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We show how to measure the failure of the Whitney move in
dimension 4 by constructing higher-order intersection invariants
of Whitney towers built from iterated Whitney disks on immersed
surfaces in 4-manifolds. For Whitney towers on immersed disks
in the 4-ball, we identify some of these new invariants with
previously known link invariants such as Milnor, Sato–Levine, and
Arf invariants. We also define higher-order Sato–Levine and Arf
invariants and show that these invariants detect the obstructions
to framing a twisted Whitney tower. Together with Milnor invar-
iants, these higher-order invariants are shown to classify the exis-
tence of (twisted) Whitney towers of increasing order in the 4-ball.
A conjecture regarding the nontriviality of the higher-order Arf
invariants is formulated, and related implications for filtrations
of string links and 3-dimensional homology cylinders are described.

link concordance ∣ trivalent tree ∣ quasi-Lie algebra ∣ k-slice ∣
Jacobi identity

Despite how it may appear in high school, mathematics is not
all about manipulating numbers or functions in more and

more complicated algebraic or analytic ways. In fact, one of the
most interesting quests in mathematics is to find a good notion of
space. It should be general enough to cover many real life situa-
tions and at the same time sufficiently specialized so that one can
still prove interesting properties about it. A first candidate was
Euclidean n-space Rn, consisting of n-tuples of real numbers.
This covers all dimensions n but is too special: The surface of the
earth, mathematically modeled by the 2-sphere S2, is 2-dimen-
sional but compact, so it cannot be R2. However, S2 is locally
Euclidean: Around every point one can find a neighborhood that
can be completely described by two real coordinates (but global
coordinates do not exist).

This observation was made into the definition of an n-dimen-
sional manifold in 1926 by Kneser: It is a (second countable)
Hausdorff space that looks locally like Rn. The development
of this definition started at least with Riemann in 1854, and
important contributions were made by Poincaré and Hausdorff
at the turn of the 19th century (1). It covers many important phy-
sical notions, such as the surface of the earth, the universe, and
space-time (for n ¼ 2, 3, and 4, respectively) but is special enough
to allow interesting structure theorems. One such statement is
Whitney’s (strong) embedding theorem: Any n-manifoldMn can be
embedded into R2n (for all n ≥ 1). The proof in small dimensions
n ¼ 1, 2 is fairly elementary and special, but in all dimensions
n > 2, Whitney (2) found the following beautiful argument: By
general position, one finds an immersion M → R2n with at worst
transverse double points. By adding local cusps, one can assume
that all double points can be paired up by Whitney disks as in
Fig. 1, using the fact that R2n is simply connected. Because 2þ
2 < 2n and nþ 2 < 2n, one can arrange that all Whitney disks
are disjointly embedded, framed, and meet the image of M only
on the boundary. Then a sequence of Whitney moves, as shown in
Fig. 1, leads to the desired embedding of M.

The Whitney move, sometimes also called the Whitney trick,
remains a primary tool for turning algebraic information (count-

ing double points) into geometric information (existence of
embeddings). It was successfully used in the classification of
manifolds of dimension >4, specifically in Smale’s celebrated
h-cobordism theorem (3) (implying the Poincaré conjecture)
and Wall’s surgery theory (4). The failure of the Whitney move
in dimension 4 is the main reason that, even today, there is
no classification of 4-dimensional manifolds in sight. To be more
precise, one needs to distinguish between topological and smooth
4-manifolds to make correct statements. A topological n-mani-
fold is locally homeomorphic to Rn, whereas a smooth manifold
is locally diffeomorphic to it (in the given smooth structure).

Casson realized that in the setting of the 4-dimensional
h-cobordism theorem, even though Whitney disks cannot always
be embedded (because 2þ 2 ¼ 4), they always fit into what is
now called a Casson tower. This is an iterated construction that
works in simply connected 4-manifolds, where one adds more and
more layers of disks onto the singularities of a given (immersed)
Whitney disk (5). In an amazing tour de force, Freedman (6, 7)
showed that there is always a topologically embedded disk in a
neighborhood of certain Casson towers (originally, one needed
seven layers of disks, later this was reduced to three). This result
implied the topological h-cobordism theorem (and hence the
topological Poincaré conjecture) in dimension 4. At the same
time, Donaldson used gauge theory to show that the smooth
4-dimensional h-cobordism theorem fails (8), and both results
were awarded with a Fields medal in 1982. Surprisingly, the
smooth Poincaré conjecture is still open in dimension 4—the only
remaining unresolved case.

