
Mathematics Department, Princeton University
 

 
The group of disjoint 2-spheres in 4-space
Author(s): Rob Schneiderman and  Peter Teichner
Source: Annals of Mathematics, Vol. 190, No. 3 (November 2019), pp. 669-750
Published by: Mathematics Department, Princeton University
Stable URL: https://www.jstor.org/stable/10.4007/annals.2019.190.3.1
Accessed: 20-02-2021 04:40 UTC

 
REFERENCES 
Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/10.4007/annals.2019.190.3.1?seq=1&cid=pdf-
reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Mathematics Department, Princeton University is collaborating with JSTOR to digitize,
preserve and extend access to Annals of Mathematics

This content downloaded from 157.131.250.80 on Sat, 20 Feb 2021 04:40:08 UTC
All use subject to https://about.jstor.org/terms



Annals of Mathematics 190 (2019), 669–750
https://doi.org/10.4007/annals.2019.190.3.1

The group of disjoint 2-spheres in 4-space

By Rob Schneiderman and Peter Teichner

Abstract

We compute the group LM4
2,2 of link homotopy classes of link maps of

two 2-spheres into 4-space. It turns out to be free abelian, generated by

geometric constructions applied to the Fenn–Rolfsen link map and detected

by two self-intersection invariants introduced by Kirk in this setting. As

a corollary, we show that any link map with one topologically embedded

component is link homotopic to the unlink.

Our proof introduces a new basic link homotopy, which we call a Whitney

homotopy, that shrinks an embedded Whitney sphere constructed from four

copies of a Whitney disk. Freedman’s disk embedding theorem is applied to

get the necessary embedded Whitney disks, after constructing sufficiently

many accessory spheres as algebraic duals for immersed Whitney disks. To

construct these accessory spheres and immersed Whitney disks we use the

algebra of metabolic forms over the group ring Z[Z], and we introduce a

number of new 4-dimensional constructions, including maneuvers involving

the boundary arcs of Whitney disks.
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1. Introduction and statements of results

A link map is a continuous map that sends connected components of the

source disjointly into the target. A link homotopy is a homotopy through link

maps.

So even if the components start off as disjoint embeddings, they are al-

lowed to self-intersect (but not intersect each other) during a link homotopy.

John Milnor [21] had initiated the study of link homotopy for classical links

in 3-space as a way to measure “linking modulo knotting.” His invariants still

play a central role in trying to understand some important open problems

for topological 4-manifolds. In a certain sense, they also describe our current

4-dimensional link homotopy computation; see Corollary 1.4.
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THE GROUP OF DISJOINT 2-SPHERES IN 4-SPACE 671

The fundamental sets LMn
p,q of spherical link maps Sp q Sq → Sn up to

link homotopy are computed in many high-dimensional cases [14], [18], [26],

for example the linking number gives LMn
1,n−2

∼= Z for all n ≥ 3. However,

due to the usual difficulties of extracting geometric information from algebraic

invariants of surfaces in dimension four, there has been no significant progress

towards understanding LM4
2,2 since 1988 when Paul Kirk [16] constructed a

surjection LM4
2,2 �

⊕
N Z. Our main Theorem 1.2 below states that Kirk’s

invariant is in fact injective, which leads to the following more concise charac-

terization:

Theorem 1.1.Consider the commutative ring R := Z[z1, z2]/(z1z2). Then

LM4
2,2 is a free R-module of rank one, freely generated by the Fenn–Rolfsen

link map FR. In particular, the abelian group LM4
2,2 is free with basis {FR, zn1 ·

FR, zn2 · FR | n ∈ N}.
Here the addition in LM4

2,2 is given by connected sum, and the inverse

link map arises from reflection of S4 (which is part of our theorem). The

action of z1 on (f1, f2) comes from doubling f1 and then tubing the two copies

together along an arc that represents the meridian to f2; the action of z2 is

defined similarly by doubling f2. See Section 4.C for details and Figure 1.11

for a picture of the Fenn–Rolfsen link map as the Jin–Kirk construction on the

Whitehead link: FR = JK(Wh).

It is extremely rare that a 4-dimensional problem has such a simple answer

and that very explicit operations lead to all possible examples. Even more

is true in this setting, one actually just needs the following self-intersection

invariant to distinguish all 2-component spherical link maps: First turn any

link map (f1, f2) : S2 q S2 → S4 into a generic immersion, and then consider

the Hurewicz maps

π1(S
4 r im(fi))� H1(S

4 r im(fi)) ∼= H2(im(fi)) ∼= Z.

Even though the fundamental group of the complement changes during a ho-

motopy of fi, the first homology stays constant by Alexander duality and the

fact that H2 is infinite cyclic for the image of any generic immersion. One

can thus consider Wall’s intersection invariant λ with values in the group ring

Z[Z] to obtain two well-defined link homotopy invariants λ(fi, fi) ∈ Z[Z]. This

was first observed by Kirk in [16], hence we shall refer to these two Laurent

polynomials as the Kirk invariants

σi(f1, f2) := λ(fi, fi) ∈ Z[Z].

1All colored figures are viewable in the online version of the article:

https://doi.org/10.4007/annals.2019.190.3.1.
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672 ROB SCHNEIDERMAN and PETER TEICHNER

One might expect the existence of higher-order invariants for spheres in

such a 4-dimensional setting, but our main result says that the Kirk invariants

classify LM4
2,2:

Theorem 1.2. If (f1, f2) : S2 q S2 → S4 is a link map with vanishing

Kirk invariants σ1(f1, f2) = 0 = σ2(f1, f2), then (f1, f2) is link homotopically

trivial.

Fix a (multiplicative) generator x of Z so that Z[Z] = Z[x±1] is the ring of

Laurent polynomials. Here and throughout the paper we will often need the

Laurent polynomial

z := (1− x) · (1− x−1) = (1− x) + (1− x−1) ∈ Z[x±1].

In Section 4.B, we will derive from Theorem 1.2 our main computation:

Theorem 1.3. The Kirk invariants (σ1, σ2) give a short exact sequence

of abelian groups

0 −→ LM4
2,2 −→ z · Z[z]⊕ z · Z[z] −→ Z −→ 0.

On the right we use the addition map to Z = z · Z[z]/z2 · Z[z].

With slightly different notation, Kirk computed the cokernel of his in-

variants in [16]; our contribution is the injectivity of his invariants and the

relation to Theorem 1.1. In Section 4.C we will embed Z[z] into the ring R,

from Theorem 1.1, by sending z to z1 + z2, which will translate between these

results.

1.A. Seeing 2-spheres in 4-space via classical links. Let L denote the set

of links in R3 with two components, both of which are unknotted and have

linking number 0. There is an additive map (under connected sum)

JK : L −→ LM4
2,2,

which seems to go back to Fenn, Rolfsen, Levine, Jin and Kirk. We shall

refer to the map JK as the Jin–Kirk construction, and it can be described as

follows: For L = (l1, l2) ∈ L, observe that S3 r li are homotopy equivalent

to S1 because the knots li are trivial, so each component is null-homotopic in

complement of the other by triviality of the linking number. Thus one can

take the track of a null-homotopy of l2 in the complement of l1 and then a

spanning disk for l1 to describe a link map D2 q D2 → D4 bounded by L;

see Figure 1.1. Performing the same construction with the roles of l1 and l2
switched and then taking the union with the previous construction along L

yields a link map JK(L) : S2 q S2 → S4. Note that this construction involves

the choices of two null-homotopies, but it gives a well-defined link homotopy

class because π2(S
3 r li) ∼= π2(S

1) = 0.
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THE GROUP OF DISJOINT 2-SPHERES IN 4-SPACE 673

1

2l

l

Figure 1.1. One half of the Fenn-Rolfsen link map FR =

JK(Wh), the other half uses the symmetry of the Whitehead

link Wh.

Figure 1.1 shows a movie of one half D2 qD2 → D4 of the Fenn–Rolfsen

link map FR from Theorem 1.1 defined as the Jin–Kirk construction on the

Whitehead link L = Wh: The left-most picture shows Wh in the equatorial

S3 of S4; then, moving to the right into S3 × I ⊂ D4, the track of a null-

homotopy of Wh is described by a crossing change on l2, an isotopy and finally

spanning disks for the resulting unlink. The other half of FR is constructed

using the symmetry of the Whitehead link to first swap the link components

by an isotopy and then apply the crossing-change to l1 while moving into the

other hemisphere of S4.

The crossing change on l2 in Figure 1.1 corresponds to a negative self-

intersection in the second component f2 of FR with a double point loop rep-

resenting a meridian to f1. The Kirk invariant is computed by counting inter-

sections between f2 and a parallel push-off f ′2:

σ2(FR) := λ(f2, f
′
2) = µ(f2) + ιµ(f2) + e(ν(f)) · 1 = −x− x−1 + 2 = z,

where ι is the involution on Z[Z] given by x 7→ x−1. This is Wall’s formula

[27] relating self-intersection and intersection invariants quite generally; see

Section 3.

The orientation switch in the construction of the other half of FR has

the effect of switching the signs of the self-intersections in f1, and we get

σ1(FR) = x+ x−1 − 2 = −z.
The additivity of JK means that any ambient connected sum of classical

2-component links is sent to the sum of the corresponding elements in the

group LM4
2,2. It was shown by Jin in his thesis [15] that the Kirk invariants

of JK(L) are Cochran’s βi-invariants [7] of L. More precisely, in the above

notation, we can write

σ2(JK(L)) =
N∑
i=1

βi2(L) · zi ∈ z ·Z[z] and − σ1(JK(L) =
N∑
i=1

βi1(L) · zi ∈ z ·Z[z].

Cochran had shown that his invariants βi1(L) are integer lifts of Milnor’s in-

variants µ1...2i...122(L) for links with trivial linking numbers, and similarly for

βi2(L). In particular, the Sato–Levine invariant β11(L) = µ1122(L) = β12(L)
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674 ROB SCHNEIDERMAN and PETER TEICHNER

is symmetric in the components 1 and 2, and changes sign under an orien-

tation change of S3, explaining again the cokernel of the Kirk invariants in

Theorem 1.3.

It follows from Theorem 1.2 that JK(L) = JK(L′) if and only if L and L′

share the same Cochran β-invariants. Moreover, the vanishing of Cochran’s

invariants is equivalent the vanishing of the corresponding Milnor invariants

(which are a priori not well defined as integers), implying

Corollary 1.4. The map JK : L�LM4
2,2 is onto. Moreover, JK(L)=0

if and only if the following Milnor invariants vanish :

µ1...2i...122(L) = 0 = µ2...2i...211(L) ∀ i ≥ 2.

This gives a very satisfying 4-dimensional characterization of the vanishing

of these Milnor invariants. The surjectivity of JK can be proven by writing

down sufficiently many links L ∈ L to realize the image of the Kirk invariants;

see Section 4.B. Alternatively, one can lift the R-action from Theorem 1.1 to

L and get away with only knowing the Whitehead link!

1.B. Pulling away an embedded component. Another consequence of The-

orem 1.2 is the non-existence of a “4D Hopf link,” even allowing one wild

embedding and the other component to self-intersect arbitrarily in the com-

plement:

Corollary 1.5. Let (f1, f2) : S2 q S2 → S4 be a link map such that

f1 is an embedding (a homeomorphism onto its image). Then (f1, f2) is link

homotopic to the trivial link.

The main difficulty that arises in any proof of this result is that π2(S
4 r

im(f1)) can be nontrivial even if f1 is a smooth embedding, as in the Andrews–

Curtis example described in the next section. One is therefore forced to intro-

duce self-intersections into f1 during the link homotopy, and it is difficult to

retain the information that f1 started off as an embedding.

Kirk had noticed that both his invariants vanish even if only one of the

components is smoothly embedded, and he asked whether the link map is

trivial in this case. We will show in Section 5.B that the Kirk invariants also

both vanish if f1 is a wild embedding, so Corollary 1.5 follows directly from

Theorem 1.2.

In the same section, we will show that it already follows from an inter-

mediate result, the Standard Unlinking Theorem 5.1, which does not use our

Proposition 6.1 (whose proof takes up the last 40 pages of this paper).

We are not aware of other theorems about general 2-knots in S4, but in

[5] infinitely many wild 2-knots were constructed as limit sets of (geometrically

finite) Kleinian groups.
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THE GROUP OF DISJOINT 2-SPHERES IN 4-SPACE 675

1.C. Some history of embedded 2-spheres in 4-space. In 1925, Emil Artin

[2] constructed the first knotted 2-spheres in 4-space by spinning a knotted arc

K, with ends on a 2-plane in R3, by 360 degrees. During this rotation of R4

that keeps the plane fixed, the rotated arcs sweep out a 2-sphere. Artin showed

that the fundamental group of the complement of this spun 2-knot SK ⊂ R4 is

that of the original arc and hence that 2-knot theory is at least as complicated

as classical knot theory.

K

L

Figure 1.2. Artin’s spun 2-knot SK with an Andrews–Curtis

2-sphere SL.

Andrews–Curtis showed in [1] that the second homotopy group π2(R4 r
SK) can be non-trivial. In fact, they proved that spinning the arc L in Fig-

ure 1.2 gives an embedded 2-sphere SL in the complement of SK that is not

null homotopic.

Note that since the arc L is unknotted, the spun 2-knot SL is unknotted as

well and hence π2(R4 r SL) = 0. In particular, SK shrinks in the complement

of SL. By symmetry, this null homotopy can be excluded by introducing a

trefoil knot T into L (changing L by a homotopy in the complement of K),

leading to a new two-component 2-link (SK , ST ) : S2 q S2 ↪→ R4 such that

neither component is null homotopic in the complement of the other.

However, by Corollary 1.5, this 2-link is homotopically trivial. This can

also be seen directly from the construction as follows: There is a homotopy of

ST in the complement of SK (leading from the trefoil arc T back to the arc L

in Figure 1.2) and then a null homotopy of SK in the complement of SL.

The question whether an embedding of two 2-spheres in S4 is link homo-

topically trivial was first posed by Massey and Rolfsen in 1982; see the problem

list [10, p. 258]. Arthur Bartels and the second author answered this question

by proving in [3] that an embedded link of 2-spheres in S4 with arbitrarily

many components is link homotopically trivial.

In 1986, Fenn and Rolfsen [11] gave the first example of a link map S2 q
S2 → S4, necessarily with both components non-embedded, which is not link

homotopically trivial, Figure 1.1. It is particularly satisfying that 30 years later

we find out that this is the free generator FR in the sense of Theorem 1.1.
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1.D. Related work. The current paper replaces a manuscript that was cir-

culated by the second author in the mid 1990s but was never published. That

manuscript contained a gap in the proof of an immersed version of the current

Whitney Homotopy in Section 2.D that is now filled by an application of Freed-

man’s disk embedding theorem. It remains an open problem whether Freed-

man’s infinite constructions can be replaced by a specific immersed version of

our Whitney homotopy.

All key ideas from the prior manuscript remain central to our current argu-

ment. However, this paper greatly extends the results and, most significantly,

Theorem 1.2 was unknown when the previous manuscript circulated, which

contained only Corollary 1.5. The new ingredients for proving Theorem 1.2

are the manipulations of Whitney arcs and Whitney disks in Section 6. We

only found these new constructions after developing an obstruction theory for

Whitney towers over the last decade; see, e.g., [8], [24], [25].

Completing the history of the topic, we recall that in the paper [19], a

Z/2-valued invariant to detect nontrivial link maps in the kernel of the Kirk

invariants was defined. However, Pilz [23] pointed out a computational error

in the examples given in [19]. It was shown recently by Lightfoot [20] that

this invariant vanishes identically on the kernel of the Kirk invariants. In fact,

Lightfoot shows that the invariant is defined if σ1(f1, f2) = 0 but is completely

determined by σ2(f1, f2).

1.E. Main ideas. Our method for proving Theorem 1.2 is based on a

4-dimensional version of an elementary link homotopy in 3-dimensions (Fig-

ure 2.1) as will be explained in Section 2. The central idea is to consider a

Whitney sphere corresponding to a (framed embedded) Whitney disk W for a

pair of self-intersections of an immersion f : S2 # X4. The Whitney sphere

SW is embedded in the complement of the image of f and is made out of four

copies of the Whitney disk. (See [12, §3.1, Ex.(2)], where these spheres were

introduced as dual spheres to accessory disks.)

A Whitney homotopy is given by shrinking SW to a point in the comple-

ment of f after doing the Whitney move. Then reversing the Whitney move,

we obtain a link homotopy

(f, SW ) ' (f, ∗)

in X, which we will refer to as a Whitney homotopy.

In the case of a link map (f1, f2) : S2 q S2 → S4, we first arrange for f1
to be in standard position; see Section 5.A. This means that f1 is obtained

from the trivial sphere in S4 by finitely many local finger moves. In particular,

the fundamental group of the 4-manifold S4 r f1 is the (good) group Z, a fact

that makes the algebraic calculations tractable, as well as Freedman’s disk

embedding theorem hold.
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In order to shrink f2 in the complement of f1 using our Whitney homotopy

finitely many times, it suffices to write [f2] ∈ π2(S4rf1) as a Z[Z]-linear combi-

nation of disjoint Whitney spheres SWi . In Section 5 we will use Kirby calculus

to get a complete picture of the 4-manifold S4rf1 showing, in particular, that

its intersection form is metabolic.

Our Metabolic Unlinking Theorem 5.6 gives necessary and sufficient con-

ditions for (f1, f2) to be link homotopically trivial in terms of a metabolic

collection of immersed disks in S4r f1, including a “Lagrangian” consisting of

immersed Whitney disks.

To prove this Unlinking Theorem with our link homotopies shrinking SWi ,

we need to find sufficiently many disjoint Whitney disks Wi that are framed

and embedded. Freedman’s disk embedding theorem [12, §5] requires a col-

lection of algebraic dual spheres in addition to immersed Whitney disks. Our

terminology is set up in a way that this means that one needs a metabolic

collection of (Whitney and accessory) disks in S4 r f1.

In fact, each dual sphere will be constructed out of four copies of an acces-

sory disk as in [12, §3.1] — we shall refer to such spheres as accessory spheres.

If the Kirk invariants of (f1, f2) vanish, the new geometric constructions de-

scribed in the proof of Proposition 6.1 locate such a metabolic collection of

disks in S4 r f1, completing our proof.

Acknowledgements. It is a pleasure to thank Tim Cochran and Mike Freed-

man for valuable discussions on the subject. The second author thanks Colin

Rourke for pointing out a gap in his original manuscript. The first author was

supported by a Simons Foundation Collaboration Grant for Mathematicians,

and both authors thank the Max Planck Institute for Mathematics in Bonn,

where most of this work was carried out. We also thank the referee for asking

about the geometric meaning of the Z[z]-module structure on LM4
2,2, implicit

in Theorem 1.3, which lead us to our ultimate formulation in Theorem 1.1.

2. Whitney spheres and Whitney homotopies

This section introduces the notion of a Whitney homotopy, which will play

a key role in our ability to derive geometric conclusions from algebraic data. A

Whitney homotopy is supported near a framed embedded Whitney disk W on

a generic immersion f : S2 # X4. It involves shrinking an embedded Whitney

sphere SW to a point after performing a Whitney move on W , with SW at

all times remaining disjoint from f . Since the Whitney disks for our Whitney

homotopies will be constructed via Freedman’s disk embedding machinery, we

work in the (locally flat) topological category throughout this section, invoking

the notions of 4-dimensional topological tranversality from [12, Ch. 9].
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Figure 2.1. A 3-dimensional analogue of the Whitney homotopy.

2.A. A 3-dimensional elementary homotopy. As motivation towards a de-

scription of the Whitney homotopy of 2-spheres in dimension four, start by

considering the analogous homotopy of 1-manifolds in 3-space shown in Fig-

ure 2.1. The sequence of pictures in Figure 2.1 describes a 3-dimensional link

homotopy in which the black 1-manifold comes back to its original position

while the blue circle shrinks to a small unknot. This homotopy keeps black

and blue disjoint throughout, and has exactly two singularities, namely, the

black-black intersections from the un-clasping and re-clasping (guided by the

purple arcs).

Figure 2.2. A schematic illustration of the 4-dimensional Whit-

ney homotopy.

The 4-dimensional analogue of the link homotopy in Figure 2.1 is the

composition of a Whitney move (“un-clasping”) and its reverse finger move

(“re-clasping”). The Whitney move is guided by its Whitney disk W whereas

the finger move is again guided by an arc. Thus the analogue of the blue circle

in Figure 2.1 is an embedded 2-sphere SW that is the boundary of a 3-ball,

normal to the arc guiding the finger move. We call SW the Whitney sphere.

Before starting a detailed description of this 4-dimensional Whitney homotopy,

it may be helpful to consider the schematic description shown in Figure 2.2.

