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Positivity of topological field theories in dimension at least 5

Matthias Kreck and Peter Teichner

Abstract

In this paper we answer a question of Mike Freedman, regarding the efficiency of positive
topological field theories as invariants of smooth manifolds in dimensions greater than 4. We show
that simply connected closed 5-manifolds can be distinguished by such invariants. Using Barden’s
classification, this follows from our result which says that homology groups and the vanishing of
cohomology operations with finite coefficients are detected by positive topological field theories.
Moreover, we prove that in the non-simply connected case, as well as in all dimensions d > 5, the
universal manifold pairing (and in particular, d-dimensional positive topological field theories) are
not sufficient to distinguish compact d-manifolds with boundary S3 × Sn , n > 1, and S4k−1 ,
k > 1. The latter case is equivalent to the same statement for closed 4k-manifolds.

1. Introduction

In [3], the authors study the universal manifold pairing related to positive unitary topological
quantum field theories, in short PTFT; see Definition 4. They show that closed smooth oriented
manifolds of dimension at most 2 can be detected by PTFT’s. Moreover, they prove that in
dimension 4 two s-cobordant manifolds, with small 4-balls removed, represent the same vector
in the universal vector space MS 3 of the 3-sphere (see below), implying that none of the
exotic structures on 4-manifolds can be detected by PTFT. Using every available technique in
dimension 3, Calegari, Freedman and Walker recently showed that 3-manifolds are still detected
by the universal manifold pairing (leaving open the question of whether they are also detected
by PTFT).

This raises the question about dimensions greater than 4, where we give both positive and
negative results: We show in Theorem 3 that simply connected 5-manifolds can be detected (as
in dimensions at most 3) by PTFT, but that the answer is — as in dimension 4 — negative
for general d-manifolds for all d � 5. The precise statement is given in Theorem 2, but we note
that there are simply connected examples in dimension at least 6, so that simply connected
5-manifolds are very exceptional in higher dimensions.

We begin with a short summary and notation. Unless stated otherwise, all manifolds are
oriented, compact and smooth. For a closed (d − 1)-manifold S, let MS be the C-vector space
freely generated by diffeomorphism classes of d-manifolds M with ∂M = S. So elements of MS

are finite sums x =
∑

i aiMi with ∂Mi = S and unique coefficients ai ∈ C. More precisely, we
consider two basis elements M and N of MS as equal if and only if there is an orientation-
preserving diffeomorphism, whose restriction to the boundary S is the identity map.

Remark 1. A pair (W,ϕ), where ϕ : ∂W −→ S is a diffeomorphism, gives a canonical basis
element of MS as follows: pick a product collar for ∂W and glue a copy of S × I to W via ϕ.
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This gives a smooth manifold with boundary equal to S. In particular, the diffeomorphism
group of S acts on MS by this gluing operation.

If S is empty we denote MS by M, the C-vector space generated by oriented diffeomorphism
classes of closed oriented smooth manifolds of dimension d. There is a hermitian pairing, called
the universal manifold pairing [3]:

〈 , 〉 : MS ×MS −→ M,〈∑
i

aiMi,
∑

j

bjNj

〉
:=

∑
i,j

ai b̄j (Mi

⋃
S −Nj ).

The question raised in that paper is for which dimensions d this hermitian pairing is positive
definite, in the sense that 〈x, x〉 = 0 implies x = 0.

Our examples in dimension of at least 5 are rather simple counterexamples. We will find
a (d − 1)-manifold S and two d-manifolds W and T with boundary S such that W is not
diffeomorphic to T rel. boundary, implying W − T non-zero in MS , but

〈W − T,W − T 〉 = (W
⋃

S −W ) − (W
⋃

S −T ) + (T
⋃

S −T ) − (T
⋃

S −W ) = 0.

Since a closed manifold of the form W
⋃

S −W always has an orientation-reversing diffeomor-
phism, the latter is equivalent to the existence of diffeomorphisms

W
⋃

S −W ∼= W
⋃

S −T ∼= T
⋃

S −T.

We actually give two classes of examples, one that works only in dimension d = 4k with k > 1,
where S = S4k−1 is a sphere, and another where S = S3 × Sn for n � 1 is a product of spheres.
The case of a sphere is most interesting because then the classification of compact d-manifolds
with boundary Sd−1 is equivalent to the classification of closed d-manifolds (by gluing in the
standard disk Dk ).