In the nonsimply connected case, even the topological classi-
fication of 4-manifolds is far from being understood because
Casson towers cannot always be constructed. See refs. 9–11 for
a precise formulation of the problem and a solution for funda-
mental groups of subexponential growth. However, there is a
simpler construction, called a Whitney tower, which can be per-
formed in many more instances (Fig. 2). Here one again adds
more and more layers of disks to a given (immersed) Whitney
disk; however, one does not control all intersections as in a Cas-

W

Fig. 1. (Left) A canceling pair of transverse intersections between two local
sheets of surfaces in a 3-dimensional slice of 4-space. The horizontal sheet
appears entirely in the “present,” and the red sheet appears as an arc that
is assumed to extend into the “past” and the “future.” (Center) A Whitney
disk W pairing the intersections. (Right) A Whitney move guided by W
eliminates the intersections.
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son tower but only pairs of intersections that allow higher-order
Whitney disks; see Fig. 3. Thus a Casson tower gives a Whitney
tower but not vice versa.

The current authors have developed an obstruction theory for
such Whitney towers in a sequence of papers (12–20). Even
though the existence of a Whitney tower does not lead to an
embedded (topological) disk, it is still a necessary condition.
Hence our obstruction theory provides higher-order (intersection)
invariants for the existence of embedded disks, spheres, or
surfaces in 4-manifolds.

The easiest example of our intersection invariant is Wall’s self-
intersection number for disks in 4-manifolds. If A: ðD2; ∂D2Þ →
ðM4; ∂MÞ has a trivial self-intersection number (we say that
the order zero invariant τ0ðAÞ vanishes), then all self-intersections
can be paired up by Whitney disks Wi. However, the Wi will in
general self-intersect and intersect each other and also the
original disk A. Our (first-order) intersection invariant τ1ðA;WiÞ
counts the transverse intersections A ⋔ Wi and vanishes if they
all can be paired up by (second-order) Whitney disks Wi; j. This
procedure continues with an invariant τ2ðA;Wi;Wi; jÞ that mea-
sures both A ⋔ Wi; j and Wi ⋔ Wk intersections, and the con-
struction of a higher-order Whitney tower W if the invariant
vanishes. W is the union of A (at order 0) and all Whitney disks
Wi (order 1), Wi; j (order 2), and continuing with higher-order
Whitney disks. If A is homotopic (rel. boundary) to an embed-
ding, then these constructions can be continued ad infinitum.

The intersection invariants τnðA;Wi;W i; j;…Þ ¼ τnðWÞ take
values in a finitely generated abelian groupTn, which is generated
by certain trivalent trees that describe the 1-skeleton of
a Whitney tower (Fig. 3 and Definition 4). The relations in Tn
correspond to Whitney moves, and quite surprisingly most of
these relations can be expressed in terms of the so-called IHX-
relation that is a geometric incarnation of the Jacobi identity
for Lie algebras. All the relations can be realized by controlled
manipulations of Whitney towers, and as a result we recover
the following approximation of the “algebra implies geometry”
principle that is available in high dimensions:

Theorem 1. (Raising the order of a Whitney tower) If A supports an
order n Whitney tower W with vanishing τnðWÞ, then A is homo-
topic (rel. boundary) to A0, which supports an order nþ 1 Whitney
tower. Compare Theorem 18.

