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at embedding, in the pres-ence of fundamental group and in the absence of dual spheres. The �rstobstruction is Wall's self-intersection number �(f) which tells the wholestory in higher dimensions. Our second order obstruction �(f) is de�ned if�(f) vanishes and has formally very similar properties, except that it liesin a quotient of the group ring of two copies of �1X modulo S3 -symmetry(rather then just one copy modulo S2 -symmetry). It generalizes to thenon-simply connected setting the Kervaire-Milnor invariant de�ned in [2]and [12] which corresponds to the Arf-invariant of knots in 3-space.We also give necessary and su�cient conditions for moving three mapsf1; f2; f3 : S2 ! X4 to a position in which they have disjoint images.Again the obstruction �(f1; f2; f3) generalizes Wall's intersection number�(f1; f2) which answers the same question for two spheres but is not suf-�cient (in dimension 4) for three spheres. In the same way as intersectionnumbers correspond to linking numbers in dimension 3, our new invariantcorresponds to the Milnor invariant �(1; 2; 3), generalizing the Matsumototriple [10] to the non simply-connected setting.AMS Classi�cation 57N13; 57N35Keywords Intersection number, 4-manifold, Whitney disk, immersed 2-sphere, cubic form1 IntroductionOne of the keys to the success of high-dimensional surgery theory is the followingbeautiful fact, due to Whitney and Wall [14], [15]: A smooth map f : Sn !X2n; n > 2, is homotopic to an embedding if and only if a single obstruction�(f) vanishes. This self-intersection invariant takes values in a quotient ofc
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2 Rob Schneiderman and Peter Teichnerthe group ring Z[�1X] by simple relations. It is de�ned by observing thatgenerically f has only transverse double points and then counting them withsigns and fundamental group elements. The relations are given by an S2 -action (from changing the order of the two sheets at a double point) and aframing indeterminacy (from a cusp homotopy introducing a local kink). HereSk denotes the symmetric group on k symbols.It is well-known that the case n = 2, f : S2 ! X4 , is very di�erent [7], [11],[6]. Even though �(f) is still de�ned, it only implies that the self-intersectionsof f can be paired up by Whitney-disks. However, the Whitney moves, usedin higher dimensions to geometrically remove pairs of double points, cannot bedone out of three di�erent reasons: The Whitney-disks might not be representedby embeddings, they might not be correctly framed, and they might intersect f .Well known maneuvers on the Whitney-disks show however, that the �rst twoconditions may always be attained (by pushing down intersections and twistingthe boundary).In this paper we describe the next step in an obstruction theory for �ndingan embedding homotopic to f : S2 ! X4 by measuring its intersections withWhitney-disks. Our main results are as follows, assuming that X is an oriented4-manifold.Theorem 1 If f : S2 ! X4 satis�es �(f) = 0 then there is a well-de�ned(secondary) invariant �(f) which depends only on the homotopy class of f . Ittakes values in the quotient of Z[�1X � �1X] by relations additively generatedby (BC) (a; b) = �(b; a)(SC) (a; b) = �(a�1; ba�1)(FR) (a; 1) = (a; a)(INT) (a; �(f;A)) = (a; !2(A) � 1):where a; b 2 �1X and A represents an immersed S2 or RP2 in X . In the lattercase, the group element a is the image of the nontrivial element in �1(RP2).If one takes the obstruction theoretic point of view seriously then one shouldassume in Theorem 1 that in addition to �(f) = 0 all intersection numbers�(f;A) 2 Z[�1X] vanish. With these additional assumptions, �(f) is de�nedin a quotient of Z[�1X � �1X] by S3 -and framing indeterminacies. This is incomplete analogy with �(f)!To de�ne �(f), we pick framed Whitney-disks for all double points of f , usingthat �(f) = 0. Then we sum up all intersections between f and the Whitney-disks, recording for each such intersection point a sign and a pair (a; b) 2Algebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 3

Figure 1�1X � �1X . Here a measures the primary group element of a double point off and b is the secondary group element, see Figure 1. After introducing signconventions, the S2 -action already present in �(f) is easily seen to become the\sheet change" relation SC. The beauty of our new invariant now arises fromthe fact that the other relation, which is forced on us by being able to pusharound the intersections points, is of the surprisingly simple form BC (whichstands for \boundary crossing" of Whitney arcs, as explained in Section 3). Inparticular, this means that the notion of primary and secondary group elementsis not at all appropriate. Moreover, one easily checks that the two relations BCand SC together generate an S3 -symmetry on Z[�� �], for any group � . Wewill give a very satisfying explanation of this symmetry after De�nition 8, interms of choosing one of three sheets that interact at a Whitney-disk. Theframing indeterminacy FR comes from the being able to twist the boundary ofa Whitney-disk, and the intersection relation INT must be taken into accountsince one can sum a 2-sphere into any Whitney-disk. Finally, intersections withRP2 's come in because of an indeterminacy in the pairing of inverse images ofdouble points whose primary group elements have order two, as discovered byStong [12].The geometric meaning of �(f) is given by the following theorem, see Section 6for the proof.Theorem 2 �(f) = 0 if and only if f is homotopic to f 0 such that the self-intersections of f 0 can be paired up by framed immersed Whitney-disks withinteriors disjoint from f 0 . In particular, �(f) = 0 if f is homotopic to anembedding.The Whitney-disks given by Theorem 2 may intersect each other and also self-intersect. Trying to push down intersections re-introduces intersections with f .Algebraic & Geometric Topology, Volume 1 (2001)



