Twisted Whitney towers and higher-order Arf invariants

Rob Schneiderman & Peter Teichner, (with J. Conant)

Lehman College CUNY & MPIM (and AGS Labs)

Fall 2022

Recall that the following are equivalent:

- $L = \bigcup_{i=1}^{m} L_i \subset S^3$ is link-homotopically trivial.
- Non-repeating Milnor invariants $\mu_k(L)$ vanish for $k \leq m-2$.
- L bounds an order m-1 non-repeating Whitney tower $\mathcal{W} \subset B^4$.
- Intersection invariants $\lambda_k(\mathcal{W}) = 0 \in \Lambda_k$ for $k \leq m 2$.
- *L* lifts to the *m*th level of the Goodwillie–Weiss link map tower.

Invariants here are torsion-free, and ignore twisted Whitney disks.

Recall that the following are equivalent:

- $L = \bigcup_{i=1}^{m} L_i \subset S^3$ is link-homotopically trivial.
- Non-repeating Milnor invariants $\mu_k(L)$ vanish for $k \leq m-2$.
- L bounds an order m-1 non-repeating Whitney tower $\mathcal{W} \subset B^4$.
- Intersection invariants $\lambda_k(\mathcal{W}) = 0 \in \Lambda_k$ for $k \leq m 2$.
- *L* lifts to the *m*th level of the Goodwillie–Weiss link map tower.

Invariants here are torsion-free, and ignore twisted Whitney disks.

- Will generalize the above to give a classification of links bounding order *n* twisted Whitney towers in terms of Milnor invariants with repeated indices allowed (still torsion-free) and higher-order Arf invariants (2-torsion related to Whitney disk twistings).

Recall that the following are equivalent:

- $L = \bigcup_{i=1}^{m} L_i \subset S^3$ is link-homotopically trivial.
- Non-repeating Milnor invariants $\mu_k(L)$ vanish for $k \leq m-2$.
- L bounds an order m-1 non-repeating Whitney tower $\mathcal{W} \subset B^4$.
- Intersection invariants $\lambda_k(\mathcal{W}) = 0 \in \Lambda_k$ for $k \leq m 2$.
- *L* lifts to the *m*th level of the Goodwillie–Weiss link map tower.

Invariants here are torsion-free, and ignore twisted Whitney disks.

Will generalize the above to give a classification of links bounding
order *n* twisted Whitney towers in terms of Milnor invariants
with repeated indices allowed (still torsion-free) and higher-order
Arf invariants (2-torsion related to Whitney disk twistings).

- We hope to find a corresponding relationship with the Goodwillie–Weiss concordance tower.

- Twisted Whitney towers and their trees
- Intersection invariants for order *n* twisted Whitney towers
- Classification of order n twisted Whitney towers in B^4
- The Higher-order Arf invariant Conjecture

Eliminates $p, q \in A \pitchfork B$ without creating new intersections in A or B:

W is *clean* = embedded & interior disjoint from all surfaces. W is *framed* = W has appropriate parallels.

$r \in W \pitchfork C \quad \rightsquigarrow \quad r', r'' \in A \pitchfork C$ after *W*-move on *A*:

Whitney move uses two parallel copies of W:

Framed Whitney disks and twisted Whitney disks

The *twisting* $\omega(W) \in \mathbb{Z}$ of W is the relative Euler number of a normal section $\overline{\partial W}$ over ∂W determined by the sheets:

If $\omega(W) = 0$, then W is framed. If $\omega(W) \neq 0$, then W is twisted. The *twisting* $\omega(W) \in \mathbb{Z}$ of W is the relative Euler number of a normal section $\overline{\partial W}$ over ∂W determined by the sheets:

If $\omega(W) = 0$, then W is framed. If $\omega(W) \neq 0$, then W is twisted.

