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Recall that the following are equivalent:
o L =Um,L; C S?is link-homotopically trivial.
¢ Non-repeating Milnor invariants /(L) vanish for k < m — 2.

L bounds an order m — 1 non-repeating Whitney tower W C B*.
Intersection invariants A,(W) =0 € Ay for k < m — 2.

L lifts to the mth level of the Goodwillie-Weiss link map tower.

Invariants here are torsion-free, and ignore twisted Whitney disks.
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o L =Um,L; C S?is link-homotopically trivial.
¢ Non-repeating Milnor invariants /(L) vanish for k < m — 2.
L bounds an order m — 1 non-repeating Whitney tower W C B*.
Intersection invariants A,(W) =0 € Ay for k < m — 2.
L lifts to the mth level of the Goodwillie-Weiss link map tower.

Invariants here are torsion-free, and ignore twisted Whitney disks.

— Will generalize the above to give a classification of links bounding
order n twisted Whitney towers in terms of Milnor invariants
with repeated indices allowed (still torsion-free) and higher-order
Arf invariants (2-torsion related to Whitney disk twistings).

— We hope to find a corresponding relationship with the
Goodwillie-Weiss concordance tower.



Outline (see ‘Intro to Whitney towers’ notes for ref’s and details)

Twisted Whitney towers and their trees

Intersection invariants for order n twisted Whitney towers

Classification of order n twisted Whitney towers in B*

The Higher-order Arf invariant Conjecture



Successful Whitney move: W is ‘clean’ and ‘framed’

Eliminates p, g € A M B without creating new intersections in A or B:

W is clean = embedded & interior disjoint from all surfaces.
W is framed = W has appropriate parallels.



W not clean ~~ Whitney move creates new intersections:

re WhC ~ r,r"eAm C after W-move on A:




Whitney move uses two parallel copies of W:



Framed Whitney disks and twisted Whitney disks

The twisting w(W) € Z of W is the relative Euler number of a
normal section W over OW determined by the sheets:
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If w(W) =0, then W is framed.
If w(W) # 0, then W is twisted.



Framed Whitney disks and twisted Whitney disks

The twisting w(W) € Z of W is the relative Euler number of a
normal section W over OW determined by the sheets:
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If (W) =0, then W is framed.
If w(W) # 0, then W is twisted.



Close up of normal section OW in OW x D?:




Definition:
A Whitney tower on A? a5 X* is defined by:
1. A itself is a Whitney tower.

2. If W is a Whitney tower and W is a Whitney disk pairing
intersections in WV, then the union WU W is a Whitney tower.



Definition:
A Whitney tower on A? a5 X* is defined by:

1. A itself is a Whitney tower.

2. If W is a Whitney tower and W is a Whitney disk pairing
intersections in WV, then the union WU W is a Whitney tower.
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Part of a Whitney tower



The intersection forest multiset t()V) of a Whitney tower W

Wi tOV) =) ety +> w(W))-J”
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‘framed tree’ t, <= p unpaired intersection with sign €, = £1,
‘twisted tree’ J” := J —o <+ W, with twisting w(W,) # 0 € Z.




Paired intersections — rooted trees




Paired intersections — rooted trees

Wi pairing A; M A;  +——  rooted tree —< 1= (i,))
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Paired intersections — rooted trees

Recursively: W, 5 pairing W, h W, —  —<{ = (1,J)

Wiy

/
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w;

Rooted trees I, J = non-associative bracketings from {1,2 3,... m}
Notation convention: Singleton subscript W; denotes component A;.



Un-paired intersections — un-rooted trees




Un-paired intersections — un-rooted trees

Inner product ‘fuses’ rooted edges into single edge:

p < W(,J)rhWk — tp:<(/,J),K>: _I]>—K




o-trees (‘twisted’ trees) for twisted Whitney disks




o-trees (‘twisted’ trees) for twisted Whitney disks

W_] = J2=J—wm» if U.)(WJ) # 0.
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Example: Figure-8 knot bounds W with t(W) = (1,1)*={ >—o
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The Whitney disk Wy 1) is

clean (since right picture is an unlink).



Example: Figure-8 knot bounds W with t(W) = (1,1)*={ >—o

O

The Whitney disk Wy 1) is twisted (since blue and purple link once).



Obstruction theory for links bounding twisted Whitney towers

e W is an order n twisted Whitney tower if t(WW) contains only
framed trees of order > n and twisted trees of order > n/2,
where order := number of trivalent vertices.




Obstruction theory for links bounding twisted Whitney towers

e W is an order n twisted Whitney tower if t(WW) contains only
framed trees of order > n and twisted trees of order > n/2,
where order := number of trivalent vertices.

o Will define abelian groups 7,
and intersection invariants 7°(W) := [t(W)] € T,
such that:

L bounds an order n twisted VW with 72(W) =0
if and only if L bounds an order n + 1 twisted Whitney tower.



