Homotopy generators for the total fibre of the cube of configuration spaces
$\frac{\text { Dec. 12, } 2022}{\text { MPiM }}$ MPIM Topics Corse will Rob

Recall top of link map tower for manifolds M,N $M=\prod_{i=1}^{m} M_{i}$ with M_{i}, N connected:

$$
\begin{aligned}
& \underset{\perp}{\mathcal{m}} \xrightarrow{\simeq} \operatorname{Map}\left(M^{m}, \operatorname{Tot}\left(C_{s_{m}} N\right)\right)
\end{aligned}
$$

Here $f_{m} \cdot v_{m}(L)=C_{m}(L)$ sends $\left(x_{1}, \ldots, x_{m}\right) \mapsto\left(L_{1}\left(x_{1}\right)_{m i} L_{m}\left(x_{m}\right)\right)$, generalizing Gan map $T^{2} \rightarrow S^{2}, m=2, M_{i}=S^{1}, N=\mathbb{R}^{3}$. Thu.: $[$ Kosanovic $-S-T]$: Assume $\operatorname{dim} M=1, \operatorname{dim} N=3$:

1) L is almost trivial $\Leftrightarrow e v_{m-1}(L) \simeq e v_{m=1}(U)$ where $U: M \rightarrow\left\{p_{1}, \ldots, p_{m}\right\} \leq N$ is unlinquap
2) In this case, \exists isomorpliens of S_{m}-modules

$$
\mathbb{Z}\left[S_{m \rightarrow 2} \times \pi_{1} N^{m-1}\right] \cong \operatorname{Lie}\left(\pi_{1} N\right) \cong\left[T_{w}^{m}, \operatorname{Tot}_{v}(N)\right]
$$

such that $\mu_{L}($ length $m) \leftrightarrow\left[\operatorname{ev}_{m}(L)\right]$
Move over, $\mu_{L} \equiv 0 \Leftrightarrow e v_{m}(L) \bumpeq e v_{m}(u) \Leftrightarrow[L]=[u]$.
In particular, the following three filtrations agree:

- Goodwillie-Weirs ling map tower: $\mathrm{ev}_{n}(L) \simeq \operatorname{ev}_{n}(U)$,
- Whitney towers of order $n-1$ on L in $N \times I$,
- Milnor invariant tower $\mu_{L}($ length $\leq n)=0$

They all detect whether $[L]=[U] . \quad[L]=[L]$?

We'll show what's going on for $m=2,3, N=\mathbb{R}^{3}$:

$$
\begin{aligned}
& m=2: \quad \underset{\downarrow 2}{\mathscr{L}_{2}} \underset{\sim}{\simeq} \operatorname{Map}\left(\tau^{2}, \operatorname{Tot}\left(C_{\leq 2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{1} \simeq * \\
& \Rightarrow \pi_{0}\left(T_{2}\right) \cong \pi_{0}\left(\operatorname{Map}\left(T_{1}^{2} C_{12}\right)\right) \cong\left[T_{1}^{2} S^{2}\right] \cong Z_{1} .
\end{aligned}
$$

Our theorem says have that $\operatorname{degree}\left(\operatorname{Rv}_{2}(L)\right)=\lambda_{0}(\omega)=D_{1} \nmid D_{2}$

$$
e_{\text {Gap }}^{!!}(L) \quad e_{w}^{!!}(L)
$$

where $W=D_{1} \Perp D_{2} \rightarrow D^{4}$ are dishes boundiy L, an order 0 Whitney tower.

Key lamina: $\pi_{2} T_{0} C_{2} \cong \pi_{2} C_{12} \cong \mathbb{Z}$ is gentled by

$$
S^{2}=\partial\left(D^{1} \times \mathbb{D}^{2}\right) \xrightarrow{A \times D} C_{12} \subseteq \mathbb{R}^{3} \times \mathbb{R}^{3}, A: D^{1} \rightarrow \mathbb{R}^{3}
$$

Proof: Compute degree of $S^{2} \xrightarrow{A_{x} D} C_{12} \xrightarrow{g_{12}} S^{2}$, i.e. colet inverse images of $\uparrow:\left(x_{1} x_{2}\right) \longmapsto \frac{x_{2}}{\mid x_{1}-x_{1}}$ $\Rightarrow x_{1} \in q_{1} \cap d_{2}$ and so $x_{2} \in \partial D \Rightarrow x_{2}=\uparrow \Rightarrow$ dey $\Rightarrow= \pm 1$

$$
\begin{aligned}
& m=3: \quad \quad \mathscr{L}_{3} \xrightarrow{\simeq} \quad \operatorname{Map}\left(T_{1}^{3}, T_{0}+\left(c_{s 1}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{e v_{2}}{ } \stackrel{b}{1}^{T_{2}} \Gamma_{f_{2}} M_{a p}\left(T_{1}^{3} C_{12} \times C_{23} \times C_{13}\right)
\end{aligned}
$$

$\xrightarrow{P_{2}} 01 t_{2} t_{2} \xrightarrow{\left|t_{2}\right|} \left\lvert\, \xrightarrow{\text { W.move }}\left\{\begin{array}{l}\text { space of dives } \\ \text { will bounders } \\ \text { equal to equate }\end{array}\right.\right.$
$\mathbb{R}^{3} \cdot\left\{x_{1}, x_{2}\right\} \simeq S^{2} v S^{2} \leq S^{2^{t_{1}}} \times S^{2} \Rightarrow \operatorname{Tot}\left(C_{\leq 3}\right) \simeq \operatorname{lof}\left(S^{2} \vee S^{2} \rightarrow S^{2} \times S^{2}\right)$