Close up of normal section $\overline{\partial W}$ in $\partial W \times D^2$:

A *Whitney tower* on $A^2 \hookrightarrow X^4$ is defined by:

- 1. A itself is a Whitney tower.
- 2. If \mathcal{W} is a Whitney tower and W is a Whitney disk pairing intersections in \mathcal{W} , then the union $\mathcal{W} \cup W$ is a Whitney tower.

A *Whitney tower* on $A^2 \hookrightarrow X^4$ is defined by:

- 1. A itself is a Whitney tower.
- 2. If \mathcal{W} is a Whitney tower and W is a Whitney disk pairing intersections in \mathcal{W} , then the union $\mathcal{W} \cup W$ is a Whitney tower.

Part of a Whitney tower

The *intersection forest* multiset t(W) of a Whitney tower W

'framed tree' $t_p \leftarrow p$ unpaired intersection with sign $\epsilon_p = \pm 1$, 'twisted tree' $J^{\infty} := J \longrightarrow \omega \leftarrow W_J$ with twisting $\omega(W_J) \neq 0 \in \mathbb{Z}$. $W_{(i,j)}$ pairing $A_i \pitchfork A_j \longrightarrow$ rooted tree $-\!\!<^j_i = (i,j)$

Recursively: $W_{(I,J)}$ pairing $W_I \pitchfork W_J \longrightarrow - \langle I = (I,J)$

Rooted trees I, J = non-associative bracketings from $\{1, 2, 3, ..., m\}$ Notation convention: Singleton subscript W_i denotes component A_i .

<u>Un</u>-paired intersections \rightarrow <u>un</u>-rooted trees

Inner product 'fuses' rooted edges into single edge:

$$p \in W_{(I,J)} \pitchfork W_k \quad \longmapsto \quad t_p = \langle (I,J), K \rangle = \ \frac{I}{J} > -\kappa$$

∞-trees ('twisted' trees) for twisted Whitney disks

$$W_J \quad \mapsto \quad J^{\infty} := J - \infty \quad \text{if } \omega(W_J) \neq 0.$$

Example: Figure-8 knot bounds \mathcal{W} with $t(\mathcal{W}) = (1,1)^{\infty} = \frac{1}{1} > --\infty$

The Whitney disk $W_{(1,1)}$ is <u>clean</u> (since right picture is an unlink).

Example: Figure-8 knot bounds \mathcal{W} with $t(\mathcal{W}) = (1,1)^{\infty} = \frac{1}{1} > --\infty$

The Whitney disk $W_{(1,1)}$ is <u>twisted</u> (since blue and purple link once).

Obstruction theory for links bounding twisted Whitney towers

 W is an order n twisted Whitney tower if t(W) contains only framed trees of order ≥ n and twisted trees of order ≥ n/2, where <u>order</u> := number of trivalent vertices.

- W is an order n twisted Whitney tower if t(W) contains only framed trees of order ≥ n and twisted trees of order ≥ n/2, where <u>order</u> := number of trivalent vertices.
- Will define abelian groups \mathcal{T}_n^{∞} and intersection invariants $\tau_n^{\infty}(\mathcal{W}) := [t(\mathcal{W})] \in \mathcal{T}_n^{\infty}$ such that:

L bounds an order *n* twisted \mathcal{W} with $\tau_n^{\infty}(\mathcal{W}) = 0$ if and only if *L* bounds an order n + 1 twisted Whitney tower.

- W is an order n twisted Whitney tower if t(W) contains only framed trees of order ≥ n and twisted trees of order ≥ n/2, where <u>order</u> := number of trivalent vertices.
- Will define abelian groups \mathcal{T}_n^{∞} and intersection invariants $\tau_n^{\infty}(\mathcal{W}) := [t(\mathcal{W})] \in \mathcal{T}_n^{\infty}$ such that:

L bounds an order *n* twisted W with $\tau_n^{\infty}(W) = 0$ if and only if *L* bounds an order n + 1 twisted Whitney tower.