Obstruction theory for links bounding twisted Whitney towers

e W is an order n twisted Whitney tower if t(WW) contains only
framed trees of order > n and twisted trees of order > n/2,
where order := number of trivalent vertices.

o Will define abelian groups 7,
and intersection invariants 7°(W) := [t(W)] € T,
such that:

L bounds an order n twisted VW with 72(W) =0
if and only if L bounds an order n + 1 twisted Whitney tower.

o 72(L) := 772(W) <> Milnor and higher-order Arf invariants

n



Towards intersection invariants 7°(W) = [t(W)] € T2
for order n twisted Whitney towers V¥V C B* bounded by L C S3




Towards intersection invariants 7°(W) = [t(W)] € T2
for order n twisted Whitney towers V¥V C B* bounded by L C S3

T, := free abelian group on order n framed trees modulo
local antisymmetry (AS) and Jacobi (IHX) relations:

Y e X

AS relations =- signs of the framed trees in t(V) only depend on the
Ai
orientation of L = U;0D? C U;D? & B* after mapping to 7,.

IHX trees can be created locally by controlled manipulations of
Whitney disks.



The odd order target groups 757,

Obstructions to raising twisted order from 2j — 1 to 2;:



The odd order target groups 757,

Obstructions to raising twisted order from 2j — 1 to 2;:

Definition:
Ty;-1 is the quotient of T5; 1 by boundary-twist relations:

i—<5=0

where J ranges over all order j — 1 subtrees.

Since via boundary-twisting (see next frame):

i%ﬁ —> i%i + trees of order > 2j

and the trees on the right are allowed in order 2j twisted W.



Boundary twist on W changes w(W) by +1,
creates intersection p between W and a sheet paired by W

‘Side view' near a point in OW:
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Boundary twist on W changes w(W) by +1,
creates intersection p between W and a sheet paired by W

‘Side view' near a point in OW:

w

boundary
twist of W

IS O G
- \ N7
with blue
parallel of W | kK | |
that intersects W: - .\

Can create any clean W, ) by finger moves,
then boundary twist into J-sheet changes t()V) by:

| <5 + 1 =<



The even order target groups 7,7

Obstructions to raising twisted order from 2; to 2j + 1:



The even order target groups 7,7

Obstructions to raising twisted order from 2j to 2j + 1:

Definition:
»; is the quotient of the free abelian group on
framed trees of order 2j and «-trees of order j

by the following relations:

AS and IHX relations on order 2;j framed trees
symmetry relations: (—J)” = J®

twisted IHX relations: [® = H” + X — (H, X)
interior-twist relations: 2 - J® = (J, J)

sl e

Next frame shows how to realize interior-twist relation.
(See notes for realization of twisted IHX relation.)



+-interior twist on W changes w(W) by F2 and creates p ¢ W th W

After the interior twist,
near an arc in W that runs between the two sheets:

Sl [ 1]
2 [Slojolof #]

Can create any clean W, by finger moves,
then +-interior twist changes t(W) by:

L) F 2.0



Intersection/obstruction theory for order n twisted Whitney towers

Definition:
For an order n twisted Whitney tower W define

T (W) =[] e Ty
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Intersection/obstruction theory for order n twisted Whitney towers

Definition:
For an order n twisted Whitney tower W define

T (W) =[] e Ty

Theorem:
L C S® bounds an order n twisted W C B* with 72(W) =0 € T,
if and only if L bounds an order n + 1 twisted Whitney tower.

Idea of proof: Realize relations by geometric constructions to turn
‘algebraic cancellation’ in 7, into ‘geometric cancellation’ by new
layer of Whitney disks.



Quick review of Milnor invariants

For L=L;ULyU---UL, CS*and G=m(S*\L):

[L;] € Gpy1 (n+1)th lower central subroup —> G”E = Lo

L = ®,L, the free Z-Lie algebra on {X1, Xy, ..., Xn}.
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Quick review of Milnor invariants

For L=L;ULyU---UL, CS*and G=m(S*\L):
[L;] € Gpy1 (n+1)th lower central subroup —> G”E = Lo
L = ®,L, the free Z-Lie algebra on {X1, Xy, ..., Xn}.

Define the order n Milnor invariant 1,(L):

[L,,(L) = ZX, QRUEL® »Cn—f—l

i=1

where /; is the image in L, of the i-th longitude [L;] € G"z

Turns out: p,(L) € D, :=ker{L1 ® L, 11 bracket, Lo}



Summation maps 7, ‘connect’ 7°°(W) and (L)

Definition:
The map n, : 7,7 — L1 ® L,41 is defined on generators by

i(£) = 3 Xaba) @ Bracket,(£)  ma(J?) = ;nn(u, )

vet

Here J is a rooted tree of order j for n = 2j.



Examples of n, for n=1,2

n1(1<§) = X1®—<§ + XK®1—<3 4+ X3® 1—<,
= X1 ® [X, X3]+ X @ [ X3, Xi] + X3 ® [X1, X3].

(e —<13) =3m(3><1)
=X1®,><3 +X01><?
= X1 ® [Xo, [X1, Xo]] + X2 ® [[ X1, Xa], Xi].



