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Abstract. We explain how the usual algebras of Feynman diagrams behave under the grope
degree introduced in [CT]. We show that the Kontsevich integral rationally classifies grope
cobordisms of knots in 3-space when the “class” is used to organize gropes. This implies that
the grope cobordism equivalence relations are highly nontrivial in dimension 3. We also show
that the class is not a useful organizing complexity in 4 dimensions since only the Arf invari-
ant survives. In contrast, measuring gropes according to “height” does lead to very interesting
4-dimensional information [COT]. Finally, several low degree calculations are explained, in
particular we show that S-equivalence is the same relation as grope cobordism based on the
smallest tree with an internal vertex.
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1. Introduction

In [CT] we introduced the notion of a grope cobordism between two knots in
3-space, which places Vassiliev theory in a natural topological context. Gropes
are certain 2-complexes built out of several surface stages, whose complexity
can be measured by either the class (corresponding to nilpotent groups) or the
height (corresponding to solvable groups). The analogy to group theory arises by
observing that a continuous map φ of a circle (into some target space) represents
a commutator in the fundamental group if and only if it extends to a map of a
surface (which is the simplest possible grope, of class 2 and height 1). Similarly,
φ represents an element in the k-th term of the lower central series (respectively
derived series) of the fundamental group if and only if it extends to a continuous
map of a grope of class k (respectively height k).

In knot theory, one replaces continuous maps of a circle by smooth embeddings
of a circle into 3-space. Accordingly, one should study embeddings of gropes into
3-space. More precisely, one obtains two sequences of new geometric equivalence
relations on the set of knot types by calling two knots equivalent if they cobound
an embedded grope (of a specified class or height).

It is the purpose of this paper to show that the invariants associated to grope co-
bordism are extremely interesting. Let K be the abelian monoid of knot types, i. e.
isotopy classes of oriented knots in 3-space (under connected sum). We proved
in [CT] that the quotients K/Gk := K modulo grope cobordism of class k in
3-space, are in fact finitely generated abelian groups. In Section 3.1 we start the
investigation of these groups by showing that there is an epimorphism

Bg

<k � K/Gk,

where Bg

<k is the usual (primitive) diagram space known from the theory of finite
type invariants but graded by the grope degree. More precisely, Bg

<k is the abelian
group generated by connected uni-trivalent graphs of grope degree i, 1 < i < k,
with at least one univalent vertex and a cyclic ordering at each trivalent vertex.
The relations are the usual IHX and AS relations. The grope degree is the Vassiliev
degree (i.e. half the number of vertices) plus the first Betti number of the graph.
Observe that both relations preserve this new degree.

We then show in Section 3.1 that as in the usual theory of finite type invariants,
the above map has an inverse, the Kontsevich integral, after tensoring with the
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rational numbers. See Definition 3.4 for the definition of the Kontsevich integral
Z

g

<k:

Theorem 1.1. Z
g

<k induces an isomorphism of Q-vector spaces

K/Gk ⊗ Q ∼= Bg

<k ⊗ Q

This result was inspired by the recent discovery of Garoufalidis and Rozansky
[GR] that the Kontsevich integral not only preserves the Vassiliev filtration but
also the “loop filtration”, where one grades diagrams by the first Betti number
(and correspondingly the clasper surgeries are reorganized). We decided to give
an independent proof of Theorem 1.1, by using properties of the Kontsevich
integral explained in [Aa] as well as a result from [CT] which says that grope
cobordisms can be refined into simple clasper surgeries. In Conjecture 4.5, we
take a guess at what the groups K/Gk could be integrally. There is an analogue of
this Theorem 1.1 which says that capped grope cobordism is rationally computed
by Bv

<k, which is the same diagram space as above but graded by the Vassiliev
degree. This latter result follows by using work of Habiro, and was announced
in [H2].

If one uses class as an organizational tool for grope concordance, i.e. for
gropes embedded in S3 × [0, 1] and with boundary in S3 ×{0, 1}, then the theory
collapses:

Proposition 3.8. For each k ≥ 3, two knots Ki ⊂ S3 × {i}, are class k grope
concordant if and only if their Arf invariants agree.

It should be mentioned that Schneiderman has independently given a beauti-
ful geometric argument for the above fact: He directly constructs a weak Whitney
tower of class k in 4-space, cobounding two knots with equal Arf invariants. One
can then turn this weak Whitney tower into a grope concordance of class k.

It turns out that in order to derive interesting information about knot concor-
dance (i.e. 4-dimensional knot theory), one needs to imitate the derived series of
a group geometrically. This can be done by restricting attention to gropes which
grow symmetrically from the root. Such gropes have a height h and the class k

can be calculated as k = 2h, exactly as for group commutators. It was shown
by Cochran, Orr and Teichner in [COT] that symmetric grope concordance filters
the knot concordance group in such a way as to yield all known concordance
invariants in the first few steps, leaving a huge tower of concordance invariants
yet to be discovered. The first new graded quotient (above the one leading to
Casson-Gordon invariants) was shown to be nontrivial in [COT] by using certain
von Neumann signatures associated to solvable quotients of the knot group. It is
now known [CoT] that all the graded quotients are nontrivial.

Challenge. Try to understand the equivalence relation of symmetric grope cobor-
dism in 3-space. In particular, determine the role of the von Neumann signatures.
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We will show that very interesting things happen even at very small heights.
At height h = 1.5 one gets isomorphism of Blanchfield forms (i.e. S-equiv-
alence) for grope cobordisms in 3-space, whereas the 4-dimensional analogue
gives cobordism of Blanchfield forms. So in this setting the “kernel” from dimen-
sions 3 to 4 is given by connected sums K#K !, where K is any oriented knot and
K ! is its reversed mirror image, the concordance inverse.

The reader might be irritated about the occurrence of the non-integral height
h = 1.5 but that’s just a special case of the following equivalence relations on
knots: Fix a rooted tree type T and consider only grope cobordisms of type T .
The notation T (respectively cT ) in the following table refers to the equivalence
relation given by grope cobordisms (respectively capped grope cobordism) in
3-space using gropes of tree-typeT , as explained in [CT]. One can also study grope
cobordism in S3 × [0, 1] which is denoted by T 4 below. Note that in dimension 4
there is no difference between capped and uncapped grope cobordism because
intersections and self-intersections of the caps can always be pushed down into
the bottom stage. The following table summarizes our calculations in Section 4.

Theorem 1.2. For the smallest rooted tree types T , the grope cobordism (respec-
tively grope concordance) relations are given by the following table:

Tree Type T K/cT K/T K/T 4

{0} {0} {0}
Z(c2) Z/2(Arf) Z/2(Arf)

Z(c3) ⊕ Z(c2) Z(c2) Z/2(Arf)

Z(c3) ⊕ Z(c2) Z(c2) Z/2(Arf)

Z(c4) ⊕ Z(c′
4)⊕

Z(c3) ⊕ Z(c2)
Z/2(c3) ⊕ Z(c2) Z/2(Arf)

Z(c4) ⊕ Z(c′
4)⊕

Z(c3) ⊕ Z(c2)
Z/2(c3) ⊕ Z(c2) Z/2(Arf)

?
S-equivalence
or Bl-forms

cobordism of
Bl-forms

Here the ci are generating degree i Vassiliev invariants, and Bl is the Blanch-
field form.

Corollary 1.3. c3 modulo two is an S-equivalence invariant.

Challenge. Understand the monoids K/T for more tree types T .

Our paper ends with Section 5 where we have collected several results that
are relevant in the context of grope cobordism. Recall that if a knot K cobounds a
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grope with the unknot U , then K and U might very well be linked in a nontrivial
way. Thus it is a much stronger condition on K to assume that it is the boundary
of a grope. For example, if K bounds a grope of class 3 in S3 then the Alexander
polynomial vanishes. The following statement generalizes this vanishing result
by using the “null-filtration” of [GR], explained in Section 5.1.

Proposition 5.2. If a knot K bounds an embedded grope of class k in a 3-manifold
M , then the pair (M, K) is (k − 3)-null equivalent to (M, U).

The converse is not true for k = 3: In M = S3, knots which are null equivalent
to the unknot (k = 3 above), are exactly knots with trivial Alexander polynomial.
On the other hand, knots which bound a grope of class 3 in S3 have a Seifert
surface such that the rank of the Seifert form equals the genus of the surface. It
is shown in [GT] that this minimal Seifert rank condition is much stronger than
having trivial Alexander polynomial.

We investigate the behavior of orientation reversal:

Proposition 5.3. Let ρ be the map reversing a knot’s orientation. Then for every
knot K in the k-th term Gk of the grope filtration of K, one has

K ≡ (−1)kρ(K) mod Gk+1.

Our final result implies that the main theorem of [CT] can now be phrased
as follows: Grope cobordisms of class k in S3 are in 1-1 correspondence with
sequences of simple clasper surgeries of grope degree exactly k. In [CT] we had
to allow simple clasper surgeries of grope degree ≥ k.

Theorem 5.4. A simple clasper surgery of grope degree (k + 1) may be realized
by a sequence of simple clasper surgeries of grope degree k.

2. Gropes, claspers and diagrams

2.1. Basic notions

For the reader’s convenience we recall some basic notions and results from [CT].
In that paper we introduced rooted claspers which are connected claspers in the
sense of Habiro [H1,H2], where one leaf (the root) is an unknotted meridian of a
knot. Given a knot K and a disjoint rooted clasper C in a 3-manifold M , one can
construct a grope cobordism G(K, C) between K and KC in M , where KC is the
surgery of K along C. The “root” of the clasper is a simple leaf (i.e. a leaf with an
embedded cap intersecting K once) which makes sure that the ambient 3-manifold
M is unchanged. Caps of a clasper C are disjointly embedded disks with interiors
disjoint from C, which bound some of the leaves of C. The grope cobordism
G(K, C) is capped if all the leaves of the clasper have caps, which are allowed
to intersect the knot. (If there is a single cap disjoint from K then KC is isotopic
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to K .) Finally, in a simple clasper, all the leaves have caps and the knot intersects
each cap exactly once. Thus this notion only makes sense for the pair (K, C).