• $\tau_n^{\infty}(L) := \tau_n^{\infty}(\mathcal{W}) \leftrightarrow \text{Milnor and higher-order Arf invariants}$

Towards intersection invariants $\tau_n^{\infty}(W) = [t(W)] \in \mathcal{T}_n^{\infty}$ for order *n* twisted Whitney towers $W \subset B^4$ bounded by $L \subset S^3$ Towards intersection invariants $\tau_n^{\infty}(W) = [t(W)] \in \mathcal{T}_n^{\infty}$ for order *n* twisted Whitney towers $W \subset B^4$ bounded by $L \subset S^3$

 $\mathcal{T}_n :=$ free abelian group on order *n* framed trees modulo local *antisymmetry* (AS) and *Jacobi* (IHX) relations:

$$+$$
 $=$ 0 $=$ $+$ \times

AS relations \Rightarrow signs of the framed trees in $t(\mathcal{W})$ only depend on the orientation of $L = \bigcup_i \partial D^2 \subset \bigcup_i D^2 \stackrel{A_i}{\hookrightarrow} B^4$ after mapping to \mathcal{T}_n .

IHX trees can be created locally by controlled manipulations of Whitney disks.

Obstructions to raising twisted order from 2j - 1 to 2j:

Obstructions to raising twisted order from 2j - 1 to 2j:

Definition:

 $\mathcal{T}_{2j-1}^{\infty}$ is the quotient of \mathcal{T}_{2j-1} by *boundary-twist relations:*

$$i - J_{J} = 0$$

where J ranges over all order j - 1 subtrees.

Since via boundary-twisting (see next frame):

$$i \longrightarrow J \mapsto i \longrightarrow i \longrightarrow j \mapsto - 2j$$

and the trees on the right are allowed in order 2j twisted \mathcal{W} .

Boundary twist on W changes $\omega(W)$ by ± 1 , creates intersection p between W and a sheet paired by W

Boundary twist on W changes $\omega(W)$ by ± 1 , creates intersection p between W and a sheet paired by W

Can create any clean $W_{(I,J)}$ by finger moves, then boundary twist into *J*-sheet changes t(W) by:

 $I \longrightarrow J \pm I \longrightarrow {}_{\omega}^{J}$

Obstructions to raising twisted order from 2j to 2j + 1:

Obstructions to raising twisted order from 2j to 2j + 1:

Definition:

 $\mathcal{T}_{2j}^{\infty}$ is the quotient of the free abelian group on framed trees of order 2j and ∞ -trees of order jby the following relations:

- 1. AS and IHX relations on order 2j framed trees
- 2. symmetry relations: $(-J)^{\infty} = J^{\infty}$
- 3. *twisted IHX* relations: $I^{\infty} = H^{\infty} + X^{\infty} \langle H, X \rangle$
- 4. <u>interior-twist</u> relations: $2 \cdot J^{\infty} = \langle J, J \rangle$

Next frame shows how to realize interior-twist relation. (See notes for realization of twisted IHX relation.) After the interior twist,

near an arc in W that runs between the two sheets:

Can create any clean W_J by finger moves, then \pm -interior twist changes t(W) by:

$$\pm \langle J, J \rangle \quad \mp \quad 2 \cdot J^{\circ}$$

For an order n twisted Whitney tower \mathcal{W} define

$$\tau_n^{\infty}(\mathcal{W}) := [t(\mathcal{W})] \in \mathcal{T}_n^{\infty}$$

For an order n twisted Whitney tower $\mathcal W$ define

$$\tau_n^{\infty}(\mathcal{W}) := [t(\mathcal{W})] \in \mathcal{T}_n^{\infty}$$

Theorem:

 $L \subset S^3$ bounds an order n twisted $\mathcal{W} \subset B^4$ with $\tau_n^{\infty}(\mathcal{W}) = 0 \in \mathcal{T}_n^{\infty}$ if and only if L bounds an order n + 1 twisted Whitney tower.