4 Rob Schneiderman and Peter TeichnerHence one expects third (and higher) order obstructions which measure intersec-tions among the Whitney-disks, pairing them up by secondary Whitney-disksetc. These obstructions indeed exist in di�erent 
avors, one has been applied in[1] to classical knot concordance. In a future paper we will describe obstructionsliving in a quotient of the group ring of �1X � � � � � �1X , where the number offactors re
ects exactly the order of the obstruction. The obstructions will belabeled by the same uni-trivalent graphs that occur in the theory of �nite typeinvariants of links in 3-manifolds. They satisfy the same antisymmetry andJacobi-relations as in the 3-dimensional setting. The reason behind this is thatinvariants for the uniqueness of embeddings of 1-manifolds into 3-manifoldsshould translate into invariants for the existence of embeddings of 2-manifoldsinto 4-manifolds. Note that our �(f) corresponds the letter Y-graph and anti-symmetry is exactly our BC relation.Remark 1 It is important to note that the relation INT implies that �(f)vanishes in the presence of a framed dual sphere A. This implies that �(f)is not relevant in the settings of the surgery sequence and the s-cobordismtheorem. However, there are many other settings in which dual spheres don'texist, for example in questions concerning link concordance. The invariant �therefore gives a new algebraic structure on �2(X) which has to be taken intoaccount when trying to de�ne the correct concept of homology surgery and�-groups in low dimensions.There are many examples where � and � vanish but � is nontrivial. For in�nitefundamental groups, �(f) can take values in an in�nitely generated group, seethe example in Section 4. If X is simply-connected then �(f) takes valuesin Z=2 or 0, depending on whether f is spherically characteristic or not. Inthe former case, �(f) equals the spherical Kervaire-Milnor invariant introducedby Freedman-Quinn [2, Def.10.8]. If X is closed and simply connected thenf has a dual sphere if and only if it represents an indivisible class in H2X .In this case f is represented by a topologically 
at embedding if and onlyif �(f) = 0, see [2, Thm.10.3]. This result was extended independently byHambleton-Kreck [5] and Lee-Wilczynski [8] to divisible classes f . They studysimple embeddings, where the fundamental group of the complement of f isabelian (and �1(X) = 1). Then there is an additional Rohlin obstruction [11]from the signature of a certain branched cover. Moreover, these authors showthat f is represented by a simple embedding if and only if �(f) and the Rohlinobstruction vanish. Gui-Song Li also studied the invariant � in a special setting[9] which actually motivated our discussion.Algebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 5The S3 -symmetry of � comes from the fact that we cannot distinguish thethree sheets interacting at a Whitney-disk. It is therefore not surprising thatthere is a simpler version of this invariant, de�ned for three maps f1; f2; f3 :S2 ! X4 . It can be best formulated by �rst identifying ��� with the quotient(� � � � �)=�(�), where � denotes the diagonal right action of � . Let � :=Z[(�����)=�(�)] which is a Z[�����]-module via left multiplication. It alsohas an obvious S3 -action by permuting the three factors. This action agreeswith the action generated by BC and SC if we make the correct identi�cationof � with Z[�� �].Now de�ne R to be the Z[�� � � �]-submodule of � generated by(a; b; �(f3; A)); (a; �(f2; A); b); (�(f1; A); a; b) 2 �where a; b 2 � := �1X and A 2 �2X are arbitrary. The following result will beproven in Section 7.Theorem 3 In the above notation, assume that �(fi; fj) = 0 for i 6= j . Thenthere is a well de�ned secondary obstruction�(f1; f2; f3) 2 �=Rwhich only depends on the homotopy classes of the fi . It vanishes if and only ifthe fi are homotopic to three maps with disjoint images. Moreover, it satis�esthe following algebraic properties (where a; a0 2 � and � 2 S3 ):(i) �(a � f1 + a0 � f 01; f2; f3) = (a; 1; 1) � �(f1; f2; f3) + (a0; 1; 1) � �(f 01; f2; f3),(ii) �(f�(1); f�(2); f�(3)) = �(f1; f2; f3)� ,(iii) �(f; f; f) =P�2S3 �(f)� if f has trivial normal bundle,(iv) �(f1+f2+f3)��(f1+f2)��(f1+f3)��(f2+f3)+�(f1)+�(f2)+�(f3) =�(f1; f2; f3),(v) �(a � f) = a�1�(f)a.These properties are the precise analogues of the fact that Wall's (�; �) is a\quadratic form" on �2(X) (or a hermitian form with a quadratic re�nement),see [14, x5]. To make this precise one has to identify Z[(���)=�(�)] with Z[�]via the map (a; b) 7! a � b�1:Then the usual involution a 7! a�1 corresponds to 
ipping the two factorswhich explains why (ii) above generalizes the notion of a hermitian form. Itwould be nice if one could formalize these \cubic forms", guided by the aboveproperties.Algebraic & Geometric Topology, Volume 1 (2001)



6 Rob Schneiderman and Peter TeichnerNote that if the primary intersection numbers �(fi; A) vanish for all A 2 �2X ,then �(f1; f2; f3) is well de�ned as an element of Z[�1X � �1X]. If X issimply-connected, this reduces to the Matsumoto triple from [10]. Garoufalidisand Levine have also introduced equivariant �(1; 2; 3)-invariants in [3] for nullhomotopic circles in a 3-manifold N3 . These invariants agree with our triple� applied to three disks in N3 � [0; 1] that display the null homotopies. If onewants to get spheres instead of disks, one should attach 2-handles to all thecircles, and glue the cores to the null homotopies. In [3] the indeterminacies ofthe invariants are not discussed but it is shown that they agree for two links ifand only if they are surgery equivalent [3, Thm.5].The obstruction �(f1; f2; f3) generalizes Wall's intersection number �(f1; f2)which answers the disjointness question for two spheres but is not su�cient(in dimension 4) for three spheres. In an upcoming paper we will describenecessary and su�cient obstructions for making n maps f1; : : : ; fn : S2 ! X4disjoint. The last obstructions will lie in the group ring of (n � 1) copies of�1X , assuming that all previous obstructions vanish.The current paper �nishes with Section 8 by giving the following generalizationof Theorem 1 and Theorem 2 to the case of arbitrarily many maps.Theorem 4 Given f1; : : : ; fn : S2 ! X4 with vanishing primary � and �-obstructions, there exists a well-de�ned secondary obstruction �(f1; : : : ; fn)which depends only on the homotopy classes of the fi . This invariant vanishesif and only if, after a homotopy, all intersections and self-intersections can bepaired up by Whitney-disks with interiors disjoint from all fi(S2). This is inparticular the case if the fi are homotopic to disjoint embeddings.The invariant �(f1; : : : ; fn) takes values in a quotient of �n1�+2�n2�+�n3� copiesof � which re
ects the number of di�erent combinations of possible intersectionsbetween Whitney-disks and spheres.In this paper we assume that our 4-manifolds are oriented and we work in thesmooth category. However, our methods do not distinguish the smooth fromthe topological category since the basic results on topological immersions [2]imply a generalization of our results to the topological world.2 PreliminariesWe refer the reader to the book by Freedman and Quinn [2, x1] for the ba-sic de�nitions of things like Whitney-disks, Whitney moves, �nger moves andAlgebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 7Wall's intersection and self-intersection numbers � and � (see also [14]). Weonly make a couple of summarizing remarks.Let f : S2 ! X4 be a smooth map. After a small perturbation we may assumethat f is a generic immersion. This means that the singularities of f consistonly of transverse self-intersection points. Furthermore, we may perform somecusp homotopies to get the signed sum of the self-intersection points of f tobe zero as an integer. By an old theorem of Whitney, immersions f : S2 # X4as above, modulo regular homotopy, are the same as homotopy classes of mapsS2 ! X4 . We will thus assume that our maps S2 # X4 are immersionswith only transverse self-intersections whose signed sum is zero. Then we workmodulo regular homotopy. The advantage of this approach comes from the factthat by general position, a regular homotopy is (up to isotopy) the compositionof �nitely many �nger moves and then �nitely many Whitney moves. Thisimplies that �(f) is well-de�ned in the quotient of the group ring Z[�1X] bythe S2 -action a 7! a�1 .Let f : S2 # X4 be a generic immersion and let p; q 2 X be double points ofopposite sign. Choose two embedded arcs in S2 connecting the inverse imagesof p to the inverse images of q but missing each other and all other double pointsof f . The image 
 of the union of these Whitney arcs is called a Whitney circlefor p; q in X . Let W : D2 # X be an immersion which is an embedding onthe boundary with W (S1) = 
 . The normal bundle of W restricted to 
 hasa canonical nonvanishing section s
 which is given by pushing 
 tangentiallyto f along one of the Whitney arcs and normally along the other. Therefore,the relative Euler number of the normal bundle of W is a wellde�ned integer.If one changes W by a (nonregular) cusp homotopy then the Euler numberchanges by �2, see [2, x1.3]. This implies that one really has a Z=2-valuedframing invariant. An additional boundary twist can be used to change theEuler number by one. Note that this introduces an intersection between Wand f and thus does not preserve the last property below.De�nition 5 Let W : D2 # X be an immersion as above.(i) If W has vanishing relative Euler number, then it is called a framedWhitney-disk. Some authors also add the adjective immersed but wesuppress it from our notation.(ii) If in addition W is an embedding with interior disjoint from f , then Wis called an embedded Whitney-disk for f .If W is an embeddedWhitney-disk one can do the Whitney move to remove thetwo double points p and q . If one of the conditions for an embedded Whitney-Algebraic & Geometric Topology, Volume 1 (2001)