2.B. Whitney moves and Whitney bubbles. Figure 2.3 describes a model

Whitney move in a 4-ball neighborhood of a Whitney disk W : A pair of

oppositely-signed transverse intersections p and q between two surface sheets

is eliminated by a homotopy that isotopes one of the sheets across W . By

convention, we write our 4-ball D4 = D3×D1 and think of the D1-coordinate

as time. Each of the three pictures in Figure 2.3 completely describes cer-

tain surfaces in this D4: The horizontal sheet is completely contained in the
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THE GROUP OF DISJOINT 2-SPHERES IN 4-SPACE 679

W

p
q

p
q

Figure 2.3. The pair of intersections p, q (left) admits a purple

Whitney disk W (center) that guides a Whitney move elimi-

nating p, q by adding a Whitney bubble to the horizontal sheet

(right).

present D3× 0, while the curved arc extends into past D3× [−1, 0) and future

D3× (0, 1]. (In the center picture, the Whitney disk W is also in the present.)

In Figure 2.3 these extensions into past and future are understood but not

shown, however in many cases our figures will explicitly show several pictures

of varying time-coordinates to describe surfaces via a “movie” (e.g., Figure 1.1

in the introduction and Figures 2.4 and 2.5 just below).

The Whitney move has an additional homotopy parameter s ∈ I that

satisfies s = 0 in the center picture of Figure 2.3 and s = 1 in the right picture.

For 0 < s < 1, part of the horizontal sheet near the Whitney disk boundary

moves upwards along W until it reaches the “bubble position” on the right

where it is disjoint from the other sheet. This Whitney bubble has the same

boundary as the original horizontal sheet and consists of two parallel copies of

W joined by a narrow curved rectangle shown in the right picture of Figure 2.3.

In general, a Whitney move is described by any embedding of this model

into a 4-manifold that preserves the product structures and transversality of the

sheets and W . All Whitney disks in this section are embedded, and the reader

may notice that they are also framed, which corresponds to the disjointness of

parallel copies, as used in the Whitney bubble. Details on Whitney disks and

Whitney moves are given in Section 7.

2.C. Whitney spheres. A Whitney sphere SW is formed from a Whitney

disk W by joining together the boundaries of two parallel copies of Whitney

bubbles by an annulus as illustrated in Figure 2.4. This annulus consists of an

interval’s worth of normal parallel copies of the boundary circle of a disk neigh-

borhood around an arc of ∂W that would be exchanged for a Whitney bubble

under a Whitney move along W . (In Figure 2.4 these circles are rectangles.)

By construction, SW is contained in an arbitrarily small 4-ball neighborhood

of W , and SW contains four parallel copies of W (two from each Whitney

bubble). Note that in our movie convention, SW extends into past (left) and

future (right) in Figure 2.4, while W and the horizontal sheet are contained in

the present (center).
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W

Figure 2.4. A movie describes the blue Whitney sphere SW as-

sociated to W .

Note that the 4-ball described by the entire movie of Figure 2.4 is the

accurate description of just the left-most schematic picture in Figure 2.2.

2.D. The Whitney homotopy. Let W be a framed embedded Whitney disk

on a generic map f : F 2 # X4, such that the interior of W is disjoint from

the image of f . Then the Whitney sphere SW from the previous section is

contained in a regular neighborhood of W and is embedded in X4 r im(f).

Moreover, the link map (f, SW ) is link homotopic to (f, ∗) by a link homotopy

that is supported in any neighborhood of W as described in Figure 2.5. It

shows that after a W -move on f there is a 3-ball in the complement of f

that is bounded by SW . In our coordinates D3 ×D1, this 3-ball is simply the

Whitney bubble cross time D1.

We remark that, in direct analogy with the 3-dimensional link homotopy

of Figure 2.1, after “unclasping” f by the Whitney move and shrinking SW
to a point in X4 \ f , one could “reclasp” f back to its original position via a

finger move guided by the purple arc in the middle picture of Figure 2.5.

Figure 2.5. After the Whitney move, the Whitney sphere SW
from Figure 2.4 bounds the green 3-ball given by the Whitney

bubble × D1.

If #SW denotes a connected sum of parallel copies of SW along arbitrary

tubes, then (f,#SW ) is also link homotopic to (f, ∗): There are k parallels of

the green 3-balls in the complement of f that can be connected by arbitrary

arcs, thickened by D2 normal subbundles. The boundary of the resulting 3-ball

is by construction the tube sum #SW .

More generally, if Wi are disjointly embedded framed Whitney disks, then

any Zπ1X-linear combination C :=
∑
i λiSWi , i.e., iterated tubing of copies

of the Whitney spheres, leads to a link homotopy of (f, C) with (f, ∗). The
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disjointness of Wi is needed since we are doing Whitney moves on f as part of

the Whitney homotopy and these have to be disjoint from the Whitney spheres

in a link homotopy.

3. Link maps in standard position

Let (f1, f2) : S2 q S2 → S4 be a link map. After a small perturbation

(which is a link homotopy) we may assume that both fi are immersions with

transverse double points. Furthermore, we may perform local cusp homotopies

(again keeping fi disjoint) to get the signed sum of the self-intersection points

of each fi to be zero.

From now on, we will always assume that our maps f : S2 # X4 are

immersions with only transverse self-intersections whose signed sum is zero.

For such maps, regular homotopy agrees with homotopy because cusps can be

cancelled in pairs.

It follows that Wall’s self-intersection invariant µ(f) ∈ Z[π1X]/〈g − g−1〉
always satisfies ε(µ(f)) = 0, where ε : Z[π1X] → Z is the augmentation map

that sends all group elements g to 1 (and hence ε(µ(f)) counts all double

points with sign, ignoring group elements). This normalization makes µ into

a homotopy (rather than regular homotopy) invariant that comes about as

follows: In general position, a regular homotopy between two maps as above is

the composition of finitely many finger moves and then finitely many Whitney

moves (up to isotopy).

Remark 3.1. If X = S4, then π2(S
4) = 0 implies that we may perform

finger moves on f1 (disjoint from f2 by general position) to get f for which

some Whitney moves lead to the standard unknotted embedding f0 : S2 ⊂ S4.

Conversely, f is obtained from the unknot f0 by finitely many finger moves.

Moreover, Wall’s formula mentioned in the introduction reduces to

λ(f1, f1) = µ(f1) + ιµ(f1)

for f1 : S2 # S4 r f2 because π2(S
4) = 0 also implies ε(λ(f1, f1)) = 0 and

hence the term involving the normal Euler number vanishes. In fact, this Euler

number equals the signed sum of double points for generic maps in S4.

Definition 3.2. A map f : S2 # S4 that is obtained from the unknot

f0 by finitely many finger moves is said to be in standard position. Here f0
is an unknotted embedding f0 : S2 ⊂ R3 ⊂ S4. Moreover, any collection

of disjointly embedded Whitney disks for f that lead back to f0 is called a

standard collection of Whitney disks.

The above discussion proves the following:

Lemma 3.3. Any link map (f1, f2) : S2 q S2 → S4 is link homotopic

to one in which both components are in standard position. In particular, the

complements S4 r fi have all algebraic properties listed in Lemma 3.4 below.
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3.A. Some algebraic topology. We will next discuss the algebraic topology

of the complement of a map f : S2 # S4 in standard position. Along with

the Whitney spheres from Section 2, the following lemma involves accessory

spheres, which are introduced in the proof and described in further detail in

Section 5.C.3. Just as a Whitney sphere is constructed from four copies of

a Whitney disk, an accessory sphere is constructed from four copies of an

accessory disk bounded by a sheet-changing loop in f that passes through a

self-intersection point.

Lemma 3.4. Let W1, . . . ,Wn be a standard collection of Whitney disks for

f : S2 # S4 in standard position. Then the compact 4-manifold

M := S4 r tubular neighborhood of f

has the following algebraic topological properties :

(1) π1M is infinite cyclic, generated by a meridian x. Set Λ := Z[x±1].

(2) π2M is a free Λ-module of rank 2n with a basis of the form

{SW1 , . . . , SWn , SA1 , . . . , SAn},

where SWi are the Whitney spheres corresponding to the Whitney disks

Wi and the SAi are accessory spheres corresponding to positive accessory

disks Ai.

(3) Wall ’s intersection form λ : π2M × π2M → Λ is metabolic in the sense

that

λ(SWi , SWj ) = 0 and λ(SAi , SAj ) = z · δij = λ(SWi , SAj ).

(4) Relative intersection numbers with the Whitney disks Wi induce a short

exact sequence of free Λ-modules

0 〈SWi〉 π2M Λn 0.- - -
λ(Wi,−) -

Here z := 2− x− x−1, as in the introduction.

Proof. By assumption, f is obtained from f0 by n finger moves that are

the inverses of the Whitney moves along Wi. The isotopy class of any finger

move only depends on the isotopy class of its guiding arc that is unchanged

by adding a meridian to the sphere. As a consequence, all finger moves on

the unknot f0 are isotopic. Using standard Kirby calculus techniques (e.g.,

Chapter 6 of [13], in particular, [13, Fig. 6.27]), a handle diagram for M can

be derived as in the left-hand side of Figure 3.1. The dotted circle represents a

1-handle, and together with a 0-handle it forms the 4-manifold S1×D3 that is

the complement of f0. Each finger move then adds a pair of (green) 2-handles,

so M contains no 3- or 4-handles.
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Figure 3.1. Kirby diagrams for M : The dotted black unknot

represents a 1-handle, and 0-framed 2-handles are attached to

green and blue circles.

Since the 2-handles’ attaching circles are null homotopic, it follows that

M ' S1 ∨
2n∨
S2.

So π1M = 〈x〉 ∼= Z, where x is a meridian to the 1-handle, and π2M is a free

Λ-module of rank 2n. Sliding one of each pair of green 2-handles in the left-

hand diagram of Figure 3.1 over the other yields the blue 2-handle attaching

circles in the center diagram. After an isotopy to get the right-hand diagram,

the unions of cores of the 2-handles attached to the blue circles with the evident

disks bounded by these attaching circles form n generators SWi , which will be

shown in Section 5.F to be Whitney spheres as constructed in Section 2.C.

Figure 3.2 shows an isotopy of Kirby diagrams, starting from the left side

of Figure 3.1. The diagram on the right gives the construction of positive and

negative accessory spheres SA±
i

: They are formed from cores of the 2-handles

together with null-homotopies of their green attaching circles. The evident

∓-crossing change in each green circle corresponds to a ∓-self-intersection of

SA±
i

whose associated group element is the generator x. For Lemma 3.4 we

only use the n positive accessory spheres SAi = SA+
i

.

Figure 3.2. Kirby diagrams isotopic to the left picture of Fig-

ure 3.1, with the accessory spheres SA±
i

visible on the right.

By construction it is clear that the SWi are disjointly embedded in M

and that their intersection numbers with SAj are as claimed: These spheres

are disjoint for i 6= j, and for i = j, they intersect in precisely four points

(two oppositely-signed pairs) as seen in the right-most picture of Figure 3.1.

Choosing orientations and basings appropriately, one can check from Figure 3.1

that λ(SWi , SAi) = 2− x− x−1 = z.
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Again by construction, the spheres SAi are disjoint from each other and

each have one negatively-signed self-intersection with a meridional double point

loop. By our convention of making the signed sum of double points zero, we

add another positively-signed self-intersection with trivial group element. The

self-intersection invariant λ(SAi , SAi) is computed from intersections between

SAi and a pushoff, and it follows that it equals to 2− x− x−1 = z.

To prove statement 3 note that the Whitney disks Wi are disjoint from

SWj and have geometric intersections δij with SAj . This can be read off from

the center picture of Figure 3.1 (see also Section 5.C.3) and implies statement 4.

�

For future reference, we note that the right-most picture of Figure 3.2

implies the following intersection information about accessory spheres:

Lemma 3.5. The set of positive and negative accessory spheres SA±
i

forms

a basis of disjointly immersed 2-spheres for π2M with λ(SA+
i
, SA+

j
) = z · δij =

−λ(SA−
i
, SA−

j
). �

3.B. Kirk ’s invariant in standard position. Our descriptions of the com-

plement of a standard position sphere provide the following convenient com-

putation of Kirk’s invariants.

Suppose (f1, f2) : S2qS2 → S4 is a link map with f1 in standard position.

Then f2 is homotopic in S4rf1 to
∑
i α

+
i ·SA+

i
+α−i ·SA−

i
for accessory spheres

SA±
i

as in Lemma 3.5 and α+
i , α

−
i ∈ Z[x±1]. It follows that

σ2(f1, f2) = λ(f2, f2) =
∑
i

(α+
i · ια

+
i − α

−
i · ια

−
i ) · z

for ι the involution on the group ring determined by ι(x) = x−1.

To compute σ1(f1, f2) we first show that Wall’s self-intersection invariant

satisfies

µ(f1) =
∑
i

xε(α
+
i ) − xε(α

−
i ).

This sum contains one contribution for each self-intersection of f1 with the cor-

rect sign, and it remains to show that the linking number of the corresponding

double point loop with f2 in S4 is given by ε(α±i ) for ε : Z[x±1] → Z the

augmentation map: Examination of the Kirby diagram in the left picture of

Figure 3.1 shows that the ith ±-crossing of the black dotted circle corresponds

to the ith ±-self-intersection of f1, and this self-intersection has a double point

loop that links (in S3) the green attaching circle of its ±-accessory sphere once,

and has zero linking with all other green circles. Moreover, this linking in S3

equals the linking of the double point loop with the accessory spheres in S4 by

This content downloaded from 157.131.250.80 on Sat, 20 Feb 2021 04:40:08 UTC
All use subject to https://about.jstor.org/terms



THE GROUP OF DISJOINT 2-SPHERES IN 4-SPACE 685

construction. To compute linking with f2 we need to sum over the algebraic

count of parallel copies of SA±
i

in f2, which is given by ε(α±i ).

As a consequence of Wall’s formula, we finally get

σ1(f1, f2) = λ(f1, f1) =
∑
i

(xε(α
+
i ) + x−ε(α

+
i ))− (xε(α

−
i ) + x−ε(α

−
i )).

Remark 3.6. The Fenn–Rolfsen link map FR is the case where f1 is the

trivial sphere with one self-fingermove and f2 = SA+ . To see this, just compare

Figure 1.1 with the center diagram of Figure 3.2. As already computed in the

introduction, we get σ2(FR) = z = −σ1(FR).

3.C. The boundary of the standard position complement. It is also instruc-

tive to look at the homotopy exact sequence of pairs

π2(∂M) −→ π2(M) −→ π2(M,∂M) −→ π1(∂M)� Z.
If f is an embedding, then ∂M ∼= S1 × S2 has non-trivial π2. Otherwise, ∂M

is prime, because π1M is infinite and not a free product, and hence π2(∂M)

vanishes. (A framed link description of ∂M can be gotten by replacing the dots

on circles by 0-framings in any of the Kirby diagrams of Figures 3.1 and 3.2.)

In the presence of a Whitney disk W for f we are in this latter case,

and hence the homotopy class of a Whitney sphere SW is determined by its

homotopy class in the relative group π2(M,∂M). But this group contains as an

element [W ] represented by the Whitney disk (with a small collar removed so

that its boundary lies in ∂M). In this case we get a monomorphism π2(M)�
π2(M,∂M) that sends [SWi ] to z · [Wi], as can be seen in the right picture of

Figure 3.1 and will be proven in detail in Lemma 5.7 (even for Whitney spheres

formed from immersed Whitney disks as defined in Section 5.C.5). It explains

the repeated occurrence of the factor z throughout our paper.

Remark 3.7. If X4 is an orientable 4-manifold (without boundary) and

g : S2 # X4 is any generic immersion with n > 0 cancelling pairs of self-

intersections, then one can similarly conclude that the boundary of the com-

plement of a tubular neighborhood of g has trivial π2. In fact, a framed link

description of this boundary only differs from the description of ∂M as above

in that the dotted circle will get a framing equal to the normal Euler number

of g in X.

4. Computations in LM4
2,2

In this section, we will derive Theorems 1.1 and 1.3 from our main result,

Theorem 1.2, using elementary algebraic arguments along with the algebraic

topological properties of standard position link maps described in Section 3.

4.A. The Kirk invariants give a monomorphism. Assuming that the Kirk

invariants detect the unlink, the following result follows directly from the
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additivity of the Kirk invariants under connected sum and the fact that it

changes sign under reflection of S4.

Alternatively, one could use Koschorke [17, Prop.2.3], who showed that

the ambient connected sum operation is well defined and makes LMn
p,q into an

abelian monoid for p, q ≤ n−2. Moreover, the usual rotation argument and the

fact that “link concordance implies link homotopy” shows that inverses exist

in all these cases. The latter was proved by Bartels and the second author for

n = 4 in [3].

Corollary 4.1. For a link map (f1, f2) : S2 q S2 → S4, let −(f1, f2)

denote its composition with a reflection of S4. Then the link map (f1, f2)#−
(f1, f2) is homotopically trivial, and LM4

2,2 becomes an abelian group under

connected sum. Moreover, the Kirk invariant (σ1, σ2) : LM4
2,2 ↪→ Z[Z] ⊕ Z[Z]

is a group monomorphism. �

4.B. The image of the Kirk invariants : Proof of Theorem 1.3. To describe

the image of the Kirk invariants, fix a (multiplicative) generator x of Z so that

Z[Z] = Z[x±1] is the ring of Laurent polynomials. Recall that z = (1−x) · (1−
x−1) = (1− x) + (1− x−1).

Lemma 4.2. For I the augmentation ideal in Z[Z] and ι the usual invo-

lution on the group ring determined by ι(x) = x−1, we have

Ik ∩ Z[Z]ι = zk · Z[z] ∀ k ∈ N.
The left-hand side of the equation above consists of certain Laurent poly-

nomials that are invariant under ι. Since Wall’s intersection invariant is her-

mitian, it follows that λ(f, f) ∈ Z[π]ι for any fundamental group π. Moreover,

the augmentation ideal I is the kernel of the augmentation map Z[π]→ Z and

λ(f, f) is carried to the self-intersection of homology classes. Since H2(S
4) = 0,

it follows that λ(fi, fi) ∈ I ∩ Z[Z]ι = z · Z[z].

Proof of Lemma 4.2. Since ι(z) = z ∈ I, one inclusion is clear. For the

other, start with the case k = 0. If P ∈ Z[x±1] is invariant under ι, then

it is symmetric around x0 and hence we can subtract an integer multiple of

zn = (−1)n(xn + · · ·+ x−n) to reduce the degree of P . By induction on n we

see that P ∈ Z[z].

Now take P ∈ Ik = (1− x)k ·Z[x±1] and assume P = ιP . Then there is a

Q ∈ Z[x±1] such that

(1− x)k ·Q = P = ιP = (1− x−1)k · ιQ.

Since the group ring is a unique factorization domain, it follows that P is

divisible by zk = (1− x)k · (1− x−1)k and that the quotient is again invariant

under ι. The case k = 0 now shows that P ∈ zk · Z[z]. �
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Lemma 4.3. For any link map (f1, f2) : S2qS2 → S4, the Kirk invariants

satisfy the antisymmetry relation σ1(f1, f2) + σ2(f1, f2) ∈ z2 · Z[z].

Proof. As in Lemma 3.3, we may assume that (f1, f2) is in general position

and that f1 is standard. By additivity of the Kirk invariants, it suffices to

consider the case where f1 is obtained from the unknot by one finger move and

that f2 = α ·SA is a multiple of a single accessory sphere SA for some element

α ∈ Z[x±1] as in Lemma 3.5. Assuming that SA is a positive accessory sphere,

from Section 3.B we have

σ1(f1, f2) = λ(f1, f1) = x
ε(α)
2 +x

−ε(α)
2 −2 and σ2(f1, f2) = λ(f2, f2) = α·ια·z,

with ε : Z[x±1] → Z the augmentation map. We want to show that after

setting x2 = x, the sum of these two expressions lies in z2 ·Z[z]. Let k := ε(α)

and Pk := 1 + x+ x2 + · · ·+ xk−1. Then

xk+x−k−2 = −(1−xk) ·(1−x−k) = −(1−x) ·Pk ·(1−x−1) ·ιPk = −z ·Pk ·ιPk.

Thus it suffices to show that for all α ∈ Z[x±1], we have α·ια−Pk ·ιPk ∈ z ·Z[z].

Since this element is invariant under the involution ι, it suffices to show by

Lemma 4.2 that it lies in the augmentation ideal I. But this is clearly true

since ε(α) = k = ε(Pk). �

Recall the statement of Theorem 1.3, that the Kirk invariants (σ1, σ2) fit

into a short exact sequence of groups

0 −→ LM4
2,2 −→ z · Z[z]⊕ z · Z[z] −→ Z −→ 0,

where we use the addition map to Z = z · Z[z]/z2 · Z[z]. So to compute the

cokernel of the Kirk invariants, we are left with proving that every element in

z ·Z[z]⊕ z ·Z[z] satisfying the antisymmetry relation of Lemma 4.3 is realized

as the Kirk invariant of a link map.

Proof of Theorem 1.3. Using linear combinations of the above example

from the proof of Lemma 4.3 with σ1(f1, f2) = x
ε(α)
2 + x

−ε(α)
2 − 2, we see that

the first component can be any element in z·Z[z]. Now we add link maps (g1, g2)

with σ1(g1, g2) = 0 to correct the second component. For g2 = α · SA, as in

the above example, this just means that ε(α) = 0, i.e., α = (1− x) · β. Taking

sums again, we need to realize any element in z2 · Z[z] by linear combinations

of elements α · ια · z = β · ιβ · z2.
This is possible by an induction on degree, since we can use summands

with β = 1 and β = (1− xk) for arbitrary k. �

Remark 4.4. We leave it as a fun exercise for the reader to draw ex-

amples of classical links L ∈ L that realize these Kirk invariants in their

JK-construction, proving surjectivity in Corollary 1.4 again. As a hint, one
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can start with the Whitehead link and apply the algebraic ideas from the next

section directly in the 3-dimensional setting.