For an order n twisted Whitney tower \mathcal{W} define

$$\tau_n^{\infty}(\mathcal{W}) := [t(\mathcal{W})] \in \mathcal{T}_n^{\infty}$$

Theorem:

 $L \subset S^3$ bounds an order n twisted $\mathcal{W} \subset B^4$ with $\tau_n^{\infty}(\mathcal{W}) = 0 \in \mathcal{T}_n^{\infty}$ if and only if L bounds an order n + 1 twisted Whitney tower.

Idea of proof: Realize relations by geometric constructions to turn 'algebraic cancellation' in \mathcal{T}_n^{∞} into 'geometric cancellation' by new layer of Whitney disks.

For
$$L = L_1 \cup L_2 \cup \cdots \cup L_m \subset S^3$$
 and $G = \pi_1(S^3 \setminus L)$:

 $[L_i] \in G_{n+1}$ (n+1)th lower central subroup $\implies \frac{G_{n+1}}{G_{n+2}} \cong \mathcal{L}_{n+1}$

 $\mathcal{L} = \bigoplus_n \mathcal{L}_n$ the free \mathbb{Z} -Lie algebra on $\{X_1, X_2, \dots, X_m\}$.

For
$$L = L_1 \cup L_2 \cup \cdots \cup L_m \subset S^3$$
 and $G = \pi_1(S^3 \setminus L)$:

 $[L_i] \in G_{n+1}$ (n+1)th lower central subroup $\implies \frac{G_{n+1}}{G_{n+2}} \cong \mathcal{L}_{n+1}$

 $\mathcal{L} = \bigoplus_n \mathcal{L}_n$ the free \mathbb{Z} -Lie algebra on $\{X_1, X_2, \dots, X_m\}$.

Define the order *n* Milnor invariant $\mu_n(L)$:

$$\mu_n(L) := \sum_{i=1}^m X_i \otimes \ell_i \in \mathcal{L}_1 \otimes \mathcal{L}_{n+1}$$

where ℓ_i is the image in \mathcal{L}_{n+1} of the *i*-th longitude $[L_i] \in \frac{G_{n+1}}{G_{n+2}}$.

For
$$L = L_1 \cup L_2 \cup \cdots \cup L_m \subset S^3$$
 and $G = \pi_1(S^3 \setminus L)$:

$$[L_i] \in G_{n+1} \ (n+1)$$
th lower central subroup $\implies rac{G_{n+1}}{G_{n+2}} \cong \mathcal{L}_{n+1}$

 $\mathcal{L} = \bigoplus_n \mathcal{L}_n$ the free \mathbb{Z} -Lie algebra on $\{X_1, X_2, \ldots, X_m\}$.

Define the order *n* Milnor invariant $\mu_n(L)$:

$$\mu_n(L) := \sum_{i=1}^m X_i \otimes \ell_i \in \mathcal{L}_1 \otimes \mathcal{L}_{n+1}$$

where ℓ_i is the image in \mathcal{L}_{n+1} of the *i*-th longitude $[L_i] \in \frac{G_{n+1}}{G_{n+2}}$.

Turns out: $\mu_n(L) \in \mathcal{D}_n := \ker \{ \mathcal{L}_1 \otimes \mathcal{L}_{n+1} \xrightarrow{\text{bracket}} \mathcal{L}_{n+2} \}.$

The map $\eta_n:\mathcal{T}_n^{\infty}\to\mathcal{L}_1\otimes\mathcal{L}_{n+1}$ is defined on generators by

$$\eta_n(t) := \sum_{v \in t} X_{\mathsf{label}(v)} \otimes \mathsf{Bracket}_v(t) \qquad \eta_n(J^{\infty}) := \frac{1}{2} \eta_n(\langle J, J \rangle)$$

Here J is a rooted tree of order j for n = 2j.

