
Appendix -
Clarification of Linear Grope Height Raising

M. Freedman and P. Teichner

Slava Krushkal and Frank Quinn recently brought to our attention misstate-
ments in the proof of our linear grope height raising procedure which we pub-
lished in 1995 [FT]. This appendix replaces pages 518-522 of that paper with
a proof along the same lines but with correct details. The main difference is
that we are more careful in which order we add surface stages. This resolves in
particular the problem of how to deal with intersections that involve a dual pair
of circles on a surface stage: Even though the “key point” in the middle of page
521 is not true as stated (the Borromean rings are not slice after all), the inter-
sections that arise can be dealt with by picking an order and correspondingly
decreasing the scale of the relevant lollipops.

We also reformulate the final word length count in terms of coarse geometry,
mainly for clarity but also for possible future use.

Since the “warm up” and “warm down” parts of the proof of Theorem 2.1 in
[FT] are correct, it suffices to explain the core construction and show that the
word length grows linearly. More precisely, we prove the asserted estimate for
the word length

(∗) ℓ(g•k+r) ≤ 2r + 1

in terms of the double point loops of Gk . In the last paragraph on page 522 this
assertion is correctly used to finish the proof of Theorem 2.1. We now begin
the revision on the top of page 518:

As we start the core construction we have a Capped Grope Gc := Gc
k of height

k ≥ 3. The inductive set up is a Grope Gh−1 of height h − 1 ≥ k and an
embedding (Gh−1, γ) →֒ (Gc, γ). One works with the spines, proceeding from
gh−1 to gh by adding a finite number of connected surfaces Σ(t) to gh−1 . To
underline the importance of the order in which the surfaces Σ(t) are attached,
we write

gh−1 =: g(0) ⊂ g(1) ⊂ g(2) ⊂ · · · ⊂ g(n) = gh

where g(t) := g(t − 1) ∪Σ(t). Even though technically the g(t) are not gropes
(since they have heights in between h − 1 and h), we will still consider them
as such. In particular, each g(t) will be thickened to a “Grope” G(t). The
surfaces Σ(t) are obtained in two steps:
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• Step 1 finds surfaces Σ′(t) which have (illegal) self-intersections and in-
tersections with grope stages at various heights, but only above

Y := base stage ∪ second stage surfaces Σ1 ∪ {Σ2} of G.

The subspace Y is protected in the construction so that the dual spheres
{S} will remain geometrically dual to {Σ2}, the second stages of G, and
disjoint from everything else.

• Step 2 only changes the surface Σ′(t) to Σ(t), removing double points
with itself and with earlier stages (and in the process increases the genus
of the surface).

Every application of Step 1 involves choosing some obvious surface (often a disk)
so, formally, the presence of these obvious surfaces is an inductive hypothesis
which must be propagated in passing from gh−1 to gh . The surfaces Σ′(t) for
Step 1 are of three types:

1. “parallel” copies of the initial caps gc
r g ,

2. meridional disks to some surface stages of g(t − 1), and
3. “parallel” copies of stages of the original Grope G.

Every application of Step 2 is accomplished by a finite number of moves called
a lollipop move or a double lollipop move. The Step 2 algorithm removes all
self-intersections and intersections of Σ′(t) (in a particular order) to produce
the surface Σ(t). The caps gc

h r gh , necessary to define ℓ(gh), are constructed
last and in two steps. The preliminary caps cross all grope stages above Y
(stages ≥ 3); these are refined to caps disjoint from the grope using the dual
spheres {S}.

We next explain the central move in our grope height raising procedure. Ev-
ery surface stage Σ in the Grope G(t − 1) has a symplectic basis of circles
α1, β1, ..αg , βg where g is the genus of Σ, along which higher surface stages or
caps have been attached. We consider tori Tαi

, i = 1, . . . , g which are ǫ normal
circle bundles to Σ in G(t − 1) restricted to αi where ǫ is a small positive
number depending on Σ. Notice that all these tori are disjoint. Suppose x is
a double point with local sheets S ⊂ Σ′(t) and Sβ ⊂ Σβ , and that the surface
stage or cap Σβ is attached to Σ along β . Symmetrically, if the surface Σ′(t)
intersects Σα then interchange α and β in the next paragraphs.

The lollipop move replaces a disk neighborhood S of x with a slightly displaced
copy of Tα , made by taking normal ǫ-bundles over a parallel displacement
(depending on x) of α in Σ, boundary connected summed to S along a tube
which is the normal ǫ/10-bundle of Σβ in G(t− 1) restricted to an arc λ ⊂ Σβ

from (Tα(displaced)) ∩ Σβ to x . Denote the lollipop by Lα . It is the punctured
torus made by attaching the tube (or stem) to Tα(displaced) , see Fig. 2.1 in [FT].
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We are now ready to describe the core construction in detail. Let h − 1 = k .
The very first application of Step 1 simply attaches one cap of gc to g . When
regarded as a grope stage the self-intersections in the cap are impermissible and
thus the cap only gives Σ′(1).