The class of G(K, C) is given by the grope degree of the clasper. Recall that a
clasper C has an underlying uni-trivalent graph � which is obtained by removing
the leaves and collapsing to the spine. The grope degree of C is defined as the
Vassiliev degree plus the first Betti number of �. The Vassiliev degree is one half
the number of vertices of �.

The construction of G(K, C) depends on a choice of b1(�) many “cuts”,
which turn � into a rooted tree, giving the precise grope type of G(K, C). Note
that each cut increases the Vassiliev degree by one, but leaves the grope degree
unchanged, as it should. Note also that a cut introduces a pair of Hopf-linked
leaves into the clasper, and hence the resulting grope cobordism cannot have two
disjoint caps at the corresponding tips. This explains why capped grope cobor-
dism corresponds to the Vassiliev degree: cuts are not allowed (since caps must
be disjointly embedded), and for trees the two degrees agree.

Let K denote the monoid of oriented knot types in 3-space (with respect to
connected sum), and let K/Gk be K modulo the equivalence relation of grope
cobordism of class k. It turns out that this is an abelian group. By Theorem 2 of
[CT], a grope cobordism of class k corresponds to a sequence of simple clasper
surgeries of grope degree ≥ k. We will show in Theorem 5.4 that a grope co-
bordism of class k also corresponds to a sequence of simple clasper surgeries of
grope degree exactly equal to k.

Let K/G
cap

k denote the abelian group of oriented knot types modulo capped
grope cobordism of class k in 3-space. Capped grope cobordism of class k coin-
cides with Vassiliev degree k simple clasper surgeries, and with Vassiliev (k − 1)-
equivalence. By letting Gk be the subset of knots which are class k grope cobordant
to the unknot (and similarly G

cap

k for capped grope cobordisms) we can form the
associated graded quotients

Gk := Gk/Gk+1 respectively Gcap

k := G
cap

k /G
cap

k+1

These graded quotients will be related in Lemmas 2.1 and 3.2 to certain Feynman
diagrams of a fixed degree.

Let T be a rooted tree type. Then K/T is defined as the monoid of knots mod-
ulo T grope cobordism. Define K/T cap to be the monoid of knots modulo capped
T grope cobordism. A capped T grope cobordism corresponds to a sequence of
simple tree clasper surgeries of type T . As a consequence, K/T cap depends only
on the unrooted tree type.

2.2. Feynman diagrams

Let Ãk denote the free abelian group generated by connected trivalent graphs with
2k vertices and one distinguished (oriented) cycle, such that each trivalent vertex
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Fig. 1. The IHX relation. Note that the 4-valent vertices are not present

has a cyclic orientation.1 The distinguished cycle is often called “the outer circle,”
and the rest is sometimes called “the dashed part.”

Define Ak to be the quotient of Ãk by the usual IHX and AS relations. The AS
(antisymmetry) relation is a relation of the form G1 +G2 = 0, where the Gi differ
by a cyclic orientation at a given vertex. The IHX relation is pictured in Figure 1.
If the distinguished cycle runs through the part of the diagram involved in an IHX
relation, the relation is called an STU relation. As proven in [BN], STU relations
generate all IHX relations. Then A = ⊕kAk is the well-known algebra of Feyn-
man diagrams. (Feynman diagrams enjoy a plethora of other names, including web
diagrams, Jacobi diagrams, and Chinese character diagrams.) The algebra struc-
ture is given by “connected sum”, which turns out to be well-defined. Moreover,
A is a graded Hopf algebra as explained in [BN]. The primitive elements Prim(A)

are generated by diagrams which stay connected when removing the outer circle.
However, such diagrams are not closed under the STU relation, so it is convenient
to also consider the group AI := A>0/A2

>0 of indecomposable elements. Since A
is a commutative and cocommutative Hopf algebra, a famous theorem of Milnor
and Moore implies that, say over Q, A is a polynomial algebra in the primitive
elements. In particular,

Prim(A) ⊗ Q ∼= AI ⊗ Q.

There is an analogous abelian group of diagrams B defined just like A but without
an outer circle. Here the subspace of connected diagrams is closed under IHX and
AS relations, so that the above problem for primitives does not occur. There is an
averaging map χ : B → A which puts back the outer circle in all possible ways.
It was shown in [BN] that this is rationally an isomorphism.

Since we will only be interested in connected diagrams, we define Bv
k to be the

abelian group spanned by connected uni-trivalent graphs with 2k vertices (such
that each trivalent vertex has a cyclic orientation, and with at least one univalent
vertex) modulo the AS and IHX relations. Since we are dealing with unframed
knots, we just set the group Bv

1 := 0. (Note that Bv
0 is spanned by the empty

graph.) Define the graded abelian group

Bv := ⊕kBv
k .

1 Since trivalent vertices that lie on the distinguished cycle can be canonically oriented, the
convention in much of the literature is to not orient these vertices.
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The superscript ‘v’ indicates that we are using the Vassiliev degree, and it also
serves to distinguish from the usual group B (which would also contain non-con-
nected diagrams as well as “struts”). As a consequence of these definitions, one
has an averaging isomorphism of graded vector spaces

χ : Bv ⊗ Q
∼=−→ AI ⊗ Q. (1)

We shall show that these groups, modulo terms of degree > k, are isomorphic to
K/G

cap

k ⊗ Q.

2.3. Maps relating capped gropes and Feynman diagrams

There is a well-known map that sends a chord diagram to an alternating sum over
crossing changes on the unknot guided by the chords. This map can in fact be
extended to all diagrams, as in the next lemma, whose proof is found in the next
section.

Lemma 2.1. For each k > 1, there is an epimorphism

�k : AI
k −→ Gcap

k

defined by sending a diagram to the alternating sum over clasper surgeries cor-
responding to each connected component of “the dashed part.”

The (unframed) Kontsevich integral is a map on isotopy classes of oriented
knots

Z : K −→ Â :=
∏

k

Ak ⊗ Q

which sends connected sums of two knots to their product in Â. The image of
Z lies inside the group-like elements of the complete Hopf algebra Â. Thus we
may compose it with the logarithm in this complete Hopf algebra to end up in the
subspace of primitive elements. Then log Z takes connected sum to addition! Now
decompose log Z according to Vassiliev degree and denote the degree k part by

Zv
k : K −→ Prim(Ak) ⊗ Q ∼= AI

k ⊗ Q.

Then Zv
k factors through simple clasper surgeries of degree k + 1 by [H2], and

hence through K/G
cap

k+1 by [CT]. Restricting to knots in G
cap

k we get a homo
morphism

Zv
k : Gcap

k −→ AI
k ⊗ Q.

The definition of �k given in the next section, and in particular the fact that it
extends the original definition on chord diagrams, implies by the universality of
the Kontsevich integral the following

Lemma 2.2. Zv
k ◦ �k = Id.

This shows that �k is an isomorphism modulo torsion because Ak are finitely
generated.
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2.4. Claspers and Feynman diagrams

It is the goal of this section to show that the map �k extends to all diagrams in
a natural way. This will lead to Lemma 2.13 which will be used in the proof of
Theorem 4.2. This material is well-known to the experts and was essentially
announced by Habiro in [H2]. A complication we face is that we include all
capped claspers, not just those which are trees. Since Habiro usually restricts to
trees, we need to include some extra arguments for the general case.

We begin with some definitions which will be used in this section.

Definitions 2.3. • A CC-set is a union of finitely many disjoint capped claspers
on a knot K .
• The degree of a CC-set is the minimum of the degrees of each connected

component.
• A CC-scheme is a collection {C1, C2, . . . , Cl} where each Ci is a CC-set .
• The degree of a CC-scheme is the sum of the degrees of each Ci .
• A CC-scheme is called simple if each CC-set is a single simple clasper.
• Let S = {C1, C2, . . . , Cl} be a CC-scheme on a knot K . Define [K;S] =

∑

σ⊂S(−1)l+|σ |Kσ ∈ Z[K], where Kσ is the knot modified by each CC-set
in σ .

We list a couple of useful facts about brackets.

Lemma 2.4. Let C1, C2 be disjoint CC-sets on K and denote by C1 ∪C2 the CC-set
which is the union of C1 and C2. If S is a CC-scheme on K , disjoint from C1 ∪ C2,
then

[K; {C1 ∪ C2} ∪ S] = [K; {C1} ∪ S] + [KC1; {C2} ∪ S],

See [G], Lemma 5.2 mutatis mutandis.

Lemma 2.5. Consider the central part of Figure 2, with two disjoint capped clasp-
ers a, b, disjoint from a CC-scheme S . Then

[K; {a} ∪ {b} ∪ S] = [K; {a ∪ b} ∪ S]

Proof. If σ ⊂ S then K{a}∪σ = Kσ = K{b}∪σ . This implies [Ka;S] = [Kb;S] =
[K;S] and hence

[K; {a} ∪ {b} ∪ S] = [K;S] − [Kb;S] − [Ka;S] + [Ka∪b;S]

= −[K;S] + [Ka∪b;S]

= [K; {a ∪ b} ∪ S] �
The linear span of all knot types, Z[K], can be filtered by defining Fv

k ⊂ Z[K]
to be the linear span of all brackets [K;S] where S is of degree k.