As usual in an obstruction theory, the dependence on the
lower-order Whitney towers makes it hard to derive explicit
invariants that prevent the original disk A from being homotopic
to an embedding. In this paper we discuss how to solve this

problem in the easiest possible ambient manifold M ¼ B4, the
4-dimensional ball. We start with maps

A1;…; Am: ðD2; S1Þ → ðB4; S3Þ;

which exhibit a fixed link in the boundary 3-sphere S3. If this link
was slice, then the Ai would be homotopic (rel. boundary) to
disjoint embeddings; and ourWhitney tower theory gives obstruc-
tions to this situation. In the simplest example discussed above
we have m ¼ 1, and the boundary of A is just a knot K in S3:

Theorem 2. (The easiest case of knots) (14) The first-order intersection
invariant τ1ðA;WiÞ ∈ T1 ≅ Z2 can be identified with the Arf
invariant of the knot K . It is thus a well-defined invariant that
depends only on ∂A ¼ K . Moreover, it is the complete obstruction to
finding a Whitney tower of arbitrarily high order ≥2 with boundary K.

There is a very interesting refinement of the theory for knots in
the setting of the Cochran–Orr–Teichner n-solvable filtration:
Certain special symmetric Whitney towers of orders that are
powers of 2 have a refined measure of complexity called height
and are obstructed by higher-order signatures of associated
covering spaces (21). However, there are no known algebraic
criteria for “raising the height” of a Whitney tower analogous to
Theorem 1.

Ifm > 1, then the order zero invariant τ0ðA1;…; AmÞ is given by
the linking numbers of the components Li ≔ ∂Ai of the link
L ¼ ∪m

i¼1Li ⊂ S3 that is the boundary of the given disks. Milnor
(22, 23) showed in 1954 how to generalize linking numbers μði; jÞ
inductively to higher order. Here we use the order n total Milnor
invariants μn, which correspond to all length (nþ 2) Milnor num-
bers μði1;…; inþ2Þ.

Theorem 3. (Milnor numbers as intersection invariants) If a link L
bounds a Whitney tower W of order n, then the Milnor invariants
μk of order k < n vanish. Moreover, the order n Milnor invariants
of L can be computed from the intersection invariant τnðWÞ ∈ Tn.
Compare Theorem 20.

In the remaining sections, we will make these statements
precise and explain how to get complete obstructions for the
existence of Whitney towers for links. Unlike the case of knots,
these get more and more interesting for increasing order. In
addition to the above Milnor invariants (higher-order linking
numbers), we will need higher-order versions of Sato–Levine and
Arf invariants. In a fixed order, these are finitely many Z2-valued
invariants, so that, surprisingly, the Milnor invariants already
detect the problem up to this 2-torsion information.

Theorem 4. (Classification of Whitney tower concordance) A link L
bounds a Whitney tower W of order n if and only if its Milnor
invariants, Sato–Levine invariants, and Arf invariants vanish up to
order n. Compare Corollary 10.

To prove this classification, we use Theorem 1 to show that the
intersection invariant τnðWÞ leads to a surjective realization map
Rn: Tn ↠ Wn, where Wn consist of links bounding Whitney
towers of order n, up to order nþ 1 Whitney tower concordance
(see the next section). TheMilnor invariant can be translated into
a homomorphism μn: Wn → Dn, where the latter is a group de-
fined from a free Lie algebra (which can be expressed via rooted
trivalent trees modulo the Jacobi identity). The composition

ηn: Tn → Wn → Dn

is hence a map between purely combinatorial objects both given
in terms of trivalent trees. Using a geometric argument (grope

Fig. 2. Part of a Whitney tower in 4-space.

p

Fig. 3. An unpaired intersection-point p among local sheets in a Whitney
tower (Left), and its associated tree (Right).
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duality), we show that it is simply given by summing over all
choices of a root in a given tree (which is a more precise state-
ment of Theorem 3). This map was previously studied by Levine
in his work on 3-dimensional homology cylinders (24, 25), where
he made a precise conjecture about the kernel and cokernel of ηn.
He verified the conjecture for the cokernel in ref. 26, using a
generalized Hall algorithm.

In ref. 15 we prove Levine’s full conjecture via an application
of combinatorial Morse theory to tree homology. In particular,
we show that the kernel of ηn consists only of 2-torsion. This
2-torsion corresponds to our higher-order Sato–Levine and
Arf invariants and is characterized geometrically in terms of a
framing obstruction for twisted Whitney towers (in which certain
Whitney disks are not required to be framed).

