplus_{n} \mathcal{L}_{n}$ the free \mathbb{Z}-Lie algebra on $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$.
Define the order n Milnor invariant $\mu_{n}(L)$:

$$
\mu_{n}(L):=\sum_{i=1}^{m} X_{i} \otimes \ell_{i} \in \mathcal{L}_{1} \otimes \mathcal{L}_{n+1}
$$

where ℓ_{i} is the image in \mathcal{L}_{n+1} of the i-th longitude $\left[L_{i}\right] \in \frac{G_{n+1}}{G_{n+2}}$.
Turns out: $\mu_{n}(L) \in \mathcal{D}_{n}:=\operatorname{ker}\left\{\mathcal{L}_{1} \otimes \mathcal{L}_{n+1} \xrightarrow{\text { bracket }} \mathcal{L}_{n+2}\right\}$.

Summation maps η_{n} 'connect' $\tau_{n}^{\infty \rho}(\mathcal{W})$ and $\mu_{n}(L)$

Definition:

The map $\eta_{n}: \mathcal{T}_{n}^{\infty} \rightarrow \mathcal{L}_{1} \otimes \mathcal{L}_{n+1}$ is defined on generators by

$$
\eta_{n}(t):=\sum_{v \in t} X_{\text {label }(v)} \otimes \operatorname{Bracket}_{v}(t) \quad \eta_{n}\left(J^{\infty}\right):=\frac{1}{2} \eta_{n}(\langle J, J\rangle)
$$

Here J is a rooted tree of order j for $n=2 j$.

Examples of η_{n} for $n=1,2$

$$
\begin{aligned}
\eta_{1}\left(1<{ }_{2}^{3}\right) & =X_{1} \otimes<_{2}^{3}+X_{2} \otimes 1<^{3}+X_{3} \otimes 1<_{2} \\
& =X_{1} \otimes\left[X_{2}, X_{3}\right]+X_{2} \otimes\left[X_{3}, X_{1}\right]+X_{3} \otimes\left[X_{1}, X_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
\eta_{2}\left(\infty<{ }_{1}^{2}\right) & =\frac{1}{2} \eta_{2}\left(\begin{array}{l}
1 \\
2
\end{array}<{ }_{1}^{2}\right) \\
& =X_{1} \otimes 2<{ }_{1}^{2}+X_{2} \otimes{ }^{1}><1 \\
& =X_{1} \otimes\left[X_{2},\left[X_{1}, X_{2}\right]\right]+X_{2} \otimes\left[\left[X_{1}, X_{2}\right], X_{1}\right] .
\end{aligned}
$$

The summation maps η_{n} 'connect' $\tau_{n}^{\infty}(\mathcal{W})$ and $\mu_{n}(L)$

The image of η_{n} is equal to the bracket kernel $\mathcal{D}_{n}<\mathcal{L}_{1} \otimes \mathcal{L}_{n+1}$.

Theorem:

If L bounds a twisted Whitney tower \mathcal{W} of order n, then the order q Milnor invariants $\mu_{q}(L)$ vanish for $q<n$, and

$$
\mu_{n}(L)=\eta_{n} \circ \tau_{n}^{\infty}(\mathcal{W}) \in \mathcal{D}_{n}
$$

Proof idea: Gropes in $B^{4} \backslash \mathcal{W}$ display longitudes of L as iterated commutators exactly according to $\eta_{n} \circ \tau_{n}^{\infty}(\mathcal{W}) \ldots$

The order n twisted Whitney tower filtration on links

$\mathrm{W}_{n}^{\infty}:=\frac{\left\{\text { links in } S^{3} \text { bounding order } n \text { twisted Whitney towers in } B^{4}\right\}}{\text { order } n+1 \text { twisted Whitney tower concordance }}$

Obstruction theory $\Longrightarrow \mathrm{W}_{n}^{\infty}$ is a finitely generated abelian group
Via Cochran's Bing-doubling techniques get epimorphisms

$$
R_{n}^{\infty}: \mathcal{T}_{n}^{\infty} \rightarrow \mathrm{W}_{n}^{\infty}
$$

which send $g \in \mathcal{T}_{n}^{\infty}$ to the equivalence class of links bounding an order n twisted Whitney tower \mathcal{W} with $\tau_{n}^{\omega(}(\mathcal{W})=g$.

Example of $R_{n}^{\infty}: \mathcal{T}_{n}^{\infty} \rightarrow \mathrm{W}_{n}^{\infty}$ for $n=2$

L bounds \mathcal{W} with $\tau_{2}^{c s}(\mathcal{W})=\frac{1}{2}><\frac{1}{3}$

Example of $R_{n}^{\infty}: \mathcal{T}_{n}^{\infty} \rightarrow \mathrm{W}_{n}^{\infty}$ for $n=2$

L bounds \mathcal{W} with $\tau_{2}^{\infty}(\mathcal{W})={ }_{1}^{2}>-\infty$

Computation of W_{n}^{∞} for $n \equiv 0,1,3 \bmod 4$

Have commutative triangle diagram of epimorphisms:

Theorem:

The maps $\eta_{n}: \mathcal{T}_{n}^{\infty} \rightarrow \mathcal{D}_{n}$ are isomorphisms for $n \equiv 0,1,3 \bmod 4$.

Corollary:

For $n \equiv 0,1,3 \bmod 4$:

- $\mu_{n}: \mathrm{W}_{n}^{\infty} \rightarrow \mathcal{D}_{n}$ and $R_{n}^{\infty}: \mathcal{T}_{n}^{\infty} \rightarrow \mathrm{W}_{n}^{\infty}$ are isomorphisms.
- $\tau_{n}^{\infty}(\mathcal{W}) \in \mathcal{T}_{n}^{\infty}$ only depends on $L=\partial \mathcal{W}$.