8 Rob Schneiderman and Peter Teichnerdisk are not satis�ed the Whitney move can still be done but it introduces newself-intersections of f .The vanishing of �(f) means that the double points of f occur in cancellingpairs with opposite signs and contractible Whitney circles. Therefore, thereexists a collection of framed Whitney-disks pairing up all the double points off .3 The invariant �In this section we de�ne the invariant � of Theorem 1 in terms of fundamentalgroup elements which are determined by two kinds of intersections: Intersec-tions between the interiors of Whitney-disks and the sphere f and intersectionsamong the boundary arcs of the Whitney-disks. The de�nition will involve �rstmaking choices and then modding out the resulting indeterminacies. Manyof these indeterminacies will be noted during the course of the de�nition buta complete proof that �(f) is indeed well-de�ned (and only depends on thehomotopy class of f ) will be given in Section 5.In the following discussion we will not make a distinction between f and itsimage unless necessary. Also, basepoints and their connecting arcs (whiskers)will be suppressed from notation.Let f : S2 # X4 be an oriented generic immersion with vanishing Wall selfintersection invariant �(f) = 0. As explained above, the vanishing of �(f)implies that we may choose framed Whitney-disks Wi for all canceling pairs(p+i ; p�i ) of double points of f where sign(p+i ) = +1 = � sign(p�i ). We may as-sume that the interiors of the Whitney-disks are transverse to f . The boundaryarcs of the Wi are allowed to have transverse intersections and self-intersections(as arcs in f ).Remark 2 In the literature it is often assumed that a collection of Whitney-disks will have disjointly embedded boundary arcs. Whitney-disks with im-mersed boundaries were called \weak" Whitney-disks in [2] and [12]. Allowingsuch weak Whitney-disks in the present setting will simplify the proof that �is well-de�ned.For each Wi choose a preferred arc of @Wi which runs between p+i and p�i . Wewill call this chosen arc the positive arc of Wi and the arc of @Wi lying in theother sheet will be called the negative arc. We will also refer to a neighborhoodAlgebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 9in f of the positive (resp. negative) arc as the positive (resp. negative) sheetof f near Wi . This choice of positive arc determines an orientation of Wi asfollows: Orient @Wi from p�i to p+i along the positive arc and back to p�ialong the negative arc. The positive tangent to @Wi together with an outwardpointing second vector orient Wi . The choice of positive arc also determinesa fundamental group element gi by orienting the double point loops to changefrom the negative sheet to the positive sheet at the double points p�i . (SeeFigure 2) Note that changing the choice of positive arc reverses the orientationof Wi and changes gi to g�1i . These orientation conventions will be assumedin the de�nitions that follow.

Figure 2: Whitneydisk conventions.For a point x 2 intWi \ f , de�ne hx 2 �1(X) from the following loop: Go�rst along f from the basepoint to x, then along Wi to the positive arc of Wi ,then back to the basepoint along f . This loop (together with the whisker onf ) determines hx . (See Figure 2). Note that changing the choice of positivearc for Wi changes hx to hxg�1i .Notation convention: For a sum of elements in the integral group ringZ[�1X � �1X] with a common �rst component it will sometimes be convenientto write the sum inside the parentheses:(g;Pjnj � gj) :=Pjnj � (g; gj) 2 Z[�1X � �1X]:We can now begin to measure intersections between the Whitney-disks and fAlgebraic & Geometric Topology, Volume 1 (2001)



10 Rob Schneiderman and Peter Teichnerby de�ning I(Wi) := (gi;Px sign(x)hx) 2 Z[�1X � �1X]where the sum is over all x 2 intWi \ f , and sign(x) = �1 comes from theorientations of f and Wi as above.Remark 3 I(Wi) encodes Wall-type intersections between Wi and f and canbe roughly written as (gi; �(Wi; f)). We will see that �(f) measures to whatextent the sum over i is well-de�ned. This idea will be developed further inSection 7.Next we set up notation to measure intersections between the boundaries of theWhitney-disks. Denote the positive arc (resp. negative arc) of Wi by @+Wi(resp. @�Wi ). Let y be any point in @�iWi \ @�jWj where the ordered basis(��!@Wi;��!@Wj) agrees with the orientation of f at y . De�neJ(y) := �i�j(g�ii ; g�jj ) 2 Z[�1X � �1X]where �k 2 f+;�gb=f+1;�1g.Note that by pushing Wi along @Wj , as in Figure 3, y could be eliminatedat the cost of creating a new intersection point x 2 intWi \ f with hx =g�jj whose contribution to I(Wi) would be �i�j(g�ii ; g�jj ) = J(y). Similarly, ycould also be eliminated by pushing Wj along @Wi which would create a newintersection point in intWj \ f ; however this new intersection point wouldcontribute ��i�j(g�jj ; g�ii ) to I(Wj) illustrating the need for the BC relation.