In the above classification ofWhitney tower concordance there
remains one key geometric question: Although our higher-order
Arf invariants are well-defined, it is not currently known if they
are in fact nontrivial. All potential values are realized by simple
links, so the question here is whether or not there are any further
geometric relations; see Definition 2. We conjecture that indeed
all the higher-order Arf invariants are nontrivial, or equivalently,
that our realization maps ~Rn: ~Tn → Wn are isomorphisms for all
n. Here ~Tn is a certain quotient of Tn by what we call framing
relations that come from IHX-relations on twisted Whitney
towers. For n≡ 0, 2, 3 mod 4, we do show that ~Rn is an isomorph-
ism, implying that in this further quotient the intersection invar-
iant τnðWÞ depends only on the link ∂W, and not on the choice of
Whitney tower W. The higher-order Arf invariants appear when
n ¼ 4k − 3, and our conjecture says that the same conclusion
holds in these orders.

This conjecture is in turn equivalent to the vanishing of the
intersection invariants on all immersed 2-spheres in S4. Of course
all such maps are null-homotopic, and a general goal of the
Whitney tower theory is to extract higher-order invariants of
representatives of classes in the second homotopy group π2M.
This obstruction theory is still being developed, but certain
aspects of it appeared in refs. 12, 19, 20, and 27. The fundamental
group π1M leads to more interesting obstruction groupsTnðπ1MÞ
and a nontrivial π2M leads to more relations to make the inter-
section invariants dependent only on the order zero surfaces.

In this paper, we give a survey of the material needed to under-
stand the above results for Whitney towers in the 4-ball. More
details and proofs can be found in our recent series of five papers
(13–17) from which we also survey here the following aspects of
the theory:

• Twisted Whitney towers and their framing obstructions
• Geometrically k-slice links and vanishing Milnor invariants
• String links and the Artin representation
• Filtrations of 3-dimensional homology cylinders

Whitney Towers
We work in the smooth oriented category (with discussions of
orientations mostly suppressed), even though all results hold
in the locally flat topological category by the basic results on
topological immersions in Freedman–Quinn (9). In particular, as
remarked in ref. 13, our techniques do not distinguish smooth
from locally flat surfaces.

Order n Whitney towers are defined recursively as follows.

Definition 1:A surface of order 0 in an oriented 4-manifold M is a
connected oriented surface in M with boundary embedded in the
boundary and interior immersed in the interior of M. AWhitney
tower of order 0 is a collection of order 0 surfaces. The order of
a (transverse) intersection point between a surface of order n
and a surface of order m is nþm. The order of a Whitney disk
is (nþ 1) if it pairs intersection points of order n. For n ≥ 1, a
Whitney tower of order n is a Whitney tower W of order

(n − 1) together with (immersed) Whitney disks pairing all order
(n − 1) intersection points of W.

The Whitney disks in a Whitney tower may self-intersect
and intersect each other as well as lower-order surfaces, but
the boundaries of all Whitney disks are required to be disjointly
embedded. In addition, all Whitney disks are required to be
framed, as is discussed below.

Whitney Tower Concordance.We now specialize to the caseM ¼ B4

and also assume that a Whitney tower W has disks for its order 0
surfaces that have an m-component link in S3 ¼ ∂B4 as their
boundary, denoted ∂W. Let Wn be the set of all framed links
∂W, where W is an order n Whitney tower, and the link framing
is induced by the order 0 disks in W. This defines a filtration
⋯ ⊆ W3 ⊆ W2 ⊆ W1 ⊆ W0 ⊆ L of the set of framed m-compo-
nent links L ¼ LðmÞ. Note thatW0 consists of links that are evenly
framed because a component has even framing if and only if it
bounds a framed immersed disk in B4.

In order to detect what stage of the filtration a particular
link lies in, it would be convenient to define a set measuring
the difference between Wn and Wnþ1. Because these are sets
and not groups, the quotient is not defined. However, we can still
define an associated graded set in the following way:

SupposeW is an order nþ 1Whitney tower inM ¼ S3 × ½0;1�,
where each of the order 0 surfaces A1;…; Am is an annulus with
one boundary component in S3 × f0g and one in S3 × f1g. Then
we say that the link ∂0W is order nþ 1 Whitney tower concordant
to ∂1W. This allows us to define the associated graded set Wn
as Wn modulo order nþ 1 Whitney tower concordance. Knots
have a well-defined connected sum operation, but the analogous
band-sum operation for links is not well-defined, even up to
concordance. This makes the following proposition somewhat
surprising; it follows from Theorem 1:

Proposition 5. (13) Band sum of links induces a well-defined opera-
tion that makes each Wn into a finitely generated abelian group.

