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1. Introduction

The recent developments in the theory of smooth 4-manifolds come from
the so-called monopole-equations found by Seiberg and Witten [4]. They
are the abelian version of Donaldson’s instanton equations which had led
to Donaldson’s polynomial invariants in [1]. These invariants it possible to
find exotic structures on many 4-manifold, may be most prominantly on
Euclidean 4-space. The corresponding Seiberg-Witten invariants seem to
contain the same information but are easier to compute due to the fact that
the Gauge group is abelian.

In order to write down the monopole-equations on a smooth 4-dimensional
manifold M one has to choose a Riemannian metric and a spinc-structure
on M . It turns out that the Seiberg-Witten invariants do not depend on the
metric if b+

2 (M) ≥ 2. But they depend crucially on the spinc-structure, see
for example [5].

In this note we prove that every orientable 4-manifold allows spinc-structures.
This was shown in the closed case by Hirzebruch and Hopf in [3]. They use
Poincaré duality and a dimension counting argument which a priori does
not apply in the non-compact setting.

We remark that the analogues result in the non-orientable case fails:
RP

2 × RP
2 does not have a pinc-structure. (Such a structure is not suf-

ficient in order to get the monopole equations since one needs the notions
of positive spinors and positive 2-froms.)

The question whether or not non-compact 4-manifolds allow spinc-structures
arose in the Deninger-Schneider workshop on Seiberg-Witten invariants in
Oberwolfach in October 1995.

2. Spinc-structures

Recall that the group Spinc(n) is equal to Spin(n) × U(1)/〈(−1,−1)〉.
Therefore, it fits into a central extension

1 −→ U(1) −→ Spinc(n) −→ SO(n) −→ 1.

Given an SO(n)-pricipal bundle P over a space X one can thus ask for
the existence of a reduction of the structure group to Spinc(n). Such a
reduction exists for P if and only if the second Stiefel-Whitney class w2(P ) ∈
H2(X; Z/2) is the mod 2 reduction of an integral cohomology class, see [].
If X happens to be an oriented Riemannian manifold of dimension n then
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the bundle of oriented orthonormal frames is an SO(n)-principal bundle
PX . Note that w2(PX) is independent of the orientation and Riemannian
metric because it equals w2(TX), TX the tangent bundle of X. The result
anounced in the introduction thus follows from the following

Proposition . Let X be an orientable 4-manifold. Then w2(TX) is the

reduction of a class in H2(X; Z).

Proof. Consider the following commutative diagram of universal coefficient
theorems induced by the projection p : Z → Z/2:

Ext(H1(X; Z), Z) −−−→ H2(X; Z) −−−→ Hom(H2(X; Z), Z)




y

Ext(p)





y

p





y

Hom(p)

Ext(H1(X; Z), Z/2) −−−→ H2(X; Z/2) −−−→ Hom(H2(X; Z), Z/2)

Note that the induced map Ext(p) is an epimorphism since Ext2
Z
(., .) = 0.

Let w ∈ Hom(H2(X; Z), Z/2) be defined by the Kronecker pairing

w(x) := 〈w2(TX), x〉 ∈ Z/2.

It suffices to show that w is in the image of Hom(p). To this end we prove
the following Lemma. In the closed case it follows from the Wu-formula
which relates the Steenrod squares of the Wu-classes to the Stiefel-Whitney
classes. But we will give a more elementary argument which also holds for
non-compact manifolds.

Lemma . In the above setting we have w(x) ≡ x · x mod 2 for all x ∈
H2(X; Z).

Here · denotes the intersection pairing on the 4-manifold X which can be
defined as follows: Represent x1, x2 ∈ H2(X; Z) by embeddings xi : Fi →֒
X in general position. Here Fi are closed oriented surfaces. The number
x1 · x2 ∈ Z is then the signed number of intersections of the images of xi in
X. Note that we have to choose an orientation on X to make this number
an integer, otherwise we only get a number mod 2. This will be crucial in
the next step of our proof.

Using the above Lemma we can finish the proof of our Proposition. Define
T to be the kernel of the homomorphism

H2(X; Z) −→
∏

y

Z

which sends x ∈ H2(X; Z) to the vector with components x · y for all y ∈
H2(X; Z). (In the closed case Poincaré duality implies that T is the torsion
subgroup of H2(X; Z).) It is clear that our homomorphism w factors through
the projection map q : H2(X; Z) → H2(X; Z)/T , i.e. w = w′ ◦ q. From [2] it
follows that H2(X; Z)/T is a free group since it is a countable subgroup of the
group

∏

y Z. Therefore, the map w′ may be lifted to a map H2(X; Z)/T → Z

which proves that w lies in the image of Hom(p). �
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Proof of the Lemma. Start with an embedding x : F →֒ X representing the
class x ∈ H2(X; Z). Then

w(x) = 〈w2(TX), x∗[F ]〉 = 〈w2(TF ⊕ NF ), [F ]〉 = 〈w2(NF ), [F ]〉.

Here NF is the normal bundle of the embedding x : F →֒ X, a 2-dimensional
vector-bundle over F . We have used that F is orientable which implies
w1(TF ) = 0 and also w2(TF ) = w1(TF )2 = 0. Note that X and thus NF
are orientable and therefore w2(NF ) is the mod 2 reduction of the Euler
class e(NF ). The number 〈e(NF ), [F ]〉 is well known to be computed by
picking any section s of NF , in general postion to the zero-section, and
then counting the zeroes of s. But this is the same as counting the number
of intersections of the zero-section with the image of s and thus we get by
definition w(x) ≡ 〈e(NF ), [F ]〉 ≡ x · x mod 2. �
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