Figure 3: Eliminating an intersection between Whitneydisk boundaries creates an in-terior intersection between a Whitneydisk and f .Having made the above choices we now de�ne our invariant:Algebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 11De�nition 6 For f as above, de�ne�(f) :=Xi I(Wi) +Xy J(y) 2 Z[�1X � �1X]=Rwhere the �rst sum is over all Whitney-disks and the second sum is over allintersections between the boundaries of the Whitney-disks.The relations R are additively generated by the following equations:(BC) (a; b) = �(b; a)(SC) (a; b) = �(a�1; ba�1)(FR) (a; 1) = (a; a)(INT) (a; �(f;A)) = (a; !2(A) � 1):Here a and b are any elements in �1X and 1 2 �1X is the trivial element. Thelabels BC, SC, FR and INT stand for \boundary crossing", \sheet change",\framing" and \intersections", respectively. As discussed above, the BC rela-tion comes from the indeterminacy in the J -component of �(f) and the otherthree relations come from indeterminacies in the I -component of �(f). Thesheet change SC has been already discussed above, whereas FR comes aboutas follows: Changing a Whitney-disk Wi by a boundary twist around the pos-itive (resp. negative) arc creates x 2 intWi \ f with hx = 1 2 �1(X) (resp.hx = gi 2 �1X ). After introducing an even number of boundary twists, thecorrect framing on Wi can be recovered by introducing interior twists (if nec-essary); this changes I(Wi) by (gi; n+m � gi) where n and m are integers andn � m modulo 2. Note that by the BC and SC relations we have(a; 1) = �(1; a) = (1; a) = �(a; 1) () (a; 2) = 0and hence the relation FR above is all that is needed in addition to this relation.The INT relation comes from changing the homotopy class of Wi by tubinginto any 2-sphere A. After correcting the framing on Wi by boundary-twists(if necessary) this changes I(Wi) by (gi; �(f;A) + !2(A) � 1). The !2 termis only de�ned modulo 2 but still makes sense in Z[�1X � �1X]=R because(gi; 2) = 0.The INT relation should, in fact, be interpreted in a more general sense whichwe now describe. This goes back to an error in [2] as corrected by Stong [12].In the case where a 2 �1X satis�es a2 = 1, then we allow A to be not just anyimmersed 2-sphere in X but also any immersed RP2 in X representing a, thatis, a is the image of the generator of the fundamental group of RP2 . In general,a Wall intersection between an immersed RP2 and f is not well-de�ned becauseAlgebraic & Geometric Topology, Volume 1 (2001)



12 Rob Schneiderman and Peter TeichnerRP2 is not simply connected. However, the expression (a; �(f;A)) makes sensein Z[�1X � �1X]=R because of the SC relation which accounts exactly for thefundamental group of RP2 and the orientation-reversing property of any non-trivial loop. As will be seen in the proof of Theorem 1 below, the INT relationin this case corresponds to a subtle indeterminacy in the choice of Whitney-diskfor a cancelling pair of double points whose group element a has order two.Remark 4 It is interesting to note that one can always use �nger moves toeliminate all intersections between f and the interiors of the Wi so that �(f)is given completely in terms of the J contributions from intersections betweenthe boundary arcs @Wi . On the other hand, the boundary arcs @Wi can alwaysbe made to be disjointly embedded (Figure 3) so that �(f) is completely givenin terms of the contributions to the I(Wi) coming from intersections betweenf and the interiors of the Wi .Remark 5 If X is simply connected then Z[�1X � �1X]=R is Z=2 or 0 de-pending on whether f is spherically characteristic or not. Moreover, �(f)reduces to the spherical Kervaire-Milnor invariant km(f) 2 Z2 described in [2]and [12]. If X is not simply connected then km(f) is equal to �(f) mappedforward via �1X ! f1g.Remark 6 One can modify the relations R to get a version of � that ignoresthe framings on the Whitney-disks and a corresponding unframed version ofTheorem 2: Just change the FR relation to (a; 1) = 0 and note that this killsthe !2 term in the INT relation.4 ExamplesIn this section we describe examples of immersed spheres f : S2 # X suchthat Z[�1X � �1X]=R is in�nitely generated and �(f) realizes any value inZ[�1X � �1X]=R.Figure 4 shows the case (l;m; n) = (2; 4; 3) of a family of 2-component linksin S3 = @B4 indexed by triples of integers. A 4-manifold X is described byremoving a tubular neighborhood of the obvious spanning disk (pushed intoB4) for the dotted component and attaching a 0-framed 2-handle to the othercomponent. A meridian t to the dotted component generates �1X = hti �= Z.The other component is an \equator" to an immersed 2-sphere f : S2 # X with�(f) = 0 which generates �2(X) as we now describe. One hemisphere of f is theAlgebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 13

Figure 4core of the 2-handle. The other hemisphere of f is the trace of a nullhomotopyof the equator in a collar of X . This nullhomotopy is described by changingthe two crossings labeled p� and then capping o� the resulting unknot withan embedded disk. The only two double points of f come from the crossingchanges of the nullhomotopy and form a canceling pair with correspondinggroup element tn . The dashed loop indicates a collar of a framed embeddedWhitney-disk W for this cancelling pair. The interior of W intersects f inl points xj , j = 1; 2; : : : ; l , with hxj = tm for all j . It follows that �(f) =l(tn; tm) 2 Z[�1X � �1X]. By band summing di�erent members of this familyof links one can generalize this construction to describe f : S2 # X with�(f) = 0, �1X = Z, and �2(X) = hfi such that �(f) realizes any value inZ[�1X � �1X]=R.Since f generates �2(X) and �(f) = 0 (and !2(f) = 0) the INT relation istrivial. So in this case Z[�1X � �1X]=R is the quotient of Z[Z2] by the order6 orbits of the S3 action generated by the SC and BC relations together withthe identi�cation of the diagonal with the �rst factor given by the FR relation.In particular Z[�1X � �1X]=R is not �nitely generated.Algebraic & Geometric Topology, Volume 1 (2001)