We specify that the initial application of Step 2 removes (in some order) all
intersections of Σ′(1) using lollipop moves. This gives Σ(1) and hence g(1).
To obtain Σ(2) one just repeats Step 1 and Step 2 by starting with the next cap.
Note that now the self-intersections of the second cap as well as the intersections
with the first cap have to be removed (in some order) by lollipop moves. In
the same manner, one constructs all surfaces Σ(t) and hence the grope gk+1 .
Here the scale ǫ of the lollipops is getting rapidly smaller so that they do not
intersect the previously constructed surface stages. This is where the order of
things is relevant.

In subsequent applications of Step 1 we must specify which surfaces we choose
and what the intersections are. Each Lα contains a meridional circle to which
we attach the meridional disk (type (2) above) and a longitude ℓα (picked
out by the standard framing used to thicken g to G) to which we attach a
“parallel” copy of the surface stage (type (3)) or cap (type (1)) Σα . This
surface or cap is only crudely parallel in the sense that we need to glue an
annulus A to get from the longitude ℓα to ∂Σα(displaced) , the attaching circle of

a slightly displaced copy of one of the surfaces or caps of Gc . The surface Σ′(t)
is then defined to be A ∪ Σα(displaced) . The framing assumption of G implies
that for type (3) the surface stage Σα(displaced) will be disjoint from everything
constructed previously, i.e. from g(t − 1). However, for both types (1) and
(3), the annulus A may intersect many Σ(s), s < t , so that Σ′(t) has many
intersections with g(t − 1). For type (2), Σ′(t) is a meridional disk and it will
intersect g(t − 1) in a single point.

The reader may expect that the next application of Step 2 will use lollipop
moves on Σ′(t) to remove these intersection points. This is part of the picture,
but there is a difficulty. The lollipop moves, if repeated, produce a branch
heading inexorably down G: namely resolving (meridian disk) ∩Σi with a
lollipop capped by a (meridian disk) meeting a Σi−1 lead toward the base
of G which is Σ1 . There is no way of using a lollipop to remove a point of
(meridian disk) ∩Σ1 . The solution is to use the double lollipop move to resolve
any intersection of a current top stage meridional disk with a third stage surface
Σ3 . This move turns the branch of the growing grope back “upward” to avoid
the bottom part Y .

The double lollipop move removes an intersection x between a surface Σ′(t)
and a third story surface Σ3 . This move replaces a small disk neighborhood
S ⊂ Σ′(t) of x with Lα/Σα . The notation assumes Σ3 attaches to β (otherwise
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reverse the labels α and β ), Lα is the lollipop made from Tα as describe above,
Σα is the third story surface attached to α and finally Lα/Σα denotes the
embedded surface that results by surgering Lα along a parallel copy Σα(displaced)

of Σα , i.e. Lα/Σα = (Lα r nbh. of α(displaced))∪ two copies of Σα(displaced) .
Because we have assumed Gc is an untwisted thickening the two copies of
Σα(displaced) are disjoint from each other and from the original Σα .

Now suppose that we have constructed the grope gh−1 . Then the top layer of
surfaces has a natural symplectic basis coming from the original grope g and
the (meridian, longitude) pair on each lollipop. These bound obvious surfaces
Σ′(t) of types (1)-(3) as explained above. Applying Step 2 to these surfaces in
some chosen order, we remove intersection points by a lollipop move except in
the case of intersection with a third stage surface Σ3 in which case a double
lollipop is used. This gives the embedded surfaces Σ(t) and hence an embedded
grope (gh, γ) →֒ (Gc, γ).

We next check the normal framing. If we assume that each cap has algebraically
zero many self-intersections then all surfaces Σ′(t) are 0-framed. A lollipop
move on a ±-self-intersection changes the relative Euler class by ±2 (this is
best checked in the closed case, S2 ×S2 , where adding the framed dual 0× S2

to S2 × 0 gives the diagonal). All other lollipop moves leave the 0-framing
unchanged. Thus the passage to Σ(t) leaves the relative Euler class trivial so
the neighborhood of g(t) agrees with the standard thickening G(t).

To obtain caps {δ} for gh , we examine the symplectic basis for the top stage of
gh . Some of the curves bound meridian disks to earlier stages of the construc-
tion. Some bound “parallel” copies of sub capped gropes of Gc . Contracting,
the latter also yield disks. We set h = k + r and

g•k+r := gk+r ∪ {δ}

The superscript • warns the reader that g•k+r does not satisfy the definition of
a capped grope owing to the cap-grope intersections. These will be removed in
the last step, see the last paragraph of page 522 in [FT].

Let us next bound the word length ℓ(g•k+r) in terms of the original generators
(= double point loops) of the free group F := π1G

c . Recall that we need to
prove

(∗) ℓ(g•k+r) ≤ 2r + 1.