4.C. The Fenn–Rolfsen link map generates freely: Proof of Theorem 1.1.

In the exact sequence of Theorem 1.3, the kernel K of z ·Z[z]⊕z ·Z[z] −→ Z is

easily seen to be a free Z[z]-module on the two generators (−z, z) and (−z2, 0).

We embed Z[z] as a subring of R = Z[z1, z2]/(z1z2) from Theorem 1.1 by

sending z to z1+z2. Then R also becomes a Z[z]-module and it is easy to check

that 1, z1 are free generators. It follows that there is a Z[z]-linear isomorphism

ρ : K
∼=−→ R sending (−z, z) to 1 and (z2, 0) to −z1. Composing the Kirk

invariant σ = (σ1, σ2) with this isomorphism leads to an isomorphism

ρ ◦ σ : LM4
2,2

∼=−→ K
∼=−→ R.

By construction, the Fenn–Rolfsen link FR is sent to ρ(σ(FR)) = ρ(−z, z) =

1 ∈ R. We are left with constructing a geometric R-module structure on LM4
2,2

that makes this map R-linear. Note that evaluating this on the action of z1+z2
also gives a Z[z]-module structure on LM4

2,2.

The action of z1 on a link map (f1, f2) : S2qS2 # S4 in standard position

is defined as follows: Push off an oppositely oriented parallel copy f ′1 of f1 and

then tube the two copies together along an arc that follows the meridian to f2.

We claim that this gives a well-defined element z1 · [f1, f2] in LM4
2,2:

• The choice of push-off f ′1 is unique up to homotopy (in the complement

of f2).

• Two arcs (with the same boundary) that follow a meridian to f2 are ho-

motopic in the complement of f2 since π1(S
4 r f2) ∼= Z, generated by that

meridian.

• Adding a finger move to f1 in the complement of f2 keeps [f1, f2] constant

in LM4
2,2 but the z1-action commutes with that operation (except that we

need two parallel finger moves if we act by z1 first).

• By general position, a finger move of f2 in the complement of f1 can still

be realized after applying the z1-action.

Recall that homotopic link maps can be stabilized by finger moves into a

position where they are isotopic (both components in standard position). As

a consequence, the above cases imply that z1 · [f1, f2] ∈ LM4
2,2 is well defined.

By sliding tubes over tubes, it is straight-forward to check that

z1 · ([f1, f2] + [g1, g2]) = z1 · [f1, f2] + z1 · [g1, g2],

which can also be derived from the computation of the Kirk invariants below.

We define the z2-action symmetrically (by pushing off an oppositely ori-

ented copy of f2 and tubing the two copies together along a tube following

the meridian to f1). As the last step in getting an R-action, we need to verify
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that z1z2 acts trivially on LM4
2,2. Without a geometric argument in place, we

will use the injectivity of the Kirk invariants and check that they vanish after

applying z1z2 to any link map: σ(z1z2 · [f1, f2]) = 0. This follows by symmetry

from the relation σ2(z1 · [f1, f2]) = 0: Every double point loop of f2 links the

new first component of z1 · [f1, f2] algebraically zero times.

Moreover, abbreviating by x the meridian to f2, we compute

σ1(z1 · [f1, f2]) = λ((1− x) · f1, (1− x) · f1)

= (1− x) · λ(f1, f1) · (1− x−1) = z · σ1(f1, f2).

As a consequence, the Kirk invariant becomes R-linear if we define the R-action

on K by

z1 · (σ1, σ2) := (z · σ1, 0) and z2 · (σ1, σ2) := (0, z · σ2).

Restricted to the subring Z[z] ⊂ R generated by z 7→ z1+z2 we get the original

action:

(z1+z2)·(σ1, σ2) = z1·(σ1, σ2)+z2·(σ1, σ2) = (z·σ1, 0)+(0, z·σ2) = (z·σ1, z·σ2).

We are left with checking that our isomorphism ρ : K −→ R is R-linear.

By construction, ρ is Z[z]-linear, so we only need to check linearity under

multiplication with z1 ∈ R:

ρ(z1 · (−z, z)) = ρ(−z2, 0) = z1 · 1 = z1 · ρ(−z, z)
and

ρ(z1 · (−z2, 0)) = ρ(−z3, 0) = z1 · z1 = z1 · ρ(−z2, 0).

Since the Z[z]-module K is free on the generators (−z, z) and (−z2, 0), these

equations complete our proof. �

We record the identity (σ1, σ2)((z1 + z2) · [f1, f2]) = z · (σ1, σ2)[f1, f2]

which can be translated to a geometric Z[z]-action on LM4
2,2. The generator

z acts by tubing three copies (algebraically one copy) of f1 and three copies

(algebraically one copy) of f2 together in the way specified by our formulas.

5. Unlinking Theorems

Returning to the path towards our goal of proving Theorem 1.2, this sec-

tion gives criteria for a link map to be trivial. As a first step, the Standard

Unlinking Theorem 5.1 is formulated and proven except for one crucial im-

plication. Then we generalize our notions of Whitney spheres and accessory

spheres to provide the input into the Metabolic Unlinking Theorem 5.6. It will

be proven using Freedman’s disk embedding theorem, and it implies the Stan-

dard Unlinking Theorem. In addition, it is strong enough to yield Theorem 1.2

in combination with Proposition 6.1, which will be proved in Section 6.
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5.A. The Standard Unlinking Theorem. There is a simple sufficient con-

dition for a link map (f1, f2) : S2 q S2 → S4 to be link homotopically trivial:

Assume that f1 is in a standard position such that f2 is disjoint from a stan-

dard collection of Whitney disks Wi for f1. Then one can do the Whitney

moves on Wi in the complement of f2 to get a link homotopy from (f1, f2) to

(f0, f2). But this link map is trivial since

π2(S
4 r f0) ∼= π2(S

1 ×D3) = 0.

The goal of this section is to give algebraic conditions that model the disjoint-

ness of f2 and the Wi, and as a first step we have the following result:

Theorem 5.1 (Standard Unlinking Theorem). The following statements

are equivalent :

(i) The link map (f1, f2) is link homotopically trivial.

(ii) There are finger moves on f1 (disjoint from f2) that bring f1 into a

standard position f with a standard collection of Whitney disks Wi for f

such that

λ(Wi, f2) = 0.

(iii) There are finger moves on f1 (disjoint from f2) that bring f1 into a

standard position f with a standard collection of Whitney disks Wi for f

such that

λ(f2, f2) = 0 and λ(Wi, f2) ∈ z · Z[x±1].

As usual, z = (1−x)(1−x−1), where x is a generator of π1(S
4r f) ∼= Z. The

intersection numbers λ(−, f2) are measured in the group ring Z[π1(S
4 r f)] =

Z[x±1].

Proof that (i)⇒ (ii) in Theorem 5.1. By general position we may arrange

that the link homotopy from (f1, f2) to the unlink is of the following form: First

finger moves on f1 bring it into standard position f , then finger moves and

Whitney moves on f2 happen (in the complement of f). Finally, Whitney

moves on a standard collection of Whitney disks Wi for f (in the complement

of f ′2 = f0) lead to the unlink. Working in the complement of f , we clearly

have λ(f ′2,Wi) = 0 since f ′2 is disjoint from the Wi. However, f ′2 differs from f2
by a regular homotopy in the complement of f that leaves these intersection

numbers unchanged, even though Wi and f2 may intersect. Hence statement

(ii) follows. �

Proof that (ii)⇒(iii) and (i) in Theorem 5.1. Statement 4 of Lemma 3.4

implies that any sphere [f2] ∈ π2M that satisfies λ(Wi, f2) = 0 is homotopic

(in the complement of f1) to a Λ-linear combination of Whitney spheres SWi .

Statement 3 then implies λ(f2, f2) = 0. Moreover, by applying our Whitney
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homotopy from Section 2.D several times to the Whitney spheres SWi , we see

that (f1, f2) is link homotopically trivial. �

The harder work we have to do is to relax the strong conditions λ(Wi, f2)

= 0 to the much weaker condition λ(Wi, f2) ∈ z · Z[x±1] of statement (iii) in

Theorem 5.1. This missing step that (iii)⇒ (i) will eventually be accomplished

by the Metabolic Unlinking Theorem 5.6, whose proof uses Freedman’s disk

embedding theorem.

5.B. Pulling away an embedded sphere: Proof of Corollary 1.5. Before

continuing the journey towards Theorem 5.6 we pause here to derive Corol-

lary 1.5 directly from Theorem 5.1. For logical purposes (via Theorem 1.2) it

would be sufficient to only show that the Kirk invariants vanish for link maps

with one embedded component. We will do this below as well, but it is good

to also know that the long arguments for Proposition 6.1 are not needed for

the proof of Corollary 1.5.

We will show that for any embedding f1 : S2 ↪→ S4, the link map (f1, f2)

is link homotopic to (f, f2), where f is in standard position with a standard

collection {Wi} of Whitney disks such that with z = (1− x)(1− x−1) ∈ Λ :=

Z[x±1], we have

λ(Wi, f2) ∈ z · Λ = (1− x)2 · Λ and λ(f2, f2) = 0.

Thus part (iii) of Theorem 5.1 will apply to show that (f1, f2) is link homo-

topically trivial. Alexander duality holds for any embedding, so we know that

H1(S
4 r f1) ∼= H2(S2) ∼= Z and H2(S

4 r f1) ∼= H1(S2) = 0.

In particular, we have an infinite cyclic cover Y of this 2-knot complement and

denote by t ∈ π1(S4 r f1) any embedded loop that maps to a generator in H1.

Using the coefficient exact sequence

0 Λ Λ Z 0,- -
·(1−t)

-ε -

we get the corresponding Bockstein exact sequence

· · · H2(Y ) H2(Y ) 0.- -
·(1−t)

-

The map f2 : S2 → S4 r f1 lifts to Y , and hence we get a representative

[f2] ∈ H2(Y ). For any N ∈ N, the above exact sequence says that there is an

aN ∈ H2(Y ) such that (1−t)N ·aN = [f2]. The equality is given by a (compact)

3-chain c, and hence we can find an open neighborhood UN of f1(S
2) in S4

such that S4 r UN contains the compact sets f2(S
2) and t, and the induced

infinite cyclic covering YN contains the compact sets aN and c.
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Now pick a generic smoothly immersed approximation fN of f1 inside UN .

We have a pair of inclusions

S4 r f1 ⊃ S4 r UN ⊂ S4 r fN ,

and by construction of UN , the objects t, f2, aN , c do exist in S4 r fN . By

Alexander duality, H1(S
4rfN ) ∼= Z, and so t is homologous to some power xk

of the meridian x to fN . If Y ′ is the infinite cyclic covering of S4 r fN , then

we arrive at the equation

[f2] = (1− xk)NaN = (1− x)Na′N ∈ H2(Y
′) for some a′N ∈ H2(Y

′).

There are embedded arcs b1, . . . , bn in S4rf2 that have exactly their endpoints

on fN and such that doing finger moves on fN guided by bi leads to an immersed

2-sphere f in standard position; see Definition 3.2. Let Bi denote the Whitney

disks for f that are opposite to the arcs bi, i.e., the corresponding Whitney

moves lead from f back to fN .

One can get from fN∪bi to fN by cutting the arcs bi. By slightly thickening

these arcs this implies that one can get from S4 r (fN ∪ ν(bi)) to S4 r fN by

attaching 3-cells with boundaries SBi , the Whitney spheres for the Whitney

disks Bi (which are dual to the arcs bi). Thus there is an exact sequence

. . . −→ 〈SBi〉 −→ H2(S
4 r (fN ∪ bi)) −→ H2(S

4 r fN ) −→ 0.

In fact, this sequence is also exact if we use Z[x±1] = Λ-coefficients, which is the

same as the homology of the infinite cyclic coverings. Considering [f2] ∈ H2(Y
′)

we had concluded that

[f2] = (x− 1)N · a′N for some a′N ∈ H2(Y
′) = H2(S

4 r fN ; Λ).

But we may also consider [f2] as an element in H2(S
4 r (fN ∪ bi); Λ). From

the exactness of the above sequence we conclude that

[f2] +
∑
i

λi ·SBi = (x−1)N ·AN for some AN ∈ H2(S
4r (fN ∪ bi); Λ), λi ∈ Λ.

After a finite number of our elementary link homotopies that add copies of the

Whitney spheres SBi to f2, we may assume that indeed

[f2] = (x− 1)N ·AN for some AN ∈ H2(S
4 r (fN ∪ bi); Λ).

The last step in the argument is to observe that after thickening bi and Bi
there is an ambient diffeomorphism

S4 r ν(f1 ∪ bi) ∼= S4 r ν(f ∪Bi).

Applying the inclusion S4 r ν(f ∪Bi) ↪→ S4 r f we see that

[f2] = (x− 1)N · αN , for some αN ∈ H2(S
4 r f ; Λ) ∼= π2(S

4 r f).

It follows with N = 2 that λ(f2,W ) = (1 − x)2λ(αN ,W ) ∈ (x − 1)2 · Λ for

any Whitney disk on f . In particular, this applies to a standard collection of

This content downloaded from 157.131.250.80 on Sat, 20 Feb 2021 04:40:08 UTC
All use subject to https://about.jstor.org/terms



THE GROUP OF DISJOINT 2-SPHERES IN 4-SPACE 693

Whitney disks W1, . . . ,Wn for f , where Whitney moves on Wi lead from f to

the unknotted 2-sphere f0.

Moreover, the polynomial (1− x)N divides

λ(f2, f2) = (1− x)Nλ(αN , (1− x)NαN ).

This implies that λ(f2, f2) = 0: This is a fixed Laurent polynomial since it can

be computed from the original link map (f1, f2). Moreover, it is divisible by

(1 − x)N so picking N larger than the degree of this Laurent polynomial, we

see that it must vanish.

We have thus checked the conditions (iii) of our Standard Unlinking The-

orem 5.1. �

5.C. Metabolic forms, Whitney and accessory disks. To prove our main re-

sult Theorem 1.2 we will need a strengthening of the (as yet unproved) key im-

plication (iii)⇒ (i) in the Standard Unlinking Theorem 5.1. This will involve

using Whitney moves on immersed Whitney disks to construct more general

versions of Whitney spheres and accessory spheres in a way that preserves the

essential metabolic properties from the standard setting of Lemma 3.4. So with

the goal of presenting this Metabolic Unlinking Theorem 5.6 in Section 5.D,

we start by re-examining the complement of a standard position f : S2 # S4

and giving alternate constructions of Whitney spheres and accessory spheres

using Whitney moves in local coordinates.

A
_

+_ pp

A+

W

Figure 5.1. A standard Whitney disk W on f with standard

accessory disks A±.

5.C.1. Standard Whitney disk-accessory disk triples. Observe that for any

f : S2 # S4 in standard position, it can be arranged that each standard

Whitney disk W pairing self-intersections p± is contained in a 4-ball with

D3 ×D1 coordinates as in Figure 5.1. For example, choose the deleted slice

disk representing the 1-handle in the left Kirby diagram of Figure 3.1 to have

a minimum for each ±-pair of green 2-handles.

The local model of Figure 5.1 defines what we call standard accessory

disks A± bounded by sheet-changing circles in f and having interiors disjoint

from f . A standard W together with accessory disks A± as in Figure 5.1 is

called a standard Whitney disk-accessory disk triple. Changing the positive

crossing corresponds to the positive self-intersection p+ of f , and changing the
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negative crossing corresponds to the negative self-intersection p− of f . The

circle of f on the right shrinks to a point at future times and disappears with

no further singularities.

Using standard W and A, we will provide alternative constructions of

the Whitney sphere SW and accessory sphere SA described in the proof of

Lemma 3.4. Here we start with local 2-spheres that intersect f near ∂W , and

we then use Whitney moves on parallels of W and A to remove the intersections

with f . This approach has the advantage of generalizing the construction to

the cases where W and A are not necessarily standard (Section 5.C.5).

5.C.2. Whitney spheres revisited. Figure 5.2 shows an embedded pre-

Whitney sphere for a standard Whitney disk W . It is the union of the left-most

upper and lower blue disks together with the annulus traced out by the blue

loop moving clockwise from left to right along the top row, then right to left

along the bottom row. The two pairs of intersections between this pre-Whitney

sphere and f (black) are paired by Whitney disks W ′ and W ′′ (purple) that

are Whitney parallel to W (light blue).

W W''

A

W'

- A+

Figure 5.2. A blue pre-Whitney sphere for a standard Whitney

disk W .

Applying the W ′- and W ′′-Whitney moves to the pre-Whitney sphere

yields the Whitney sphere SW in the complement of f . Note that SW is

geometrically dual to each accessory disk, via an intersection inherited from

the pre-Whitney sphere in the top middle picture (cf. Figure 5.1)

The two Whitney bubbles in the resulting SW are the same as those in the

first Whitney sphere description of Figure 2.4. It is an artifact of the different

choices of local coordinates that in Figure 2.4 the Whitney bubbles appear to

be “on different sides” of W in the 3-dimensional present, while in Figure 5.2

they appear to be “on the same side” of W . (The vertical arcs descending

from W ′ and W ′′ are both over-crossings.) In both cases the bubbles “differ

by meridians to f ,” meaning that any loop formed by a path between the

bubbles in SW followed by a path back through parallels of the interior of W

will link f . It will follow from the homotopy-theoretic characterization given
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in Lemma 5.7 that, up to link homotopy, the description here yields the same

Whitney spheres as in Section 2 as well as in the proof of Lemma 3.4.

W

A

V'

V

Figure 5.3. A green immersed pre-accessory sphere associated

to a standard accessory disk A.

5.C.3. Accessory spheres revisited. Figure 5.3 shows an immersed positive

pre-accessory sphere (green) supported near the corresponding self-intersection

of f (black). It is the union of the two green disks (top left and bottom right)

together with the homotopy of the green loop snaking from left to right along

the top row, then right to left along the middle row, then left to right along

the bottom row. The pre-accessory sphere is geometrically dual to each of W

and A (top second-from-left picture).

The pair of green-black crossing changes in the top-right picture in the top

row of the figure are paired by a Whitney disk V formed from a parallel copy

of A. The pair of green-black crossing changes in the bottom second-from-

left picture are paired by a Whitney disk V ′ formed from another parallel

copy of A. Applying the V ′- and V ′′-Whitney moves to the pre-accessory

sphere yields the positive accessory sphere SA in the complement of f . See

Section 7.E.1 for details on using parallel copies of accessory disks to guide

Whitney moves.

A pair of green-green self-crossing changes are visible in the second-from-

left picture in the middle row of Figure 5.3. These self-crossing changes corre-

spond to oppositely-signed self-intersections of SA, and from the figure it can

be computed that λ(SA, SA) = 2− x− x−1 as in the proof of Lemma 3.4.

From this description it is clear that SA contains four parallel copies of

A (two oppositely-oriented copies from each Whitney bubble), and that SA is
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geometrically dual to each of W and A, via intersections inherited from the

pre-Whitney sphere.

W

A

V

V'

Figure 5.4. The four intersection points between a positive pre-

accessory sphere SA (green) and its pre-Whitney sphere SW
(blue) are contained entirely in the bottom right picture.

5.C.4. Whitney sphere-accessory sphere intersections. Since the standard

W and A (and parallel copies) have disjoint interiors, the intersections between

SW and SA are the same as those between the pre-Whitney and pre-accessory

spheres. Figure 5.4 shows that the only intersections between SA and SW
occur near the self-intersection point of f in ∂A; see the bottom right picture

of Figure 5.4. It can be computed from the figure that λ(SA, SW ) = 2−x−x−1,
which is consistent with Lemma 3.4.

5.C.5. Cleanly immersed Whitney disks and accessory disks. An immersed

Whitney disk W differs from a Whitney disk as described in Section 2.B in that

the interior of W is allowed to have finitely many transverse self-intersections,

and W is said to be twisted if the Whitney section over ∂W does not extend to

a nowhere-vanishing normal section over W . In general, if the Whitney section

over ∂W has normal Euler number n ∈ Z relative to the disk framing of W ,

then W is said to be n-twisted, with the case n = 0 corresponding to W being

framed. See Section 7.A.1 for details.

As in the framed embedded setting, an immersed Whitney bubble can

be formed from two parallel oppositely-oriented copies of W , and a Whitney

move guided by W is defined by the analogous cut-and-paste construction

that replaces a neighborhood of an arc of ∂W in one sheet by this immersed

Whitney bubble.
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Each self-intersection of W gives rise to a self-intersection in any parallel

copy of W and a pair of intersections between the two parallel copies of W

that are part of the Whitney bubble. Moreover, if W is n-twisted, then there

will be n additional intersections between the two parallel copies of W .

Definition 5.2. An immersed (possibly twisted) Whitney disk or accessory

disk on f whose interior is disjoint from f is said to be cleanly immersed.