14 Rob Schneiderman and Peter Teichner5 Proof of Theorem 1To prove Theorem 1 we �rst show that �(f) (as de�ned in Section 3) is well-de�ned by considering all the possible indeterminacies in the Whitney-disk con-struction used to de�ne � and then check that �(f) is unchanged by �ngermoves and Whitney moves on f which generate homotopies of f . The outlineof our proof mirrors the arguments in [2], [12] with the added complications ofworking with signs and �1X .In the setting of Section 3, let f : S2 # X be a generic immersion with �(f) = 0and cancelling pairs of double points (p+i ; p�i ) paired by framed Whitney-disksWi with chosen positive arcs.Changing the choice of positive arc for a Whitney-disk Wi changes the orienta-tion of Wi and changes the contribution to I(Wi) of each x 2 int(Wi)\ f from�(gi; hx) to �(g�1i ; hxg�1i ). This does not change �(f) by the SC relation.Consider the e�ect on I(Wi) of changing the interior of a Whitney-disk Wi :Let Wi0 be another framed Whitney-disk with @Wi0 = @Wi . After performingboundary twists on Wi (if necessary), Wi (minus a small collar on the bound-ary) and Wi0 (with the opposite orientation and minus a small collar on theboundary) can be glued together to form an immersed 2-sphere A which istransverse to f . If n boundary twists were done around the positive arc andm boundary twists were done around the negative arc we haveI(Wi)� I(Wi0) = (gi; �(f;A)) + n(gi; 1) +m(gi; gi) = (gi; �(f;A) + (n+m) � 1)where the second equality comes from the FR relation. Since (before the bound-ary twists) Wi and Wi0 were correctly framed we have n +m � !2(A) mod2. It follows that I(Wi)� I(Wi0) equals zero in Z[�1X � �1X]=R by the INTrelation. Thus the contribution of I(Wi) to �(f) only depends on @Wi .Now consider changing @Wi by a regular homotopy rel (p+i ; p�i ). Such a ho-motopy extends to a regular homotopy of Wi which is supported in a smallcollar on @Wi . Away from the double points of f the homotopy can create oreliminate pairs of intersections between boundary arcs. These pairs have can-celing J contributions so that �(f) is unchanged. When the homotopy crossesa double point pj of f a new intersection x 2 f\int(Wi) and a new intersectiony 2 @�iWi \ @�jWj are created (see Figure 5). One can check that the contribu-tion of x to I(Wi) is cancelled in Z[�1X � �1X]=R by J(y): If �i = + = �j andthe orientation of f at y agrees with (��!@Wi;��!@Wj) then x contributes �(gi; gj)and J(y) = (gi; gj); If �i = + = �j and the orientation of f at y agrees with(��!@Wj ;��!@Wi) then x contributes +(gi; gj) and J(y) = (gj ; gi) = �(gi; gj) by theAlgebraic & Geometric Topology, Volume 1 (2001)
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Figure 5BC relation. Other cases are checked similarly. Since any two collections ofimmersed arcs (with the same endpoints) in a 2-sphere are regularly homotopic(rel @ ), it follows that �(f) does not depend on the choices of Whitney-disksfor given pairings (p+i ; p�i ) of the double points of f .
Figure 6To show that �(f) is well-de�ned it remains to check that it does not dependon the choice of pairings of double points. If (p+i ; p�i ) and (p+j ; p�j ) are pairedby Whitney-disks Wi and Wj with gi = gj then (p+i ; p�j ) and (p+j ; p�i ) are alsocanceling pairs. Let W be a Whitney-disk for (p+i ; p�j ). A framedWhitney-diskW 0 for (p+j ; p�i ) can be formed by connecting W to Wi and Wj using twistedstrips as in Figure 6 so thatI(W ) + I(W 0) = I(W ) + I(Wi) + I(Wj)� I(W ) = I(Wi) + I(Wj):Since any two choices of pairings are related by a sequence of interchangingpairs of double points in this way, it follows that �(f) does not depend on howthe pairs are chosen from the double points with the same group elements andopposite signs.Algebraic & Geometric Topology, Volume 1 (2001)



16 Rob Schneiderman and Peter TeichnerThere is one more subtlety to check regarding the pairings which is discussedin [12] but neglected in [2]: the pairing of the pre-images of a canceling pair(p+i ; p�i ) of double points with group element gi such that gi2 = 1. Sincegi = gi�1 , the inverse image of the positive arc of a Whitney-disk Wi can joinan inverse image of p�i to either of the two inverse images of p+i .Let Wi and Wi0 be Whitney-disks corresponding to the two ways of pairingthe inverse images of such a cancelling pair (p+i ; p�i ) with g2i = 1. The unionof the inverse images of the boundary arcs of Wi and Wi0 is a loop c in S2which is the union of two pairs of arcs c� := f�1(@�Wi) and c0� := f�1(@�Wi0)(see Figure 7). By previous arguments we may assume that c is embedded andbounds a 2-cell D in S2 such that f restricts to an embedding on D . The unionA of the image of D together with Wi and Wi0 is (after rounding corners) animmersed RP2 representing gi . Since Wi and Wi0 are correctly framed, thenumber of new intersections between A and f that are created by perturbingA to be transverse to f will be congruent to !2(A) modulo 2. Each of thesenew intersections will have group elements gi or 1 so thatI(Wi)� I(Wi0) = (gi; �(f;A) + !2(A)):Thus �(f) does not depend on the choice of the pairings of the pre-images ofthe double points by the INT relation.Remark 7 If �1X has no 2-torsion then the above immersion RP2 # X isspherical and hence the INT relation only consists of intersections with spheres.
Figure 7: The inverse image of the boundaries of two Whitneydisks for a canceling pairof doublepoints with group element gi where g2i = 1.We have shown that �(f) is well-de�ned; it remains to show that it is a homo-topy invariant. As explained in Section 2 it su�ces to show that it is invariantambient isotopies, �nger moves, and (embedded) Whitney moves so we willcheck that these moves do not change �(f). Any isotopy of f can be extendedto the Whitney-disks without creating any new intersections between f and theAlgebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 17interiors of the Whitney-disks so that �(f) is unchanged. A �nger move createsa cancelling pair of double points of f equipped with a clean Whitney-disk W ,i.e. W is embedded and intW \ f = ;. Since a �nger move is supported in aneighborhood of an arc it can be assumed to miss all pre-existing Whitney-disks.Thus �(f) is unchanged by �nger moves. A Whitney move on f pre-supposesthe existence of a clean Whitney-disk W . We may assume that W is includedin any collection of Whitney-disks used to compute �(f). The boundaries ofall other Whitney-disks can be made disjoint from @W by applying the moveof Figure 3 which does not change �(f). A Whitney move on W eliminatesthe double points paired by W and creates a pair of new intersections betweenf and intWi for each point of intersection in intW \ intWi . These new pairsof intersections have cancelling contributions to �(f) and so the net change iszero. �6 Proof of Theorem 2The \if" directions of Theorem 2 are clear from the de�nition of �(f). The\only if" direction will be shown using the following lemma.Lemma 7 If �(f) = 0 then after a homotopy of f (consisting of �nger moves)the self-intersections of f can be paired up by framed Whitney-disks Wi withdisjointly embedded boundaries such that I(Wi) = 0 2 Z[�1X ��1X] for all i.The geometric content of this lemma is that all the intersections between f andthe interior of each Whitney-disk Wi are paired by a second layer of Whitney-disks: Since I(Wi) = 0 the intersections between intWi and f come in pairsxij� where hxij+ = hxij� 2 �1X and signxij+ = � signxij� . The union ofan arc in Wi (missing all double points of Wi) joining xij� and an arc in fjoining xij� (and missing all double points of f ) is a nullhomotopic loop whichbounds a Whitney-disk Vij for the pair xij� (See Figure 8).The proof of Lemma 7 will be given shortly, but �rst we use it to complete theproof of Theorem 2.We may assume, as just noted, that the self-intersections of f are paired byframed Whitney-disks Wi with disjointly embedded boundaries such that allintersections between the interiors of the Wi and f are paired by Whitney-disksVij . The Vij can be assumed to be correctly framed after introducing boundarytwists (if necessary) around the arcs of the @Vij that lie on the Wi .Algebraic & Geometric Topology, Volume 1 (2001)