Our goal is to determine these groups Wn.

Free Lie and Quasi-Lie Algebras. Let L ¼ LðmÞ denote the free Lie
algebra (over the ground ring Z) on generators fX1; X2;…; Xmg.
It is N-graded, L ¼⊕n Ln, where the degree n part Ln is the
additive abelian group of length n brackets, modulo Jacobi iden-
tities, and the self-annihilation relations ½X;X � ¼ 0. The free
quasi-Lie algebra L0 is gotten from L by replacing the self-annihi-
lation relations with the weaker antisymmetry relations ½X; Y � ¼
−½Y;X �.

The bracketing map L1 ⊗ Lnþ1 → Lnþ2 has a nontrivial kernel,
denoted Dn. The analogous bracketing map on the free quasi-Lie
algebra is denoted D0

n. For later purposes, we now define a homo-
morphism sℓ2n: D2n → Z2 ⊗ Lnþ1. Given an element X in D2n,
its image under the bracketing map is zero in L2nþ2. However,
regarding the bracket as being in L02nþ2, we get an element of
the kernel of the projection L02nþ2 → L2nþ2.

This kernel is isomorphic toZ2 ⊗ Lnþ1 by ref. 26, and so we get
an element sℓ2nðXÞ of Z2 ⊗ Lnþ1 as desired.

The Total Milnor Invariant. Let L be a link where all the longitudes
lie in Γnþ1, the (nþ 1)th term of the lower central series of the
link group Γ ≔ π1ðS3 \ LÞ. As a consequence of Stallings’s theo-
rem (32), it follows that Γnþ1

Γnþ2
≅ Fnþ1

Fnþ2
≅ Lnþ1, where F ¼ FðmÞ is the

free group on meridians. Let μinðLÞ ∈ Lnþ1 denote the image of
the ith longitude. The total Milnor invariant μnðLÞ of order n is
defined by

μnðLÞ ≔ ∑
i

X i ⊗ μinðLÞ ∈ L1 ⊗ Lnþ1:
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It turns out that, in fact, μnðLÞ ∈ Dn [by “cyclic symmetry” (28)].
The invariant μnðLÞ is a convenient way of packaging all Milnor
invariants of length nþ 2 in one piece.

Theorem 6. (16) For all n ∈ N, the total Milnor invariant is a well-
defined homorphism μn: Wn → Dn such that

i. For even n, μn is a monomorphism with image D0
n < Dn.

ii. For odd n, μn is an epimorphism; denote its kernel by Kμ
n.

So μn is an algebraic obstruction for L bounding a Whitney
tower of order nþ 1, which is a complete invariant in half
the cases. In the other half, we need the following additional
invariants:

Higher-Order Sato–Levine Invariants.SupposeL ∈ W2n−1 represents
an element of Kμ

2n−1. Because μ2n−1ðLÞ ¼ 0, the longitudes lie in
Γ2n, so μ2nðLÞ ∈ D2n is defined. Define the order 2n − 1 Sato–
Levine invariant by SL2n−1ðLÞ ¼ sℓ2n ∘ μ2nðLÞ, where sℓ2n is
defined above.

Theorem 7. (16) For all n, the Sato–Levine invariant gives a well-de-
fined epimorphism SL2n−1: K

μ
2n−1↠Z2 ⊗ Lnþ1. Moreover, it is an

isomorphism for even n.

The case SL1 is the original Sato–Levine (29) invariant of a 2-
component classical link, and we describe in ref. 16 (and below)
how the SL2n−1 are obstructions to “untwisting” an order 2n
twisted Whitney tower.

Higher-Order Arf Invariants. We saw above that the structure of
the groups Wn is completely determined for n≡ 0, 2, 3 mod 4
by Milnor and higher-order Sato–Levine invariants.