For this purpose, we put a pseudo metric on the universal covering X of Gc .
This is a distance function which still satisfies the triangle inequality but distinct
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points may have distance zero. Note that pseudo-metrics can be pulled back by
arbitrary maps which we will use in the construction as follows. First project X
onto the Cayley graph of F such that lifts of the Grope body G map bijectively
onto the vertices and lifts of the plumbed squares in the Caps map bijectively
onto the centers of the edges. Then take a coarse or pseudo version of the usual
path metric on the Cayley graph (in which all edges have length 1) by saying
that edge centers have distance 1/2 from all the vertices the edge meets and that
all path components of the Cayley graph minus the edge centers have diameter
zero. Finally, use the above map to pull this pseudo metric back to X .

For any map f : Y → Gc which is trivial on π1 , we may then measure the
diameter of a lift f̃(Y ) in X . For example, if Y is a model capped grope (i.e.

with unplumbed caps) such that f(Y ) = g•k+r then the diameter of f̃(Y ) is
just the word length ℓ(g•k+r).

If Y happens to be a disk, surface or (capped) grope such that ∂Y maps to G,

it is very useful to consider the radius of f̃(Y ) around the “point” f̃(∂Y ). This
uses the fact that each lift of G projects onto a vertex in the Cayley graph of F
and thus has radius zero itself. For example, if Y is a disk mapping onto a cap
of Gc which has one self-intersection, then the radius of f̃(Y ) is 1/2 whereas
the diameter is 1.

Let Xr be a lift of gk+r to X and let Xc
r := f̃(Y ) where f(Y ) = g•k+r as above.

Then the triangle inequality shows that radius(Xc
r ) ≤ radius(Xr) + 1/2 and

hence

ℓ(g•k+r) = diam(Xc
r ) ≤ 2 · radius(Xc

r ) ≤ 2 · radius(Xr) + 1.

It thus suffices to check that radius(Xr) ≤ r . This in turn follows by the
triangle inequality (applied to the usual tree structure of the grope gk+r ) from
knowing that the radii of all S(t) are ≤ 1. Here S(t) are lifts to X of the
surfaces Σ(t) used in the construction of gk+r and the radii are again measured
w.r.t. ∂S(t).

We prove that radius S(t) ≤ 1 by induction on t : Recall that the first surface
Σ(1) was obtained by applying lollipop moves to the first cap of Gc . Before the
lollipop moves, we can lift the (unplumbed) cap to X and as explained above
it has radius 1/2 (if the cap is embedded then the radius is zero but we won’t
consider this easy case). The lollipops then increase this radius to at most 1,
independently of how many are used. This follows from the triangle inequality
applied to the decomposition of each lollipop into its stem and body (or toral
piece). The body has diameter zero since it lies in G whose lift projects to a
vertex. The stem has by definition diameter 1/2 since it leads from a plumbed
square to the base of the cap.
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Now assume by induction that radius S(s) ≤ 1 for all s < t . Let S′(t) be a
lift to X of Σ′(t). If Σ′(t) is of type (2) or (3) then the radius of S′(t) is zero
since it lies in a lift of G. For every intersection point of Σ′(t) with g(t − 1)
we add a lollipop or a double lollipop to obtain Σ(t). Only the stems of these
(double) lollipops will contribute to the radius of S(t) since the bodies lie in
G. The induction hypothesis implies that all these stems have diameter ≤ 1
and thus we are done in this case.

Finally, consider the case where Σ′(t) has type (1), i.e. is a “parallel” cap.
Then its radius is 1/2 as explained above. For every self-intersection of Σ′(t)
and every intersection point of Σ′(t) with g(t − 1) we add a lollipop to obtain
Σ(t) (note that double lollipops don’t occur for caps). Again, only the stems
of these lollipops will contribute to the radius of S(t). There are two types
of lollipops: One type removes self-intersections and intersections with surface
stages of g(t−1) that come from the caps of gc . As for Σ(1) the corresponding
lollipop stems have diameter 1/2 and thus can only increase the radius to 1.
The other type of lollipops remove intersections of the annulus A = (collar of
∂Σ′(t)). This means that, as far as our pseudo metric can measure, the stems
of the lollipops start essentially on ∂Σ′(t) which is the base point with respect
to which we measure the radius. By the induction hypothesis these stems can
only bring the radius up to 1. �

Note added in proof: Slava Krushkal has pointed out that in the above proof,
the “warm-up” and “warm-down” steps can be replaced by the following easier
and shorter argument:

Do the core construction on the originally given Capped Grope of height k ≥ 2,
preserving only the bottom surface Σ1 instead of the first two stages Y as done
above. (No dual spheres need to be constructed.) After the core construction,
we have a Capped Grope of height k + r and word length ≤ 2r + 1, with many
cap-body intersections but caps are disjoint from the bottom surface Σ1 . Now
do symmetric contraction of the bottom surface. This requires taking parallel
copies of whatever is attached to it, and reduces the height of the entire Capped
Grope by 1. Then push all cap-body intersections down and off the contraction.
This at most doubles the estimate on the double point loop length and thus
leads to a clean Capped Grope of height k + (r − 1) and word length

≤ 2(2r + 1) = 4(r − 1) + 6.

Thus linear grope height raising is established.
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