Theorem 2. Let S = S4k−1 , k > 1, or S = S3 × Sn , n > 0. Then there are d-manifolds W
and T with boundary S such that

W − T �= 0, but 〈W − T,W − T 〉 = 0.

Except for the case d = 5, the manifolds W and T may be chosen to be simply connected.

It is an open problem as to whether S = Sd−1 can be used if d is not divisible by 4. In
the smallest unknown (simply connected) case d = 6, this is closely related to the algebraic
classification of unimodular cubic forms, coming from the triple cup product on H2(M 6).

In the remaining case of simply connected 5-manifolds, we prove the following result. The
new terminology will be explained after the theorem.

Theorem 3. For S = S4 , the universal manifold pairing is positive on simply connected
5-manifolds. Moreover, such manifolds (and therefore closed simply connected 5-manifolds) can
be detected by 5-dimensional PTFT.

We shall now give a quick review of the terminology. A d-dimensional topological quantum
field theory is a symmetric monodial functor from a bordism category Bd to the category of
finite-dimensional vector spaces. Using our convention that all manifolds are oriented, compact
and smooth, the objects of Bd are closed (d − 1)-manifolds and there are the following two
types of morphisms between S1 and S2 :

(1) orientation-preserving diffeomorphisms S1 −→ S2 ; and
(2) d-dimensional bordisms W with ∂W = −S1 � S2 .
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More precisely, the adjective ‘topological’ forces one to use isotopy classes of diffeomorphisms
and diffeomorphism classes (rel. boundary) of bordisms. Then there is a well-defined compo-
sition of morphisms, given by gluing bordisms (and using Remark 1 to turn a diffeomorphism
into a bordism that can be glued on).

Note that, given a bordism W , every boundary component S inherits an orientation from
W . One considers S as ‘incoming’ if this orientation disagrees with the one given on the object
S in Bd , and otherwise as ‘outgoing’. The gluing operation is compatible with these source and
target maps for Bd .

For example, the cylinder S × I is the identity morphism idS : S −→ S in Bd (because gluing
it to any bordism does not change its diffeomorphism type) but it can also be read as

CS : S �−S −→ ∅,

where the disjoint union � is the symmetric monoidal structure on Bd (whereas the tensor
product is used for vector spaces). Then a TQFT E gives linear maps

E(CS ) : E(S) ⊗ E(−S) −→ E(∅) ∼= C

and it is not hard to see that these pairings E(CS ) are non-degenerate. In fact, using the
cylinder also as a bordism ∅ −→ −S � S, one could derive from the gluing axioms that E(S)
must be finite-dimensional without assuming it in the first place!

There are interesting involutions on both categories: on Bd , the involution flips the orientation
on both the bordisms and their boundaries: a morphism W : S1 −→ S2 leads to a new morphism
−W : −S1 −→ −S2 . For a complex vector space V , one can use the opposite complex structure,
usually denoted by V̄ (and the identity on linear maps) to define an involution. A unitary
TQFT preserves these involutions (up to natural isomorphisms). This implies that one has two
isomorphisms

E(S)∗ ∼= E(−S) ∼= Ē(S),

which together give a hermitian pairing on E(S). It is not hard to conclude from the
functoriality of E that this pairing must be symmetric, but there is no reason why it should be
positive definite. However, many of the original examples of TQFT, usually defined with some
physical intuition, do indeed lead to Hilbert spaces E(S). Therefore, we provide the following
definition.

Definition 4. A PTFT (P for ‘positive’ or ‘physical’) is a unitary topological quantum
field theory whose hermitian pairing is positive definite. We removed the Q from the notation
because we feel that there is not enough ‘quantum’ theory going on in our discussion.

It is important to summarise the main properties of a PTFT E:
(1) for each object S in Bd , there is a finite-dimensional Hilbert space E(S); and
(2) for each morphism W : S1 −→ S2 , the image E(W ′) of W ′ := −W : S2 −→ S1 is the

Hilbert space adjoint of E(W ).
To connect this with the universal manifold pairing discussed above, note that by evaluating
a PTFT E on d-dimensional bordisms, one gets linear maps

MS −→ E(S) and in particular, M = M∅ −→ E∅ = C.