The summation maps 7, ‘connect’ 7°(W) and p,(L)

The image of 7, is equal to the bracket kernel D, < L1 ® L,11.

Theorem:

If L bounds a twisted Whitney tower VW of order n, then the order q
Milnor invariants 14(L) vanish for g < n, and

pin(L) = np o 77 (W) € D,

Proof idea: Gropes in B*\ W display longitudes of L as iterated
commutators exactly according to n, o 7/(W)...



The order n twisted Whitney tower filtration on links

W {links in S® bounding order n twisted Whitney towers in B*}
no order n+1 twisted Whitney tower concordance

Obstruction theory = W, is a finitely generated abelian group
Via Cochran’s Bing-doubling techniques get epimorphisms
Ry T =Wy

which send g € 7, to the equivalence class of links bounding an
order n twisted Whitney tower W with 77°(W) = g.



Example of R : 7 — W} for n =2

NS e
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L bounds W with 75°(W) = 3 ><1



Example of R : 7 — W} for n =2

2

= (R

L bounds W with 75°(W) = 2 >— o



Computation of W? for n=0,1,3 mod 4

Have commutative triangle diagram of epimorphisms:

Theorem:
The maps n, : T;” — D, are isomorphisms for n =0,1,3 mod 4.

Corollary:

Forn=0,1,3 mod 4:
® 1, W? =D, and R? : 7,7 — WS¢ are isomorphisms.
o 72(W) € T only depends on L = OW.



Towards computation of W? for remaining cases n =2 mod 4

D, is a free abelian group of known rank for all n, so have a complete
computation of W = D, = T in three quarters of the cases.

Towards understanding the remaining cases n =2 mod 4:
Proposition:
Themapl® J s o —<7 € T47—» induces an isomorphism:

Zo @ Lj = Ker(maj—2 : Tgj—o — Daj-2)



Towards computation of W? for remaining cases n =2 mod 4

Extending the algebraic side of the triangle:

10 J))=——7,® L;



Towards defining higher-order Arf invariants

Ri— induces af : Zy @ Lj — Kg,_5 := ker{piaj 2 : Wg;_5 = Daj >}

<1®J>Zz®ﬁj\ | T
(0 —<J)— 42 - QWZ—z



Higher-order Arf invariant diagram

Also extending the topological side of the triangle:

(ZQ X ﬁj)/ Ker Oéj-/J
T Arf;
(18 )) ——7 8 L, K2
\ y . Rﬁf_z l

(0 —<9) Ta7 -2 W7,

\ lﬂ4j—2
M4j—2
Dyj—o

Arfj = K5, = (Zr @ L)/ Kera?



Higher-order Arf invariants and computation of W, for all n

Corollary:

The groups W5 are classified by Milnor invariants 1, and, in addition,
higher-order Arf invariants Arf; for n = 4j — 2.

In particular, a link bounds an order n+ 1 twisted W if and only if its
Milnor invariants and higher-order Arf invariants vanish up to order n.



Higher-order Arf invariant diagram

(Zy ® L;)/ Kerai?
T Arf;
Z2 ® ‘Cj / KZ}—Z

.



Conjectured higher-order Arf invariant diagram

Conjecture: (Higher-order Arf invariant conjecture)
Arfj 1 K§i_p — Zo ® L are isomorphisms for all j.

n

This conjecture would imply W 2 7= is an isomorphism for all n.



Determining the image of 2 < Arf; < Z, ® L;?

e Arf; corresponds to classical Arf invariants of the link
components. Are the Arf; for j > 1 also determined by finite
type isotopy invariants?

e The links Ry (e —<7 ) realizing the image of Arf; are known
not to be slice by work of J.C. Cha.

e Fundamental first open test case: Does the Bing double of the

Figure-8 knot R¢ (e —<8§; ) € Wg bound an order 7 twisted
Whitney tower?

e [f the Bing double of the Figure-8 knot does bound an order 7
twisted Whitney tower, then Arf; are trivial for all j > 2.



Bing(Fig8) bounds W with t(W) = ((1,2),(1,2))”

W =Dy UDy U W12y U W2 1,2)

VV((I.Z),(LZ))




Re-formulations of the higher-order Arf invariant Conjecture

e There does not exist A : S U S? 9= B* supporting WV with
1,2
tW) = —< gl,zg
(possibly + higher-order trees).

e The Bing double of any knot with non-trivial classical Arf
invariant does not bound an order 6 framed Whitney tower.

e There does not exist A : S U S? = B* supporting WV with

tV) = ((((((1,2), 1), 2), 1), 2), 1))+(((((((1, 2), 2), 1), 2), 1), 2))

(possibly + higher-order trees).



More questions/problems

e Equivariant Milnor and Arf invariant correspondence with
m1-decorated tree-valued intersection invariants for order n
Whitney towers bounded by links in non-simply-connected
3-manifolds?

e Use t(W) to efficiently formulate indeterminacies in Milnor
invariants?

e Higher-order Arf invariants for 2-spheres supporting Whitney
towers in 4-manifolds?
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