This leads to natural generalizations of Whitney spheres and accessory

spheres. In Sections 5.C.2 and 5.C.3 the pre-Whitney and pre-accessory spheres

are supported near f , so the constructions of Whitney spheres and accessory

spheres described there can be carried out using cleanly immersed Whitney

disks and accessory disks that are not necessarily standard. From now on we

take this more general definition of Whitney spheres and accessory spheres.

Remark. See [6] for alternative constructions of Whitney spheres and ac-

cessory spheres in the complements of immersed disks in the 4-ball, with ap-

plications to classical knot invariants.

5.C.6. Metabolic Whitney disks and accessory disks. The following defini-

tion gives criteria for cleanly immersed disks to be “sufficiently standard” so

as to be useful in the upcoming Metabolic Unlinking Theorem 5.6:

Definition 5.3. A metabolic collection of disks for a standard position

f : S2 # S4 with 2n self-intersections consists of cleanly immersed Whitney

disks W1, . . . ,Wn and cleanly immersed positive accessory disks A1, . . . , An
satisfying the following conditions:

• The boundaries of all Wi and Aj are disjointly embedded, except that ∂Wi

intersects ∂Ai in the ith positive self-intersection p+i of f . We also require

that in a collar neighborhood of their boundaries, Wi and Ai are as in Fig-

ure 5.2, in particular, that there are no intersection points in these collars

other than p+i = ∂Wi ∩ ∂Ai.
• The Λ-valued intersection invariants, computed in the complement of f ,

satisfy

λ(Wi,Wj) = 0 = λ(Wi, Aj),

where λ(Wi,Wi) is computed using a Whitney section. We note that, as a

consequence, each Wi is framed.

A Whitney or accessory disk for f is called metabolic if it is part of a metabolic

collection.

Applying the constructions described in Sections 5.C.2 and 5.C.3 to a

metabolic collection {Wi,Ai} yields Whitney spheres SWi and accessory spheres
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SAi that have the same Λ-valued intersections as the Whitney and acces-

sory spheres in Lemma 3.4 except that the intersections and self-intersections

λ(SAi , SAj ) of the accessory spheres are not controlled.

Lemma 3.4 shows that a metabolic collection always exists, and the fol-

lowing result strengthens this statement:

Lemma 5.4. Let f : S2 # S4 be in standard position, with M the com-

plement of a regular neighborhood of f as in Lemma 3.4.

(1) Any collection of the self-intersections of f in oppositely-signed pairs is

induced from a standard collection of Whitney disks for f . Together with

standard positive accessory disks, they form a metabolic collection.

(2) In any metabolic collection {Wi, Ai} for f , the corresponding Whitney and

accessory spheres form a basis for the Λ-module π2(M). Moreover, the

same sequence as in part (4) of Lemma 3.4 is exact.

Proof. Claim (1) follows from the right-most Kirby diagram in Figure 3.2:

Each green accessory handle attaching circle corresponds to a self-intersections

of f , and these circles can be slid past each other to get the left-most diagram of

Figure 3.1 for any choice of pairing. The metabolicity follows from Lemma 3.4.

For (2), consider the Λ-homomorphism ϕ : Λ2n → π2(M) that sends the

free generators to the Whitney spheres and accessory spheres constructed from

the metabolic collection. Then there is a commutative diagram

Λ2n π2(M)

(Λ2n)∗ π2(M)∗,

-ϕ

?

∼=
?

∼= λ/z

�ϕ
∗

where λ : π2(M) → π2(M)∗ is the intersection form and z := 2 − x − x−1 is

the factor arising in part (3) of Lemma 3.4. This lemma also implies that λ

is divisible by z and after dividing it, becomes unimodular. The left vertical

arrow is obtained by going around the diagram and hence is given by the

intersection numbers (divided by z) of the Whitney and accessory spheres.

By the definition of a metabolic collection, this pairing is also unimodular.

The diagram hence implies that ϕ∗ is onto, which stays true when tensoring it

with Q. Since π2(M)∗ is a free Λ-module and Λ ⊗ Q = Q[x±1] is a principal

ideal domain, it follows that ϕ∗ is also injective, hence an isomorphism.

Again the commutativity of the diagram implies that ϕ is an isomorphism,

which proves both parts of our statement (2). �

5.C.7. Metabolic isometries. The following realization result for metabolic

isometries will provide the starting point for the proof of the subsequent Meta-

bolic Unlinking Theorem:
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Lemma 5.5. Let (f, f2) be a link map with f in standard position, and with

λ(f2, f2) = 0, such that λ(Wi, f2) ∈ z ·Λ for some metabolic collection {Wi, Ai}
for f . Denote by Mn the complement of a regular neighborhood of f , where n

is the number of pairs of self-intersections. After two more finger moves on

f (in the complement of f2) there is an isometry Φ of the intersection form

(π2Mn+2, λ) such that

(1) Φ ≡ id mod z, i.e., for all a ∈ π2Mn+2 there is an element b ∈ π2Mn+2

such that Φ(a)− a = z · b, and

(2) Φ−1(f2) ∈ 〈SWi〉.

Proof. First observe that since Λ has no zero-divisors, an isometry of

(π2Mn, λ) is the same as an isometry of the form (π2Mn, λ
′) where

λ′(a, b) :=
1

z
· λ(a, b) ∀a, b ∈ π2Mn.

This hermitian form λ′ is well defined and unimodular by part (3) of Lemma 3.4

and Definition 5.3. We prefer to work with λ′ in place of λ throughout this

proof.

By our assumption λ(Wi, f2) ≡ 0 mod z and part (4) of Lemma 3.4 (via

Lemma 5.4), there is a sphere g with

[g] ∈ 〈SWi〉 ≤ π2Mn

such that [g] ≡ [f2] mod z. It also follows that λ(g, g) = 0. We do one

finger move on f along an arc that links f2 precisely once. This link homotopy

changes f2 to f2 + SWn+1 in π2Mn+1, where Wn+1 is a local framed embedded

Whitney disk inverse to the finger move. By changing g to g + SWn+1 we may

assume that in π2Mn+1 we still have [g] ≡ [f2] mod z and, in addition,

λ′(g, g) = 0 = λ′(f2, f2) and λ′(g, SA) = 1 = λ′(f2, SA).

Here SA is the accessory sphere constructed from the standard (positive) ac-

cessory disk A = An+1 corresponding to the finger move. Let C1 be the

orthogonal complement of the Λ-span 〈g, SA〉 in (π2Mn+1, λ
′). Similarly, let

C2 be the orthogonal complement of 〈f2, SA〉 in (π2Mn+1, λ
′). Since the forms

on π2Mn+1, 〈g, SA〉 and 〈f2, SA〉 are unimodular, the Λ-modules Ci are stably

free and hence free [4]. We define two bases Bi of π2Mn+1 by

B1 := {g, SA, some basis for C1} and B2 := {f2, SA, some basis for C2}.

Let J be the (2n + 2, 2n + 2)-matrix with entries in Λ that represents the

identity map on π2Mn+1 in terms of the basis B1 and B2. Then J is the

matrix for an isometry between the abstract hermitian formsÇ
0 1

1 1

å
⊥ (C1, λ

′) and

Ç
0 1

1 1

å
⊥ (C2, λ

′).
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Moreover, since [g] ≡ [f2] mod z, we know that C1 equals C2 mod z, and by

choosing the above bases for Ci to be equal in π2Mn+1/z we may assume that

Jij ≡ δij mod z.

Now we introduce one further trivial finger move to f , leaving f2 and g un-

changed in π2Mn+1 ⊂ π2Mn+2. The new orthogonal complements Di to 〈g, SA〉
and 〈f2, SA〉 in (π2Mn+2, λ

′) are then given by

Di = 〈SWn+2 , SAn+2〉 ⊥ Ci.

Since λ′ restricted to the first summand is just the form ( 0 1
1 1 ), we conclude that

the matrix J induces an isometry from D1 to D2 which is the identity modulo z.

But this isometry can be extended to the desired isometry of (π2Mn+2, λ) by

sending g to f2 and leaving SA fixed. �

5.D. The Metabolic Unlinking Theorem. The following result gives the

promised strengthening of the implication (iii)⇒ (i) in Theorem 5.1:

Theorem 5.6 (Metabolic Unlinking). A link map (f1, f2) is link homo-

topically trivial if there are finger moves on f1 (disjoint from f2) that bring

f1 into a standard position f such that λ(f2, f2) = 0 and there is a metabolic

collection {Wi, Ai} for f with

λ(Wi, f2) ∈ z · Λ.

Proof. By Lemma 5.5 we may assume that we have a link map (f, f2), with

f in standard position, such that the 4-manifold M = S4r tubular neighbor-

hood of f allows an isometry Φ of the intersection form (π2M,λ) such that

(1) Φ ≡ id mod z and

(2) Φ−1(f2) ∈ 〈SWi〉
for some metabolic collection {Wi, Ai} for f . We want to use our Whitney ho-

motopy Section 2.D several times to conclude that (f, f2) is link homotopically

trivial. Therefore, we need to express f2 as a linear combination of Whitney

spheres formed from disjoint framed embedded Whitney disks. Define spheres

Ti :=
1

z
· (Φ(SWi)− SWi) ∈ π2M.

This definition makes sense since Φ ≡ id mod z and Λ has no zero divisors.

Then define Whitney disks

Vi := Wi#Ti

that are the interior connected sum of the metabolic Whitney disks Wi with

the spheres Ti. We assert that the Vi are cleanly immersed Whitney disks for f

with SVi = Φ(SWi), satisfying λ(Vi, Vj) = 0, and with algebraically transverse

spheres V †i := Φ(SAi) satisfying λ(Vi, V
†
j ) = δij .
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To prove this assertion, first note that by our convention we represent the

spheres Ti by immersions with trivial normal bundle. In particular, adding

them to Wi does not change the relative Euler number of the Whitney disks.

By Lemma 5.7 in the subsequent Section 5.E, the class in π2M of any Whitney

sphere SW is equal to z · [W ] in the relative homotopy group π2(M,∂M), so

we have

SVi = z · [Vi] = z · [Wi] + z · Ti = SWi + Φ(SWi)− SWi = Φ(SWi).

It follows that λ(Vi, Vj) = 0 because Φ is an isometry, and thus

0 = λ(SWi , SWj ) = λ(SVi , SVj ) = z · z · λ(Vi, Vj).

A similar comparison shows that V †j are algebraically transverse spheres for Vi:

λ(Vi, V
†
j ) = λ(Wi, SAj ) = δij .

Since π1M is cyclic and thus a good group, we can apply Freedman’s embed-

ding theorem [12, Cor. 5.1B] to obtain disjoint topologically framed embedded

Whitney disks, regularly homotopic to Vi and with algebraically transverse

spheres. We continue to call the resulting collection of Whitney disks Vi.

The corresponding Whitney spheres SVi are disjointly embedded and the

condition Φ−1(f2) ∈ 〈SWi〉 from Lemma 5.5 translates into

[f2] ∈ 〈SVi〉 ≤ π2M i.e., [f2] =
n∑
i=1

αi · SVi with αi ∈ Z[x±1].

We will next apply the Whitney Homotopy from Section 2.D to (f, f2) n times.

The first application is the link homotopy that does the Whitney move on V1,

then shrinks α1 ·SV1 , and finally does the finger move that reverses the Whitney

move and returns f to its original position. We get the link map

(f, f2 − α1 · SV1) =

(
f,

n∑
i=2

αi · SVi

)
.

Then we apply the same moves using the disjointly embedded Whitney disks

V2, V3, . . . , Vn to get a link homotopy from (f, f2) to (f, ∗). But now f shrinks

in S4 r ∗ = R4 and Theorem 5.6 is proven, modulo the proof of Lemma 5.7

below. �

We note that in the above argument, we brought f2 into a position where

it is the geometric sum of embedded Whitney spheres SVi and is, in particular,

disjoint from the embedded Whitney disks Vi. So we could do Whitney moves

on f along all the Vi, in the complement of f2, to arrive at an embedded link

map (f ′, f2) with possibly knotted components. If this embedding was smooth,

one could conclude that (f ′, f2) is trivial from the main result of [3], which uses

singular handles and stratified Morse theory.
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Our proof here works in the topological category and is more explicit:

We see step-by-step how f2 becomes geometrically the sum of fewer and fewer

Whitney spheres since each SVi shrinks after doing the Whitney move on Vi
by a Whitney homotopy, until f2 eventually becomes trivial.

5.E. Homotopy uniqueness of the Whitney sphere. The next lemma com-

pletes the proof of the Metabolic Unlinking Theorem 5.6 and gives a purely

homotopy-theoretic definition of a Whitney sphere SW in terms of W .

Let X4 be an oriented 4-manifold (without boundary), with f : S2 # X4

generic and M the complement of a tubular neighborhood of f . If f is not an

embedding, then π2(∂M) = 0 by Remark 3.7, and hence we get a monomor-

phism π2(M)� π2(M,∂M).

Lemma 5.7. For W a cleanly immersed framed Whitney disk on f : S2

# X4, the monomorphism π2(M) � π2(M,∂M) sends [SW ] to (1 + gh−1 −
g − h−1) · [W ], where g, h ∈ π1(∂M) are both positively oriented meridians to

f . In particular, for f : S2 # S4 in standard position, [SW ] maps to z · [W ].

Proof. Deleting from SW the interiors of the four parallel copies of W

yields a sphere-minus-four-disks S0
W embedded in ∂M , so in the relative ho-

motopy group SW maps to four copies of W . By Seifert–Van Kampen, it

suffices to carry out the computation of the group elements in the intersection

M ′ of M with a S1 × B3 neighborhood of ∂W ⊂ X4. Starting with the de-

scription of SW in Figure 2.4, Figure 5.5 explains the Kirby diagram for M ′

shown in Figure 5.6, with S0
W ⊂M ′.

The right-hand side of Figure 5.7 shows two elements g, h ∈ π1∂M ′ that

map to a meridian of f . The group elements for the image of SW in π2(M,∂M)

are represented by loops through the punctures of S0
W that run along S0

W and

return along the purple circle dual to W . Taking the basepoint at the second

puncture from the left, yields the elements h−1, 1, g and gh−1, respectively, for

the four punctures (from left to right). The signs of these elements alternate

Figure 5.5. In the domain of a Whitney disk W , the preimage

of the sphere-minus-four-disks S0
W is shown in blue. The purple

arc traces out a disk whose image is dual to W . Compare

Figure 2.4.
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from left to right, so orienting SW appropriately yields (1+gh−1−g−h−1)·[W ]

as its image in π2(M,∂M). That g and h both map to the same meridian in

π1M can be seen in Figures 3.1 or 5.1. �

5.F. Comparing Whitney sphere descriptions. Here we check that SW 7→
z ·W for the three geometric constructions of Whitney spheres given earlier in

the paper.

For the descriptions of SW given in local coordinates (Figures 2.4 and

5.2) it suffices to check that each bubble contains a pair of oppositely-oriented

copies of W that differ by a meridian to one sheet of f , and that the bubbles

differ from each other by a meridian to the other sheet, as in Figure 5.7. The

same goes for the generalization of the Figure 5.2 construction using cleanly

immersed W .

For the Kirby diagram description of SW in the right-most picture of

Figure 3.1, the embedded disk in SW bounded by the unknotted blue attaching

circle contains four normal disks to a green circle, each of which is a parallel of

W as can be seen from the left-most picture of Figure 3.1. The group elements

and orientations can be computed from the figure.

Figure 5.6. Left: The black and purple sheets form a Bor-

romean rings in the boundary 3-sphere of Figure 5.5. The

two twice-punctured Whitney bubbles in S0
W are also shown,

but suppressed from view (apart from the dotted PL arc) is

the embedded annulus in S0
W connecting the Whitney bubbles’

boundaries (cf. Figure 5.5). Right: A Kirby diagram of M ′, the

complement of a neighborhood of f in a S1×B3 neighborhood

of ∂W ⊂ M . The green circles are 0-framed 2-handles that

realize the black-black crossing changes in the boundary. Part

of the annulus (again suppressed from view) in S0
W passes over

the green 2-handles, as shown in the left picture of Figure 5.7.
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h

g

Figure 5.7. Left: The part of the embedded annulus in S0
W

connecting the Whitney bubbles’ boundaries near the green

2-handles. Right: The 3-manifold ∂M ′ ⊂ ∂M , described by

replacing the dotted circles in Figure 5.6 by 0-framed 2-handles.

6. Injectivity of the Kirk invariant: Proof of Theorem 1.2

This section completes the proof of Theorem 1.2 via the following propo-

sition, which shows that a link map with vanishing Kirk invariants satisfies the

algebraic intersection condition of the Metabolic Unlinking Theorem 5.6:

Proposition 6.1. If (f, f2) is a link map with vanishing Kirk invariants,

then after a link homotopy it can be arranged that f is in standard position

with metabolic Whitney disks Wi satisfying λ(Wi, f2) ∈ z · Λ for all i.

Recall that Λ = Z[x±1] for π1(S
4 \ f) = 〈x〉 ∼= Z, and z = 2 − x − x−1,

so z · Λ = I2 for I the augmentation ideal of Λ. An outline of the proof of

Proposition 6.1 will be given in Section 6.A after introducing some terminology

to facilitate the discussion.

Primary and secondary multiplicities. Let (f, f2) be an oriented link map

with π1(S
4 \ f) = 〈x〉 ∼= Z for x a positive meridian to f , and let D # S4 be

an oriented immersed disk with ∂D ⊂ f such that the interior of D is disjoint

from f ; e.g., D is a cleanly immersed Whitney disk or accessory disk on f .

Then we can write

λ(D, f2) = m+ n(1− x) + P ∈ Z[x±1]

for m ∈ Z, n ∈ Z, and P ∈ I2 (by choosing a basing of D appropriately). We

call the integers m and n the primary multiplicity and secondary multiplicity,
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respectively, of D. Note that this notion of “multiplicity” always refers to

intersections with f2.

The primary multiplicity is just the linking number of ∂D and f2, and

hence can also be used in the case that ∂D∩f2 = ∅, even if ∂D is not contained

in f .

The secondary multiplicity only depends on a push-off ∂D of ∂D into

the interior of D. After (perhaps) some disjoint finger moves, we may assume

that π1(S
4 \ (f ∪ f2)) is isomorphic to the free Milnor group on (positive)

meridians x and x2. Then ∂D represents xm2 [x, x2]
n ∈ π1(S4 \ (f ∪ f2)), with

the commutator exponent n equal to the secondary multiplicity of D.

6.A. Outline of the proof of the Proposition 6.1. In this terminology the

conclusion of Proposition 6.1 says that f admits a metabolic collection whose

Whitney disks all have vanishing primary and secondary multiplicities.

It will not be difficult to arrange the vanishing of the Whitney disks’

primary multiplicities, but killing the secondary multiplicities will involve some

work!

The proof will proceed by an eight-step construction that starts with a

standard collection and creates many more new Whitney disks and accessory

disks. This will involve the creation and manipulation of Whitney disks whose

interiors are temporarily not disjoint from f , but disjointness will eventually

be recovered using carefully constructed “secondary” Whitney disks. Keeping

track of the different types of new disks and the progress towards controlling

their intersections and multiplicities will involve some tricky book-keeping, so

the following outline is provided for guidance:

(a) Before starting the construction, f2 will be expressed as a linear combi-

nation of standard accessory spheres that intersect an initial collection of

Whitney disks Wi on f in a controlled way (Lemma 6.2, Section 6.A.3).

In particular, these Wi will have primary multiplicity zero.

(b) The goal of Steps 1 through 6 of the construction is to reduce to 0 or 1 the

primary multiplicities of all accessory disks whose corresponding Whitney

disks have possibly non-zero secondary multiplicity. This reduction will

allow the secondary multiplicities of the corresponding Whitney disks to

be killed in the Steps 7 and 8.

• Step 1 eliminates pairs of intersections between initial Whitney disks

Wi and f2, which represent non-zero secondary multiplicity, at the

cost of creating new pairs of self-intersections of f . This step also

constructs Whitney disks (the U in Lemma 6.3) in preparation for

cleaning up new Whitney disks that will be created during later steps.

• Step 2 constructs Whitney disks V0, V1 for each new pair of self-

intersections created in Step 1, such that V0 and V1 have interior
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intersections with f . These V0 and V1 have accessory disks with pri-

mary multiplicities 0 and 1, respectively, that were created in Step 1

(Lemma 6.3).

• Step 3 creates even more intersections between f and V0 by tubing

V0 and f into standard accessory and Whitney spheres on f2. This

tubing is a key part of the construction as it serves to reduce the

primary multiplicities on the new accessory disks that will be created

when f is later pushed off of the interior of V0 (in Step 5). This step

also constructs temporary bigon disks Bj that will be used to form

these new accessory disks.

• Step 4 applies the analogous tubing from Step 3 but to V1, and con-

structs quadrilateral disks Qj that will be used to form secondary

Whitney disks for later making f disjoint from the interior of V1 (in

Step 6).

• Step 5 pushes f off of the interior V0 at the cost of creating new

self-intersections of f paired by controlled Whitney disks W j whose

associated accessory disks Aj (formed from the Bj in Step 3) have

primary multiplicity 0 or 1.