Under these maps, the above universal manifold pairing becomes the (positive definite) inner
product on E(S). In particular, if 〈x, x〉 = 0, then the linear combination x =

∑
i aiMi of d-

manifolds maps to the zero element
∑

i aiE(Mi) in E(S) because this is a vector of length
zero. As a consequence, x is undetectable by E and our Theorem 2 implies that the manifolds
W and T cannot be distinguished by any d-dimensional PTFT.
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The proof of Theorem 3 follows from Barden’s classification [1] via the following general
result on d-dimensional PTFT. The particular ones used in this theorem are higher-dimensional
versions of Chern–Simons theories with finite Gauge group.

Theorem 5. PTFT detect homology and cohomology groups additively, and they also
determine whether stable cohomology operations with finite coefficients vanish. More precisely,
if M is a closed d-manifold, then there are (finitely many) d-dimensional PTFT whose values
on M determine the additive homology with finite coefficients and whether stable cohomology
operations with finite coefficients vanish.

It is a consequence of the nature of our counterexamples in Theorem 2 that PTFT cannot
detect all cup products in cohomology.

2. Proof of Theorem 2

As explained above, we are looking for a closed oriented manifold S of dimension (d − 1) � 4
and two d-manifolds W and T with boundary S such that:

(1) W and T are not diffeomorphic rel. boundary; and
(2) W

⋃
S −T , W

⋃
S −W and T

⋃
S −T are orientation-preserving diffeomorphic.

We give two classes of examples. The first one, which also motivates the second construction,
gives examples in dimension 4k for all k > 1. We begin to describe these manifolds where the
boundary S = S4k−1 is a sphere. To construct W , consider the positive definite symmetric
unimodular form E8 (even of rank 8) and construct M(E8), the parallelisable 4k-dimensional
manifold plumbed according to the graph E8 . It is (2k − 1)-connected with intersection form
E8 . Since k > 1, the boundary of M(E8) is a homotopy sphere. Moreover, the group of
homotopy spheres is finite [4], and hence some boundary-connected sum

�2rM(E8)

has boundary diffeomorphic to the standard sphere S4k−1 . Note that the boundary of M(E8)
is a generator for the cyclic subgroup of boundary parallelisable homotopy spheres; the order
of this subgroup is known [4].

We choose a diffeomorphism ϕ from this boundary to S4k−1 , and attach the cylinder over
S4k−1 via this diffeomorphism to obtain a manifold Wϕ with boundary equal to S4k−1 . To
construct T, we do the same using E16 instead of E8 to plumb the parallelisable manifold
M(E16). The clue is that M(E8)�M(E8) and M(E16) have non-isomorphic intersection forms,
but same rank and signature 16. Again, we want to consider an appropriate boundary-connected
sum of copies of M(E16), such that the boundary is S4k−1 . Since the homotopy spheres which
are boundaries of parallelisable manifolds are determined by the signature of these manifolds
[4], and the signature of M(E16) is 16, we see that �rM(E16) has boundary diffeomorphic to
S4k−1 . Again, we choose a diffeomorphism ψ and attach via it the cylinder over S4k−1 to get
the manifold Tψ with boundary S4k−1 .

Observation. The manifolds Wϕ and Tψ are not diffeomorphic, since their intersection forms
are not isomorphic.

We recall Wall’s classification of (2k − 1)-connected stably parallelisable closed manifolds
[7]. If X and Y are two such manifolds with isomorphic intersection form, then there is a
homotopy sphere Σ such that X is diffeomorphic to Y �Σ. If X and Y form the boundary of
a compact parallelisable manifold, then Σ is the boundary of a compact stably parallelisable
manifold, and so Σ is then S4k−1 by the h-cobordism theorem. This implies that X and Y are
diffeomorphic.
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The double Wϕ

⋃
S 4 k−1 −Wϕ is a closed stably parallelisable manifold with indefinite

intersection form and signature 0. Since indefinite even forms are classified by the signature
and rank, the intersection form is isomorphic to that of �16rS2r × S2r . The first manifold is
the boundary of the stably parallelisable manifold Wϕ × I and the second is the boundary
of the stably parallelisable manifold given by the boundary-connected sum of 16r copies of
S2r × D2r+1. Thus Wϕ

⋃
S 4 k−1 −Wϕ is diffeomorphic to �16rS2r × S2r . The same argument

implies that Tψ

⋃
S 4 k−1 −Tψ is diffeomorphic to �16rS2r × S2r , and so we conclude that

Wϕ

⋃
S 4 k−1 −Wϕ

∼= Tψ

⋃
S 4 k−1 −Tψ

∼= �16rS2r × S2r .