$$\begin{array}{rcl} \eta_1 \big(1 -\!\!<\! \frac{3}{2} \big) &=& X_1 \otimes -\!\!<\! \frac{3}{2} &+& X_2 \otimes 1 -\!\!<\! ^3 &+& X_3 \otimes 1 -\!\!<\! _2 \\ &=& X_1 \otimes [X_2, X_3] + X_2 \otimes [X_3, X_1] + X_3 \otimes [X_1, X_2]. \end{array}$$

$$\begin{aligned} \eta_2(& \sim -<\frac{2}{1}) &= \frac{1}{2} \eta_2(\frac{1}{2} > <\frac{2}{1}) \\ &= X_1 \otimes _2 > <\frac{2}{1} + X_2 \otimes ^1 > <\frac{2}{1} \\ &= X_1 \otimes [X_2, [X_1, X_2]] + X_2 \otimes [[X_1, X_2], X_1]. \end{aligned}$$

The image of η_n is equal to the bracket kernel $\mathcal{D}_n < \mathcal{L}_1 \otimes \mathcal{L}_{n+1}$.

Theorem:

If L bounds a twisted Whitney tower W of order n, then the order q Milnor invariants $\mu_q(L)$ vanish for q < n, and

$$\mu_n(L) = \eta_n \circ \tau_n^{\infty}(\mathcal{W}) \in \mathcal{D}_n$$

Proof idea: Gropes in $B^4 \setminus W$ display longitudes of L as iterated commutators exactly according to $\eta_n \circ \tau_n^{\infty}(W)$...

$$W_n^{\infty} := \frac{\{\text{links in } S^3 \text{ bounding order } n \text{ twisted Whitney towers in } B^4\}}{\text{order } n+1 \text{ twisted Whitney tower concordance}}$$

Obstruction theory $\implies W_n^{\infty}$ is a finitely generated abelian group

Via Cochran's Bing-doubling techniques get epimorphisms

$$R_n^{\infty}: \mathcal{T}_n^{\infty} \twoheadrightarrow W_n^{\infty}$$

which send $g \in \mathcal{T}_n^{\infty}$ to the equivalence class of links bounding an order *n* twisted Whitney tower \mathcal{W} with $\tau_n^{\infty}(\mathcal{W}) = g$.

Example of R_n^{∞} : $\mathcal{T}_n^{\infty} \rightarrow W_n^{\infty}$ for n = 2

L bounds
$${\mathcal W}$$
 with $au_2^\infty({\mathcal W})=rac{1}{2}>>><rac{1}{3}$

Example of $R_n^{\infty} : \mathcal{T}_n^{\infty} \twoheadrightarrow W_n^{\infty}$ for n = 2

L bounds
$${\mathcal W}$$
 with $au_2^\infty({\mathcal W})=rac{2}{1}>-\!\!-\infty$

Have commutative triangle diagram of epimorphisms:

Theorem:

The maps $\eta_n : \mathcal{T}_n^{\infty} \to \mathcal{D}_n$ are isomorphisms for $n \equiv 0, 1, 3 \mod 4$.

Corollary:

For $n \equiv 0, 1, 3 \mod 4$:

- $\mu_n \colon W_n^{\infty} \to \mathcal{D}_n$ and $R_n^{\infty} \colon \mathcal{T}_n^{\infty} \to W_n^{\infty}$ are isomorphisms.
- $\tau_n^{\infty}(\mathcal{W}) \in \mathcal{T}_n^{\infty}$ only depends on $L = \partial \mathcal{W}$.

 \mathcal{D}_n is a free abelian group of known rank for all n, so have a complete computation of $W_n^{\infty} \cong \mathcal{D}_n \cong \mathcal{T}_n^{\infty}$ in three quarters of the cases.