Theorem 8. (16) Let KSL
4k−3 be the kernel of SL4k−3. Then there is an

epimorphism αk: Z2 ⊗ Lk↠KSL
4k−3.

Conjecture 9. αk is an isomorphism.

This conjecture is true when k ¼ 1, and indeed the inverse map
α−11 : W1 → Z2 ⊗ L1 is given by the classical Arf invariant of each
component of the link.

Regardless of whether or not Conjecture 9 is true, αk induces
an isomorphism ᾱk on ðZ2 ⊗ LkÞ∕Ker αk.

Definition 2: The higher-order Arf invariants are defined by

Arfk ≔ ðᾱkÞ−1: KSL
4k−3 → ðZ2 ⊗ LkÞ∕Ker αk:

Any of the Arfk that are nontrivial would be the only possible
remaining obstructions to a link bounding a Whitney tower of
order 4k − 2, following the Milnor and Sato–Levine invariants:

Corollary 10. (16) The associated graded groups Wn are classified by
μn, SLn if n is odd, and, for n ¼ 4k − 3 , Arfk.

The first unknown Arf invariant is Arf2: W5 → Z2 ⊗ L2, which
in the case of 2-component links would be a Z2-valued invariant,
evaluating nontrivially on the Bing double of any knot with non-
trivial classical Arf invariant. Evidence supporting the existence
of nontrivial Arfk is provided by the fact that such links are known
to not be slice (30). All cases for k > 1 are currently unknown,
but if Arf2 is trivial, then all higher-order Arfk would also be
trivial (14).

Twisted Whitney Towers
The order n Sato–Levine invariants are defined as a certain
projection of order nþ 1 Milnor invariants, suggesting that a

slightly modified version of the Whitney tower filtration would
put the Milnor invariants all in the right order, with no more need
for the Sato–Levine invariants. In this section we discuss how this
corresponds to the geometric notion of twisted Whitney towers.

Twisted Whitney Disks. The normal disk-bundle of a Whitney disk
W↬M is isomorphic to D2 ×D2 and comes equipped with a
canonical nowhere-vanishing Whitney section over the boundary
given by pushing ∂W tangentially along one sheet and normally
along the other.

The Whitney section determines the relative Euler number
ωðW Þ ∈ Z, which represents the obstruction to extending the
Whitney section acrossW . It depends only on a choice of orienta-
tion of the tangent bundle of the ambient 4-manifold restricted to
the Whitney disk, i.e., a local orientation. Following traditional
terminology, when ωðW Þ vanishes W is said to be framed. (Be-
cause D2 ×D2 has a unique trivialization up to homotopy, this
terminology is only mildly abusive.) If ωðW Þ ¼ k, we say that
W is k-twisted, or just twisted if the value of ωðW Þ is not specified
(Fig. 4).

In the definition of an order n Whitney tower given above, all
Whitney disks are required to be framed (0-twisted). It turns out
that the natural generalization to twistedWhitney towers involves
allowing nontrivially twisted Whitney disks only in at least “half
the order” as follows:

Definition 3: A twisted Whitney tower of order ð2n − 1Þ is just
a (framed) Whitney tower of order ð2n − 1Þ as in Defini-
tion 1 above.

A twisted Whitney tower of order 2n is a Whitney tower having
all intersections of order less than 2n paired by Whitney disks,
with all Whitney disks of order less than n required to be framed,
but Whitney disks of order at least n allowed to be k-twisted for
any k.

Note that, for any n, an order n (framed) Whitney tower is
also an order n twisted Whitney tower. We may sometimes refer
to a Whitney tower as a framed Whitney tower to emphasize the
distinction, and we will always use the adjective “twisted” in the
setting of Definition 3.

Twisted Whitney Tower Concordance. Let W∾
n be the set of framed

links in S3, which are boundaries of order n twisted Whitney
towers in B4, with no requirement that the link framing is induced
by the order 0 disks. Notice that W∾

2n−1 ¼ W2n−1. Although not
immediately obvious, it is true that this defines a filtration
⋯ ⊆ W∾

3 ⊆ W∾
2 ⊆ W∾

1 ⊆ W∾
0 ¼ L. As in the framed setting

above, letting W∾
n be the set W∾

n modulo order (nþ 1) twisted
Whitney tower concordance yields a finitely generated abelian
group.