We stress that these diffeomorphims exist for all choices of ϕ and ψ.
Applying the same argument to Wϕ

⋃
S 4 k−1 −Tψ , we conclude that there is a homotopy

sphere Σ such that Wϕ

⋃
S 4 k−1 −Tψ is diffeomorphic to �16rS2r × S2r �Σ. All homotopy spheres

of dimension 4k > 4 are of the form D4k
⋃

ρ D4k for some diffeomorphism ρ on S4k−1 . Thus
composing ϕ with an appropriate diffeomorphism ρ, we conclude that

Wρϕ

⋃
S 4 k−1 −Tψ

∼= �16rS2r × S2r .

Conclusion. All manifolds Wρϕ

⋃
S 4 k−1 −Wρϕ , Tψ

⋃
S 4 k−1 −Tψ , and Wρϕ

⋃
S 4 k−1 −Tψ are

diffeomorphic to �16rS2r × S2r .

Now we come to the second class of examples. The starting points are again manifolds
plumbed according to E8 ⊥ E8 and E16 , but this time we plumb 4-manifolds. In other words,
we start with a 0-handle D4 and attach sixteen 2-handles D2 × D2 according to the linking
matrices of these quadratic forms. The boundaries are two (a priori distinct) homology
3-spheres. According to Freedman’s main theorem [2, Theorem 1.4], given any homology
3-sphere Σ, there is a unique contractible topological 4-manifold with boundary Σ.

Attaching such a manifold to our homology spheres above, we obtain two closed topological
4-manifolds A and B with intersection forms E8 ⊥ E8 and E16 , respectively. We remove open
discs from the smooth part of these manifolds and denote the result A◦ and B◦. These are
topological manifolds with smooth boundary equal to the standard 3-sphere S3 . Although
smoothing theory [5] does not completely work in dimension 4, part of it works: the obstruction
theory for a PL or linear structure on the stable topological tangent bundle. In our situation,
this Kirby–Siebenmann obstruction agrees for both cases (PL and smooth) and lies in Z/2. For
A and B it is the signature mod 16, and so it vanishes. Similarly, we consider the obstruction
for A◦ and B◦ (rel. boundary), which is again the signature mod 16, and so it vanishes. There
is also an obstruction for uniqueness (rel. boundary) lying in H3(−; Z/2). This group vanishes
in our situation, and thus in both cases there is a unique reduction of the stable topological
tangent bundle to a linear structure.

Now we return to our original problem and Theorem 2. The manifold S is now S3 × Sn , n > 0,
and the manifolds with boundary S are as topological manifolds A◦ × Sn and B◦ × Sn . Since
we have a unique reduction of the stable topological tangent bundle to a linear bundle (rel.
boundary) on A◦ and B◦, we can take the product structure with the smooth structure on
Sn to obtain extensions of the smooth structure of S3 × Sn to A◦ × Sn and B◦ × Sn applying
smoothing theory in dimension greater than 4; see [5]. We denote these two smooth manifolds
with boundary S3 × Sn by W and T .

We also consider A◦ ⋃
S 3 −B◦. By Freedman [2], this topological spin manifold is up to home-

omorphism classified by the intersection form, and so — as in our first class of examples — it is
homeomorphic to �16S2 × S2 . Again, there is a unique linear structure on the stable topological
tangent bundle of A◦ ⋃

S 3 −B◦, and so we obtain a smooth structure on (A◦ ⋃
S 3 −B◦) × Sn .

By construction, this is diffeomorphic on the one hand to W
⋃

S 3 ×S n −T, and on the other
hand (using the agreement of the linear structure on the stable topological tangent bundle)
to (�16S2 × S2) × Sn . Now we repeat the same argument with A◦ ⋃

S 3 −A◦ and B◦ ⋃
S 3 −B◦
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and see that also W
⋃

S 3 × S n −W and T
⋃

S 3 × S n −T are diffeomorphic to (�16S2 × S2) × Sn ,
finishing the argument.