Lemma 2.6. IfC is a clasper on a knot disjoint from a CC-schemeS , then [K;S]−
[KC;S] ∈ Fv

|S|+|C|.



144 J. Conant, P. Teichner

Fig. 2. A clasper identity

Proof. This is just the simple calculation [K;S ∪ {C}] = [K;S] − [KC;S]. �
The following proposition explains the superscript “v.”

Proposition 2.7. Fv
k ⊂ Z[K] agrees with the usual Vassiliev filtration of Z[K].

Proof. One can take the usual Vassiliev filtration to be defined by brackets where
each CC-set is a single simple degree 1 clasper. Thus Fv

k contains the usual Vassi-
liev filtration.

The converse follow from Theorem 6.7 (3) of [H2], with one complication.
Namely, that Theorem is phrased only for tree claspers, but it can be easily
enhanced to work for all capped claspers. The proof works by applying the move
from Lemma 2.5, thereby breaking a clasper into two claspers of lower degree.
Iterating, one reduces all of the trees to degree one capped claspers. This fails for
graphs if in Figure 2, the two claspers a and b are the same clasper. In this case
we’ve still made progress since there are a reduced number of loops. To be precise,
induct on the number of internal vertices. (Compare the proof of Lemma 2.8.) �
Lemma 2.8. On a knot K , let S1 = {C1

1 , . . . , C1
l } and S2 = {C2

1 , . . . , C2
l } be two

CC-schemes of degree k, where each CC-set consists of a single clasper. Suppose
the CC-schemes differ only by a homotopy of an edge of one of the claspers. Then

[K;S1] − [K;S2] ∈ Fv
k+1.

Proof. A homotopy of an edge can be realized by a degree one clasper, one leaf
of which links the edge and the other leaf being embedded arbitrarily away from
the caps. Using the zip construction, this can be realized by degree one claspers E

where one leaf links the edge, and the other leaf either: is a meridian to an edge,
is a meridian to the knot, or is a trivial 1-framed leaf. This last case is covered
by Corollary 2.11. We prove the other two cases by induction on the number of
trivalent vertices. The base case is when all the claspers Ci

j are of degree one
(eyeglasses). Then the leaves of the clasper E can be slid off the end of the (up to
two) eyeglasses that it links, introducing two new intersections with the knot for
each one. Let the slid clasper be called E′. Then we have argued

[K;S2] = [KE′ ;S1].
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By Lemma 2.6 we are done. Now suppose that a pair C1
j , C

2
j has a trivalent

vertex. Apply Figure 2 to a leg of Ci
j , denoting the resulting claspers by ai, bi .

(If E happens to link the leg we are expanding, push it off so that it links the
knot instead.) If ai and bi are different, then Lemma 2.5 implies that, defining
S ′

i = {Ci
1, C

i
2, . . . , Ci

j−1, a
i, bi, Ci

j+1, . . . , Ci
l },

[K;Si] = [K;S ′
i]

and since S ′
1,S ′

2 differ by the homotopy coming from E, [K;S ′
1] = [K;S ′

2]
mod Fv

k+1 by induction. If ai = bi , life is even simpler: define

S ′′ = {Ci
1, C

i
2, . . . , Ci

j−1, a
i, Ci

j+1, . . . , Ci
l }.

Then [K;S] = [K;S ′′] and we are done by induction as above. �
Lemma 2.9. Let C be a tree clasper on a knot K . There is a clasper C̃ in a regular
neighborhood of C such that KC∪C̃ = K . Moreover, the leaves of C and C̃ are
parallel (in the given framing of C) and one may arrange the edges of C̃ which
go through a regular neighborhood of a leaf of C to be parallel to the leaves of C.

In Figure 3(a), the above process is depicted in the vicinity of a Hopf-pair of
C. (The two degree 1 claspers labelled E are not relevant now.)

Proof. The clasper C̃ is constructed using Figure 27 of [H2] and the version of
the zip construction in [CT, Sec.4]. �
Lemma 2.10. Let C and C ′ be two simple claspers of degree k on a knot K , which
differ by a single half-twist. Then KC + KC′ − 2K ∈ Fv

k+1.

Proof. Insert Hopf-pairs of leaves to make C a tree clasper and let C̃ be an inverse
to C, as in Lemma 2.9. For each (non-root) cap of C and C̃ there is a degree 1
clasper (or eyeglass), surgery on which pushes the knot out of the cap. Choose
one of the leaves in each Hopf pair of C. As this can be regarded as an additional
cap of the tree clasper, there is an eyeglass which pushes everything out of this
leaf, just like above. See Figure 3 for an example of these eyeglasses Ei . Let E1

denote the CC-scheme whose elements are the (at least k) eyeglasses which push
things out of C, and let E2 be the same, only for C̃. The claspers in E = E1 ∪ E2

are capped, when considered on the knot K = KC∪C̃ . Note that Kσ = K if σ has
nontrivial intersection with E1 and with E2. If ∅ �= σ ⊂ E1, then Kσ = KC̃ . If
∅ �= σ ⊂ E2 then Kσ = KC . This analysis implies that

−[K; E] = KC + KC̃ − 2K.

The left-hand side is in Fv
2k ⊂ Fv

k+1.
This is almost what we want, except that C̃ has edges that wind around itself and

may wind through the Hopf pairs of leaves. Let E3 be the CC-scheme consisting
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Fig. 3. From the proof of Lemma 2.10. The thick lines are where edges of C̃ might be

of k degree 1 claspers on KC̃ , which push things out of the leaves. There is an
additional clasper, denoted by E which pushes the edges out of the other disk in
each Hopf pair. It is a union of eyeglasses, one for each leaf, see Figure 3(b). Now

[KC̃; E ∪ {E}] = KC̃ − KC,

where C is formed from C̃ by applying E. Symmetrically we can push the edges
out of the other leaves in each Hopf pair, modulo Fv

k+1 to get the clasper C ′ in the
statement of the lemma. �
Corollary 2.11. Let C1 and C2 be two claspers on a knot K which differ by a full
twist along an edge. Then KC1 − KC2 ∈ Fv

k+1.

Proof. Let C be a clasper that differs from both C1 and from C2 by a half-twist.
Then Lemma 2.10 implies that KC1 = 2K − KC = KC2 mod Fv

k+1. �
Let CF k be the set of pairs (K,S) where K ∈ K and S is a simple CC-scheme

of degree k on the knot K . These are considered up to isotopy. The bracket defines
a map CF k → Z[K]. One can also define a map

� : CF k → Ak

as follows: The unoriented trivalent graph, D, associated to (K,S) is gotten
by collapsing simple leaves to points and forgetting the embedding. The distin-
guished cycle is the knot. The orientation of the Feynman diagram is more subtle.
Recall that each clasper Ci is a certain thickening of a graph. Hence Ci may not
be orientable (even though the thickened leaves are because they have integral
framing, and hence a full number of twists). However, each Ci may be made
orientable by replacing li bands by half-twisted bands, where li is the dimension
of the 2-torsion subgroup of H1(Ci). Do this, and let l = ∑

li be the total number
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of half twisted bands glued in to every Ci . Now choose orientations of each new
thickening Ci . These give rise to cyclic orders of the in-coming edges at each node.
Denote the induced orientation of D by or . The choice of orientation also deter-
mines a normal direction. Let m be the number of leaves where the knot pierces
contrary to the distinguished normal direction. Now �(K,S) = (−1)m+l(D, or).
� is well defined. It does not depend on the choice of orientations, because the
parity of the number of leaves of each Ci is the same as the parity of the number of
nodes. The key thing to notice about this orientation convention is that it switches
under the introduction of a half-twist in any edge of a clasper in S .

Now we can define the homomorphism

�k : AI
k → Gcap

k

from Lemma 2.1 as follows: For an oriented diagram D ∈ Ãk, define �k(D) :=
csk([U ;S]), for some framed embedding S of the diagram D on the unknot U ,
so that �(U,S) = D. (Note that framed embedded diagrams can be regarded as
simple CC-schemes ). Here csk : Z[K] → K/G

cap

k+1 is the map given by sending
addition to connected sum.

By definition, �k vanishes on diagrams of degree > k and, by Proposition 2.7
lands in Gcap

k = Fv
k /Fv

k+1. This, together with Lemma 2.8 and Corollary 2.11,
implies that, extending linearly, we get a well defined map:

�k : Ãk → Gcap

k

This means that the choice of the framed embedding of the diagram D is irrele-
vant. Clearly �k = 0 on separated diagrams, so it will factor through AI

k . Thus
to get a map on Ak, we only need to show that �k vanishes on the STU- and
AS-relations.

Lemma 2.12. �k vanishes on all STU and AS relations.