18 Rob Schneiderman and Peter Teichner

Figure 8: A secondary Whitneydisk Vij .The proof of Theorem 2 can be completed in two steps: First use �nger moveson f to trade all intersections between f and the interiors of the Vij for new self-intersections of f . These new self-intersections come paired by clean Whitney-disks disjoint from all other Wi . Next use the Vij to guide Whitney moves onthe Wi eliminating all intersections between f and the interiors of the Wi . Thissecond step may introduce new interior intersections between Whitney-disks butthese are allowed. These modi�ed Wi together with the new clean Whitney-disks have interiors disjoint from f and disjointly embedded boundaries. �It remains to prove Lemma 7. The idea of the proof is to �rst arrange for �(f)to be given just in terms of cancelling pairs of intersections between f and theinteriors of the Whitney-disks; then using the move described in Figure 10 eachcancelling pair can be arranged to occur on the same Whitney-disk.Proof Let f satisfy �(f) = 0 and Wi be framed Whitney-disks pairing allthe double points of f . The Wi may be assumed to have disjointly embed-ded boundaries after applying the move of �gure 3. We now describe threemodi�cations of f and the collection of Whitney-disks which can be used togeometrically realize the relations FR, INT, and BC so that �(f) vanishes inthe quotient of Z[�1X � �1X] by the single relation SC. (1) A �nger move onf guided by an arc representing a 2 �1(X) creates a cancelling pair of dou-ble points of f which are paired by a clean Whitney-disk W . By performingboundary twists and interior twists on W one can create intersections betweenintW and f so that I(W ) = n(a; 1) +m(a; a) for any integers n and m suchthat n � m modulo 2. (2) By similarly creating a clean Whitney-disk W andtubing into any immersed sphere representing A 2 �2(X) it can be arrangedthat I(W ) = (a; �(f;A) + !2(A)). (3) If a Whitney-disk W has an interiorAlgebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 19intersection point x with f that contributes �(a; b) to I(W ) then x may beeliminated by a �nger move at the cost of creating a new pair p� of doublepoints of f which admit a Whitney-disk W 0 (with embedded boundary dis-joint from existing Whitney-disks) such that intW 0 has a single intersectionwith f and I(W 0) = �(b; a) (See Figure 9). By using these three modi�cationswe may assume that our collection of Whitney-disks satis�es Pi I(Wi) = 0 inZ[�1X � �1X] modulo the SC relation.

Figure 9We can now move pairs of intersection points which have algebraically cancellingcontributions to �(f) on to the same Whitney-disk as follows (see [16] for adetailed description of the simply-connected case.) The �nger move illustratedin Figure 10 exchanges a point x 2 intWj \ f that contributes (a; b) to I(Wj)for a point x0 2 intWi \ f that contributes (a; b) to I(Wi). This �nger movealso creates two new double points of f which admit a Whitney-disk W (with@W embedded and disjoint from all other Whitney-disks) such that I(W ) =(b; a)�(b; a) = 0. By performing this �nger move through the negative arc of Wjinstead of the positive arc one can similarly exchange a point x 2 intWj\f thatcontributes �(a�1; ba�1) to I(Wj) for a point x0 2 intWi \ f that contributes(a; b) to I(Wi). In this way it can be arranged that all double points of f arepaired by Whitney-disks Wi such that I(Wi) = 0 2 Z[�1X � �1X] for all i.
7 An invariant for a triple of immersed spheresIn this section we de�ne the cubic invariant �(f1; f2; f3) of Theorem 3 andsketch the proof that it gives a complete obstruction to making the fi disjoint.Algebraic & Geometric Topology, Volume 1 (2001)
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Figure 10The invariant is again given in terms of fundamental group elements determinedby secondary intersections, where in this case the relevant intersections arebetween Whitney-disks on two of the spheres and the other sphere. However,we will pursue the point of view of Remark 3 and de�ne the group elementsvia Wall-type intersections between the fi and the Whitney-disks. While thisapproach initially increases the indeterminacy (due to choosing whiskers forall the Whitney-disks) it will eventually serve to symmetrize the algebra andclarify the origin of the S3 -action in the invariant �(f) for a single map of asphere. As before, we get an invariant taking values in a quotient of Z[�� �],this time via the identi�cation with Z[� � � � �=�(�)] where � denotes thediagonal right action of � := �1X .Let f1; f2; f3 : S2 # X be an ordered triple of oriented immersed spheres withpairwise vanishing Wall intersections �(fi; fj) = 0 in an oriented 4-manifoldX . Choose Whitney-disks with disjointly embedded boundaries pairing allintersections between fi and fj for each pair i 6= j . The notation for Wallintersections tacitly assumes that each fi is equipped with a whisker (an arcconnecting a basepoint on fi to the basepoint of X ). Now choose whiskers foreach of the Whitney-disks. Orient all the Whitney-disks as follows: If W ij isa Whitney-disk for a cancelling pair of intersections between fi and fj withi < j then take the positive (resp. negative) arc of W ij to lie on fi (resp. fj ).As in Section 3, orient W ij by orienting @W ij in the direction of the positiveintersection point along the positive arc then back to the negative intersectionpoint along the negative arc and taking a second outward-pointing vector. Toeach intersection point x between fk and the interior of a Whitney-disk W ijAlgebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 21for a cancelling pair in fi \ fj we associate three fundamental group elementsas follows: The positive (resp. negative) group element is determined by a loopalong the positive (resp. negative) sheet, then back along W ij (and the whiskeron W ij ). The interior group element is determined by a loop along fk to xand back along W ij . The three group elements are ordered by the inducedordering of fi; j; kg on the sheets. Thus each such x determines an elementin � := (� � � � �)=�(�) where the diagonal right action � is divided out inorder to remove the choice of the whisker for the Whitney-disks. Denoting thepositive, negative and interior elements for x 2 intW ijr \ fk by g+r , g�r and hxrespectively, we now set up notation to measure the intersections between thespheres and the Whitney-disks by de�ning three elements in the abelian group� := Z[(�� � � �)=�(�)] as follows:I3(W 12r ) := Xx2W 12r \f3 sign(x)(g+r ; g�r ; hx) 2 �;I2(W 13r ) := Xx2W 13r \f2� sign(x)(g+r ; g�r ; hx) 2 �;and I1(W 23r ) := Xx2W 23r \f1 sign(x)(g+r ; g�r ; hx) 2 �:Denote by R the subgroup additively generated by(a; b; �(f3; A)); (a; �(f2; A); c); (�(f1; A); b; c) 2 �where a; b; c 2 � and A 2 �2X are arbitrary.De�nition 8 In the above setting de�ne�(f1; f2; f3) :=Xr I(W 12r ) +Xr I(W 23r ) +Xr I(W 31r ) 2 �=R:where the sums are over all Whitney-disks for the intersections between the fi .Remark 8 By modifying the construction of Section 4 one can describe manytriples with non-vanishing �(f1; f2; f3), for instance by shrinking three com-ponents of the Bing double of the Hopf link in the complement of the fourthcomponent.Algebraic & Geometric Topology, Volume 1 (2001)