Here the super-script notation serves to differentiate these new W j , Aj

from the initial collection Wi, Ai.

The interior of each W j intersects f , but these intersections are paired

by parallels U j of the previously constructed U from Step 1. At this

point only those W j whose Aj has primary multiplicity 1 are made

cleanly embedded by U j-moves.

• Step 6 removes all interior intersections between f and V1 using sec-

ondary Whitney disks Rj that were created during Step 5 from the

quadrilaterals Qj constructed in Step 4.

A summary of the result of Steps 1–6 is given before Section 6.B.7.

(c) In Step 7 each Whitney disk whose associated accessory disk has primary

multiplicity 1 will be made to have secondary multiplicity 0 by a “dou-

ble boundary-twisting” operation. It temporarily creates intersections be-

tween the Whitney disk and f that are then eliminated via a secondary

Whitney move guided by a parallel copy of the accessory disk. More gen-

erally, this operation can change the secondary multiplicity of a Whitney

disk by any integral multiple of the primary multiplicity of an associated

accessory disk (Lemma 6.5).

(d) Step 8 deals with the remaining W j from Step 5 whose Aj have primary

multiplicity 0. First, the vanishing of λ(f2, f2) is used to show that there

are an even number of such W j . Then a “double transfer move” is used
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to collect the U j in pairs that yield canceling contributions to the sec-

ondary multiplicities of the W j after making them cleanly embedded by

U j-Whitney moves.

This step also creates more self-intersections of f that are paired by local

Whitney disks that are arranged to have vanishing secondary multiplicity.

Constructing accessory disks for these local Whitney disks requires the full

generality of the definition of a metabolic collection (Definition 5.3).

These eight steps are carried out first in a low-multiplicity base case, which

is then checked in Section 6.E to be extendable to the general case. The

definition of a metabolic collection stipulates positive accessory disks, but this

will be easily arranged after Step 8 in Section 6.D.

Throughout the constructions f and f2 will only be changed by disjoint

finger moves (and isotopy), hence f will always be in standard position. Details

on techniques used in the constructions are given in Section 7.

As an illustration of a technique that will be used repeatedly during the

proof, we have the following observation on how using Whitney moves to make

disks’ interiors disjoint from f affects the resulting primary and secondary

multiplicities:

6.A.1. Observation. Let D # S4 be an oriented immersed disk, with D∩
f2 = ∅, such that D t f consists of two oppositely-signed intersections paired

by a Whitney disk U that has interior disjoint from f . Then the result D′ of

doing the U -Whitney move on D has interior disjoint from f and satisfies

λ(D′, f2) = (1− x) · λ(U, f2) ∈ Z[x±1]

for an appropriate orientation and basing choice on U .

U

D

f

f
2

f
2

f

D'

Figure 6.1. Left: A Whitney disk U pairing intersections be-

tween D (blue) and f (black), such that U has an interior in-

tersection with f2 (green). Right: The result D′ of doing the

U -Whitey move on D has a pair of oppositely-signed intersec-

tions with f2 whose group elements differ by a meridian to f

(indicated by the dotted blue arc).
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To see why this equation holds, observe that the U -Whitney move forms

D′ from D by adding two oppositely oriented copies of U , so each intersection

in U ∩ f2 gives rise to two oppositely-signed intersections between D′ and f2
with group elements that differ by the generator x represented by a meridian

to f (Figure 6.1). Any self-intersections or non-trivial twisting of U will yield

self-intersections in D′, but will not affect λ(D′, f2).

The same equation holds if U is a union of Whitney disks (connected by

basings in D) pairing D t f with interiors disjoint from f , and D′ denotes the

result of doing all the Whitney moves on these Whitney disks. In particular, the

primary multiplicity of such a D′ is always zero, and the secondary multiplicity

of D′ is equal to the primary multiplicity of U .

6.A.2. Orientation conventions. Here we fix conventions relating a choice

of orientation on a Whitney disk with orientations on its accompanying ac-

cessory disks. The reader not familiar with the construction of a Whitney

disk from two accessory disks may want to at least glance at Figure 7.5 in

Section 7.C before reading the second paragraph below.

A Whitney disk W pairing {p+, p−} ∈ f t f is oriented by choosing

a positive boundary arc ∂+W ⊂ ∂W that is oriented from the negative self-

intersection p− towards the positive self-intersection p+, and a negative bound-

ary arc ∂−W ⊂ ∂W running back to p− in the other sheet of f . This choice

of orientation on ∂W together with the usual “outward first” convention ori-

ents W . Any positive and negative accessory disks A+ and A− associated to

such an oriented Whitney disk W are oriented according to the convention

indicated in Figure 6.2: The boundaries ∂A± are oriented to run from the

negative sheet of f at p± to the positive sheet of f at p± (again using the

outward first convention).

On the other hand, given a pair of oriented accessory disks A± for p±,

Section 7.C shows how a Whitney disk W for p± can be constructed by half-

tubing together A+ and A− along f so that the resulting triple W,A+, A−

satisfies the orientation convention of the previous paragraph. If the A± are

standard, or more generally framed and disjointly cleanly embedded, then a

4-ball neighborhood of the triple W,A+, A− will be diffeomorphic to Figure 6.2.

(Framed accessory disks are discussed in Section 7.B.1.)

A
_

+_ pp

A+

W

Figure 6.2. Orientation conventions for Whitney disks and ac-

cessory disks.
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6.A.3. Initial form for the proof of Proposition 6.1. We may assume that f

is in standard position, admitting standard Whitney disk-accessory disk triples

Wi, A
+
i , A

−
i as in Section 5.C.1 (framed, cleanly embedded, only intersecting

at the self-intersections of f). Since λ(f, f) = 0 ∈ Z[x±2 ], we may also assume

by Lemma 5.4(1) that A+
i and A−i have the same primary multiplicity mi,

for each i, with orientations on the A±i such that mi ≥ 0, and Wi oriented

as in Section 6.A.2, with a neighborhood of Wi ∪ A+
i ∪ A

−
i diffeomorphic to

Figure 6.2.

We fix orientations on the basis of standard accessory spheres SA±
i

from

Lemma 3.5 so that λ(Wi, SA±
i

) = ±1, and we write f2 as a Z[x±1]-linear

combination of the SA±
i

:

(1) f2 =
∑

α+
i · SA+

i
+ α−i · SA−

i
,

where each α±i is of the form

(2) α±i = mi + n±i (1− x) + P±i

with n±i ∈ Z the secondary multiplicities of A±i , and P±i Laurent polynomials

in I2.

Since Wi is dual to each of SA+
i

and −SA−
i

, we have

(3) λ(Wi, f2) = (mi−mi) + (n+i −n
−
i )(1−x) +P+

i −P
−
i = 0 +ni(1−x) +Pi

with Pi = P+
i − P

−
i ∈ I2, and ni = n+i − n

−
i ∈ Z. It follows that each Wi

has primary multiplicity 0 = mi − mi, and the integer ni is the secondary

multiplicity of Wi. The starting point for the proof of Proposition 6.1 is the

observation that the tubes and parallels of SA±
i

realizing f2 as the connected

sum in equation (1) can be chosen so that the intersections in Wi ∩ f2 con-

tributing to the secondary multiplicities ni admit the “controlled” Whitney

disks illustrated in Figure 6.3 and described in the following lemma:

Lemma 6.2. The connected sum decomposition of f2 in equation (1) can

be realized so that for each i, the following three conditions are satisfied :

(a) The mi-many copies of each SA±
i
⊂ f2 that contribute the canceling pri-

mary multiplicities in equation (3) are disjoint from Wi.

(b) The intersections in Wi ∩ f2 that contribute the terms ni(1 − x) ∈ I to

λ(Wi, f2) in equation (3) come in |ni|-many pairs, each of which admits a

framed embedded Whitney disk containing only a single interior intersec-

tion with f .

(c) The rest of the intersections in Wi ∩ f2 contribute the terms Pi ∈ I2 to

λ(Wi, f2) in equation (3).
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W

2f

i

f

2f
2I

Δ

Δ'
I

f

f

f

Figure 6.3. Illustration of Lemma 6.2: The pairs in Wi∩f2 that

contribute the terms ni(1− x) ∈ I to λ(Wi, f2) admit Whitney

disks (here ∆ and ∆′) that each contain just a single intersection

with f , as in item (b).

Proof. Condition (a): The mi-many pairs of parallel copies of each of SA+
i

and SA−
i

corresponding to the coefficients mi in equation (2) can be made

disjoint from Wi by tubing each pair of parallels of SA+
i

and SA−
i

together at

their dual ±-intersections with Wi along a tube of normal circles to Wi. (Each

connected sum of parallels of SA±
i

is an embedded Whitney sphere SWi that is

disjoint from the framed embedded Wi.)

Condition (b): Each pair of terms (1 − x) · SA+
i
⊂ f2 contributing +1

to n+i , or pair of terms −(1 − x) · SA+
i
⊂ f2 contributing −1 to n+i , (resp.

±(1− x) · SA−
i
⊂ f2 contributing ±1 to n−i ,) can be represented by taking two

oppositely-oriented parallel copies of SA+
i

(resp. SA−
i

) close to each other, and

connecting them by a tube near Wi that runs around a meridian to f . (See the

SA−
i

case in Figure 6.4.) As can be read off from Figure 6.4, each of these pairs

of intersections in Wi ∩ f2 contributes ±(1 − x) to λ(Wi, f2), and we choose

the orientations of the copies of SA±
i

to yield the desired signs. As shown in

Figure 6.4, each of these pairs of intersections in Wi ∩ f2 admits a framed

embedded Whitney disk whose interior is disjoint from all surfaces except for
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i Δ
W

Figure 6.4. From item (b) of Lemma 6.2: Near the ith nega-

tive self-intersection of f (black) (with time coordinate moving

clockwise from left to right along the top row, then right to left

along the bottom row), the Whitney disk Wi (blue) intersects

±(1 − x) · SA−
i
⊂ f2 (green) in two points paired by an order

2 Whitney disk ∆ (purple). The intersection point between ∆

and f is visible in the bottom right picture. The negative acces-

sory disk A−i is suppressed from view in this figure, but could be

shown in the same picture as (the corner of) Wi (bottom row,

second-from-left). Any copies of the SA±
i
⊂ f2 corresponding

to the terms of mi and P±i are also not shown. In the positive

accessory sphere case ±(1 − x) · SA+
i
⊂ f2, the analogous fig-

ure would look the same as this figure near ∆. (Compare the

right-hand part of Figure 6.22.)

a single interior intersection with f . We only need |ni|-many of these pairs

since any cancellation between n+i and n−i in ni = n+i −n
−
i gets absorbed into

Pi, as described in next paragraph.

Condition (c): The rest of the copies of SA±
i

in P±i · SA±
i
⊂ f2 (and their

connecting tubes) corresponding to the terms of P±i in equation (2) can be

chosen to have no intersections with the spheres of the previous two items in

the neighborhood of the self-intersection of f described by Figure 6.4. (They

would appear as constant parallel green circles in Figure 6.4, tubed together

outside the neighborhood.) The intersections of these factors of f2 with Wi

correspond to the Pi ∈ I2 term of λ(Wi, f2) in equation (3). We do not need

to do any further clean-up on these intersections since our goal is to arrange

for all metabolic Whitney disks to intersect f2 in I2.

Since tubes are supported near arcs, the sums of accessory spheres de-

scribed so far in this proof can be connected into the single sphere f2 without
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creating any other intersections. (Since SA±
j
∩Wi = ∅ for j 6= i, all of Wi ∩ f2

has been accounted for.) �

6.B. Creating the assumption for Metabolic Unlinking : Proof of Proposi-

tion 6.1.

Proof. Starting with (f, f2) as in Section 6.A.3 satisfying Lemma 6.2, we

will first prove the special case that each accessory disk A±i has primary multi-

plicity 0 ≤ mi ≤ 2, and each Whitney disk Wi either has secondary multiplicity

−1 ≤ ni ≤ 1, or has arbitrary ni if mi = 1. The proof will involve a construc-

tion that eliminates the pairs of intersections from item (b) of Lemma 6.2 that

contribute ni(1 − x) · SA±
i
∩Wi at the cost of creating new metabolic Whit-

ney disk-accessory disk pairs satisfying the criteria of Proposition 6.1. This

construction will be presented in eight steps in Sections 6.B.1–6.B.8. Then we

complete the proof of Proposition 6.1 in Section 6.E by describing how the

construction can be extended to the general case of arbitrary ni and arbitrary

(non-negative) mi.

Before starting the construction for this special case, note that any initial

pair Wi, A
+
i such that ni = 0 already satisfies Proposition 6.1 (since Wi has

vanishing primary multiplicity by Lemma 6.2). Also, any initial Wi, A
+
i with

mi = 1 will be left “as is” for the first six steps of the construction (since Step 7

below will show how such unit primary multiplicity can be used to arrange that

ni = 0).

So the first six steps of the construction for this special case will be applied

simultaneously to all Wi such that ni = ±1, with mi = 2 or mi = 0. Since

these steps of the construction are supported near each Wi ∪ A−i inside the

4-ball neighborhood described by Figure 6.2, and since these 4-balls can be

taken to be disjoint, it suffices to describe these steps locally.

We will assume that mi = 2 during the first six steps, with modifications

for the easier mi = 0 case pointed out just after Step 6.

6.B.1. Step 1. To start the construction, consider a pair ±(1−x)·SA±
i
∩Wi

of intersections between f2 and a Wi corresponding to the secondary multi-

plicity ni = ±1 of Wi. By Lemma 6.2 this intersection pair admits a framed

embedded Whitney disk ∆ having only a single interior intersection with f as

in Figure 6.4. Note that Figure 6.4 shows the negative accessory sphere case

±(1−x) ·SA−
i
∩Wi, with all other parallel copies of SA−

i
suppressed from view

(including the two copies of SA−
i

corresponding to primary multiplicity mi = 2

of A−i , which would appear as constant arcs parallel to the green circle strands

passing through the accessory circle ∂A−i ; cf. Figure 6.8). Subsequent figures

will illustrate the construction details specifically for this negative accessory

sphere case, and it will be pointed out how the same constructions also work
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for the positive accessory sphere case ±(1 − x) · SA+
i
∩Wi. In both cases the

construction will leave the positive accessory disk A+
i unchanged.

W

p q

Figure 6.5. The Whitney disk Wi (blue) after eliminating the

pair of intersections between Wi and f2 (green) by a Whitney

move guided by ∆ from Figure 6.4: Zooming in here all on

but the top-left picture in Figure 6.4, the pair of interior in-

tersections p, q that Wi now has with f (black) corresponds to

the blue-black crossing changes shown in the second-from-right

picture of the top row. Both the intersections p and q will be

eliminated by the finger moves shown in Figure 6.6.

q
0

q
1p

0

p
1

Figure 6.6. This figure shows the result of eliminating the inte-

rior intersections p, q ∈Wi t f (from Figure 6.5) by two finger

moves on f along Wi (across ∂+Wi): Zooming in on all but the

top-left picture in Figure 6.5, two of the new self-intersections

q0, p1 ∈ f t f are visible in the lower left-most picture, while

the other two p0, q1 ∈ f t f are visible in the lower right-most

picture. The finger move that eliminated p created the pair

p0, q0, and the finger move that eliminated q created p1, q1.

Change Wi by doing the Whitney move guided by ∆ (and keep the same

notation for Wi). This Whitney move eliminates the pair of intersections be-

tween f2 and Wi and creates a new pair of intersections p, q between f and the

interior of Wi, as shown in Figure 6.5.
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Next, use two finger moves on f to push each of p, q ∈ Wi t f off of Wi

(across ∂+Wi), creating two new pairs p0, q0 and p1, q1 of self-intersections of f ,

as illustrated in detail in Figure 6.6.

q
0

p
0

p
1

q
1

Figure 6.7. Proof of Lemma 6.3: These coordinates correspond

to the last seven 3-ball slices pictured in Figure 6.6, here with

an additional slice inserted between the 5th and 6th slice. The

Whitney disk U for p1 and q0 is shown in orange. The inter-

section point between U and f2 is visible in the left-most slice

in the bottom row. Across the top row, the accessory disk Ap0

for p0 is shown in yellow, and the accessory disk Aq1 for q1 is

shown in red. The intersection point (indicated schematically

by the small dotted red circle in the second from left slice in

the top row) between Aq1 and f2 corresponds to the red-green

crossing change between the center two slices in the top row.

(Compare Figure 6.8.)

The disks described by the following lemma will be used repeatedly during

constructions in subsequent steps:

Lemma 6.3. The self-intersections p0, q0 and p1, q1 of f satisfy the fol-

lowing three conditions :

(i) p0 admits a framed embedded accessory disk Ap0 such that the interior

of Ap0 is disjoint from both f and f2, and from all other Whitney and

accessory disks.

(ii) q1 admits a framed embedded accessory disk Aq1 such that the interior of

Aq1 has a single intersection with f2, but is disjoint from f , and from all

other Whitney and accessory disks.

(iii) p1 and q0 admit a framed embedded Whitney disk U such that the interior

of U has a single intersection with f2, but is disjoint from f , and from

all other Whitney and accessory disks.
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Proof. The disks Ap0 , Aq1 and U are explicitly described in local coordi-

nates in Figure 6.7 (see also Figure 6.8). The positive accessory sphere case

±(1− x) · SA+
i
∩Wi is covered by essentially the same figures. �

W

2f

2f

2f
i

Ai
-

f 0V

1V

U

0A

r0

s1

q
0

p
0

q
1

p
1

p

1A
q

Figure 6.8. From Step 2: The Whitney disks V0 and V1 (nested

along ∂+Wi) pairing p0, q0 and p1, q1.

6.B.2. Step 2. As shown in Figure 6.8, the two new pairs p0, q0 and p1, q1 of

self-intersections of f created by the finger moves in Figure 6.6 admit framed

embedded Whitney disks V0 and V1 whose interiors each have only a single

transverse intersection with f (near the negative self-intersection of f paired

by Wi). By construction these points r0 = V0 t f and s1 = V1 t f lie on the

accessory circle ∂A−i . Even if we had started with a positive accessory sphere

pair ±(1− x) · SA+
i
∩Wi, we would still use these same nested V0 and V1 near

the negative self-intersection of f .

Since the Whitney and accessory disks are framed and embedded, the

4-ball pictured in Figure 6.8 is accurate except that any pairs of oppositely-

signed intersections that Wi and A−i may have with f2 are suppressed from

view. The two sheets of f2 shown intersecting A−i are like-oriented copies of

SA−
i

corresponding to mi = 2. (These were suppressed in Figures 6.4, 6.5, 6.6

and 6.7.)
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W

2
f

2f

2f

i

f

0V 1V

U

B Q

s
1

r
0

q
0

p
0

p
1

q
1

0A
p 1A

q

Figure 6.9. From Step 2: A slightly different view of V0 and V1,

from “underneath” the horizontal sheet of f shown in Figure 6.8

and after “straightening” ∂V0 and ∂V1 by an ambient isotopy

(of the 2-complex).

Figure 6.9 shows a different view of V0 and V1. Note that r0 and s1 admit a

generalized Whitney disk that is the quadrilateral Q bounded by the indicated

arcs running from s1 along f to r0 then down V0 and back along f to V1
and back up through V1 to s1 (Section 7.E.2). Also, r0 admits the generalized

accessory disk B that is the bigon bounded by an arc from r0 along f then back

up through V0 to r0 (Section 7.E.2). This B consists of most of the standard

accessory disk A−i (which we do not need, since Wi also has the standard A+
i ),

and contains all the intersections with f2 that A−i had.

In Figure 6.9 the accessory disks Ap0 (yellow) and Aq1 (red) are visible

behind the quadrilateral Q. A corner of Wi is visible in the lower right. The

(non-canceling) pair of intersections between f2 and the bigon B visible in the

upper left are inherited from the intersections f2∩A−i corresponding to mi = 2

shown in the lower left of Figure 6.8. Any canceling pairs of intersections

between B and f2 (corresponding to canceling pairs in A−i ∩f2) are suppressed,

but otherwise the 4-ball picture in Figure 6.9 is accurate since all disks are

framed and embedded.

Note that the union B ∪ Q equals the standard A−i with a small corner

removed near the self-intersection of f . The subsequent Steps 3–6 will be

supported in a 4-ball neighborhood of A−i .

At this point the primary multiplicity of B (the linking number of ∂B

with f2 in S4) is the same as the primary multiplicity of A−i , namely 2, but the

construction will next exchange r0 for new intersections between f and V0, each

equipped with a generalized accessory disk whose boundary has linking number
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0 or 1 with f2. These new generalized accessory disks will be modified parallels

of B, and will become metabolic accessory disks later in the construction.

6.B.3. Step 3. After isotoping a small disk of f2 into the 4-ball neighbor-

hood of A−i , perform a local trivial finger move on f2, creating a local Whitney

sphere SWf2 and accessory spheres S±f2 , and tube V0 into the new positive ac-

cessory sphere S+
f2

on f2 via a tube that starts near r0. This creates four new

intersection points r10, r
2
0, r

3
0, r

4
0 between V0 and SWf2 , as shown in the left side

of Figure 6.10.

