The space of ling maps. Why? Warn up $LM(\underline{m}, \underline{R}) = configurations of m points$ This is connected and in the plane $\underline{m} := \{1, ..., k\}$ $T_1(Ln(m, R')) = pure braid group Pm$ $P_{2} : \mathbb{R}^{2} \xrightarrow{\mathbb{R}} \mathbb{R}^{2} \rightarrow \mathbb{L}^{\mathbb{R}}(3,\mathbb{R}) \xrightarrow{\mathbb{P}_{12}} \mathbb{L}^{\mathbb{R}}(2,\mathbb{R}^{2}) \xrightarrow{\mathbb{R}} \mathbb{S}^{1}$ gives F(2)>> P3 ->> Z and two more P13, P23 gives Consider the de V_1 Concellchish $F(2) \rightarrow P_3 \rightarrow 22$ $T_{0}\left(Ln\left(\overset{x}{\times} \underset{R}{\overset{\pi}}, \overset{x}{R}\right)\right) \text{ is not injective state fibre over } 2^{3}\left(at Q_{0,0}\right) \text{ is } 2^{2} = F(2)_{2}/2^{$

Sinilary,
$$\pi LM(\underline{m} \times S^{1}, \mathbb{R}^{3}) \longrightarrow \pi LM(\underline{m} \times S^{2}, \mathbb{R}^{4})$$

is not injective (!?)
To understand spaces
lise LM(m), use a
simplified version of
Good willie - Weiss
an bedding tower:
Fix spaces M, N and consider the space
Emb(M, N) in various eabyon's Key idec:
Map₂ ($C_{a}M, C_{a}N$) $C_{a}M := Enb(\underline{e}, M) \xrightarrow{H} C_{a}M$
or better Emb(M, N) $\longrightarrow Net((M, injedk)) \xrightarrow{H} Top)$
 $T_{a} Emb(M, N) = Net((M, injedk)) \xrightarrow{H} Top)$
 $T_{a} Emb(M, N) = Net(M)$

=> Obstruction to ex. of emb. MGN: f e T, must lift to Tz, Tz, ... Obstaching to isolopy of early : Lonolopy h: I-T, must lift to Tz, Tz. Sinilarg for Tz Eulo (M,N) Then is H, N mool manibolds, dim K < din N-2. Then Hi In; Tj Endo = Tj Tn; Fine print: (1) Need RGM reller le points, ou at 2) least need to compactifie & france Comme 3) Need Howat, not Wat (1) + (2) are not needed for hin2 maps, there are nodel even simplifies more: We have to use
C^{h,v.} M := { k c' M / each point lies in 3 _____ CN / each point lies in 3 _____ CN / each point lies in 2 ______ CN / each point lies in 2 _______ CN / each point lies in 2 ________ CN / each point lies in 2 ________ CN / each point lies in 2 __________ CN / each point lies in 2 _________ CN / each point lie

Modern view on some of Kascloke's work:
Fix
$$M_{2}$$
 λ , the number of components, $\underline{M} = \{1, 2, ..., M\}$
Define for $S \leq \underline{M}$ the following spaces
• the S-torns $T^{S} := T$ $J_{S} \longleftrightarrow J_{S}$, $J_{S} \leq S$
• covariat M_{S} cube. $S \in S$ $J_{S} \Leftrightarrow I_{S}$, $J_{S} \leq S$
• $C(S) := Emb(S, IR^{S})$, a confree variant M_{S} cube.
• $LM(S) := lim 2 maps S \times S^{1} \rightarrow IR^{S}$, also $a - H^{-1}$.
Koschotr's map $J_{N}: LM(S) \longrightarrow Map(T^{S}, C(S))$
is a map of M_{S} cube of configuration spaces $C_{p}^{S}(N) := Emb(R, N) \notin R \leq S$
 $e \cdot 3$. fibe $C_{q} \rightarrow C_{q} = I^{t} \Rightarrow Tot C_{*}^{*0} = fibre(C_{q} \rightarrow C_{q} \leq C_{q})$
 $fibre \rightarrow C_{q_{2}}^{2} \rightarrow C_{1} = N \quad U := mine N \times N \times A \leq N \times N$