Theorem 11. (14, 16) The total Milnor invariants give epimorphisms
μn: W∾

n↠Dn, which are isomorphisms for n≡ 0; 1, 3 mod 4. More-

j

i

j

i

Dj

Di

W(i,j)

Dj

Dj

Di

W(i,j)

Fig. 4. Pushing into the 4-ball from left to right: An i- and j-labeled twisted
Bing double of the unknot bounds disks Di and Dj , which support a 2-twisted
Whitney disk W ði; jÞ. The Whitney section is indicated by the dotted red
loop (Bottom Center), and the intersections between its extension and the
Whitney disk (Bottom Right).
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over, the kernel K∾
4k−2 of μ4k−2 is isomorphic to the kernel KSL

4k−3 of the
Sato–Levine map from the previous section.

Conjecture 9 hence says that K∾
4k−2 ≅ Z2 ⊗ Lk and our Arf

invariants Arfk represent the only remaining obstruction to a link
bounding an order 4k − 1 twisted Whitney tower:

Corollary 12. The groups W∾
n are classified by μn and, for

n ¼ 4k − 2, Arfk.

Gropes and k-Slice Links. Roughly speaking, a link is said to be
“k-slice” if it is the boundary of a surface that “looks like a collec-
tion of slice disks modulo k-fold commutators in the fundamental
group of the complement of the surface.” Precisely, L ⊂ S3 is
k-slice if L bounds an embedded orientable surface Σ ⊂ B4 such
that π0ðLÞ → π0ðΣÞ is a bijection and there is a push-off homo-
morphism π1ðΣÞ → π1ðB4 \ ΣÞ whose image lies in the kth term of
the lower central series ðπ1ðB4 \ ΣÞÞk. Igusa and Orr proved the
following “k-slice conjecture” in ref. 31:

Theorem 13. (31) A link L is k-slice if and only if μiðLÞ ¼ 0 for
all i ≤ 2k − 2.

A k-fold commutator in π1X has a nice topological model in
terms of a continuous map G → X , where G is a grope of class k.
Such 2-complexesG (with specified “boundary” circle) are recur-
sively defined as follows. A grope of class 1 is a circle. A grope of
class 2 is an orientable surface with one boundary component. A
grope of class k is formed by attaching to every dual pair of basis
curves on a class 2 grope a pair of gropes whose classes add to k. A
curve γ: S1 → X in a topological space X is a k-fold commutator if
and only if it extends to a continuous map of a grope of class k.
Thus one can ask whether being k-slice implies there is a basis of
curves on Σ that bound disjointly embedded gropes of class k in
B4 \ Σ. Call such a link geometrically k-slice.

Proposition 14. (14) A link L is geometrically k-slice if and only
if L ∈ W∾

2k−1.

This is proven using a construction from ref. 18 that allows one
to freely pass between class n gropes and order n − 1 Whitney
towers. So the higher-order Arf-invariants Arfk detect the differ-
ence between k-sliceness and geometric k-sliceness. It turns out
that every Arfk value can be realized by (internal) band summing
iterated Bing doubles of the figure-eight knot. Every Bing double
is a boundary link, and one can choose the bands so that the sum
remains a boundary link. This implies the following:

Theorem 15. (14) A link L has vanishing Milnor invariants of all
orders ≤2k − 2 if and only if it is geometrically k-slice after con-
nected sums with internal band sums of iterated Bing doubles of
the figure-eight knot.

Here (and in Theorem 17 below), the figure-eight knot can be
replaced by any knot with nontrivial (classical) Arf invariant.

