Configuration spaces & Whitney towers

Recall that for any two spaces M, N have evn T_n = Ho Nat (C_{sn} M, C_{sn} N) In Emb (M, N) ev₁ finite sets of order su, injections ev₁ T₁ = Map (M, N) Goodwillie - Meiss taxer (no doubling, no little diff) [Arone - Konshleal, 2022] There is a conn. diagram "Layer" $dn \xrightarrow{\sim} Map_{Z_n}(C_n M, Tot(C_{sn}N))$ $\xrightarrow{ev_n} \underbrace{f_n}_{h \xrightarrow{\leftarrow}} Map_{Z_n}(C_n M, C_n N)$ ii $\xrightarrow{f_n} \underbrace{f_n}_{h \xrightarrow{\leftarrow}} Map_{Z_n}(C_n M, C_n N)$ total fibre $\int Pn \xrightarrow{\leftarrow} Of$ He were Jf N is a manifold then Tot (C, N) is $(n-1)(d-2) - connected with TT (-n-) = <math>\Lambda(T_n N)$

where $\Lambda_{\mu-2}^{\mu}(G) = N_{\mu-2}^{\mu}$ unitvivalent trees will won-repedy indices from n= {1, ..., n} and lesels from G on edges $\mathcal{H}\left[\sum_{n=2}^{\infty} \times G^{n}\right] 2 \sum_{n}$ They use this to find obstructions for enbedding simplicial complexes into IRd. We want a different tower for line moor LM(M,N). To get maps even, need to restrict CHI to $C_{n}M = \emptyset$ if $n \ge m$ and $= TT \left(TT M_{i=1}\right)$ where Z_{n} achier precomposes j. $T_{0}M$ where Zurachier precomposes j.

 $ev_{m-1} \rightarrow T_{m-1} \qquad Gauß-map \quad For \quad M = S \perp S \\ W = R^{3}.$ [Kosanović - S-T]: Assume dim M=1, d'm N=3:

We'll show what's going on for m=2,3, N=IR: 2-cube of configuretions is very simple ev_2 Gauß $au \sim T_1$ $\implies T_2 \approx M_{ap}(T,S)$ $* = C_2 \longrightarrow C_{\varphi} = pt$ ↑ <u>↑</u> $C \longrightarrow C \cong *$ $\uparrow^{12} \qquad \uparrow^{12} \qquad \uparrow^{12}$ Our Heoren says here Hat lh (L) = ll (L) Gays where $W = D \perp D_2 \longrightarrow D^4$ are diver bounding L. $h D_2 \in \mathcal{H}$ degree (ev₂) = J,

Key Remne: TIZTOKZ = #2 (2 = 2 is genucled by here flet dise away from x blue arc from fibr. where flet dise away from x blue arc to midpost. An C 1 Proof: more interesting: R~x1 $Tof \begin{pmatrix} C_{13} \\ C_{12} \\ C_{12} \\ C_{12} \\ C_{12} \\ C_{23} \\ C_{2$

12° {x, 1×2 }= SvS 5 SxS $J = \partial(D \times D \times D) \longrightarrow C_{uvs}$ C₁₂ $LM(S_{\perp}S_{\perp}S_{\perp}S, \mathbb{R}^{3}) \xrightarrow{e_{2}} T_{3} \xrightarrow{f_{3}} Mep(T^{3}, C_{n23})$ is 2-connected with ev_2 , f_2 , f_2 , $Map(T, C_x C_2)$ × C_{13} the El, generated by $\begin{bmatrix} x_{13}, x_{23} \end{bmatrix}$

 $\mu_{L}(123) = \widehat{f}_{3} \cdot ev_{3}(L) \in \left[\tau^{3}, \operatorname{Tot}(C)\right]$ Need to show for L almost toivial $\lambda_1(W) \in \mathbb{Z} \cong TT_3(Tot C_{ss})$ The lift f3 achally is given by W, tower W of order 1, Similarly for all higher degrees! For inductive proof use Samuelson product on He greded Lie algebra $T_{X}(QX, x_{0})$ over $U[T_{Y}X]$ $QX \times QX \xrightarrow{(1)} QX$ $(Yn, Yn) \xrightarrow{(1)} Y^{*}(X, Yn)$ Need to ture this U[QX] into a based Version life $U[QX] = T_{1}(QC_{12}, (X, x))$