It is an exercise left to the reader to show that W and T are not diffeomorphic rel. boundary.
In fact, not even their relative cohomology rings are isomorphic. It is clear that these manifolds
are simply connected if n > 1, that is, in dimensions d > 5.

3. Simply connected 5-manifolds

In this section, we will show that PTFT can distinguish simply connected closed 5-manifolds.
This implies Theorem 3 by the discussion in the introduction. We first recall Barden’s
classification of such manifolds from [1].

For any manifold M , we can define an invariant i(M) ∈ {0, 1, . . . ,∞} as the largest integer
r such that w2(M) ∈ H2(M ; Z/2) can be lifted to a class in H2(M ; Z/2r ). By convention,
i(M) := 0 if and only if w2(M) = 0; that is, M is spin and i(M) := ∞ if and only if w2(M) �= 0
comes from an integral cohomology class.

Theorem 6 (Barden). Two closed smooth simply connected 5-manifolds are diffeomorphic
if and only if they have isomorphic second homology and equal i-invariants.

We will show that the invariant i(M) can be detected by the vanishing of certain cohomology
operations. This is clear for i(M) = 0, which is equivalent to w2(M) = 0, which by the Wu
formula is equivalent to 0 = Sq2 : H3(M ; Z/2) −→ H5(M ; Z/2). If w2(M) �= 0, the non-spin
case, we apply the following lemma.

Lemma 7. For a non-spin closed simply connected 5-manifold M , i(M) > r > 0 if and only
if the following stable cohomology operation αr vanishes:

αr : H2(M ; Z/2r )
βr−→ H3(M ; Z) red2−→ H3(M ; Z/2)

Sq 2

−→ H5(M ; Z/2),

where βr is the relevant Bockstein, red2 is reduction modulo 2 and Sq2 is the second Z/2-
Steenrod operation.

Proof. Since M is simply connected, H2(M ; Z/2r ) ∼= Hom(H2(M ; Z), Z/2r ). Applying
Poincaré duality and the Wu formula, we identify w2(M) with the map

H3(M ; Z) red2−→ H3(M ; Z/2)
Sq 2

−→ H5(M ; Z/2).

Now we apply the Bockstein sequence

H2(M ; Z/2r )
βr−→ H3(M ; Z) 2r

−→ H3(M ; Z)

to see that H3(M ; Z) red2−→ H3(M ; Z/2)
Sq 2

−→ H5(M ; Z/2) ∼= Z/2 (which corresponds to w2(M))
can be lifted over Z/2r+1 if and only if the precomposition with βr is zero.

With this information, all one needs to know to show that PTFT classify simply connected
closed 5-manifolds, is Theorem 5 from the introduction. That result follows from a construction
going back to Kontsevich, Dijkgraaf–Witten, Segal and Freed–Quinn. We follow the exposition
in [6] and first introduce the following central notion.

Definition 8. An FH-group is an H-group with finite total homotopy. A morphism
between FH-groups is a product- and unit-preserving continuous map.
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So an FH-group is a topological space X with a multiplication X × X −→ X that, up to
homotopy, is associative and has a unit x0 and an inverse map X −→ X. Moreover, the finite
total homotopy condition means that for all i � 0, the homotopy groups πiX := πi(X,x0) are
finite and non-zero only for finitely many i. Recall that for H-groups, the isomorphism type of
each homotopy group is independent of the base point.

Definition 9. The homotopy order #h(X) of an FH-group is the ‘alternating product’

#h(X) :=
∞∏

i=0

|πiX|(−1)i

.

This is a rational number, well defined by our assumptions on X.

In the following, we will study spaces Map(Y,X) of continuous maps, with the compact-open
topology, as well as the subspaces Map0(Y,X) of maps that preserve a basepoint. Note that
if X is an H-space, then so are both types of mapping spaces above, with all structures given
pointwise (and units given by constant maps with value x0). The following lemma is immediate.

Lemma 10. Let X be an FH-group and C a finite CW-complex.
(1) If f : Y −→ X is a morphism of H-groups, then its homotopy fibre F is an H-group. F

is FH (that is, it has finite total homotopy) if and only if Y is FH.
(2) The exponential law gives a natural bijection

πn Map(C,X) ∼= [C,Map0(S
n ,X)].