Towards computation of W_{n}^{∞} for remaining cases $n \equiv 2 \bmod 4$

\mathcal{D}_{n} is a free abelian group of known rank for all n, so have a complete computation of $\mathrm{W}_{n}^{\infty} \cong \mathcal{D}_{n} \cong \mathcal{T}_{n}^{\infty}$ in three quarters of the cases.

Towards understanding the remaining cases $n \equiv 2 \bmod 4$:

Proposition:

The map $1 \otimes J \mapsto \infty \longrightarrow<_{J}^{J} \in \mathcal{T}_{4 j-2}^{\infty}$ induces an isomorphism:

$$
\mathbb{Z}_{2} \otimes \mathcal{L}_{j} \cong \operatorname{Ker}\left(\eta_{4 j-2}: \mathcal{T}_{4 j-2}^{\infty} \rightarrow \mathcal{D}_{4 j-2}\right)
$$

Towards computation of W_{n}^{∞} for remaining cases $n \equiv 2 \bmod 4$

Extending the algebraic side of the triangle:

Towards defining higher-order Arf invariants

$R_{4 j-2}^{\infty}$ induces $\alpha_{j}^{\infty}: \mathbb{Z}_{2} \otimes \mathcal{L}_{j} \rightarrow \mathrm{~K}_{4 j-2}^{\infty}:=\operatorname{ker}\left\{\mu_{4 j-2}: \mathrm{W}_{4 j-2}^{\infty} \rightarrow \mathcal{D}_{4 j-2}\right\}$

Higher-order Arf invariant diagram

Also extending the topological side of the triangle:

Higher-order Arf invariants and computation of W_{n}^{∞} for all n

Corollary:

The groups W_{n}^{∞} are classified by Milnor invariants μ_{n} and, in addition, higher-order Arf invariants Arf_{j} for $n=4 j-2$.

In particular, a link bounds an order $n+1$ twisted \mathcal{W} if and only if its Milnor invariants and higher-order Arf invariants vanish up to order n.

Higher-order Arf invariant diagram

$$
\mathbb{Z}_{2} \otimes \mathcal{L}_{j} \xrightarrow{\left(\mathbb{Z}_{2} \otimes \mathcal{L}_{j}\right) / \operatorname{Ker} \alpha_{j}^{\infty}}
$$

Conjectured higher-order Arf invariant diagram

$$
\mathbb{Z}_{2} \otimes \mathcal{L}_{j} \sharp-\stackrel{A}{-}_{\operatorname{Arf}_{j}}^{\sim}
$$

Conjecture: (Higher-order Arf invariant conjecture)
Arf $_{j}: \mathrm{K}_{4 j-2}^{\infty} \rightarrow \mathbb{Z}_{2} \otimes \mathrm{~L}_{j}$ are isomorphisms for all j.
This conjecture would imply $\mathrm{W}_{n}^{\infty} \xrightarrow{\tau_{n}^{\infty}} \mathcal{T}_{n}^{\infty}$ is an isomorphism for all n.

Determining the image of $2 \leq \operatorname{Arf}_{j} \leq \mathbb{Z}_{2} \otimes \mathcal{L}_{j}$?

- Arf $_{1}$ corresponds to classical Arf invariants of the link components. Are the Arf_{j} for $j>1$ also determined by finite type isotopy invariants?
- The links $R_{4 j-2}^{\infty}(\infty \ll J)$ realizing the image of Arf $_{j}$ are known not to be slice by work of J.C. Cha.
- Fundamental first open test case: Does the Bing double of the Figure-8 knot $R_{6}^{\infty}\left(\infty-<_{(1,2)}^{(1,2)}\right) \in \mathrm{W}_{6}^{\infty}$ bound an order 7 twisted Whitney tower?
- If the Bing double of the Figure-8 knot does bound an order 7 twisted Whitney tower, then Arf $_{j}$ are trivial for all $j \geq 2$.

Bing(Fig8) bounds \mathcal{W} with $t(\mathcal{W})=((1,2),(1,2))^{\infty}$

$$
\mathcal{W}=D_{1} \cup D_{2} \cup W_{(1,2)} \cup W_{(1,2),(1,2))}
$$

Re-formulations of the higher-order Arf invariant Conjecture

- There does not exist $A: S^{2} \cup S^{2} \leftrightarrow B^{4}$ supporting \mathcal{W} with

$$
t(\mathcal{W})=\infty<_{(1,2)}^{(1,2)}
$$

(possibly + higher-order trees).

- The Bing double of any knot with non-trivial classical Arf invariant does not bound an order 6 framed Whitney tower.
- There does not exist $A: S^{2} \cup S^{2} \leftrightarrow B^{4}$ supporting \mathcal{W} with $t(\mathcal{W})=\langle((((((1,2), 1), 2), 1), 2), 1)\rangle+\langle((((((1,2), 2), 1), 2), 1), 2)\rangle$ (possibly + higher-order trees).

More questions/problems

- Equivariant Milnor and Arf invariant correspondence with π_{1}-decorated tree-valued intersection invariants for order n Whitney towers bounded by links in non-simply-connected 3-manifolds?
- Use $t(\mathcal{W})$ to efficiently formulate indeterminacies in Milnor invariants?
- Higher-order Arf invariants for 2-spheres supporting Whitney towers in 4-manifolds?