Towards understanding the remaining cases $n \equiv 2 \mod 4$: **Proposition:** The map $1 \otimes J \mapsto \infty \longrightarrow J \in \mathcal{T}_{4j-2}^{\infty}$ induces an isomorphism:

$$\mathbb{Z}_2 \otimes \mathcal{L}_j \cong \mathsf{Ker}(\eta_{4j-2} : \mathcal{T}^{\infty}_{4j-2} \to \mathcal{D}_{4j-2})$$

Extending the algebraic side of the triangle:

$$R^{\infty}_{4j-2} \text{ induces } \alpha^{\infty}_{j} : \mathbb{Z}_{2} \otimes \mathcal{L}_{j} \twoheadrightarrow \mathsf{K}^{\infty}_{4j-2} := \ker\{\mu_{4j-2} : \mathsf{W}^{\infty}_{4j-2} \twoheadrightarrow \mathcal{D}_{4j-2}\}$$

Higher-order Arf invariant diagram

Also extending the topological side of the triangle:

$$\operatorname{Arf}_j := \mathsf{K}^{\infty}_{4j-2} \to (\mathbb{Z}_2 \otimes \mathsf{L}_j) / \operatorname{Ker} \alpha^{\infty}_j$$

Corollary:

The groups W_n^{∞} are classified by Milnor invariants μ_n and, in addition, higher-order Arf invariants Arf_j for n = 4j - 2.

In particular, a link bounds an order n+1 twisted W if and only if its Milnor invariants and higher-order Arf invariants vanish up to order n.

Conjectured higher-order Arf invariant diagram

Conjecture: (Higher-order Arf invariant conjecture) $\operatorname{Arf}_j : \mathsf{K}^{\infty}_{4j-2} \to \mathbb{Z}_2 \otimes \mathsf{L}_j$ are isomorphisms for all *j*.

This conjecture would imply $W_n^{\infty} \xrightarrow{\tau_n^{\infty}} \mathcal{T}_n^{\infty}$ is an isomorphism for all n.

- Arf₁ corresponds to classical Arf invariants of the link components. Are the Arf_j for j > 1 also determined by finite type isotopy invariants?
- The links $R_{4j-2}^{\infty}(\infty \langle J \rangle)$ realizing the image of Arf_{j} are known not to be *slice* by work of J.C. Cha.
- Fundamental first open test case: Does the Bing double of the Figure-8 knot $R_6^{\infty}(\infty <_{(1,2)}^{(1,2)}) \in W_6^{\infty}$ bound an order 7 twisted Whitney tower?
- If the Bing double of the Figure-8 knot does bound an order 7 twisted Whitney tower, then Arf_i are trivial for all j ≥ 2.

Bing(Fig8) bounds \mathcal{W} with $t(\mathcal{W}) = ((1,2), (1,2))^{\infty}$

 $W = D_1 \cup D_2 \cup W_{(1,2)} \cup W_{(1,2),(1,2))}$

- There does not exist $A:S^2\cup S^2 \hookrightarrow B^4$ supporting $\mathcal W$ with

$$t(\mathcal{W}) = \mathfrak{O} \longrightarrow \overset{(1,2)}{\underset{(1,2)}{\leftarrow}}$$

(possibly + higher-order trees).

- The Bing double of any knot with non-trivial classical Arf invariant does not bound an order 6 *framed* Whitney tower.
- There does not exist $A : S^2 \cup S^2 \hookrightarrow B^4$ supporting \mathcal{W} with $t(\mathcal{W}) = \langle (((((((1,2),1),2),1),2),1)) + \langle ((((((((1,2),2),1),2),1),2)) \rangle$ (possibly + higher-order trees).

• Equivariant Milnor and Arf invariant correspondence with π_1 -decorated tree-valued intersection invariants for order *n* Whitney towers bounded by links in non-simply-connected 3-manifolds?

• Use t(W) to efficiently formulate indeterminacies in Milnor invariants?

• Higher-order Arf invariants for 2-spheres supporting Whitney towers in 4-manifolds?