22 Rob Schneiderman and Peter TeichnerBefore sketching the proof of Theorem 3 we now describe a nice formalismwhich explains the presence of the S3 indeterminacy in the de�nition of �(f)which is absent in the case of �(f1; f2; f3) for a triple. In both cases one assigns(two respectively three) fundamental group elements to each intersection pointbetween the interior of a Whitney-disk and a sheet of a sphere which we willrefer to as the interior sheet.
Figure 11For each such intersection point the corresponding interior sheet \interacts"with the positive and negative sheets of the Whitney-disk in the followingsense: By pushing down the interior sheet into the positive (resp. negative)sheet one can eliminate the original intersection point at the cost of creatinga new cancelling pair of intersections which admits a new Whitney-disk whichhas an interior intersection point with the negative (resp. positive) sheet (seeFigure 11). Note that this trading of one intersection point for another takesplace in a neighborhood of the original Whitney-disk and the e�ect of pushingdown into a sheet is the same as the e�ect of doing a Whitney move (see Fig-ure 12). It is clear that any invariant de�ned in terms of such intersections willhave \local" indeterminacies corresponding to this local interaction between thethree sheets.This interaction can be described by associating a decorated uni-trivalent treewith one interior vertex to each intersection point x between the interior ofa Whitney-disk and a sheet as follows (see Figure 13). The interior vertexrepresents the Whitney-disk and the three univalent vertices represent sheets offi , fj and fk , two of which are the positive and negative sheets of the Whitney-disk, the other being the interior sheet corresponding to x. The three edges areoriented inward and represent the corresponding positive, negative and interiorgroup elements. The relations that are forced on the triple of group elements bythe above described interactions between the sheets correspond to (signed) graphautomorphisms of the tree which preserve the labels of the univalent verticesAlgebraic & Geometric Topology, Volume 1 (2001)
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Figure 12

Figure 13(with the sign given by the sign of the induced permutation of the vertices).In particular, if i = j = k as in the case of �(f), then the automorphism group isS3 . In fact, if one de�nes �(f) by the conventions of this section (i.e., choosingwhiskers for the Whitney-disks, etc.) then the S3 -action is obvious becausethe SC and BC relations become (a; b; c) = �(b; a; c) and (a; b; c) = �(a; c; b)respectively. If i, j and k are distinct as in the case of �(f1; f2; f3) then theautomorphism group is trivial and no \local" relations are needed. We willsee in Section 8 that the expected S2 indeterminacy (corresponding to graphautomorphisms which �x one univalent vertex) is present in the de�nition of�(f1; f2) for a pair.Remark 9 Higher order generalizations of � will have indeterminacies thatcorrespond to antisymmetry and Jacobi relations known from the theory of�nite type invariants of links in 3-manifolds.Algebraic & Geometric Topology, Volume 1 (2001)



24 Rob Schneiderman and Peter TeichnerWe now give a proof of Theorem 3. Since the arguments are essentially thesame as those of Section 5 (with the added convenience of working with muchless indeterminacy) the steps will be indicated with details omitted.Proof First note that since the fi are ordered all the Whitney-disks are canon-ically oriented via our convention. Thus the signs associated to the intersectionsbetween the Whitney-disks and the fi are well-de�ned. Also, the element of �associated to such an intersection point does not depend on the choice of whiskerfor the Whitney-disk because we are modding out by the diagonal right action�(�) of � . Since any two Whitney-disks with the same boundary di�er by anelement A 2 �2X , �(f1; f2; f3) does not depend on the choices of the interiorsof the Whitney-disks because it is measured in the quotient of � by R.In order to show that �(f1; f2; f3) does not depend on the boundaries of theWhitney-disks it is convenient to generalize the de�nition of �(f1; f2; f3) toallow weak Whitney-disks along the lines of Section 3. For each y 2 @W ij \@W ik , where j 6= k and (���!@W ij;���!@W ik) agrees with the orientation of fi at y ,de�ne J(y) 2 � from the following three group elements: Give W ij and W ika common whisker at y then take the positive and negative group elementsof W ij together with the group element of W ik corresponding to the sheetfk . De�ne the sign of J(y) to be equal to the sign of the permutation (ijk).The generalized de�nition of �(f1; f2; f3) includes the sum of J(y) over such y .Note that this generalization does not require any new relations and reduces tothe original de�nition after eliminating the intersections and self-intersectionsbetween boundaries of the Whitney-disks in the usual way (Figure 3). Thearguments of Section 5 now apply to show that �(f1; f2; f3) does not dependon the boundaries of the Whitney-disks: pushing the boundary of a Whitney-disk across an intersection point (Figure 5) creates an interior intersection inthe collar of the Whitney-disk and a boundary intersection with cancellingcontributions to �(f1; f2; f3). Independence of the choice of pairings of theintersection points (see Figure 6) also follows. Note that in the present settingthere are no subtleties concerning the pre-images of intersection points. Thus�(f1; f2; f3) is well-de�ned.To see that �(f1; f2; f3) is invariant under homotopies of the fi it su�ces tocheck invariance under �nger moves and Whitney moves on embeddedWhitney-disks. Finger moves only create embedded Whitney-disks which clearly don'tchange �(f1; f2; f3). A Whitney move on an embedded Whitney-disk W whicheliminates a pair of self-intersections on fi will create a new pair of intersectionsbetween fi and W jk for each intersection between W jk and W , but thesenew intersections have cancelling contributions to �(f1; f2; f3) which remainsAlgebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 25unchanged. The same applies to a Whitney move that eliminates a pair ofintersections between two di�erent spheres and since the embedded Whitney-disk can be assumed to have been included in any collection used to compute�(f1; f2; f3) again the invariant is unchanged. Thus �(f1; f2; f3) only dependson the homotopy classes of the fi .It follows directly from the de�nition that �(f1; f2; f3) satis�es properties (i),(ii), (iv) and (v) of Theorem 3. Property (iii) can be checked as follows:�(f; f; f) = �(f1; f2; f3) where the fi are parallel copies of f . Since the normalbundle of f is trivial, each self-intersection of f gives nine intersection pointsamong the fi of which exactly three are self-intersections. Thus each Whitney-disk W for a canceling pair of self-intersections of f yields six canceling pairsof intersections among the fi paired by Whitney-disks which are essentiallyparallel copies of W . If W has an interior intersection with f that contributes(a; b; c) to �(f) (expressed in the notation of this section) then there will be sixcorresponding terms contributing P�2S3(a; b; c)� to �(f1; f2; f3). See Figure 14for a schematic illustration where we have circled the points corresponding toone of the contributions, an intersection between f3 and a Whitney-disk on f1and f2 .