Proof. First we show it vanishes on AS relations. Suppose D1 and D2 are two dia-
grams that differ by a cyclic order at one vertex. Let C1 be a clasper representing
D1: �k(D1) = UC1 . Let C2 be the same, except for three half-twists on the edges
incident to the vertex. By our orientation conventions, �k(D2) = UC2 . Applying
Lemma 2.10 three times, with K = U , we see that

�k(D1 + D2) = UC1#UC2 = 0 ∈ Gcap

k ,

as desired. Next we consider the STU relation. Let �̃k : Ãk → Z[K] be the lift
of �k discussed above, i. e. before applying the summation maps csk. Consider
an STU relation Ds = Dt − Du, where Ds has one more trivalent vertex than Dt

and Du. LetY be the component of the dashed part of Ds which has the additional
vertex. Then

�̃k(Ds) = [U ; {Y, C2, . . . , Cl}]
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Fig. 4. A clasper identity

where the clasper representing Y is also called Y, and is pictured in Figure 2. The
claspers a and b from Figure 2 can be further subdivided into claspers a1, a2, b1, b2

using the zip construction, assuming that a and b are not the same clasper. By the
previous lemmas we have

[U ; {a ∪ b, C2, . . . , Cl}]
= [U ; {a, b, C2, . . . , Cl}]
= [U ; {a1 ∪ a2, b1 ∪ b2, C2, . . . , Cl}]
= [U ; {a1, b1, C2, . . . , Cl}] + [Ub1; {a1, b2, C2, . . . , Cl}]

+[Ua1; {a2, b1, C2, . . . , Cl}] + [Ua1∪b1; {a2, b2, C2, . . . , Cl}]
≡ [U ; {a1, b1, C2, . . . , Cl}] + [U ; {a1, b2, C2, . . . , Cl}]

+[U ; {a2, b1, C2, . . . , Cl}] + [U ; {a2, b2, C2, . . . , Cl}] mod Fv
k+1(ZK)

= −�̃k(Dt) + �̃k(Dt) − �̃k(Du) − �̃k(Dt) = �̃k(Dt) − �̃k(Du)

If, in Figure 2, the two claspers a and b are really two ends of the same clasper,
we use the construction of Proposition 4.6 of [H2] instead. See Figure 4 which is
a clasper identity of [H2].

Let Ds, Dt, Du be the three diagrams in an STU relation such that the corre-
sponding a and b claspers are part of the same clasper. Then

�̃k(Du) = [U ; {U, C2, . . . , Cl}] = [U ; {{T , S}, C2, . . . , Cl}]
= [U ; {T , C2, . . . , Cl}] + [UT ; {S, C2, . . . , Cl}]
≡ [U ; {T , C2, . . . , Cl}] + [U ; {S, C2, . . . , Cl}]
= �̃k(Dt) + �̃k(Ds) �

The proof of Lemma 2.1 is now complete.

Lemma 2.13. Let C be a simple clasper surgery of Vassiliev degree k on a knot
K . Let D be the diagram obtained by thinking of the clasper as the dashed part,
and of the knot as the outer circle. Then �k(±D) = KC#K−1 ∈ Gcap

k .
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Remark 2.14. Here is a sketch of a proof that Lemma 2.13 is true rationally. The
proof that it is true integrally is given below. One can think of the Kontsevich inte-
gral of KC −K as the Aarhus integral of the difference of two links K ∪LC −K ,
where LC is the link associated to the simple clasper. Now, it is not hard to show
that the lowest degree term of the Aarhus integral is exactly the diagram corre-
sponding to the graph type of the clasper. (By arguments analogous to those in
section 3.3 of [GR]. In the absence of a knot K , this is the statement that the
Aarhus/LMO invariant is universal with respect to Goussarov’sY-filtration.) Now
the result follows by Lemma 2.2.

Proof of 2.13. Let C̃ be a clasper on the unknot with diagram D. Put in half-twists
so that it has the same sign as C. By definition, �k(D) = UC̃ = UC̃#K#K−1. By
Lemma 2.8, we can move C̃ into a position corresponding to the clasper C on the
knot K . Using Corollary 2.11, we can add an even number of half-twists until the
framings agree. �

3. The grope degree

We first introduce a second degree on the graphs � generating Bv:

Definition 3.1. The grope degree of � is

g(�) := b1(�) + v(�).

Let Bg

k be the grope degree k part of the group Bv.

We note that the grope degree is preserved by the IHX and AS relations, and hence
really gives a new graded abelian group

Bg := ⊕kBg

k .

3.1. Feynman diagrams and the grope degree

In a similar fashion to �k, we define a surjective map

�
g

k : Bg

k → Gk

on connected Feynman diagrams of grope degree k as follows. For a connected
diagram D ∈ B̃k, let D̃ ∈ Ãk be a diagram formed by attaching the univalent verti-
ces of D to the outer circle in some order. Let (U, C) ∈ CFv

k satisfy �(U, C) = D̃,
where C is a single clasper of grope degree k, and U is the unknot. Now define

�
g

k(D) := UC ∈ K/Gk+1.

In the previous section we used various lemmas of Habiro [H2] (for moving
claspers around modulo higher Vassiliev degree) in order to show that �k is well
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defined. Section 3.3 contains the relevant lemmas in the case of grope degree. In
fact, we need to show that �

g

k does not depend on the order in which we attached
the univalent vertices, and that AS and IHX get killed. The independence of order
follows from Lemma 3.9(a), and the AS and IHX relations follow from 3.11(a)
and 3.11(c). We have thus proven the following analogue of Lemma 2.1.

Lemma 3.2. For each k > 1, there is an epimorphism

�
g

k : Bg

k −→ Gk.

In order to show that �
g

k is rationally an isomorphism, we want to study the
behavior of the Kontsevich integral with respect to the grope degree.

Recall that there is an isomorphism Â ∼= B̂ of graded algebras given by the
composition ∂	σ , where σ : Â → B̂ is the inverse of the averaging map χ from
equation 1, and ∂	 is the “wheeling” automorphism of B̂ [T]. Here Â has the
multiplication given by connected sum, whereas on B̂ the multiplication is just
disjoint union. It follows that

logB̂(∂	σ) = (∂	σ) logÂ . (2)

Following [GR], define the Euler degree of a diagram in B to be the number of
internal trivalent vertices, which by definition are trivalent vertices not adjacent
to univalent vertices. It is called Euler degree because for uni-trivalent graphs �

one has
e(�) = 2(b1(�) − b0(�)).

Decompose the composition logB̂(∂	σ)Z according to Euler degree to obtain

Ze
k : K → Be

k

as the Euler degree k part of the “Kontsevich integral”. The following proposition
follows by work of Garoufalidis and Rozansky [GR] using [Aa], but for the sake
of completeness we provide an argument using only [Aa].

Proposition 3.3. Let C be a simple clasper of Euler degree n on a knot K . Then
Ze

m(K) − Ze
m(KC) = 0 for all m < n.

Proof. We factor through the Aarhus integral, A, of pairs (M, K), [Aa]. When
normalized appropriately, A(S3, K) = σZ(K). (In the definition of the Aarhus
integral we apply σ to the knot K as well as to the surgery link components.) We
will assume familiarity with the Aarhus integral in the following proof.

Break C into a union of Y ’s. If a Y has no leaf that links the knot, it will be
called internal since the corresponding trivalent vertex is internal. Each Y has an
associated 6 component link. Let the three components in the Borromean rings
be called the “B” components, and the three other components be called the “L”
components. Let the link corresponding to the union of all Y’s be called LC . Fix
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Fig. 5. The tangles T1 and T2. The difference µ := Z(T1) − Z(T2) is comprised of terms with
at least one trivalent vertex

Fig. 6. The Kontsevich integral of [K ∪ LC; S] is computed by gluing the Kontsevich integral
at each ball Bi to the Kontsevich integral of the exterior

balls which meet the link at the Borromean rings corresponding to internal Y’s
as on the left hand side of Figure 5. For each ball, there is an associated move
that replaces the tangle on the left of Figure 5 with the trivial one on the right.
Let S be the set of such moves, one for each internal vertex of C. Consider the
alternating sum [K ∪ LC; S]. Then the (alternating sum of) Kontsevich integrals
Z[K ∪ LC; S] can be computed as the Kontsevich integral of the difference of
tangles in each ball, called µ, glued to the Kontsevich integral of the exterior to
the balls. See Figure 6.

Now we use the fact that each summand of µ always contains trivalent vertices.
This follows since the degree 1 part is given by linking numbers which are zero.
Therefore, since σZ(Ti) is of the form exp(struts) exp(rest), there is no strut part
to µ. (We need to apply σ in order to have an algebra structure.) Therefore, we
have shown that each term of Z[K ∪ LC; S] contains at least n special vertices,
which by definition are trivalent vertices only adjacent to other trivalent vertices,
or to univalent vertices which lie on internal Borromean rings components. This
also holds for the LMMO normalization Ž[K ∪ LC; S] which only differs by
factors of the Kontsevich integral of the unknot ν.

When we apply σ to Ž[K ∪ LC; S], the number of special vertices can only
increase. This can be seen by examining the definition of σ [BN], which is iter-
atively defined by operations which involve removing the skeleton and tacking
things on to the created univalent vertices.
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Let S(LC) denote the surgery along LC . Then the Aarhus integral is defined as

A[(S(LC), K); S] :=
(∫ FG

σŽ[K ∪ LC; S]

)

· (Kirby I-move normalizations)

The formal Gaussian integration is with respect to the negative inverse of the link-
ing matrix of the link LC , and this linking matrix is the same in each summand.
Notice that the linking matrix and its inverse are of the forms

� =
(

0 I

I A

)

, �−1 =
(−A I

I 0

)

,

where the first row and column refers to B-components and the second to L-com-
ponents. We claim that special vertices descend to internal vertices after applying
∫ FG. If not, then there is a special vertex adjacent to a univalent vertex labeled
by a B component, b, and a strut with one endpoint labeled by K and the other
labeled by some component x, which are glued together along a strut labeled by b

and x, with coefficient coming from −�−1. By consideration of linking number,
the only K-x struts are when x is an L component that links the knot, and hence is
not part of an internal Y. Therefore the b − x strut is between a B component and
an L component in different Y’s, which therefore don’t link. Thus, by examining
�−1 we see that the weight is zero.

Therefore we have argued that all summands of A[(S(LC), K); S] have at least
n internal vertices. Multiplying by the normalizations from the Kirby I-move can
only increase this number.