(3) Map(C,X) and Map0(C,X) are FH-groups.

The main construction in [6] implies the following result.

Proposition 11. Given an FH-group X and d ∈ N, there is a d-dimensional PTFT, TX,
whose value on a closed d-manifold M is the homotopy order of the associated mapping space

TX (M) = #h(Map(M,X)).

Note that even though our PTFT are defined over the complex numbers, these homotopy
orders happen to be rational numbers. Our only contribution to this story is the following
simple observation.

Lemma 12. Let F −→ E
p−→ B be a Serre fibration of FH-groups. Then the above PTFT

satisfy the relation

TF (M) · TE (M)−1 · TB (M) =
∣∣∣∣coker

(
[M,E]

[p ]−→ [M,B]
)∣∣∣∣

In particular, the number on the right-hand side can be detected by PTFT.

Proof. Mapping M into the fibration gives a long exact sequence of groups

· · · −→ [M,ΩnE] −→ [M,ΩnB] −→ [M,Ωn−1F ] −→ · · · −→ [M,F ] −→ [M,E] −→ [M,B],

where these are free homotopy classes of maps and the identity elements of these sets are the
constant maps with value the identity element in the relevant H-groups F,E or B. This identity
element is also used when defining the based loop spaces ΩF = Ωf0 F , and so on.

Part 2 of Lemma 10 above implies [M,ΩnB] ∼= πn Map(M,B), and similarly for F and
E. Forming the alternating product of all the (finite) orders in the above exact sequence
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leads to the desired equation. We use here the fact that compact smooth manifolds are finite
CW-complexes, so that all orders eventually become trivial.

As an example, take any FH-group B and use the path-loop fibration with base B. Since
both total space and fibre are FH-groups and the total space is contractible, this implies that
|[M,B]| is detected by PTFT. A special case would be B = K(A,n), where n � 0 and A is any
finite Abelian group. This shows that PTFT can read off the orders of all cohomology groups
with finite coefficients A, and by the universal coefficient theorems (and the fact that compact
manifolds are finite CW-complexes) the additive homology and cohomology groups of M can
also be detected.

To finish the proof of Theorem 5, we need to check that PTFT can determine whether stable
cohomology operations with finite coefficients vanish. Such an operation is given by a map of
FH-groups

α : K(A1 , n1) −→ K(A2 , n2)

and by Lemma 10 (1), the homotopy fibre F is again an FH-group. Lemma 12 above shows
that PTFT can compute the order of the cokernel of

α∗ : Hn1 (M ;A1) −→ Hn2 (M ;A2),

as well as the order of both these cohomology groups. This implies that PTFT can detect
whether α∗ is trivial or not.

Acknowledgement. We thank Mike Freedman for encouraging us to study this question.

References

1. D. Barden, ‘Simply connected five-manifolds’, Ann. of Math. (3) 82 (1965) 365–385.
2. M. Freedman, ‘The topology of four-dimensional manifolds’, J. Differential Geom. 17 (1982) 357–453.
3. M. Freedman, A. Kitaev, C. Nayak, J. Slingerland, K. Walker and Z. Wang, ‘Universal manifold

pairings and positivity’, Geom. Topol. 9 (2005) 2303–2317.
4. M. Kervaire and J. Milnor, ‘Groups of homotopy spheres’, Ann. of Math. (2) 77 (1963) 504–537.
5. R. Kirby and L. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangula-

tions, Annals of Mathematics Studies 88 (Princeton University Press, Princeton, NJ, 1977).
6. F. Quinn, ‘Lectures on axiomatic quantum field theory’, Geometry and Quantum Field Theory, IAS/Park

City Mathematics Series 1 (ed. D. Freed and K. Uhlenbeck; American Mathematical Society, Providence,
RI) 323–450.

7. C. T. C. Wall, ‘Classification of (n − 1)-connected 2n-manifolds’, Ann. of Math. 75 (1962) 163–198.

Matthias Kreck
Hausdorff Research Institute for

Mathematics
Universität Bonn
53115 Bonn
Germany

kreck@him.uni-bonn.de

Peter Teichner
Department of Mathematics
University of California
Berkeley, CA 94720-3840
USA

teichner@math.berkeley.edu


	Introduction
	Proof of Theorem 2
	Simply connected 5-manifolds
	References