Figure 14To complete the proof of Theorem 3 we now show that the fi can be homotopedto pairwise disjoint maps if �(f1; f2; f3) = 0 (the converse is clear). First use�(f1; f2) = 0 to separate f1 and f2 by pushing f2 o� the Whitney-disks W 12and then doing Whitney moves on f1 . Now �(f1; f2; f3) = 0 is given completelyin terms of Whitney-disks pairing f3\f1 andWhitney-disks pairing f3\f2 . Thearguments of Lemma 7 (tubing the Whitney-disks into spheres and using themove of Figure 10) can now be applied to get a second layer of Whitney-diskswhich pair all intersections between f1 and the Whitney-disks for f3\f2 . AfterAlgebraic & Geometric Topology, Volume 1 (2001)



26 Rob Schneiderman and Peter Teichnerpushing any intersections between the secondary Whitney-disks and f1 downinto f1 , the secondary Whitney-disks can be used to make f1 disjoint from theWhitney-disks for f3 \ f2 . After pushing down any intersections with f2 , theWhitney-disks on f3\f2 may now be used to eliminate all intersections betweenf2 and f3 . After similarly applying the arguments of Lemma 7 to get secondaryWhitney-disks pairing the intersections between f2 and the Whitney-disks forf3 \ f1 , one can push down intersections and do Whitney moves to eliminateall intersections between f1 and f3 so that the fi are pairwise disjoint.8 An invariant for n immersed spheresIn this section we de�ne the invariant �(f1; : : : ; fn) of Theorem 4 which ob-structs homotoping n immersed spheres in a 4-manifold X to disjoint embed-dings and is the complete obstruction to raising the height of a Whitney-tower.As before, the invariant is determined by intersections between the spheres andtheir Whitney-disks. We continue along the lines of Section 7 by working withbased Whitney-disks, i.e. choosing a whisker for each Whitney-disk, and identi-fying ��� with the quotient (�����)=�(�), where � denotes the diagonalright action of � := �1X . Since there are now n di�erent choices for each ofthe three sheets interacting at any Whitney-disk, �(f1; : : : ; fn) will take valuesin �n1�+2�n2�+ �n3� copies of Z[(�����)=�(�)] modulo some relations whichare generalized versions of the SC, BC, FR and INT relations of Section 3. Theideas of this section are completely analogous to those of previous sections, theonly novelty being the need to develop notation and conventions to handle nmaps. Proofs will be omitted.Let f1; : : : ; fn : S2 # X4 be a collection of oriented immersed spheres with van-ishing primary � and � intersection numbers. Choose based, framed Whitney-disks with disjointly embedded boundaries pairing all intersections and self-intersections among the fi . Orient all the Whitney-disks as follows: If W ij is aWhitney-disk for a cancelling pair of intersections between fi and fj with i � jthen take the positive arc of W ij to lie on fi . Orient W ij by orienting @W ij inthe direction of the positive intersection point along the positive arc and takinga second outward-pointing vector. To each intersection point x between fk andthe interior of a Whitney-disk W ij for a cancelling pair in fi \ fj we associatethree fundamental group elements corresponding to the three sheets as follows:The positive (resp. negative) group element is determined by a loop along thepositive (resp. negative) sheet, then back along W ij (and the whisker on W ij ).The interior group element is determined by a loop along fk to x and backAlgebraic & Geometric Topology, Volume 1 (2001)



Higher order intersection numbers of 2-spheres in 4-manifolds 27along W ij . The three group elements are ordered by the induced ordering ofthe maps on the sheets together with the convention that the positive elementprecedes the negative element which precedes the interior element. Thus eachsuch x determines an element in Z[(�� � � �)=�(�)] where the sign is givenby sign(x) times the sign of the permutation (ijk) with the above orderingconventions.Denoting the positive, negative and interior elements for x 2 intW ijr \fk by g+r ,g�r and hx respectively, we now set up notation to measure the intersectionsbetween the spheres and the Whitney-disks. For i < j < k de�neIi(W iir ) := Xx2W iir \fi sign(x)(g+r ; g�r ; hx)iii 2 �iiiIj(W iir ) := Xx2W iir \fj sign(x)(g+r ; g�r ; hx)iij 2 �iijIi(W ijr ) := Xx2W ijr \fi(�1) sign(x)(g+r ; hx; g�r )iij 2 �iijIj(W ijr ) := Xx2W ijr \fj sign(x)(g+r ; g�r ; hx)ijj 2 �ijjIi(W jjr ) := Xx2W jjr \fi sign(x)(hx; g+r ; g�r )ijj 2 �ijjIk(W ijr ) := Xx2W ijr \fk sign(x)(g+r ; g�r ; hx)ijk 2 �ijkIj(W ikr ) := Xx2W ikr \fj(�1) sign(x)(g+r ; hx; g�r )ijk 2 �ijkIi(W jkr ) := Xx2W jkr \fi sign(x)(hx; g+r ; g�r )ijk 2 �ijk:Denote by � the direct sumMi �iiiMi<j (�iij � �ijj) Mi<j<k�ijk:where each �abc is a copy of the abelian group Z[(�� � � �)=�(�)].Algebraic & Geometric Topology, Volume 1 (2001)



28 Rob Schneiderman and Peter TeichnerDe�nition 9 In the above setting de�ne�(f1; : : : ; fn) :=X Ii(W jkr ) 2 �=Rwhere the sum is over i and all the Whitney-disks W jkr (j � k). The relationsR are additively generated by the following equations:For all i and j with i � j ,(a; b; c)iij = �(b; a; c)iij ;(a; b; c)ijj = �(a; c; b)ijj ;(a; a; b)iij = (a; b; b)ijj ;Xk�i(�(fk; A); a; b)kij � Xi<k<j(a; �(fk; A); b)ikj +Xk�j(a; b; �(fk; A))ijk+(!2A)(a; b; b)ijj = 0;where the sums are over k . Here a; b 2 � and A 2 �2X are arbitrary. As inSection 3, A may be any immersed RP2 representing ab�1 whenever i = j andab�1 is of order two.Remark 10 The �rst three equations give local relations corresponding to theinteraction of the sheets at a Whitney-disk (the third equation corresponds tothe boundary-twist operation). The fourth equation gives global relations corre-sponding to indeterminacies due to changing the homotopy class of a Whitney-disk by tubing into A.Remark 11 Note that �(f1; : : : ; fn) reduces to the invariant �(f) of Section 3in the case n = 1 (via the map (a; b; c) 7�! (ba�1; ca�1)). Also, by ignoring allterms with any non-distinct indices in the case n = 3 we recover the invariant�(f1; f2; f3) of Section 7.References[1] T Cochran, K Orr, P Teichner, Knot concordance, Whitney towers andL2 -signatures. Preprint 1999, posted at http://xxx.lanl.gov/abs/math/9908117[2] MH Freedman, F Quinn, The topology of 4-manifolds, Princeton Math.Series 39, Princeton, NJ, 1990[3] S Garoufalidis, J Levine, Homology surgery and invariants of 3-manifolds,Preprint 2000, see http://xxx.lanl.gov/abs/math.GT/0005280Algebraic & Geometric Topology, Volume 1 (2001)
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