Notice that for any nonempty s ⊂ S we have (S(LC), K)s = (S3, K). There-
fore, we have A[S(LC), K); S] = A((S3, K)C) − A(S3, K). The right hand side
of this last equation is σZ(KC) − σZ(K), which has Euler degree ≥ n, since we
argued that the left-hand side of the equation has that property. Notice that the
wheeling isomorphism can never decrease Euler degree, since it involves attaching
wheels to diagrams. Thus ∂	σZ(KC) − ∂	σZ(K) is of Euler degree ≥ n.

Finally we must take the logarithm. Write a = ∂	σZ(KC) − 1 and b =
∂	σZ(K) − 1. We are interested in

log(a + 1) − log(b + 1) =
∞∑

k=1

(−1)k+1 ak − bk

k
.

Notice that this is divisible by a − b = (a + 1) − (b + 1) which we calculated
was of Euler degree ≥ n. Since the Euler degree adds under disjoint union (i.e.
multiplication) it follows that the whole expression is of Euler degree ≥ n. �
Definition 3.4. Let Z

g

k : K → Bg

k be the grope degree k part of

logB̂(∂	σ)Z = (∂	σ) logÂ Z.
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Corollary 3.5. Z
g

k vanishes on Gk+1.

Proof. Let K be a knot and C be a simple clasper of grope degree (k + 1). We
need to show that

z := logB̂(∂	σ)Z(K) − logB̂(∂	σ)Z(KC) ∈ B̂

has no terms of grope degree ≤ k. Write k + 1 = v + b1 = v + e
2 + 1 in

terms of the Vassiliev degree and the first Betti number. Then the Euler-degree
of C is 2(b1 − 1) implying by the previous proposition that z starts with terms
of Euler-degree 2(b1 − 1). Similarly, by the usual properties of the Kontsevich
integral, we know that z starts with terms of Vassiliev degree v (this also covers
the case b1 = 0). Hence our claim follows. �

Lemma 3.6. Z
g

k ◦ �
g

k = Id.

Proof. Similarly to the above proof, let U be the unknot and C be a simple clasper
of grope degree k. Now we need to show that the Z-linear combination

z := log Z(UC) ∈ B̂

of diagrams Di starts (in the grope filtration) with the diagram D underlying the
clasper C. Writing k = v + b1 = v(D) + b1(D), we conclude as in the above
argument that

v(Di) ≥ v and b1(Di) ≥ b1.

This implies as before that g(Di) ≥ g(D) = k but also that the grope degree
part of z consists of the linear combination of those Di for which v(Di) = v and
b1(Di) = b1. By the usual universality of the Kontsevich integral and Lemma 2.13,
the first property alone shows that exactly one Di = D with coefficient +1. �

Corollary 3.7. Z
g

k induces an isomorphism

Gk ⊗ Q ∼= Bg

k ⊗ Q.

Proof. The fact that the map is well-defined is the content of Corollary 3.5. By
Lemma 3.2 the map �

g

k is an epimorphism. Now Lemma 3.6 implies that it is
injective modulo torsion, and hence a rational isomorphism. Therefore its rational
inverse log Z

g

k is also an isomorphism. �

This result clearly implies Theorem 1.1 from the introduction.
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Fig. 7. Interchanging the order of leaves

3.2. 4-dimensional grope cobordism: Grope concordance

Proposition 3.8. For each k ≥ 3, two knots are class k grope concordant if and
only if their Arf invariants agree.

Proof. It was shown in [COT] that a grope concordance of class ≥ 3 preserves
the Arf invariant. So pick k ≥ 3 and suppose that K1 and K2 have the same Arf
invariant. We shall construct a grope concordance of class k as follows:

Using Lemma 4.3 one can perform clasper surgeries on claspers with loops
until the two knots share Vassiliev invariants up to order k. Hence by [CT, Thm.4],
the two knots are concordant to knots K ′

1 and K ′
2 that share Vassiliev invariants

up to order k. By [CT, Thm.1] K ′
1 and K ′

2 are then related by a (capped) grope
cobordism of class k in 3-space. This grope cobordism can be glued to the two
concordances to obtain a grope concordance of class k between K1 and K2. �

3.3. Clasper moves and the grope degree

It is the purpose of this section to prove some lemmas on the behavior of claspers
with respect to the grope degree.

Lemma 3.9. Let C be a rooted tree clasper of degree c on a knot K .

(a) Suppose two leaves of C hit K as on the left in Figure 7. Let C ′ be obtained
from C by interchanging the order of the leaves as on the right of Figure 7.
Then KC = KC′ mod Gc+1.

(b) Suppose C ′ is a rooted clasper obtained from C by homotoping one of the
edges. Then KC = KC′ mod Gc+1. Indeed, when C is a tree clasper, KC =
KC′ mod T , where T is formed from the tree type of C by adding a hair to
the edge that is homotoped.

(c) Suppose L is a leaf that bounds a disk, and that the leaf has trivial linking
number with K . Let C ′ be the clasper which has these intersections pushed
off of the disk. Then KC = KC′ mod Gc+1.
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Fig. 8. The proof of 3.9(c)

Proof. [H2, Prop.4.4] proves (a) when the two leaves belong to different simple
claspers. The hypothesis of “simple” is not used in the proof. (His Figure 29 is
still valid, and the zip construction proceeds without a hitch.) In order to use this
fact, insert some Hopf-linked tips into some edges of C, in order to break C into
two claspers, each containing exactly one of the leaves to be interchanged. This
proves (a).

To prove part (b), let E be a degree 1 clasper with one leaf L linking an edge
of C as a meridian, and the other leaf embedded arbitrarily, so that surgery on
E realizes the homotopy of the edge. Insert a Hopf-pair in the edge of C. There
are two cases: either this disconnects C into two claspers C ′ and C ′′ or it doesn’t.
Now L bounds a disk that hits one of the Hopf-pair in two points. Add a tube to
get rid of the intersections. The resulting surface bounding L has a symplectic
basis bounding disks each of which hits one of the Hopf-pair in one point. In the
disconnected case, in the complement of KC , these curves therefore bound gropes
of the same tree type as C ′ and C ′′ respectively. Therefore surgery on E is the
same as surgery on a clasper formed by gluing the C1 and C2 trees onto the tips
of a “Y”. This is exactly the tree type T . In the connected case, just use one of
the symplectic basis elements.

To prove part (c), consider two intersections of K with the disk of opposite
sign. Let K̃ in S3\C be a parallel to K with the two intersection points pushed
off of the disk. Now Figure 8 shows a genus one surface cobounding K and K̃ in
S3

C . This cobounding surface has a cap which is pierced by the leaf once. So by
Theorem 11 of [CT], K and K̃ cobound a class c + 1 grope in S3

C , which says
that KC and K ′

C cobound a class c + 1 grope in S3. Iterate this procedure until all
intersections are removed. �

The following theorem is well-known to both Goussarov and Habiro. Indeed
we thank Habiro for mentioning the statement to us in an email. See [G2] for a
similar statement. We will give a nice grope proof in [CST].
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Fig. 9. The topological IHX relation

Theorem 3.10. Suppose three claspers Ci represent the three terms in an IHX
relation. Given an embedding of C1 into a 3-manifold, there are embeddings of
C2 and C3 inside a regular neighborhood of C1, such that the leaves are paral-
lel copies of the leaves of C1, and the edges avoid any caps that C1 may have.
Moreover, surgery on C1 ∪ C2 ∪ C3 is diffeomorphic (rel boundary) to doing no
surgery at all.

Sketch of proof. A picture of the relation for the case of Vassiliev degree 3 trees
is given in Figure 3.10. The precise details of the picture are not relevant for
our application in this paper, only the existence of such a picture is needed. As
mentioned above, this existence is well known to the experts but unfortunately
not present in the literature, yet. That’s why we explain our own picture which is
motivated from certain configurations of Whitney disks in four dimensions, see
[CST]. This is not the right place to explain this motivation.

Figure 3.10 gives three claspers in a genus 4 handlebody, where three of the
arcs that have been drilled out of a 3-ball have been isotoped into a Borromean
rings configuration. (This comes from the way in which the picture was derived in



Grope cobordism and feynman diagrams 157

[CST].) We denote by R the fourth arc (which is on the left of our figure). Three
claspers are shown of the form I, H, and X. In this picture notice that there are
symbols indicating half-twists. One can verify by direct, if tedious, computation
that surgery on these three claspers moves the arc R to an isotopic position. To
see this, one applies the “second Morse cancellation” of Figure 15 of [CT] to the
leaves of the three claspers which are meridians to R in Figure 3.10. After doing
this there are threeY claspers which have one leaf each that links R in two parallel
strands. One can then apply Figure 15 of [CT] again, which still works on sets
of parallel strands. The result is that R has been moved to a new (complicated)
position which is isotopic to its original position.

We should also check that the handlebody is indeed a regular neighborhood
of one of the claspers, which may not be obvious at first glance. It is actually a
regular neighborhood of the clasper which should be denoted C1 and which has
an edge that appears right-most in Figure 3.10 and has two pictured half-twists.
Ignoring the other two claspers, one can slide the arcs around inside the ball so
that they are standard and such that we don’t mess up the clasper C1. The resulting
picture demonstrates that the handlebody is a regular neighborhood of C1.