Fix two spaces
$$M$$
, N and shudy the space
 $LM(M,N) := \{f \in C(n,N) \mid M \xrightarrow{f} f(M) \text{ is injective on th}\}$
of ling maps. $M = \prod_{i=1}^{M} H_i$, $M_i \& N$ connected
Here $M_i := \{i_{1...,M}\} = T_0 M$, $M^S := T_T H_i$, $C_s(N) = Eub(S,N)$
 $Ihur ::$
(Kosenonic S.T] There is a tower of spaces, maps and layers
 $LM(M,N) \xrightarrow{ev_m} T_m(M,N)$, $p_i^{(M)=i} L_k(M,N) \simeq TT_i Map(M, Tot C(N))$
 $isl = k$
 $M(M,N) \xrightarrow{ev_m} T_k(M,N) \rightarrow TT_i Map(M^S, C_N)$
 $isl = k$
 $V_{k-1} \xrightarrow{f_k} (M,N) \rightarrow TT_i Map(M^S, C_N)$
 $isl = k$
 $T_k(M,N) \rightarrow TT_i Map(M^S, C_N)$
 $isl = k$
 $T_k(M,N) \rightarrow TT_i Map(M^S, Lobin C_RN)$
 $isl = k$
 $T_k(M,N) = Map(M,N)$
 $for dinhered
 $dinN = 3$$

1)
$$L$$
 is elmost trivial \Leftrightarrow ev $(L) \stackrel{\text{Seventor}}{\to} ev (U)$
where $U: M \xrightarrow{\text{solution}} \{p_{2,1}, p_{n}\} \leq N$ is "uclingmap",
 $U(M_{1}) = p_{1} \neq i \in h$
d) Jr this case, μ_{L} (top length) $\triangleq [ev_{m}(L)]$
 $\mathbb{E}\left[S \times \pi_{L}N\right] \stackrel{\text{Solution}}{=} Lie (\pi_{L}N) \stackrel{\text{solution}}{=} [\tau^{M}, \operatorname{Tot}(N)]$
3) Move genually, $\frac{\operatorname{Solution}}{\operatorname{Solution}} \frac{\operatorname{Solution}}{\operatorname{Solution}} (L) = [U] \bigoplus ev(L) \cong ev(U)$
if $W \leq N \times I$ is a non-sepecting Whitnes-tower
of order u-h then \exists peth fw $: I \rightarrow T_{u}$ from ∂W
and $[\pi_{W}(u]] \stackrel{\text{solution}}{=} \lambda_{u_{2}}(W) = U(M) \stackrel{\text{solution}}{=} \frac{1}{U}(M) \in \mathcal{J}_{u}$

the foll. debinition satisfies propries: Skep 2: We show that $T_{k}(M,N) := lolim P$ $p \neq R \leq S \leq m$ $l \leq l \leq k$ $l_{ap}(M, C_{p}N) \quad where he uses poset$ of pairs so left wehave a coveriantMap(M^S, C₁N) functor Map(M, C, N)into spaces. =FMap (M, CRN) This model follows from $|\mathcal{C}_{RS}| \cong I^{SIR}$ and one can $\{ \varphi : [0,1] \}$ $M_{ep}(M, G_RN) = 1. \forall \}$ check disectly $R \le S$ $\Pi \le l = 1$ $R \le R \le S \le S'$ ous claims $P_1 \le [0,1] \longrightarrow M_{ep}(M, C, N)$ for $T_1 = d_R$. $P' \le S' = [0,1] \longrightarrow M_{ep}(M, C, N)$ $\begin{cases} \lambda: \underline{m} \rightarrow [0, 1] \mid d(r) = 0 \quad v \in R' \\ d(i) = 1 \quad i \notin S' \end{cases}$ For the identification evan (L) = $\lambda(W)$ we use the nethod from $\Re_{fn}(L) = \chi(W)$ we use the nethod from Device's thesis Note Tot (LN) -> \mathcal{A}_{m} , so to get the housing evaluation we just need a point in Tot (LN) from a W. tower! A

unlished Slep 3 : $Tof (Lh) = hof (Lm(\underline{m}) \rightarrow hole (Lm(s)) \xrightarrow{n} Mep(T^{n}, Tof C(s))$ $\xrightarrow{cops} I \text{ in age or } I_{To} = almost$ $(MROveder (m-2)) \xrightarrow{m} Lm(\underline{m}) \xrightarrow{m} Mep(T, C(\underline{m}))$ Adim LM(S) <u>Lot Jd(S)</u> May (T, holim c(S))
 S = m previous shift S = m

 = { L E LM(m), S' <u>S'</u>, LM(D 1, J) |
 S = M(D 1, J Tot (LM) 25 L& competible mill - Landopies of all Li. Is K(m) injective a the , what about the? Open problems: