Configurations, Whitney towers and
The space of lice maps the space of hick maps

Nov. 28, 2022 MPIM Topics Course
wild Rob wit Rob

The space of line maps. Why?
Warm up LM $\left(\underline{m}, \mathbb{R}^{2}\right)=$ configuvelian of m points This is connected and in the plane. $\underline{m}:=\{1, \ldots, k\}$
$\pi_{1}\left(\operatorname{LM}\left(m, \mathbb{R}^{2}\right)\right)=$ pure braid group P_{m} egg. $\mathbb{R}^{2},\left\{R_{1} R\right\} \rightarrow \operatorname{LM}\left(3, \mathbb{R}^{2}\right) \xrightarrow{p_{12}} \operatorname{LM}\left(2, \mathbb{R}^{2}\right) \simeq S^{1}$ gives $F(2) \mapsto P_{3} \rightarrow \mathbb{Z}$ and two move P_{13}, P_{23} gives ambient had ll $V 1$ concellcion $F(2)_{2} \mapsto P_{3} \rightarrow \#^{3}$
$\pi_{0}\left(\operatorname{lm}\left(8^{y} \times m, \mathbb{R}^{3}\right)\right)$ is not injeclive since fibre over is a group $\underset{k=3}{\cong} P_{3} / F(2)_{3}$
 so fibre is free a ∞-may guedors!

Similarg, $\pi_{1} \operatorname{LM}\left(m \times S^{1}, \mathbb{R}^{3}\right) \rightarrow \pi_{0} \operatorname{LM}\left(m \times S^{2}, \mathbb{R}^{4}\right)$
is not injechlve (!?)
To understend spaces lise LM(m), use a Siuplified vesion of Good willie - Weiss embedding tower:

Fix spaces M, N and consider the space Emb (M,N) in variont categonles. Key idec:

\Rightarrow Obstunctiour to ex. of ens. $M \subset N: f \in T_{1}$ nest lift to T_{2}, T_{3}, \ldots
Obstinchin to isotopy of emp. : honolops $h: I \rightarrow T_{1}$ must left to T_{2}, T_{3}. Sinilarg for $\pi_{i} \operatorname{Enb}(M, N)$
Then.: M, N shoal manifolds, $\operatorname{dim} \mu<\operatorname{din} N-2$
Then $\forall i \exists u_{i}: \pi_{i} \in \sim b \cong \pi_{i} \sigma_{n_{i}}$
Fine print: (1) Need $\mathbb{R}^{m} c M^{m}$ roller the points, or at
(2) least need ho compaciig \& frame $C_{k} M$.
(3) Need HoNat, wot Nat
(1.) +2.) are not needed for hin k maps, there oar model even simplifies more: We' have to are
 $\Leftrightarrow \pi_{0}(i)$ is infective

$$
\begin{aligned}
& \cong \frac{\|}{\substack{s=m \\
|S|=k}} M^{S} \times \sum_{k} \Leftrightarrow \text {, ide. } M_{a p_{i k}}\left(C_{k}^{u r} M, C_{k} N\right) \\
& M=\prod_{i=0}^{m} M_{i}, M_{i}^{|S|=k} \text { con. } \quad \cong \prod_{S \in m}^{M_{a p}}\left(M^{S}, C_{S} N\right)
\end{aligned}
$$

Two very interesting cod. 2 cases :

- Knots tower $J_{\alpha} \xrightarrow{e V_{n}} T_{n} \mathbb{K}$ are Bunny
conure Vassiliev invariants of type n, known Koydelf Sin ka to be rationally universal. Boavida-Horl Disks tower (possibly rel. to a fixed link) should contain at least repeated Minor invavictiri hopefully also higgler Art invariants.
Theorem:
[Dance Kosanovic-

$$
\text { Yuging } S R_{i} \text { - PT.] }
$$

Modern view on sone of Kosclok's work:
Fix $m \geq 2$, the number of comporetr, $\underline{m}_{n}=\left\{1, z_{1}, m\right\}$ Define for $S \leq \underline{m}$ he following spaces
the S-torus $T^{S}:=\pi_{s \in S} \mathbb{S}_{S}^{1} \underset{\text { base pt. } 1}{\stackrel{T}{S}} T^{S}, S^{\prime} \leq S$
$C(S):=\operatorname{Emb}\left(S, \mathbb{R}^{3}\right)$, a coufrevariat m-cabe.
$L M(S):=\lim q^{2} \operatorname{mops} S \times S^{1} \rightarrow \mathbb{R}^{3}$, aboa-11-
Koschore's map K: $\operatorname{LM}(S) \longrightarrow \operatorname{Map}\left(T^{S}, C(S)\right)$ is a map of m-cubs! $L^{L} \longmapsto\left(\left(\theta_{s}\right) \longmapsto\left(s \mapsto L_{s}\left(\theta_{s}\right)\right)\right.$
S - cube of configuration spaces $C_{R}^{S}(N):=\operatorname{Emb}(R, N) \forall R \subseteq S$. egg. $S=\{1,2\} \supseteq R$

Fix two spaces M, N and study He space $L M(M, N):=\left\{f \in C^{0}(M, N) \mid M \xrightarrow{f} f(M)\right.$ is infective on $\left.\pi_{0}\right\}$ of ling maps. $M=\prod_{i=1}^{m} M_{i}, M_{i} \& N$ connected Here $m_{n}:=\left\{1_{1}, m\right\}=\pi_{0} M^{i=1}, M^{S}:=\prod_{i \in S} M_{i}, C^{S}(N)=E_{m b}(S, N)$
Thin. (Coosanovic-S.T] There is a tower of spaces, maps and layers

1) L is aluort trivial $\Leftrightarrow \operatorname{ev}_{m-1}(L) \stackrel{\operatorname{sam} a}{\simeq} e \pi_{0}(U)$ where $U: M \rightarrow\left\{p_{1}, \ldots, p_{m}\right\} \subseteq N$ is "unhlinquapap", $u\left(m_{i}\right)=p_{i} \forall i \in \underline{m}^{\prime}$
2) In this case, $\mu_{L}($ top lengh $) \triangleq\left[\operatorname{ev} v_{m}(L)\right]$

$$
\mathbb{Z}\left[S_{m=2} \times \pi_{1} N^{m-1}\right] \cong \operatorname{Lie}_{m}^{n}\left(\pi_{1} N\right) \cong\left[T^{n}, \operatorname{Tot}_{.}(N)\right]
$$

 $\forall u \leqslant m$ gencaly, $\sigma(1){ }^{J n-2}(h-2)[L]=[u] \Leftrightarrow \operatorname{ev}_{m}(h) \approx \operatorname{ev}(u)$ if $W \leq N \times I$ is a son-repecting Whitnes-tower

$$
\sigma_{w}^{(1)} \in \hat{q}_{w}
$$

In particular, the two filtration defined by

- Goodwillie-Weirs line map tower and
- Whitney towers in $N \times I$
agree and boll determine whetter $[L]=[U]$. For string licks we even get $[L]=\left[L^{l}\right]$ via group-lise composition.
Proof: Step 1 is geoneboric

Step 2: We show that the foll. debicitia satisfies proprtic:

This model follows from $\left|\varphi_{\downarrow_{R \subseteq S}}\right| \cong I^{S \backslash R} \mid$
where he uses poset of pairs so le at we have a covariant functor $\operatorname{Map}\left(M_{i}, C, N\right)$ into spaces. $=F$ and one can check disectly our claim y

For the identification

$$
\begin{aligned}
& \left\{\alpha: \quad \underline{m} \rightarrow[0,1] \left\lvert\, \begin{array}{ll}
\alpha(r)=0 & v \in R^{\prime}
\end{array}\right.\right\} \\
& \alpha(i)=1 \quad i \notin S^{\prime}
\end{aligned}
$$

$\mathrm{ev}_{r+1}(L)=\lambda_{r}(\omega)$ we use the method from Danica's thesis.
Note Tot $(L M) \rightarrow L_{m}$, so to get le homolog eve $V_{r}(L) \simeq e_{h}(u)$ we just need a point in' Tot (CM) from a W. tower!'

Slep 3: uncizU

 L\& compatible $S \neq \varnothing$, | such that |
| :---: |
| $\forall S^{\prime} \leq s$ | null-Ranoppies of all L^{i}.

Open proflems: Js K(m) injechise o π_{0}, what about π_{i} ?