Finally, we need to go from the degree 3 picture to the case of arbitrary degree.
Given a clasper C1 of arbitrary degree > 3. Introduce Hopf pairs of leaves into the
clasper C1 so that C1 is equivalent to a degree 3 tree clasper, T , union the rest of the
clasper which we denote T ′. (T ′ could have up to 4 connected components.) This
new tree should be positioned to correspond to the piece of the clasper affected
by the IHX relation. Insert the degree 3 picture into a regular neighborhood of T ,
calling the three degree 3 claspers C̄1, C̄2, and C̄3. In a regular neighborhood of
each leaf of T , there are many parallel edges of the C̄2 and C̄3 claspers. These
edges can be slid over T ′ using Corollary 33 of [CT]. Now each of the leaves of
T ′ which link with T now link with exactly three leaves each: one from each of
the C̄i . Using the zip construction of [CT] on each component of T ′ we can find
three daughter claspers in a regular neighborhood of each component of T ′, such
that each of the cut leaves now links with one of the C̄i . Cancelling the resulting
clean Hopf pairs, we get three claspers one of which is the original C1, and the
other two are the desired C2 and C3. �

Lemma 3.11. Let U be the unknot.

(a) Suppose that C and C ′ are two simple claspers of grope degree c on U which
differ only by a half twist along any edge. Then UC#UC′ ≡ U mod Gc+1.

(b) Gc/Gc+1 is generated under connected sum by knots which are simple clasper
surgeries of grope degree c on U .

(c) Suppose three claspers Ci of grope degree c on U differ according to the IHX
relation, see Figure 1. Then

UC1#UC2#UC3 ∈ Gc+1.
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(d) Suppose two claspers C ′, C ′′ of grope degree c, on a knot K , differ by a full
twist along an edge. Then KC′ = KC′′ mod Gc+1.

Proof. Part (a): First, insert Hopf-linked pairs of tips to make C, C ′ trees. Use
Lemma 2.9 to find C̃, such that UC∪C̃ = U . We need to disentangle C̃. Those
leaves that were meridians to U on C, are still meridians on C ′. For every tree
clasper D of degree exceeding 1 on a knot K , a meridian to each (non-root) leaf
and edge links KD algebraically trivially. Hence the pushed off Hopf-linked tips
on C̃ link UC algebraically trivially, and so all intersections can be pushed out by
Lemma 3.9(c). The pushed off Hopf- linked tips of C̃, are now Hopf-linked in the
same way as C. Denote the new clasper C̃ ′. Let B be a ball meeting UC in a stan-
dard unknotted arc away from C. Slide the leaves of C̃ ′ into B. By Lemma 3.9(b),
we can pull C̃ ′ into B modulo Gc+1. Let this new clasper be called C ′. We have
just demonstrated that

U ≡ (UC)C̃ ≡ UC#UC′ mod Gc+1

and that C ′ is of the required form.
Part (b): By Theorem 2 of [CT], if K ∈ Gc, then there are knots Ki and simple
claspers Ci of grope degree ≥ c, such that K0 = U, Ki = (Ki−1)Ci

, KN = K .
Modulo Gc+1, we can discard all Ci except those of degree c. As in part a, slide the
leaves of CN into a ball on KN−1, and then pull CN into the ball by Lemma 3.9(b).
Call the new clasper C ′

N . Then KN ≡ KN−1#UC′
N

mod Gc+1. Inductively, we
are done.
Part (c): By Theorem 3.10, we can find three tree claspers differing by the IHX
relation inside a regular neighborhood of each other, such that surgery on all three
is null-isotopic. As noted previously, we can pull them apart modulo higher grope
degree. After pulling them apart Hopf pairs of leaves can be blown down into
edges.
Part (d): There is a clasper C̃ that differs from both C ′ and C ′′ by a single half-twist.
Then the proof of part (a) implies that KC′ = (UC̃)−1 mod Gc+1, and similarly
KC′′ = (UC̃)−1 mod Gc+1. �

4. Low degree calculations

All the 4-dimensional results in Table 1.2 are contained in [COT], so we work
purely in dimension 3. We begin by making a general observation which turns out
to be very useful for all our calculations.

Proposition 4.1.

K1 ≡ K2 ∈ K/G
cap

k implies K1 ≡ K2 ∈ K/Gk implies K1 ≡ K2 ∈ K/G
cap

� k
2 �+1

Remark. The second implication is a slight improvement over [C2], although its
proof depends on Theorem 2 of [CT], which in turn depends on [C2].
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Proof. The first implication is obvious: a capped grope is also an uncapped grope.
The second implication arises as follows. A simple clasper of grope degree k has
minimal Vassiliev degree when the first Betti number is maximized. Suppose
k = 2t + 1. Then the number of leaves of the clasper when the edges are cut to
make a tree is 2t + 2. Note that the grope degree is unchanged under performing
such cuts. At most 2t of these edges could have been paired together to form t

loops. The Vassiliev degree is then k − t = � k
2� + 1.

If k = 2t , then there are 2t +1 leaves of the associated tree clasper, 2t of which
can be paired to make a tree. In that case, we would have a clasper of degree t ,
with a single leaf hitting the knot. Since the corresponding Feynman diagram is
trivial modulo STU, the map � indicates that it must be trivial modulo G

cap

t+1. �
Moreover, the preceding argument proves that the only type �k/2� + 1 invari-

ant values that can be attained by a Gk-trivial knot are those corresponding to
linear combinations of connected Feynman diagrams with �(k − 1)/2� loops,
using Lemma 2.13.

4.1. The groups K/Gk for k ≤ 5

Theorem 4.2. We have the following calculations:

K/G1 = {0} K/G2 = {0}
K/G3

∼= Z/2(c2) K/G4
∼= Z(c2)

K/G5
∼= Z(c2) ⊕ Z/2(c3)

Here c2 and c3 denote some choice of the degree 2 and 3 Vassiliev invariants.
The proof uses the following well-known calculations of the indecomposable
elements AI , see for instance [G] or [BN]. The last statement is due to [Ng].

Lemma 4.3. AI
2

∼= Z, with generator and AI
3

∼= Z with generator . In
general, AI

k is generated by connected diagrams with at least 1 loop for k ≥ 3.

Definition 4.4. Let AI
k[m] denote AI

k modulo diagrams with m-loops.

Proof of 4.2. Suppose AI
m is torsion free for m ≤ k. We have seen that the maps

�m : AI
m → Gcap

m from Lemma 2.1 are then isomorphisms for m ≤ k. Hence

K/G
cap

k
∼= ⊕m<kAI

m

By Proposition 4.1, K/Gk is a quotient group of K/G
cap

k by simple clasper moves
of grope degree k. A simple clasper move represents a diagram in AI

l for some
l, and by definition the number of loops is n − l. Hence, by Lemma 2.13, the
degree l part changes according to the corresponding Feynman diagram. Thus we
have a relation of the form

(0, . . . , 0, α, ∗, . . . , ∗) ∈ AI
2 ⊕ AI

3 ⊕ · · · ⊕ AI
l ⊕ · · · ⊕ AI

k
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where α lies in the subspace of AI
l generated by diagrams with n− l loops. These

constitute all of the relations, but notice that we have no control over the ∗’s, so
this fact will only be useful in (very) low degrees.

Now K/G2 is a quotient of K/G
cap

2 = {0}, and is therefore trivial. That K/G2

is trivial also follows from the statement that all knots cobound a surface with the
unknot. For instance, one may take a punctured Seifert surface.

By the above remarks K/G3 is a quotient of AI
2, by the subspace of diagrams

with one loop. The 1-loop subspace is generated by the following diagram, which,
as shown, is equal to twice the generator.

Since the Arf invariant is the mod 2 reduction of c2, we have proven what
we needed to. For the next degree, note that K/G4 is a quotient of AI

2 ⊕ AI
3 by

relations of the form:

(2-loop, ∗) and (0, 1-loop)

By Lemma 4.3, the relations of the second type kill off AI
3, and we are left

with AI
2[2]. The 2 loop subspace of AI

2 is generated by a diagram with one foot
on the solid circle, which is trivial modulo ST U . Hence AI

2[2] = AI
2.

Now K/G5 is a quotient of AI
2 ⊕ AI

3 ⊕ AI
4, by relations of the form

(0 , 2-loop, ∗) and (0 ,0, 1-loop)

Again, by 4.3 the second type of relation kills off AI
4, and we are left with

AI
2 ⊕ AI

3[2]. By [Ng]’s arguments the 2-loop subspace is generated by diagrams

of the form attached to the outer loop by some permutation. For instance

we do not need to separately consider the diagrams . Up to sign, there
is only one diagram of each of the good types, and they can each be represented
as follows.

Since twice the generator is realized, but the generator is not realized, c3 mod 2
is all that survives. �

The previous calculations are quite suggestive of the following conjecture.



Grope cobordism and feynman diagrams 161

Conjecture 4.5. Suppose AI is torsion free up to degree k. Then

K/Gk
∼= Ak−1[1] ⊕ Ak−2[2] ⊕ Ak−3[3] ⊕ · · · ⊕ A2[k − 2].

We remark that this is true rationally, without the hypothesis, see Corollary 3.7.
We end this section with a generalization of one of our results above to knots in
integral homology spheres.

Proposition 4.6. Two knots in an integral homology sphere have the same Arf
invariant iff they are class 3 grope cobordant.

Proof. Let K be a knot in an integral homology sphere M . It bounds a surface.
By Matveev’s result [M], there is a collection of Vassiliev degree 2 claspers which
turn M into S3. We may assume that the claspers are disjoint from the surface since
we can perturb them by isotopy. One can then find inverse claspers in a regular
neighborhood, so that we are in the situation of a knot in S3 together with some
claspers disjoint from a Seifert surface, such that surgery on these claspers takes
us to the original pair (M, K). Now by Lemma 3.9(c), K is class 3 cobordant to
a knot in D3 ⊂ M . Now we can use the result for S3. �

4.2. Tree types of class 4

In Theorem 4.2, we analyzed the equivalence relation given by grope cobordisms
of a fixed class, up to class 5. In general, when one refines these equivalence
relations to be of a fixed tree type, one gets a different answer. For instance,
S-equivalence is generated by a specific tree type of class 5 (Theorem 4.9). Degree
4 is the first place that the rooted tree type is not unique, but we prove in this sec-
tion that class 4 cobordism is generated by either of the two rooted tree types:

.