Now r0 can be removed by tubing f into SWf2 via a tube of normal circles

to V0 that also eliminates r40, as shown in the right side of Figure 6.10. Note

that this is a link homotopy since a Whitney sphere for f2 has been added to f .

This link homotopy is an isotopy on f , since the Whitney sphere is trivial. (It

comes from the local embedded Whitney disk that is inverse to the finger move

on f2.)

The next step is to check that parallels of B can be extended to give

generalized accessory disks B1, B2, B3 for the new intersections {r10, r20, r30} =

V0 t f that are framed, and disjointly embedded, with interiors disjoint from f .

This is carried out in Figures 6.11, 6.12 and 6.13. The primary multiplicities

of B1, B2 and B3 are 1, 1 and 0, respectively, as can be computed from the

figures, using that B had primary multiplicity 2.

r0 f

f
2

V0

r1

r2

r30 0

0r40

f

f
2

V0

x2
-1

x2
-1

r1

r2

r30 0

0

B

Figure 6.10. From Step 3: Left: The Whitney disk V0 (red) is

tubed into the local accessory sphere S+
f2

(also red), creating

four intersections r10, r
2
0, r

3
0, r

4
0 between V0 and the local Whit-

ney sphere SWf2 (blue). The disk in S+
f2

near where the tube

attaches corresponds to the bottom right-most picture in Fig-

ure 5.4 except that colors are different. Right: f (black) is

tubed (blue) along V0 into SWf2 to eliminate r0 and r40.
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f

f
2

V0

r1

r 2

r3
0 0

0
x2
-1

Figure 6.11. From Step 3: In preparation for extending parallels

of B to create generalized accessory disks for r10, r
2
0, r

3
0, this

figure shows a close up of the right-hand side of Figure 6.10,

with the disk in S+
f2

now shown as transparent, and the original

part of V0 now shown as horizontal, and perpendicular to the

tube.

It will be important that B1, B2 and B3 do not intersect each other, but

this is easy to see in (the slightly schematic) Figure 6.13 as even the projections

to the present are disjointly embedded, with B1 appearing in front of B2, which

is in turn in front of B3. And the parts of B1, B2 and B3 coming from parallels

of B are disjointly embedded since B was framed and embedded.

At this point in the construction (after the implementations of Figures 6.11,

6.12 and 6.13) we have disjointly embedded framed generalized accessory disks

B1, B2, B3 for r10, r
2
0, r

3
0, with respective primary multiplicities 1, 1, 0. These

will eventually be converted into metabolic accessory disks on f having these

same primary multiplicities.

Note that V0 has a new oppositely-signed pair of self-intersections inherited

from S+
f2

, but with group elements that are trivial in π1(S
4 \ f).

6.B.4. Step 4. Now we work on V1 in a similar way as the modification

of V0 in Step 3: Perform another trivial finger move on f2 to create another

local Whitney sphere SWf2
′

and accessory sphere S+
f2

′
on f2, and eliminate s1 =

V1 t f by tubing V1 into S+
f2

′
, and f into SWf2

′
, yielding new intersections

{s11, s21, s31} = V1 t f (analogously to Figures 6.10 and 6.11).

Parallel copies of the embedded quadrilateral Q can now be extended to

create generalized Whitney disks Qj for the pairs rj0, s
j
1 in the following way:
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f

f
2

V0

r1

r 2

r30 0

0
q

B1

x2
-1

Figure 6.12. From Step 3: This figure shows the same view as

Figure 6.11, now including part of a generalized accessory disk

B1 (grey) for r10. The grey arc running up along V0 indicates

part of one boundary arc of B1, while the other boundary arc

of B1 runs from r10 to the left along f and down inside the tube

of V0. A single intersection point q ∈ B1 ∩ f2 is visible on the

left, and the rest of B1 (not visible) consists of a parallel copy

of B. The primary multiplicity of B1 is 1, since the boundary of

the grey sub-disk added to B to form B1 represents x−12 , so B1

has primary multiplicity one less than the primary multiplicity

of B.

Near {s11, s21, s31} = V1 t f this is accomplished by the same kind of parallel

local extensions that were used to create the Bj from B (as in Figure 6.13 but

with V1 and sj1 replacing V0 and rj0, and with Q and Qj replacing B and Bj).

Near {r10, r20, r30} = V0 t f , it is possible to extend the parallels of Q on the

“other side” of V0 from the Bj (“outside” instead of “inside” the tube in the

3-ball slice of local coordinates) in a way that does not create any intersections

between the Qj and any previously created Bk, as shown in Figure 6.14.

The resulting Qj are disjointly embedded and have interiors disjoint from

all surfaces other than f2. It will not be necessary to keep track of multiplicities

of the Qj .

Observe that, similarly to V0, now V1 has a new oppositely-signed pair of

self-intersections inherited from S+
f2

′
, with group elements that are trivial in

π1(S
4 \ f).

6.B.5. Step 5. Now we make the interior of V0 disjoint from f : This is

accomplished by three transfer moves, pushing down each of r10, r
2
0, r

3
0 into f ,
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f

f
2

V0
f

f

r1 r 2

r3

0

0

0

x2
-1

Figure 6.13. From Step 3: The same view as Figure 6.12, but

now indicating parts of all three generalized accessory disks B1

(grey-black), B2 (blue) and B3 (orange) for r10, r
2
0 and r30. The

picture is schematic in that two of the arcs of f really lie slightly

in the past and future, respectively, along with small neighbor-

hoods in V0 and the Bj near the corresponding intersections

V0 t f . The primary multiplicities of B2 and B3 can be com-

puted from this figure, keeping in mind that each of B2 and B3

also has an intersection with f2 parallel to q ∈ B1∩f2 as on the

left of Figure 6.12 that is not visible in this figure, and these

intersections correspond to factors of x−12 in ∂B2 and ∂B3. The

single orange intersection in B3 ∩ f2 visible here corresponds to

another factor of x−12 in ∂B3, hence the primary multiplicity of

B3 is 0 (two less than that of B). The blue positive-negative

pair in B2∩f2 indicates no further change in the linking of ∂B2

with f2, so the primary multiplicity of B2 is 1 (one less than

that of B).

then across f and into V1 by finger moves, creating new intersections r11, r
2
1, r

3
1

between V1 and f as in Figure 6.15 (see also Section 7.E.2).

Each transfer move also creates a pair pj , qj of self-intersections of f that

are paired by a local Whitney disk W j that comes equipped with a cleanly

embedded, framed accessory disk Aj that is formed from Bj . Each Aj has

interior disjoint from all other Whitney and accessory disks, and primary mul-

tiplicity equal to 0 or 1 since each Bj had primary multiplicity 0 or 1 (Step 3).
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f

f
2

V0
f
f

r10

r30

r 20

Figure 6.14. From Step 4: A partially schematic picture of the

construction of Q1, Q2, Q3 near r10, r
2
0, r

3
0 using the same bound-

ary arcs along V0 as for B1, B2, B3 in Figure 6.13. (Again,

the picture is schematic in that two of the arcs of f really lie

slightly in the past and future, respectively, along with small

neighborhoods in V0 and the Qj of the corresponding intersec-

tions V0 t f .) There is a single (grey) intersection between

Q1 and f2; and a single (blue) intersection between Q2 and f2;

as well as a pair of (orange) intersections between Q3 and f2.

Note that the interiors of the Qj and the Bk are all disjointly

embedded. (The Qj are “outside” the tube, while the Bk are

“inside.”)

Each W j has a single pair of interior intersections qj0, p
j
1 with f that can be

paired by a parallel copy U j of the framed embedded Whitney disk U from

Lemma 6.3. Note that these W j can be nested disjointly, as were V0, V1 in

Figure 6.9 (see also Figure 6.23).

Since each U j has just a single intersection with f2, performing a U j-

Whitney move on W j would make W j cleanly embedded with interior disjoint

from all other disks, and with primary multiplicity 0 and secondary multiplicity

equal to ±1 (by Observation 6.A.1).

At this point, we go ahead and do the U j-Whitney moves only on those W j

whose Aj has primary multiplicity 1. (For each i such that mi = 2, there are
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f

0V 1V

A
R

s
1

r1

q
0

p
0

p
1

q
1

q
p

W

U

q
0 p

1

j

r
0
j

j

j

j

j

2f

j
j

j
j

j

Figure 6.15. From Step 5: A partially condensed view of the

result of “transferring” an intersection rj0 ∈ V0 t f to rj1 ∈
V1 t f . The new self-intersections qj , pj ∈ f t f are paired

by the local Whitney disk W j . A parallel copy of the Whitney

disk U j from Lemma 6.3 pairs qj0, p
j
1 ∈ W j t f . Suppressed

from view are the intersections that Aj and Rj have with f2,

as well as the self-intersections of V0 and V1 inherited from S+
f2

and S+
f2

′
. Also not shown are the other intersection pairs rk0 , s

k
1

(or rk1 , s
k
1) that V0 and V1 have with f , and their corresponding

parallels of the embedded Bk and Qk (or Ak and Rk).

two such W j , corresponding to B1 and B2 each having primary multiplicity 1

in Step 3.)

In Step 8 below, the remaining W j having Aj with primary multiplicity 0

will be made cleanly imbedded in a way that “collects” the non-zero secondary

multiplicities into canceling pairs so that the resulting metabolic Whitney disks

each have secondary multiplicity 0. (For each i such that mi = 2, there is one

such W j , corresponding to B3 having primary multiplicity 0 in Step 3.)

At this point V0 is cleanly immersed, framed, and with interior disjoint

from f2 and all other disks. The only self-intersections of V0 are the oppositely-

signed pair inherited from tubing into the accessory sphere S+
f2

on f2 in (Step 3),

and the group elements of these self-intersections are both trivial in π1(S
4 \f),

so λ(V0, V0) = 0 ∈ Z[x±1].

By construction, the accessory disk Ap0 for V0 from Lemma 6.3 is framed

and cleanly embedded with interior disjoint from all other Whitney and acces-

sory disks.

Note that V0 and Ap0 both have vanishing primary and secondary multi-

plicities (and in fact are both disjoint from f2).
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6.B.6. Step 6. The transfer moves in the previous Step 5 (Figure 6.15)

convert the quadrilaterals Qj into framed disjointly embedded Whitney disks

Rj pairing sj1 and rj1 (Section 7.E.2). The interior of each Rj intersects f2
(near S+

f2
and S+

f2

′
from Step 4) but is disjoint from f and all other disks. So

the interior of V1 can be made to be disjoint from f and all other disks via

Whitney moves on V1 guided by the Rj .

By construction, V1 is now cleanly immersed, framed and disjoint from

all other Whitney disks and from the interiors of all accessory disks. Also, V1
satisfies λ(V1, V1) = 0 ∈ Z[x±1], since the only self-intersections of V1 come

from tubing into accessory spheres on f2 that contribute oppositely-signed

self-intersections with trivial group elements in π1(S
4 \ f).

The accessory disk Aq1 for V1 (from Lemma 6.3) is framed and embed-

ded with interior disjoint from all other Whitney and accessory disks. From

Lemma 6.3, Aq1 has primary multiplicity 1.

Since the only intersections that V1 has with f2 come from the Rj-Whitney

moves, it follows from Observation 6.A.1 that V1 has vanishing primary mul-

tiplicity. (At this point we do not need to control the secondary multiplicity

of V1, since Step 7 will deal with each Whitney disk whose accessory disk has

primary multiplicity 1.)

The case mi = 0. The six steps so far have been described for the case

mi = 2. If we had started with Wi with mi = 0, then the construction

is simplified as follows: Steps 1 and 2 proceed exactly the same as above.

Observe that in this mi = 0 case, at the end of Step 2 the bigon B has primary

multiplicity 0 (the same as A−i ), so Steps 3 and 4 can be skipped entirely, and

in Step 5 the transfer move is applied to the single intersection r0 = B t f .

So Step 5 yields just a single W j , with accessory disk Aj having primary

multiplicity 0. (This Aj is formed from B, which is a sub-disk of the original

A−i , since we did not have to do the tubing of Steps 3 and 4 to reduce the

primary multiplicity.) As in Figure 6.15, the intersection pair W j t f admits

U j intersecting f2 in a single point, and it will be made cleanly embedded in

Step 8 along with the other W j having Aj with primary multiplicity 0.

Summary of Steps 1–6. Recall that we are assuming the base case that

each initial Whitney disk Wi has secondary multiplicity −1 ≤ ni ≤ 1, and each

initial accessory disk A±i has primary multiplicity 0 ≤ mi ≤ 2. Simultaneously

carrying out the above constructions of Steps 1 through 6 on all the initial Wi

with ni = ±1 and mi = 0, 2 has yielded the following:

(a) All the initial pairs Wi, A
+
i either had mi = 1 to start with, or now have

ni = 0 from Step 1. Each of these initial Wi, A
+
i are still cleanly embedded

and disjoint from all other Whitney and accessory disks.
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(b) Each new Whitney disk V0 created in Step 2 and modified in Step 5 is

cleanly immersed, with λ(V0, V0) = 0 ∈ Z[x±1], and has interior disjoint

from all other disks. The accessory disk Ap0 for V0 is framed and em-

bedded with interior disjoint from all other Whitney and accessory disks.

By construction both V0 and Ap0 have vanishing primary and secondary

multiplicities and are, in fact, disjoint from f2.

(c) Each new Whitney disk V1 created in Step 2 and modified in Step 6 is

cleanly immersed, with λ(V1, V1) = 0 ∈ Z[x±1]. The accessory disk Aq1

for V1 is framed and embedded with interior disjoint from all other Whit-

ney and accessory disks. The primary multiplicity of V1 is 0 by Observa-

tion 6.A.1, and the primary multiplicity of Aq1 is 1 by Lemma 6.3.

(d) The new disk pairs W j , Aj created in Step 5 such that Aj has primary

multiplicity 1 are (after the U j-Whitney moves) all cleanly embedded and

disjoint from all other disks. These W j each have primary multiplicity 0,

and each W j also has secondary multiplicity ±1, coming from the unit

primary multiplicities of the U j that were used to get W j t f = ∅ (by

Observation 6.A.1).

(e) Those new disk pairs W j , Aj created in Step 5 such that Aj has primary

multiplicity 0 are embedded and disjoint from all other disks but still have

W j t f paired by U j .

So the remaining “problems” to be dealt with are

• the Whitney disks that have possibly non-zero secondary multiplicity and

have accessory disks with primary multiplicity 1, as in items (a), (c) and

(d), and

• the W j that still intersect f and have accessory disks with primary multi-

plicity 0, as in item (e).

These problems will be taken care of in Step 7 and Step 8 respectively.

6.B.7. Step 7. In this step we use a local construction to kill the secondary

multiplicity of each Whitney disk whose accessory disk has unit primary mul-

tiplicity. At this point in the proof such Whitney disks are either from the

initial collection with arbitrary secondary multiplicity (as in (a)), or are a V1
created in Step 2 (as in (c)), or are from the W j created in Step 5 with unit

secondary multiplicity (as in (d)). In each of these cases the corresponding

accessory disk is framed and cleanly embedded, with interior disjoint from all

other disks.

Let W,A be one of these Whitney disk-accessory disk pairs with A having

primary multiplicity 1. This step will describe how to replace W by a new

Whitney disk V with secondary multiplicity 0 such that ∂V = ∂W , with V

supported nearW∪A and disjoint from the interior of A. Since all the accessory

disks at this point are disjointly embedded and with interiors disjoint from all
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Whitney disks, this construction can be carried out simultaneously to replace

all such W,A by V,A without creating any new intersections among disks.

First we construct V in the case that A is a positive accessory disk and

has just a single positive intersection with f2. The construction described

in Figures 6.16 and 6.17 shows how to add +(1− x) to λ(W, f2) mod I2 by

changing the interior of W by two boundary-twists and a Whitney move guided

by a Whitney disk formed by a parallel copy of A. Since the boundary-twists

are oppositely-handed, W is still framed. (For details on the boundary-twisting

construction; see, e.g., [12, §1.3].)

W

A
f2f2f2

+

q

p

Figure 6.16. Near the framed embedded positive accessory disk

A for W : A left-handed boundary-twist along ∂−W and a right-

handed boundary-twist along ∂+W creates a pair of oppositely-

signed intersections p and q in W t f .

The construction is supported in an arbitrarily small neighborhood of A,

and it also leaves a smaller neighborhood of A unchanged; so this construction

can be iterated to increase λ(W, f2) mod I2 by n(1−x) for any n ≥ 1. If the left-

handed and right-handed boundary-twists are switched in the construction, or

if the construction is carried out using a negative accessory disk, then λ(W, f2)

mod I2 is changed by −(1 − x), so the secondary multiplicity of W can be

changed by any n ∈ Z and the desired V can be created in this case. Note that

the construction of V from W is supported near W ∪A, so no new intersections

are created between any Whitney or accessory disks.

Now consider the general case where A has possibly more than one in-

tersection with f2 (corresponding to P · SA terms in f2, for P ∈ I2 as in

Lemma 6.2, and/or oppositely-signed intersection pairs created Step 3). Each

intersection between A and f2 will contribute a term ±(1− x) mod I2 via the

construction shown in Figures 6.16 and 6.17. Since λ(A, f2) = 1 modulo I, the

net affect of each iteration of the construction is still to change λ(W, f2) by

±(1−x) modulo I2, again by Observation 6.A.1, so the secondary multiplicity

of W can be reduced to zero, yielding V with secondary multiplicity zero and

with the same vanishing primary multiplicity as W .
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f2

W

f2

W

x

+ -
x

q

p

Figure 6.17. Both of these pictures correspond to the right-

most 3-dimensional slice of 4-space shown in Figure 6.16. Left:

The intersections p and q created by the boundary-twists can

be paired by the red Whitney disk formed from a parallel of A

(as in Section 7.E.1). Right: The result of performing the red

Whitney move on W . The Whitney bubble added to W by the

Whitney move is suppressed from view, except for an arc (blue)

connecting the new intersection points between W and f2. The

intersections p, q ∈ W t f have been eliminated, and (as per

Observation 6.A.1) the change in λ(W, f2) mod I2 is equal to

+(1− x).

Remark 6.4. The reader might wonder why this construction of V does

not contradict the fact (from Lemma 3.4) that λ(g, f2) ∈ I2 for any g : S2 ↪→
S4 \ f . After all, it seems that such a g could be formed from the two framed

and cleanly immersed Whitney disks W and V with ∂W = ∂V in the above

construction, yielding λ(g, f2) = ±(1 − x) /∈ I2. But the subtlety here is that

although W and V are each framed, they have different (relative) framings

along each of the positive and negative boundary arcs, so perturbing W ∪V to

be disjoint from f would create intersections near ∂W = ∂V , and eliminating

these intersections would effectively “undo” the construction.

The general effect of the double boundary-twisting construction in this

step is summarized by the following lemma:

Lemma 6.5. Suppose W,A is a cleanly immersed Whitney disk-accessory

disk pair on f in standard position such that A has primary multiplicity m.

Then for any integer k, there exists a cleanly immersed Whitney disk V sup-

ported in a neighborhood of W ∪A, with ∂V = ∂W , such that V has the same

primary multiplicity as W , and the secondary multiplicity of V differs from

the secondary multiplicity of W by km. �
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6.B.8. Step 8. After Step 7, all Whitney disks have vanishing primary and

secondary multiplicities except for those W j created in Step 5 whose accessory

disks Aj have primary multiplicity 0 (cf. (e)). Each of these W j still has a

single pair of interior intersections with f that are paired by a Whitney disk

U j . Since each U j has just a single interior intersection with f2, doing a U j-

move on W j would make W j cleanly embedded with secondary multiplicity ±1

(by Observation 6.A.1), so this final step of the construction will first collect

these U j in “canceling” pairs so that doing the U j-moves will yield cleanly

embedded W j with secondary multiplicity 0.

To start this construction we need to prove the following:

Claim. There are an even number of these U j .

Proof of Claim. Doing the U j-moves on these W j would yield cleanly em-

bedded pairs W j , Aj . Just for this proof of the claim, denote by {Wi, Ai} the

collection consisting of these resulting cleanly embedded pairs W j , Aj together

with the initial Whitney disk-accessory disk pairs and all the other Whitney

disk-accessory disk pairs constructed so far in the previous steps.

Note that the number of U j in the claim equals the number of pairs in

{Wi, Ai} such that Wi has non-zero secondary multiplicity, and all of these

non-zero secondary multiplicities are ±1. Also, the corresponding Ai all have

primary multiplicity 0.

Convert all the pairs in {Wi, Ai} into accessory disk pairs A±i (see Sec-

tion 7.D), and then use these A±i to construct a basis of accessory spheres

SA±
i

for π2(S
4 \ f). Since the Ai are all framed and pairwise disjointly embed-

ded, and the Wi all have vanishing Z[x±1]-intersections, this basis of accessory

spheres has the same Z[x±1]-intersections as the standard accessory spheres in

Lemma 3.5.

Write f2 in terms of the SA±
i

:

f2 =
∑

α+
i · SA+

i
+ α−i · SA−

i
,

with

α±i = m±i + n±i (1− x) + q±i z mod I3

for integers m±i , n
±
i , q

±
i , where m±i and n±i are the primary and secondary

multiplicities of A±i , respectively, and z := (2− x− x−1).
Since theWi all had primary multiplicity 0, the construction of Section 7.D

has yielded A±i such that m+
i = m−i for each i. Denoting these primary

multiplicities by mi, we have the following formula for the coefficient of z2 in

the expansion of λ(f2, f2) in powers of z:

∑
[((n+i )2 − (n−i )2) + (n+i − n

−
i )mi + 2mi(q

+
i − q

−
i )].
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This sum must vanish since λ(f2, f2) = 0 from the Kirk invariant hypothesis

of Proposition 6.1. Note that n+i − n−i is the secondary multiplicity of Wi,

because λ(Wi, f2) = λ(A+
i , f2) − λ(A−i , f2) by construction. And recall that

for mi = 1, we have n+i − n
−
i = 0; while for mi = 0, we have n+i − n

−
i = ±1

(and 0, 1 are the only values of mi). So setting the sum equal to zero modulo 2

shows that
∑

(n+i − n
−
i ) is even, which proves the claim. �

Remark 6.6. An alternate proof of this claim can be made using Light-

foot’s main result in [20].

U

1

f

2
f

W

V 0

W

A A

V

p

q

r s

j

kj

j k

U k

2
f

Figure 6.18. The double transfer move: Two parallel finger

moves exchange {p, q} = W j t f paired by the Whitney disk

U j for {r, s} ⊂ W k t f paired by an extension of U j by a

band. Two new local Whitney disks V 0 and V 1 pair the self-

intersections of f created by the finger moves.

6.C. The double transfer move. Having established the claim that there

are an even number of the W j created in Step 5 whose accessory disks Aj

have primary multiplicity 0, each with a single U j pairing f tW j , Step 8 will

proceed using a construction that “transfers” any U j off of its W j and onto

a different W k. As a result of this double transfer move, W j will be cleanly

embedded and disjoint from f2, and after making W k cleanly embedded via

both the “new” U j-move and the original Uk-move, W k will have vanishing

secondary multiplicity (and primary multiplicity). This double transfer move

of a Whitney disk from one Whitney disk to another is an enhancement of the

move transferring a single point from one Whitney disk to another as above

in Figure 6.15 of Step 5 (see also Section 7.E.2). At certain points it will be

necessary to keep careful track of orientations, and discussion of some of these
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details will be deferred to Section 6.C.1 so as not to break the flow of the

geometric descriptions.

The construction starts as described in Figure 6.18 and is carried out

simultaneously to all such pairs W j ,W k: The intersections {p, q} = W j t f
paired by U j are exchanged for {r, s} ⊂ W k t f via a parallel pair of finger

moves guided by an embedded arc from ∂W j to ∂W k in f . This new pair r, s

admits an embedded Whitney disk formed by extending U j (minus a collar

in U j of ∂U j ⊂ W j) by an embedded band near the arc (shown in the figure

as the orange band just above the horizontal sheet of f). This Whitney disk,

which we continue to denote U j , still has only a single interior intersection

with f2.

The parallel pair of finger moves also creates two new pairs of self-inter-

sections of f that can be paired by embedded Whitney disks V 0 and V 1,

which each have a pair of interior intersections with f as shown in Figure 6.18

(where both V 0 and V 1 hang down below the horizontal sheet of f). As is

evident in Figure 6.18, the boundaries ∂V 0 and ∂V 1 intersect the accessory

disk boundaries ∂Aj and ∂Ak, but these intersections can be eliminated by

adding half-tubes to Aj and Ak near f as in Figure 6.19. Adding these half-

tubes creates two pairs of intersections between f and each of Aj and Ak near

r, s that admit Whitney disks parallel to U j .

Now do the Whitney moves on these two parallel copies of U j to get Aj

and Ak cleanly embedded, and do both the Uk-move and U j-move to get W k

cleanly embedded (but keep the same notation for Aj , Ak and W k).

At this point W j has vanishing primary and secondary multiplicities (in

fact W j ∩ f2 = ∅) and is equipped with the cleanly embedded accessory disk

Aj . Also, W j ∪Aj is disjoint from all other disks by construction.

As explained below in Section 6.C.1 the freedom in choosing the guiding

arc between ∂W j and ∂W k allows for control of whether or not the orienta-

tion (relative to W k) of the resulting U j is preserved or flipped by the double

transfer move, and as a result it can be arranged that the effect of then doing

the U j-move on W k creates a canceling contribution to that of the Uk-move

on the secondary multiplicity of the resulting cleanly embedded W k. So, as-

suming this, we also now have that W k has vanishing primary and secondary

multiplicities and is equipped with the cleanly embedded accessory disk Ak.

Also W k ∪Ak is disjoint from all other disks by construction.

Before converting V 0 and V 1 into metabolic Whitney disks with vanishing

primary and secondary multiplicities we first need to construct appropriate

accessory disks A0 and A1 for V 0 and V 1. Recall that the Z[x±1]-intersections

among metabolic accessory disks can be arbitrary (Definition 5.3). We describe

the construction of A0; the same steps yield A1.
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1

f

2
f

V 0

W

A A

V

Ak

A

∂ ∂

j

U j

j

k
j

W k

U k

2
f

Figure 6.19. After adding half-tubes to make all of ∂V 0, ∂V 1,

∂Aj and ∂Ak disjointly embedded: These half-tubes appear

“below” the present sheet of f near Aj and Ak, but then rotate

(through the future) “above” the horizontal present sheet of f

near W k, where they each have a pair of transverse intersections

with f that can be paired by parallels of the Whitney disk U j

pairing r, s in Figure 6.18. (Here r and s are suppressed from

view.) These parallels of U j are suppressed from view except

for the boundary arcs lying in Aj and Ak (and only part of U j

is shown). Pushing the interiors of V 0 and V 1 into the past

keeps them disjoint from the half-tubes.

Choose an embedded accessory circle a0 ⊂ f for the self-intersection of

f at the corner of V 0 near ∂W such that a0 is disjoint from all other bound-

aries of Whitney and accessory disks. Since π1(S
4 \ f) ∼= Z, there exists an

immersed disk A0 bounded by a0 such that the interior of A0 is disjoint from

f . Then make the interior of A0 disjoint from each Whitney disk (including

W j and W k) by tubing A0 into parallel copies of the dual accessory sphere as

needed. Observe that the interior of A0 can be assumed to be disjoint from V 0

and V 1 (even though they do not yet have accessory spheres), since V 0 and V 1

are supported near arcs in f . (As usual, we do not rename A0 after changing

its interior by adding these spheres.)

Now make A0 disjoint from Aj and Ak by adding parallel copies of the

Whitney spheres SW j and SWk to A0 as needed. This disjointness will allow

us to form secondary Whitney disks from Aj and Ak that will be used to get

f disjoint from the interiors of V 0 and V 1.
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Simultaneously carry out the same steps to construct an accessory disk

A1 for V 1 such that A1 is disjoint from Aj and Ak as well as all Whitney disks

(except the corner-point ∂A1 ∩ ∂V 1).

It remains to clean up V 0 and V 1. To get the interiors of V 0 and V 1

disjoint from f , form Whitney disks U0 for V 0 t f and U1 for V 1 t f by

connecting parallels of (the framed cleanly embedded) Aj and Ak as in Fig-

ure 6.20. (Note that the interior of V 0 can be perturbed to be disjoint from

U1.) Here we need that the interior intersections V 0 and V 1 have with f are

of opposite signs, as can be assumed by the discussion in Section 6.C.1.

f q

q'

p

p'

A j Ak

W j W k

V'

j k

' '

Figure 6.20. In the setting of Figures 6.18 and 6.19, here with

V ′, U ′ denoting V 0, U0 and/or V 1, U1: The Whitney disk V ′

intersects f in p′ and q′, which are paired by a secondary Whit-

ney disk U ′ (blue) formed by combining parallels Aj
′
, Ak

′
of the

accessory disks Aj , Ak for pj , qk ∈ f t f .

Note that U0 and U1 each have primary multiplicity 0, since Aj and Ak

both have primary multiplicity 0. (The Whitney moves done on Aj and Ak

did not affect their primary multiplicities by Observation 6.A.1.)

Now doing the U0- and U1-Whitney moves on V 0 and V 1 makes V 0 and

V 1 both cleanly embedded with vanishing primary and secondary multiplicities

(by Observation 6.A.1).

Since Aj and Ak are disjoint from the new A0 and A1 by construction,

and were already disjoint from all previous Whitney disks and accessory disks,

it follows that V 0 and V 1 have vanishing Z[x±1]-intersections with all Whitney

and accessory disks, as required for metabolic Whitney disks.

To complete Step 8 of the construction it remains to check that this dou-

ble transfer move can be simultaneously carried out for all pairs W j , Aj and

W k, Ak created in Step 5 with Aj and Ak having primary multiplicity 0. To
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see this, observe that the parallel finger moves in Figure 6.18 (and the bands

added to U j and parallels of U j) are supported near an arc ajk in f from W j

to W k (together with short arcs in W j and W k). Such an ajk always exists

because the complement in f of the disjointly embedded boundaries of all the

Whitney disk-accessory disk pairs and all U j is connected. (The inverse image

of each union of a Whitney disk boundary with the boundary of one of its ac-

cessory disks is an embedded arc in the domain 2-sphere of f , as is the inverse

image of each U j , and these arcs are all pairwise disjoint.)

6.C.1. Controlling orientations and signs in the double transfer move. In

the setting of Step 8, we have Whitney disks W j such that each W j t f is

paired by an embedded Whitney disk U j that contains only a single interior

intersection with f2. The link map (f, f2)# S4 is oriented, and by convention

the positive generator x of π1(S
4 \ f) ∼= Z is represented by any positive

meridian to f . Fix orientations on the W j , and then orient the U j by taking

the boundary arc ∂U j ⊂ f to run from the negative to the positive intersection

inW j . With this convention, if λ(U j , f2) = ±xN , then performing the U j-move

on W j makes W j cleanly embedded with λ(W j , f2) = ±(1 − x)xN , with the

signs preserved. That is, the sign ± of the intersection between U j and f2
equals the sign of the secondary multiplicity ±1 of W j after the U j-move.

So given such W j and W k (with orientations as in the previous paragraph)

we want to control the double transfer move so that after U j has been moved

onto W k the sign of U j ∩ f2 is opposite to the sign of Uk ∩ f2. Then doing the

U j- and Uk-moves on W k will result in W k having secondary multiplicity 0.

We also need to arrange that the interior intersections V 0 and V 1 have with

f are of opposite signs. We describe next how this can be accomplished with

the configuration shown in Figure 6.18.

The choice of guiding arc ajk ⊂ f for the double transfer move determines

whether the sign of U j ∩ f2 is preserved or switched after U j transferred onto

W k, depending on which boundary arcs ∂±W
j or ∂±W

k are joined by ajk, and

also on which sides in f of ∂±W
j or ∂±W

k are connected by ajk. Also, observe

from Figure 6.18 that if the signs of the self-intersections of f at Aj and Ak

are of opposite sign, then so are the interior intersections that V 0 and V 1 have

with f . By the construction in Section 7.D, we may assume that the signs of

the self-intersections of f at Aj and Ak are of opposite sign, so by choosing ajk

appropriately it can be arranged that the sign of U j ∩f2 is opposite to the sign

of Uk ∩ f2 after the double transfer move, and that the interior intersections

that V 0 and V 1 have with f are of opposite sign, with the configuration as in

Figure 6.18.

6.D. Checking metabolic properties. The constructions in Steps 7 and 8

resolved the remaining problems listed in items (a), (c) and (d), and in item (e)
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of our summary of Steps 1–6 before Section 6.B.7 without affecting any other

disks. So the only remaining property of the Wi, Ai constructed so far that

needs to be adjusted is that the definition of a metabolic collection requires

positive accessory disks. This adjustment can be carried out using the con-

struction in Section 7.D that forms a positive accessory disk out of a negative

accessory disk together with a parallel of the Whitney disk.

This completes the proof of Proposition 6.1 in the special case that each

accessory disk A±i has primary multiplicity 0 ≤ mi ≤ 2, and each Whitney disk

Wi either has secondary multiplicity −1 ≤ ni ≤ 1, or has arbitrary ni if mi = 1.

To complete the proof we explain next how the eight steps of the construction

can be extended to handle accessory disks with arbitrary (positive) primary

multiplicities and Whitney disks with arbitrary secondary multiplicities.

6.E. Extending the construction to the general case. To handle the case

that the Ai from the initial collection {Wi, Ai} may have primary multiplicity

mi > 2, still assuming that the Wi have secondary multiplicity −1 ≤ ni ≤ 1,

observe first that the above construction can proceed “as is” through Steps 1

and 2 with 2 replaced by mi. (So instead of two, there would be mi strands

of f2 visible in the lower left of Figure 6.8 and the upper left of Figure 6.9.)

In Step 3, the construction (Figure 6.10) replaces r0 ∈ V0 t f admitting

framed embedded B with the three rj0 ∈ V0 t f admitting parallel framed

embedded Bj having primary multiplicities decreased by 1 or 2 from that

of B. So iterating this step as needed on the rj0 will eventually lead to many

intersections in V0 t f all admitting framed embedded generalized accessory

disks with primary multiplicities 1 or 0. After applying the same iterations to

sj1 ∈ V1 t f in Step 4, the rest of the construction proceeds as in the mi = 2

case above: We have as many disjoint framed embedded parallels of B and Q

as we want, since they all come from the original standard accessory disk A−i .

And in this mi > 2 case the construction at Step 5 will yield more of the new

W j , Aj pairs, and there will be more Rj-Whitney moves on V1 in Step 6, but

these last two steps can proceed as before. The local construction of Step 7

proceeds as before on each Whitney disk whose accessory disk has primary

multiplicity 1; there will just be more of them now. And similarly, both the

claim and the double transfer moves in Step 8 proceed as before, now applied

to more Whitney disks.

Now considering the case that the secondary multiplicity of an initial Wi

has absolute value |ni| > 1, there will be |ni| intersection pairs ±(1−x) ·SA±
i
∩

Wi, each admitting a framed embedded Whitney disk (like ∆ in Figure 6.5)

that has only a single interior intersection with f . See Figure 6.21 for the

case of two negative accessory sphere pairs and Figure 6.22 for an additional

positive accessory sphere pair. It is not difficult to see that Step 1 (including
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Wi

Figure 6.21. This figure corresponds to the bottom row in Fig-

ure 6.4, but here with two intersection pairs ±(1−x) ·SA−
i
∩Wi

(the case ni = ±2), each admitting a framed embedded Whit-

ney disk (purple) having only a single interior intersection

with f .

Figure 6.22. This figure corresponds to the left-most picture in

Figure 6.21, but showing here the case of an additional positive

accessory sphere pair along with the two negative accessory

sphere intersection pairs.

Lemma 6.3) can be applied simultaneously to each intersection pair disjointly:

Through Figure 6.6, the construction of Step 1 is supported in a neighborhood

of the Whitney disk ∆ together with an arc along Wi running from ∂∆ to

∂+Wi. (∆ itself is contained in the neighborhood of an arc.) The accessory

and Whitney disks of Lemma 6.3 in Figure 6.7 can be constructed “side by side”

along the boundary of Wi when starting with more pairs ±(1− x) · SA±
i
∩Wi

as in Figure 6.21. To visualize this it may be helpful to consider the ni = 2

case and compare the input to Step 1 shown in Figures 6.3 and 6.21 with the

result that would be input to Step 2 shown in Figure 6.23.

Considering the situation at the start of Step 2, it is clear that an ad-

ditional pair of self-intersection pairs p′0, q
′
0 and p′1, q

′
1, to the pair p0, q0 and

p1, q1 in Figure 6.8, admits nested pairs of Whitney disks V ′0 and V ′1 parallel to

V0 and V1, as shown in Figure 6.23. It is also clear that such nested Whitney

disks exist for any number of such additional self-intersection pairs.
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Figure 6.23. After simultaneously applying the constructions of

Figures 6.5, 6.6 and 6.7 to Figure 6.21, the resulting four pairs of

self-intersection pairs of f admit two pairs of nested Whitney

disks as in Figure 6.8. Shown here is the case ni = 2, but

nested Whitney disks exist for any number of pairs of pairs;

e.g., starting with Figure 6.22 would yield three nested pairs

of Whitney disks. Recall that by construction we take these

nested Whitney disks around the negative self-intersection of

f , even when starting with intersections including pairs coming

from positive accessory spheres ±(1− x) · SA+
i
∩Wi (as in Fig-

ure 6.22).

In order to continue with Step 2 we need to find an appropriate Q′ and

B′ for r′0 = V ′0 t f and s′1 = V1 t f . The quadrilateral Whitney disk Q′ sits

between V ′0 and V ′1 , the same as Q sits between V0 and V1, but a little work

is required to find an appropriate generalized accessory disk B′ for r′0: The

problem is that forming B′ from a parallel copy of A−i will yield intersections

between ∂B′ and both ∂V0 and ∂V1, which are transverse (in f) to ∂A−i .

This problem is solved by first pushing ∂B′ off of ∂V0 and ∂V1 as shown in

Figure 6.24, which creates interior intersections between B′ and f , and then

using a parallel copy of the Whitney disk U to get the interior of B′ disjoint
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f

0
V 1V

B Q

r
1r

0

q
0

p
0

p
1

q
1

0V 1V
r
1r0

B
Q ' '

' '

U

2f

U

2f

'

q
0'

' '

'p1

q
1

p
0

2
f

' '

Figure 6.24. The boundary of B′ is shown in blue, with the

dotted sub-arcs indicating where ∂B′ has been pushed out of

the present time coordinate along with most of the interior of

B′ (to avoid intersecting V0 and V1). Near q0 and p1 the interior

of B′ “hangs down underneath” f (in the present), and the pair

of transverse intersections between f and B′ (near q0 and p1)

can be removed by a Whitney move on B′ guided by a parallel

of the Whitney disk U from Lemma 6.3.

from f . (Recall from Lemma 6.3 that U is framed and embedded, with interior

disjoint from f .) This Whitney move does not change the primary multiplicity

of B′. Now r′0 and s′1 admit framed embedded B′ and Q′ disjoint from B and

Q, and the subsequent Steps 3 through 6 can be carried out as before.

Although Figure 6.24 only illustrates the case ni = 2, the ni > 2 cases

are similar: If there was another pair of Whitney disks V ′′0 , V
′′
1 to the right

of V ′0 , V
′
1 in Figure 6.24, then another generalized accessory disk B′′ could be

constructed by extending a parallel of B′, pushing ∂B′′ off of ∂V ′0 and ∂V ′1 ,

and then using a parallel of U ′ to get the interior of B′′ disjoint from f . (The

existence of Q′′ between V ′′0 and V ′′1 is clear.) Repeating this process as needed

yields disjointly embedded framed generalized accessory and Whitney disks for

any ni, and the rest of the steps can be carried out as before.

This completes the proof of Proposition 6.1. �

7. Appendix: Whitney disks and accessory disks

This section contains some details on techniques of immersed surfaces in

4-manifolds that are used throughout the paper, especially in Section 6. More

information can be found in [12]. For further details and generality on Whitney

disks and Whitney moves, see, e.g., [22, Th. 6.6].
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Unless otherwise specified, submanifolds are assumed to intersect generi-

cally. Orientations are also assumed, but usually not specified explicitly. The

discussion here holds in the flat topological category via the notions of 4-dimen-

sional topological tranversality from [12, Ch. 9].

In the case that the boundary ∂D of an immersed disk D is contained

in the interior of an immersed surface A, we require and assume that ∂D is

embedded, and also that the interior of D is disjoint from A near ∂D, i.e., that

there exists a collar in D of ∂D such that the intersection of this collar with A

is equal to ∂D. In the case where the boundary of a disk W passes through an

interior intersection p between surfaces A and B, the three sheets are required

to meet near p as illustrated for the model Whitney disk W in Figure 7.1. (A

sheet of a surface is a subdisk, open or closed.)

W

B
A =p q

A
B

W
qp

Figure 7.1. An embedded model Whitney disk W pairing in-

tersections between surface sheets A and B: In the right-most

picture the A-sheet is contained in the “present” 3-dimensional

slice of 4-space (along with W ), while the black arc extends into

“past” and “future” to describe the B-sheet, as in the 3-picture

‘movie’ on the left (with “time” moving from left to right).

7.A. Whitney disks. Let p and q be oppositely-signed transverse intersec-

tions between connected immersed surfaces A and B in a 4-manifold X (in this

paper such p and q are called a canceling pair of intersections), with p and q

joined by embedded interior arcs a ⊂ A and b ⊂ B that are disjoint from all

other singularities in A and B. Here we allow the possibility that A = B, in

which case the circle a ∪ b must be embedded and change sheets at p and q.

Any generic immersed disk W # X bounded by such a Whitney circle a ∪ b
is a Whitney disk pairing p and q. Figure 7.1 shows a model Whitney disk in

4-space.

From the assumption of genericity above, all Whitney disks in this paper

are required to have embedded boundary. The adjective “immersed” will oc-

casionally be attached to “Whitney disk” to remind the reader that a Whitney

disk interior may not be embedded.

Throughout the following discussion of Whitney disks and Whitney moves

the immersed surfaces A and B are allowed to have boundary in the interior

of X, and either may itself be a Whitney disk, as in the constructions of

Section 6.
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∂W

pq

A
B

a

b

B

A

Figure 7.2. Left: Near a Whitney disk W pairing p, q ∈ A t B,

with ∂W = a∪ b, a Whitney section ∂W is shown in blue. This

picture is accurate near ∂W ; in general, the evident (but not

explicitly indicated) embedded W bounded by a ∪ b may have

self-intersections as well as intersections with other surfaces.

The line segments transverse to a in A indicate the correspon-

dence with the right-hand picture of the normal disk-bundle

ν∂W over ∂W . Right: The blue Whitney section ∂W is shown

inside an embedding into 3-space of ν∂W ∼= S1 ×D2, with the

sheets of A and B indicated by line segments transverse to

∂W . The A-sheet cuts the front solid torus horizontally, while

the B-sheet cuts the back of the solid torus vertically.

7.A.1. Framed Whitney disks. For oriented immersed surfaces A,B # X

in a 4-manifold X, let W be an immersed Whitney disk pairing intersections

p, q ∈ A t B, with boundary ∂W = a∪b, for embedded arcs a ⊂ A and b ⊂ B.

Denote by ν∂W the restriction to ∂W of the normal disk-bundle νW of W in X.

Since p and q have opposite signs, ν∂W admits a nowhere-vanishing Whitney

section ∂W defined by taking vectors tangent to A over a, and extending over

b by vectors that are normal to B, as shown in the left of Figure 7.2.

The right side of Figure 7.2 shows ∂W inside an embedding into 3-space

of ν∂W ∼= S1 ×D2. Although this choice of embedding has ∂W corresponding

to the 0-framing of D2 × S1 ⊂ R3 (as can always be arranged), the section

of ν∂W determined (up to homotopy) by the canonical framing of νW will in

general differ by (ω(W )-many) full twists relative to ∂W . (If p and q had the

same sign, then there would have to be a half-twist in the sheets of A and B,

so the (continuous) Whitney section ∂W could not exist.)

If ∂W extends to a nowhere-vanishing section W of νW , then W is said

to be framed (since the disk-bundle over a disk νW has a canonical framing,

and a nowhere-vanishing normal section over an oriented surface in an oriented

4-manifold determines a framing up to homotopy). In general, the obstruction
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to extending ∂W to a nowhere vanishing section of νW is the relative Euler

number χ(νW , ∂W ) ∈ Z, called the twisting of W and denoted ω(W ), so W is

framed if and only if ω(W ) = 0. The twisting ω(W ) can be computed by taking

the intersection number of the zero section W with any extension W of ∂W

over W , so it does not depend on an orientation choice for W (since switching

the orientation on W also switches the orientation of W ). And ω(W ) is also

unchanged by switching the roles of a and b in the construction of ∂W , since

interchanging the “tangent to...” and “normal to...” parts in the construction

yields an isotopic section in ν∂W (isotopic through non-vanishing sections).

Remark 7.1. The twisting ω(W ) of W , which is the element of π1(SO(2))
∼= Z determined by a Whitney section as described above, can be computed

using any section ∂W of ν∂W such that ∂W is in the complement of the tangent

spaces of both A and B, since such ∂W will have the same number of rotations

as a Whitney section (relative to the longitude determined by the canonical

framing of νW ); see Figure 7.2. Parallel copies of W extending such nowhere-

tangent sections are used, for instance, in the constructions of Whitney spheres

and accessory spheres in Section 5.C.3.

The adjective “parallel” applied to a Whitney circle or Whitney disk in

this paper always refers to one of the constructions described above.

7.B. Accessory disks. Let p be a transverse self-intersection in a connected

immersed surface f : Σ # X, where as usual we blur the distinction between

f and its image in the 4-manifold X. An embedded circle in f that changes

sheets at p and is disjoint from the boundary and all other singularities of f

is called an accessory circle for p. (Accessory circles are also sometimes called

double point loops.)

Any generically immersed disk bounded by an accessory circle for p is

called an accessory disk for p. In this paper accessory disks will only be used

in the case that Σ = S2 and X = S4, so every p ∈ f t f admits an accessory

disk, for any choice of accessory circle.

7.B.1. Framed accessory disks. Let p be a self-intersection of f admitting

an accessory disk A with (embedded) boundary ∂A. Denote by ν∂A the re-

striction to ∂A of the normal disk-bundle νA of A in X. The tangent space

to f along ∂A determines a 1-dimensional subspace of ν∂A at each point other

than p, and at p the two sheets of f determine a pair of transverse 1-dimensional

subspaces of ν∂A (Figure 7.3). Let ∂A be any nowhere-vanishing section of ν∂A
such that ∂A is in the complement of the tangent space of f , and define the

twisting ω(A) ∈ Z to be the obstruction to extending ∂A over A; i.e., ω(A)

is the relative Euler number χ(νA, ∂A) (cf. Remark 7.1 just above). Then

A is said to be framed if ω(A) = 0. Note that ω(A) is well defined since
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p

p∂A

∂A

Figure 7.3. Left: Near the sheets of f along ∂A in X. Right:

Inside an embedding of ν∂A ∼= D2×S1 into 3-space, an accessory

section ∂A (in blue) in the complement of the tangent space

of f . This embedding has ∂A corresponding to the 0-framing

of D2 × S1 ⊂ R3 (as can always be arranged), but the section

determined by the canonical framing of νA may in general differ

by (ω(A)-many) full twists relative to ∂A.

the rotations (relative to A) of ∂A in ν∂A ∼= S1 × D2 are determined by the

1-dimensional subspaces cut out by f , and ω(A) does not depend on a choice

of orientation of A (as observed above for Whitney disks). Any such section

∂A will be referred to as an accessory section for A, and in this paper the

adjective “parallel” applied to an accessory disk always means an extension

over A of an accessory section.

7.C. Whitney disks from accessory disks. Here are some details on forming

Whitney disks from pairs of accessory disks, as used in Section 6.A.2 and during

the double transfer move of Step 8:

Let A+ and A− be accessory disks for a pair {p+, p−} of oppositely-signed

self-intersections of f such that ∂A+ ∩ ∂A− = ∅. Choose an embedded arc

b in f connecting a point q+ ∈ ∂A+ to a point q− ∈ ∂A−, with the interior

of b disjoint from both ∂A±. Banding together ∂A± in f along b yields a

Whitney circle for p± that is the union of ∂A± minus small arcs containing q±

together with arcs b+ and b− parallel to b. (The preimage is shown in the left

and center pictures of Figure 7.4.) Denote this Whitney circle by ∂W since

a Whitney disk W will be described shortly. Let z± denote inward pointing

tangent vectors to A± at q±. Choose a nowhere vanishing vector field zt field

over b such that for each t ∈ [0, 1], zt is normal to f , with z0 = z− and z1 = z+.

The arc of vectors zt determines a half-tube H connecting A− and A+, where

arcs of H from b− to b+ are traced out by rotating a vector based at b from

b− to b+ through the corresponding zt (Figure 7.5). The Whitney disk W is

formed by deleting small half-disks from A± at q± and connecting the resulting

disks with H.
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∂W

+

+
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+

+ +

p- p-

p-p-p-

+p +p

+p+p+p

Figure 7.4. The view in the domain of f : Banding together

∂A± along the dotted arc b (left) yields the boundary ∂W =

∂+W∪∂−W (center) of a Whitney disk W constructed by “half-

tubing” A± together (Figure 7.5). Copies A± of A± (perturbed

rel p±) are still accessory disks for p±.

+

A

p p
_

A
_ +

z
_

zt

z+

+b

-b

Hb

q- +q

Figure 7.5. Joining A± along the half-tube H around b to form

a Whitney disk W pairing p±. (See Figure 7.4 for boundary

inverse images.) If A± are framed, disjointly embedded, with

interiors disjoint from f , then this picture accurately describes

a 3-dimensional slice of the local coordinates determined by a

choice of zt along b.

Observe that the twisting ω(W ) is the sum of the twistings of A+ and

A−: First note that since p± have opposite signs, the quarter turns in the

right side of Figure 7.3 fit together as in the right side of Figure 7.2. The

vectors zt extend by translation to nowhere-vanishing normal vectors over all

of H ⊂ W that are also in the complement of f . Choosing a Whitney section

by extending the restriction to b± ⊂ ∂W over the rest of ∂W is the same as

choosing accessory sections over ∂A+ and ∂A−. Since these sections already

extend over H, the twisting ω(W ) of W is equal to the sum ω(A+) + ω(A−).
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(The choice of zt (which can rotate around f) does not affect ω(W ) because

a rotation of zt that creates a right-handed twist around b+ also creates a

left-handed twist around b−, and vice versa.)

Copies A± of A± (perturbed rel p±) are still accessory disks for p± and

can be chosen so that A± and ∂W only intersect at p± (right). In particular,

if the original A± were framed and disjointly cleanly embedded, then a regu-

lar neighborhood of the resulting triple W,A+, A− would be diffeomorphic to

Figure 6.2.

This construction can be arranged to preserve or switch any given orien-

tation on either or both of A± in W by choosing the guiding arc b to emanate

from an appropriate side of ∂A± in f .

∂A
∂A-

-∂W∂W

+

+

p-p-

+p+p

-∂W∂W+

p-p-

+p+p

Figure 7.6. The view in the domain of f : Forming a negative

accessory disk A− (right) from parallels of the Whitney disk W

and positive accessory disk A+ (left).

7.D. Accessory disks from Whitney disks. The following observation is

used in Step 8 to convert a Whitney disk-accessory disk pair into a pair of

accessory disks, in Section 6.C.1 to switch between positive and negative ac-

cessory disks, and in Section 6.D to exchange negative accessory disks for a

positive accessory disks. Given a Whitney disk W pairing self-intersections p±

of f , and a positive accessory disk A+ for p+, then a negative accessory disk

A− for p− can be constructed from a parallel of W together with a parallel of

A+, as indicated in Figure 7.6 (which shows the inverse images of the bound-

aries in the domain of f). Any intersections that W and A+ have with any

surfaces will be inherited by A−, as will any self-intersections of W and A+.

The twisting ω(A−) of A− will be the sum ω(W ) + ω(A+). The roles of A+

and A− can be switched in this construction. So in particular, if W,A± is a

metabolic pair, then this constructions yields W,A∓ which is also a metabolic

pair.
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7.E. Whitney moves and transfer moves. Given a Whitney disk W pairing

p, q ∈ A t B, a Whitney move on A guided by W (also called a Whitney

move on A along W ) eliminates p and q by the construction illustrated in

Figure 7.7: A small neighborhood of ∂W ∩ A in A is deleted, and a Whitney

bubble consisting of two oppositely-oriented parallel copies of W and a parallel

of a small neighborhood of ∂W ∩B is added to A.

W
B

B

A

A

Figure 7.7. Before and after a model Whitney move: The top

and bottom rows of pictures show the same slices of a 4-ball

neighborhood containing surface sheets A (blue) and B (black).

Before the Whitney move (top row), the intersections between

A and B are paired by the framed embedded Whitney disk

W (purple). After applying the Whitney move to A along W

(bottom row), A and B are disjoint, and the Whitney bubble

added to A is visible in the three center pictures.

The result of a Whitney move on A along W is the same as changing A

by a regular homotopy supported near W , and we frequently keep the same

name/notation for a surface that has been changed by a Whitney move.

7.E.1. Whitney moves guided by accessory disks. We discuss next how

parallel copies of framed accessory disks can be used to guide Whitney moves

on surfaces intersecting the two sheets of f near p, as in the constructions of

accessory spheres in Section 5.C.3 (Figure 5.3) and during Step 7 of the proof

of Proposition 6.1;d see Figures 6.17 and 7.8.

Before giving details, here is the main idea: Observe that any accessory

section can be isotoped through nowhere-vanishing sections in ν∂A to be tan-

gent to f along most of ∂A except along a small arc of ∂A near p where the

section makes a “quarter-turn” through vectors normal to both sheets of f .

This small arc can be pushed off of f slightly into A while preserving the twist-

ing of the section, and “trimming” A along this pushed-in arc yields one of a

family of parallel Whitney disks such as V in Figure 7.8.

.
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VA

Figure 7.8. Near a framed embedded accessory disk A (green)

on f (black), intersections between a surface sheet (red) and

f are paired by a Whitney disk V formed from a (trimmed)

parallel copy of A.

So let p be a self-intersection of f admitting a framed oriented immersed

accessory disk A with embedded boundary ∂A. Thinking of ∂A as the image

of an immersion of an interval, a : [0, 1] → f(Σ) ⊂ X with a(0) = p = a(1),

let v+ denote the unit tangent vector to f at p pointing positively along ∂A,

and let v− denote the unit tangent vector to the other sheet of f at p pointing

back negatively along ∂A (see Figure 7.9). Denote the local sheets of f near

p by f±, where f± contains v±. Choose a tangent vector v+ to f+ at p, such

that v+ is orthogonal to v+, and extend v+ to a nowhere-vanishing section of

the normal bundle of a in f . This section extending v+ defines an embedded

arc a : [0, 1] → f(Σ) ⊂ X with a(0) = v+. We may assume that the terminal

endpoint a(1) defines a tangent vector v− to f− at p that is orthogonal to v−.

(See Figure 7.9 and left side of Figure 7.10.)

Around p the vectors v+ and v+ span an embedded square of f+, and sim-

ilarly the vectors v− and v− span an embedded square of f−. By transversality,

the vectors v+, v+, v−, v− span a 4-dimensional cube of X around p, and it may

be assumed that A intersects this cube in a square quadrant spanned by v+
and v−. Rotating v− to v+ traces out an embedded corner of A at p bounded

by the union of (the segments) v− and v+ together with the arc c traced out

by the tips of the rotating vectors. Deleting from A all of this corner except

for c yields a slightly smaller disk Ac whose boundary ∂Ac = b∪ c is the union

p p
f-f

+
v+

v+
w+

v-

v-

w-

a

a

Figure 7.9. The preimage of a neighborhood of the accessory

circle ∂A.
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A

v+

v+

v-v-

f

f

+

-

p

A

v+

v+

v-
v-

f

f

+

-

p

c

c
w

w

+

-

c

a

b

b

a

Figure 7.10. Left: The accessory disk A and the arc a ⊂ f

parallel to a = ∂A in f . Right: The trimmed accessory disk

Ac ⊂ A with boundary b∪c, and the section ∂Ac = b∪c of ν∂Ac .

Note that the dotted vectors v− and w− point in the direction

of an orthogonal “time” coordinate.

of c together with the arc b ⊂ ∂A outside the corner (from the tip of v+ to the

tip of v−); see Figure 7.10.

Let ν∂Ac denote the restriction of the normal bundle νAc of Ac in X to

the boundary ∂Ac. Define a nowhere-vanishing section ∂Ac of ν∂Ac as follows:

Over the arc b ⊂ a take the vectors b ⊂ a. Specifically, b starts at the tip of

w+ := v+ + v+ (over the tip of v+) and ends at the tip of w− := v−+ v− (over

the tip of v−). To define ∂Ac over the arc c of ∂Ac, note that rotating w− to

w+ in the plane spanned by w− and w+ defines an arc c (traced out by the tip

of the rotating vector), which determines an arc of normal vectors to Ac over

c. (To see that c is normal to Ac, recall that A is contained in the quadrant

spanned by v+ and v− in the cube around p, and this quadrant is disjoint from

any non-trivial linear combination of w− and w+.)

We claim that χ(νAc , ∂Ac) = ω(A) so, in particular, ∂Ac extends to a

nowhere-vanishing section over Ac if and only if A is framed. To see the claim,

fix the endpoints of c, and let ct denote a family of arcs determined by an

isotopy of the interior of c across the corner of A and into the arc of ∂A

passing through p, so c0 = c and c1 = v− ∪ v+ ⊂ ∂A. The union of the ct
with b forms a family of circles c◦t = ct ∪ b interpolating between ∂Ac = c◦0
and ∂A = c◦1, and these circles bound disks Act ⊂ A interpolating between

Ac0 = Ac and Ac1 = A. Observe that the (fixed) arc c determines an arc of

nowhere-vanishing normal vectors to A over each ct for 0 ≤ t ≤ 1. Over each

c◦t define a section ∂Act of the restriction of νA to c◦t = ∂Act as follows: Over b

(which is a common sub-arc of all the c◦t ) take ∂Act = b, and over ct define ∂Act
to be the vectors determined by c. Note first that although the section ∂Ac1
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over c◦1 = ∂A is tangent to f along the arc b ⊂ ∂A, this part of ∂Ac1 can be

perturbed to be normal to f yielding an isotopic accessory section ∂A ⊂ ν∂A.

So ω(A) = χ(νA, ∂A) = χ(νA, ∂Ac1).

On the other hand, from the isotopy ∂Act of bundles with sections induced

by the isotopy of arcs ct, we have

χ(νAc , ∂Ac) = χ(νAc0
, ∂Ac0) = χ(νAc1

, ∂Ac1) = χ(νA, ∂Ac1),

so χ(νAc , ∂Ac) = ω(A).

Note that the interior of the arc c is also disjoint from f , since f only

intersects the span of w+ and w− when at least one coefficient of w+ or w− is

zero. So if A is framed and has interior disjoint from f , then parallel copies of

Ac will also have interiors disjoint from f .

It follows from this discussion that if a surface sheet S intersects f near p in

a pair of oppositely-signed points at the tips of w+ and w−, with S intersecting

the normal disk bundle νA of A in the vectors corresponding to a section c as in

this model, then this intersection pair admits a Whitney disk that is a parallel

copy of Ac and has the same twisting. This is exactly the case illustrated in

Figure 7.8 and used in the constructions of accessory spheres in Section 5.C.3

(Figure 5.3) and during Step 7 of the proof of Proposition 6.1.

f

0V 1V

B
Q

r
1

r
0

q
0

p
0

p
1

q
1

Figure 7.11. Before the transfer move.

7.E.2. Transfer moves. This subsection provides some mo re detail and

background on the transfer move construction which “transfers” an intersec-

tion between f and the interior of one Whitney disk on f onto another Whitney

disk, at the cost of creating new controlled intersections between Whitney disks

and f . The origin of this construction appears to go back to [28], and it was

generalized and used extensively in the development of an obstruction theory

for Whitney towers in [9], [24], [25]. Here we focus on the setting for the

transfer move in Section 6.B.5 of the current paper.
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Figure 7.12. After the first finger move on f along V0 and across ∂V0.
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Figure 7.13. After the transfer move is completed by a pushing

p along f across ∂V1, creating s1 ∈ V1 t f , with R pairing

r1, s1.

Figure 7.11 shows the configuration at Step 2 of the proof of Proposi-

tion 6.1. The transfer move exchanges r0 ∈ V0 t f for s1 ∈ V1 t f by first

performing a finger move along V0 across ∂V0 Figure 7.12, and then pushing

one of the new self-intersections p ∈ f t f across ∂V1 (Figure 7.13). The finger

move converts the bigon B from Figure 7.11 into an accessory disk A for the

new intersection q ∈ f t f in Figure 7.13, hence we refer to B as a generalized

accessory disk. Similarly, the quadrilateral Q from Figure 7.11 gives rise to the

Whitney disk R pairing r1, s1 ∈ V1 t f in Figure 7.13, hence we refer to Q as

a generalized Whitney disk. From the local coordinates it is clear that A and

R are framed, and this corresponds to B and Q being framed in the sense that

normal sections over ∂B and ∂Q in the complement of the sheets containing
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W

U'

q'
0 p'

1

Figure 7.14. Whitney disks W and U ′ pair the newly created

intersection pairs p, q ∈ f t f and p′1, q
′
0 ∈W t f , respectively.

∂B and ∂Q extend over B and Q, as in the definition of framed Whitney disks

(Remark 7.1) and accessory disks (Section 7.B.1).

The constructions of Steps 3 and 4 of the proof of Proposition 6.1 create

multiple disjoint parallel copies of B and Q extended by disjointly embedded

disks, and the corresponding transfer moves can be carried out simultaneously

yielding multiple disjoint parallel copies of A and R extended by embedded

disks. During these Steps 3 and 4 the Whitney disks V0 and V1 are also tubed

into framed immersed accessory spheres on f2, but this does not obstruct the

transfer moves that are supported near arcs.

Figure 7.14 shows how after the transfer move the new intersections p, q ∈
f t f can be paired by a Whitney disk W that is supported near the the union

of the arc from ∂V0 that guided the second finger move along f together with

sub-arcs of ∂V0 and ∂V1. (In the figure, W appears to hang down underneath

the horizontal plane of f .) And the pair of new intersections p′1, q
′
0 ∈ W t f

can be paired by a Whitney disk U ′ formed from a parallel of the Whitney

disk U from Lemma 6.3 of Section 6.B.1. Multiple disjoint parallels of such

framed embedded W can be constructed for multiple simultaneous transfer

moves by nesting along ∂V0 and ∂V1. (Compare Figures 6.8 and 6.23, but

with V -parallels replaced by W -parallels.) The multiple pairs of intersections

between f and these parallels of W can be paired by disjoint parallels of U ′.
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