Proposition 4.7. K/ ∼= K/ ∼= K/G4. That is, grope cobordism of class four
is generated by either of the two rooted tree types.

Proof. Let the two tree types be called T1 and T2. We have the following commu-
tative diagram.

0 −−−→ Ker −−−→ K/G
cap

4 −−−→ K/G4 −−−→ 0



=




onto




=




onto




=

0 −−−→ Keri −−−→ K/G
cap

4 −−−→ K/Ti −−−→ 0

As we saw in the proof of Theorem 4.2, the Ker is generated by a wheel with
three legs attached to the outer circle. After cutting this, the root can be chosen so
that it is either of the two tree types. That implies the map Keri → Ker is onto.
By a the five lemma the map K/Ti → K/G4 is an isomorphism. �
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4.3. Tree types of class 5

In this section we prove that grope cobordism of class 5 is generated by - equiv-
alence, or by -equivalence. In [CT], it was proven that “half gropes" generate
equivalence by (capped) gropes of a given class. Here a half grope has a tree type
representing a right-normed commutator. This implies the first isomorphism in
the following lemma.

Lemma 4.8. K/ ∼= K/G5
∼= K/

Proof. As in the proof of Lemma 4.7, it suffices to show that the kernel of
K/G

cap

5 → K/G5 is generated by both of the tree types. This kernel is gen-
erated by a circle with four legs, something that can be thought of as either tree
type, as well as twice the generator corresponding to c3. This is realized by a theta
with two legs which can be cut apart to be either of the two tree types. �

4.4. S-equivalence

Let S5 denote the following tree type:

This is the simplest tree with an internal vertex.

Theorem 4.9. Two knots are S-equivalent iff they are S5-equivalent.

Remark 4.10. In [COT] it is proven that the corresponding move in 4 dimensions
gives Blanchfield forms up to cobordism. Thus the kernel of going from 3 to 4
dimensions consists of adding the relation K + K ! = 0 where K ! is the mirror
image and is an inverse in the knot concordance group.

Proof. That S5 preserves S-equivalence follows by a construction of Murakami
and Ohtsuki [MO, p.6], applied to a disk leaf of the S5 move. For the converse
we use a result of Naik and Stanford [NS] (see also Murakami and Nakanishi
[MN]), that the doubled delta move generates S-equivalence. In fact, [NS] proves
the stronger result that the doubled delta move applied to bands of some Seifert
surface generates S-equivalence. If this move is applied to three bands, no two of
which are dual, it is easy to construct an S5 grope cobounding the knots before
and after the doubled delta move. We construct this grope by constructing disjoint
surfaces bounded by the three leaves of the doubled delta move. These surfaces
are constructed by tubing into the dual band. See Figure 11 If two or three leaves
link the same band, we can construct the surfaces by nesting the tubes.

Now that we have these 3 surfaces, we get an S5 grope by the discussion of
grope-clasper duality given in [CT]. A meridian of an innermost tube provides the
root. We are left with the following two cases:
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Fig. 10. Stanford and Naik’s doubled delta move

Fig. 11. Tubing into the dual band

(a) Two leaves link one band, and the other leaf links the dual band.
(b) Two leaves link dual bands, and the third leaf links some other band.

Note that in both cases we can construct disjoint surfaces on two of the leaves. The
argument that S-equivalence is generated by the S5 grope is given by diagram 12.
We now give the explanation of the figure. First, the two leaves which bound sur-
faces are the leaves at the bottom of frame 1. When constructing these surfaces we
can assume that they run parallel to only one of the strands going through the top
leaf. Let this strand be the top strand of the picture. Going to frame 2 is Habiro’s
move 8. Going to frame 3 follows easily from Habiro’s move 11. In frame 4 we
have added the two surfaces to the tips of one of the claspers. Rather than drawing
the details, we have represented things schematically. The heavy line at the top of
the picture reminds us that pieces of the new clasper run through here. In frame
5 we have slid one of the leaves along the knot until it is opposite the other leaf.
Because of the fact that the strands were oriented oppositely, the leaves face each
other as shown. Going to frame 6 is where we use the S5 move. We pull the edge
of the clasper which is incident to the leaf we just slid into the shown position.
Then by Lemma 3.9(b), the knots in pictures 5 and 6 cobound an S5 grope. To get
to frame 7 we forget the fact that there are surfaces bounding two of the leaves.
(Basically the inverse of 3 → 4.) In frame 8 we do Habiro’s move 11 in reverse.
But then we have a clasper with trivial leaf, which does not alter the knot as in
frame 9. �

Note that Corollary 1.3 follows immediately, because by Theorem 4.2, c3

mod 2 is an invariant of all class 5 grope cobordisms.



164 J. Conant, P. Teichner

Fig. 12. The proof that the S5 grope generates S-equivalence

This corollary is somewhat surprising. [MO] have proven that the only rational
finite type S-equivalence invariants are the coefficients of the Alexander-
Conway polynomial. Recall that c3 mod 2 is not an Alexander-Conway coef-
ficient. Recently, Ted Stanford [S] discovered that c3 mod 2 can be expressed as
a polynomial in the Conway coefficients c2 and c4. Hence all known finite type
invariants of S-equivalence come from the Alexander polynomial.

We have classified the behavior of all capped and uncapped class 5 trees but
the following.

Problem 4.11. What is K/(S5)
cap?

Clearly a (S5)
cap move must preserve S-equivalence and also type 4 Vassiliev

invariants. Conjecturally this completely characterizes the move.
We close this section with a natural conjecture based on our low-degree

calculations.

Conjecture 4.12. K/T only depends on the unrooted tree type of T .

5. Miscellaneous results

5.1. Null filtration of knots which bound a grope

In the first author’s Ph.D. thesis [C] (see also [C2]), the question of a knot bound-
ing a grope is considered. This is much stronger than cobounding a grope with
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the unknot. In particular, if a knot bounds a grope of class at least three, the knot
has trivial Alexander polynomial, whereas this is certainly not the case for the
cobounding situation. The central result in [C] is the following:

Theorem 5.1. If a knot K bounds an embedded grope of class k into S3, then
Vassiliev invariants up to degree �k/2� vanish on K .

In fact the bounding of a grope is an extremely restrictive condition. This can
be very well expressed in terms of the null filtration of [GR]. It is obtained by
the usual alternating sum formalism by declaring a null clasper surgery on a Y to
have degree one. Here the word “null” expresses the condition that the leaves of
the clasper must have trivial linking numbers with the knot. It follows that to be
null equivalent to the unknot (the case k = 3 below) is the same as having trivial
Alexander polynomial, at least in a homology sphere.

Proposition 5.2. If a knot K bounds an embedded grope of class k in a 3-manifold
M , then the pair (M, K) is (k − 3)-null equivalent to the unknot in M .

Proof. A knot bounding a grope of class k can be obtained from the unknot U by
surgery on a rooted tree clasper of Vassiliev degree k, where U is a meridian to
the root. In particular, the other leaves do not link U .

Break the clasper into a union of (k−1)Y’s. Surger the knot along theY which
contains the root. This leads to a union of (k − 2) Y’s, which the surgered knot
links trivially. Now consider the alternating sum, surgering over all subsets of the
Y’s. It is easy to see that surgery on any proper subset does not change the knot,
because there will be leaves which bound embedded disks. Hence the alternating
sum reduces to (M, U)− (M, K) and since we did (k − 2)Y-surgeries, these two
knots are (k − 3)-null equivalent. �

5.2. Grope cobordism and orientation reversal

Proposition 5.3. Let ρ be the map reversing a knot’s orientation. Then for every
knot K in the k-th term Gk of the grope filtration of K, one has

K ≡ (−1)kρ(K) mod Gk+1.

One can filter the primitive Feynman diagrams by grope degree, and in the
associated graded group, it is straightforward to show that D = (−1)|D|ρ(D).
Conjecturally the graded pieces of this group are isomorphic to Gk, in which case
we’d be done. However, we can still mimic the Feynman diagram computation
geometrically.

Proof of Proposition 5.3. By Lemma 3.11(b) and Lemma 3.9(b), it suffices to
show the result for K = UC , where C is a simple clasper of degree k which hits
the unknot U as on the left of Figure 13. Here B is a ball which contains most of
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Fig. 13. The proof of Proposition 5.3

the clasper, excluding the leaves. One rotates the outer unknot about the vertical
axis lying in the page, while keeping the ball B fixed. By Lemma 3.9, we can
reorder the leaves as on the right of the picture. Each edge incident to a leaf has
picked up a half twist. Note that the parity of the number of leaves of a simple
clasper matches the parity of the grope degree k. By Lemma 3.11(a), we have
shown that UC = (−1)kρ(UC) ∈ Gk/Gk+1. �

5.3. Simple clasper surgeries and the grope degree

In this section, we restrict attention to knots and claspers in 3-space. Consider the
statement,
“A simple clasper surgery of degree k may be realized by a sequence of simple
clasper surgeries of degree (k − 1).”

When the degree k is the Vassiliev degree, this follows from Habiro’s work:
By his main theorem any simple clasper surgery of Vassiliev degree k may be
realized by a sequence of simple tree clasper surgeries of Vassiliev degree k. For
a simple tree claspers, one breaks the clasper into a union of a degree (k − 1) tree
clasper and a Y, with two leaves linking as a Hopf pair (exactly one of the leaves
belongs to the Y). Surgering the knot along the Y, we get a capped tree clasper of
Vassiliev degree (k − 1), which can then be refined via the zip construction into
a sequence of simple tree clasper surgeries of Vassiliev degree (k − 1).

It is the purpose of this section to demonstrate that the above statement holds
also for the grope degree.

Theorem 5.4. A simple clasper surgery of grope degree k may be realized by a
sequence of simple clasper surgeries of grope degree (k − 1).

We make the following preliminary definition for the purpose of this section.

Definition 5.5. A clasper is said to be admissible if it is simple and the graph type
is obtained from a connected trivalent graph with no separating edges by adding
a positive number of legs to the edges. We also call the trivalent graph admissible.
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Let S denote the set of finite sequences of connected uni-trivalent graphs with
at least one univalent vertex. Consider the partial order generated by the relation

(G1, . . . , Gi, . . . , GN) < (G1, . . . , G1
i , G

2
i , Gi+1, . . . , GN),

where G
j

i are the two other terms in an IHX relation involving Gi . This partial
order gives a convenient language to state the following lemma.

Lemma 5.6. For all s ∈ S , there is an s0 ∈ S such that s < s0 and s0 = (Gi) is
a sequence of admissible graphs Gi .

Proof. Straightforward. �
The point is that these elementary relations can be realized topologically by

embedded claspers, as the next proposition makes clear.

Proposition 5.7. Let G1, G2, G3 be uni-trivalent graphs related by an IHX rela-
tion, and let C1 be a simple clasper of type G1, embedded in the complement of
a knot K . Then C1 may be realized by a sequence of claspers one of which is of
type G2, one of which is of type G3, and the rest of which have increased grope
degree and (at least) the same number of simple caps.

Proof. First, we must convert some edges of C1 to Hopf pairs to obtain a tree
clasper Ĉ1 of tree type Ĝ1. This gives rise to induced tree types Ĝ2, Ĝ3. There is
an inverse C1 to the clasper Ĉ1 inside a regular neighborhood of Ĉ1. The leaves
of the inverse are parallels of the original, but the edges may wander around the
regular neighborhood in a complicated way. The edges do however avoid any
caps that Ĉ1 may have.(See Lemma 2.9.) If K1 is the knot after surgery on C1

(equivalently on Ĉ1) then C1 sits on the knot K1, and surgery on it produces the
original knot. The knot K1 will wander through the Hopf pairs of C1, but will link
these leaves trivially. By Lemma 3.9(c), the surgery C1 can be realized modulo
higher grope degree, by surgery along a clasper C̃1 obtained from C1 by pushing
the knot out of the Hopf pairs.

Now we use the topological IHX relation, Theorem 3.10. There is a union of
two tree claspers Ĉ2 and Ĉ3 in a regular neighborhood of C̃1 which are of type
Ĝ2 and Ĝ3 respectively, such that surgery on C̃1 ∪ Ĉ2 ∪ Ĉ3 is null isotopic. The
leaves of Ĉ2 and Ĉ3 are parallels of the corresponding leaves of C̃1. The edges of
Ĉ2 and Ĉ3 may run through the regular neighborhood of C1, but avoid any caps
that C1 may have.

Where there were Hopf pairs of leaves on C1, all the leaves of the three clasp-
ers link. However, these leaves of Ĉ3 have trivial linking number with (K1)C̃1∪Ĉ2

.
Thus, by Lemma 3.9(c), K1 = ((K1)C̃1∪Ĉ2

)Ĉ3
is equivalent modulo higher grope

degree to ((K1)C̃1∪Ĉ2
)C̃3

where C̃3 is a clasper obtained from Ĉ3 by pushing strands
of the knot out of the Hopf pairs of leaves. Similarly, modulo higher grope degree
Ĉ2 can be realized by a clasper C̃2, where the knot has been pushed out of the
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Hopf pairs. Thus K1 is equivalent modulo higher grope degree to (((K1)C̃1
)C̃2

)C̃3
.

However (K1)C̃1
is equivalent modulo higher grope degree to K . Hence (KC̃2

)C̃3

is equivalent modulo higher grope degree to K1. The claspers C̃2, C̃3 have clean
Hopf pairs, and when these are converted to edges, the resulting simple claspers
have graph type G2 and G3 respectively. �

Recall that a cap is an embedded disk bounding a leaf of a clasper C, with inte-
rior disjoint from C. If there are several caps, they are assumed to be embedded
disjointly. A cap is simple (with respect to a knot K) if it has a single intersection
with K .

Definitions 5.8. Let C be a clasper having some caps.

(a) Let c1(C) be the number of simple caps.
(b) Let g(C) be the grope degree of the clasper C. After breaking some edges into

Hopf pairs of leaves to make C a tree clasper, g(C) is the number of leaves
minus one.

Lemma 5.9. Consider a surgery on a clasper C.

(a) It may be realized by a sequence of surgeries on claspers Ci which are of the
following two possible forms.

(i) g(Ci) = g(C), Ci is admissible, c1(Ci) ≥ c1(C)

(ii) g(Ci) = g(C) + 1, c1(Ci) ≥ c1(C).
(b) If C is admissible then the clasper surgery may be realized by a sequence of

surgeries on claspers Ci of the following two possible forms.
(i) g(Ci) = g(C) − 1, c1(Ci) > c1(C)

(ii) g(Ci) = g(C), c1(Ci) > c1(C).

Proof. Part (a): By Theorem 20 of [CT], we may realize C by a sequence of
simple clasper surgeries of the same grope degree and at least the same number
of simple caps together with some surgeries of higher grope degree which have
at least the same number of simple caps. (One must check that [CT] Lemma 19
does not decrease the number of simple caps. Some caps may be destroyed when
adding the nested tubes at one stage of the proof. However, instead of adding the
nested tubes, push the disk over the cap as we did for the root leaf.)
Hence it suffices to prove (a) for simple claspers. For a simple clasper C, it is
straightforward to show that there is a sequence of admissible graph types s0 such
that s0 ≥ (G), where G is the graph type of C. Then we have (G) ≤ s1 ≤ s2 ≤
. . . ≤ sn ≤ s0, where each sequence is related to the next by a replacement of a
single graph by a pair related by IHX.
Proposition 5.7 implies that an elementary relation si ≤ si+1 can be realized geo-
metrically modulo higher grope degree. More precisely, if si represents a sequence
of clasper surgeries between a knot K0 and K1, then there is a sequence of clasper
surgeries of the form si+1 which also go between K0 and K1. Therefore, we have
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that C can be implemented, modulo higher degree, by a sequence of claspers of
the form s0, which are admissible. This concludes the proof of part (a).

Part (b): Since the clasper is admissible, every univalent vertex is part of a Y,
such that the two other vertices of theY are trivalent, and there is a path connecting
them which doesn’t hit the Y’s interior. Surger the knot along the Y. This gives a
connected clasper which has two new capped leaves having two intersections with
the knot each. Refining this clasper using Theorem 20 of [CT], we will get some
claspers of higher grope degree and some simple claspers where some number
of edges have been cut. All of the latter type have increased c1, since we took a
single simple cap of the original and converted it to two simple caps in all the
daughters. Cutting of edges will add even more simple caps. �
Lemma 5.10. (a) A clasper surgery of grope degree (2k − 1) is realizable by a

sequence of simple tree clasper surgeries of grope degree (k − 1).
(b) A clasper surgery which has k + 1 caps is realizable by a sequence of simple

tree clasper surgeries of grope degree (k − 1).

Proof. The proofs of both of these facts use the main theorem of Habiro [H2],
which is that if two knots have the same degree (k − 1) invariants, then they
are related by a sequence of simple tree clasper surgeries of Vassiliev = grope
degree k. The fact that grope degree (2k−1) clasper surgeries preserve type k−1
invariants is Theorem 3 of [C2]. For part (b), if a rooted clasper C has k + 1
caps, it must have k non-root caps. Then there are k groups of crossing changes
on KC which correspond to pushing the knot out of the caps. Since surgery on
a clasper which has a cap that does not intersect the knot is trivial, doing any
collection of these k groups of crossings will yield the knot K . Hence K and KC

are k − 1-equivalent. �
Proof of Theorem 5.4. Define a complexity function, ordered lexicographically
as the triplet (c1, g, a) where c1 is the number of simple capped leaves, g is the
grope degree, and a(G) is zero unless G is admissible, in which case it is one. If
g ≥ 2k − 1 or c1 ≥ k + 1 then by the previous lemma the surgery is realizable
by simple grope degree k − 1 surgeries and we are done.

We prove the following statement by contradiction: “Every clasper surgery of
grope degree ≥ k − 1 is realizable by a sequence of simple clasper surgeries of
grope degree (k − 1).”

Assume C is a counterexample. Then, as noted above, C lies inside the range
c1 ≤ k and k − 1 ≤ g ≤ 2k − 2. Hence it makes sense to take C to have maximal
complexity (c1, g, a). There are two cases: either g(C) = k − 1 or g(C) ≥ k. In
the former case, C cannot be admissible, since it would then be simple and hence
not a counterexample. Therefore, a = 0, in which case Lemma 5.9(a) says that C

can be realized by claspers with higher complexity. Since C is a counterexample,
one of these daughters must also be a counterexample. But this contradicts that C

was of maximal complexity.
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So we are left with the case thatg(C) ≥ k. Ifa = 0, then as above Lemma 5.9(a)
furnishes a contradiction. Otherwise, a = 1 and so Lemma 5.9(b) says that C can
be realized by claspers of degree ≥ k − 1, and of higher complexity. As before,
this contradicts the maximality of C. �
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