The added boundary links in the above theorem bound disjoint
surfaces in S3 that clearly allow immersed disks in B4 bounded by
curves representing a basis of first homology. In ref. 14 we will
show that this implies:

Theorem 16. (14) A link has vanishing Milnor invariants of all orders
≤2k − 2 if and only if its components bound disjointly embedded
surfaces Σi ⊂ B4, with each surface a connected sum of two surfaces
Σ0
i and Σ00

i such that

i. a basis of curves on Σ0
i bound disjointly embedded framed gropes

Gij of class k in the complement of Σ≔∪iΣi,
ii. a basis of curves on Σ00

i bound immersed disks in the complement
of Σ∪G, where G is the union of the gropes Gij.
This is an enormous geometric strengthening of Igusa and

Orr’s result, which under the same assumption on the vanishing
of Milnor invariants, shows the existence of a surface Σ with a
basis of curves bounding maps of class k gropes, with no control
on their intersections and self-intersections. Our proof uses the
full power of the obstruction theory for twisted Whitney towers,
whereas they do a sophisticated computation of the third homol-
ogy of the groups F∕F2k.

String Links and the Artin Representation.Let L be a string link with
m strands embedded in D2 × ½0;1�. By Stallings’s theorem (32),
the inclusions ðD2 \ fm pointsgÞ × fig↪ðD2 × ½0;1�Þ \ L for i ¼ 0,
1 induce isomorphisms on all lower central quotients of the fun-
damental groups. In fact, the induced automorphism of the lower
central quotients F∕Fn of the free group F ¼ π1ðD2 \ fm pointsgÞ
is explicitly characterized by conjugating the meridional genera-
tors of F by longitudes. Let Aut0ðF∕FnÞ consist of those auto-
morphisms of F∕Fn, which are defined by conjugating each
generator and which fix the product of generators. This leads
to the Artin representation SL → Aut0ðF∕Fnþ2Þ, where SL is the
set of concordance classes of pure framed string links.

The set of string links has an advantage over links in that it
has a well-defined monoid structure given by stacking. Indeed,
modulo concordance, it becomes a (noncommutative) group.
Whitney tower filtrations can also be defined in this context,
giving rise to filtrations SWn and SW∾

n of this group SL.

Theorem 17. (17) The sets SWn and SW∾
n are normal subgroups of

SL, which are central modulo the next order. We obtain nilpotent
groups SL∕SWn and SL∕SW∾

n , and the associated graded groups
are isomorphic to our previously defined groups:

SWn∕SWnþ1 ≅ Wn and SW∾
n∕SW∾

nþ1 ≅ W∾
n :

Finally, the Artin representation induces a well-defined epimorphism
Artinn: SL∕SW∾

n↠Aut0ðF∕Fnþ2Þ whose kernel is generated by
internal band sums of iterated Bing doubles of the figure-eight knot.

The Artin representation is thus an invariant on the whole
group SL∕SW∾

n , not just on the associated graded groups as in
the case of links. It packages the total Milnor invariants μk,
k ¼ 0;…; n on string links together into a group homomorphism.
(See ref. 17 for Bing-doubling string links.)

Higher-Order Intersection Invariants
Proofs of the above results depend on two essential ideas: The
higher-order intersection theory of Whitney towers comes with
an obstruction theory whose associated invariants take values
in abelian groups of (unrooted) trivalent trees. And by mapping
to rooted trees, which correspond to iterated commutators, the
obstruction theory forWhitney towers in B4 can be identified with
algebraic invariants of the bounding link in S3. A critical connec-
tion between these ideas is provided by the resolution of the
Levine conjecture (see below), which says that this map is an
isomorphism.

In fact, it can be arranged that all singularities in a Whitney
tower are contained in 4-ball neighborhoods of the associated
trivalent trees, which sit as embedded “spines,” and all relations
among trees in the target group are realized by controlled manip-
ulations of the Whitney disks. Mapping to rooted trees corre-
sponds geometrically to surgering Whitney towers to gropes,
and these determine iterated commutators of meridians of the
Whitney tower boundaries as in Fig. 5.
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Trees and Intersections.All trees are unitrivalent, with cyclic order-
ings of the edges at all trivalent vertices, and univalent vertices
labeled from an index set f1;2;3;…; mg. A rooted tree has one
unlabeled univalent vertex designated as the root. Such rooted
trees correspond to formal nonassociative bracketings of ele-
ments from the index set. The rooted product ðI; JÞ of rooted trees
I and J is the rooted tree gotten by identifying the root vertices of
I and J to a single vertex v and sprouting a new rooted edge at v.
This operation corresponds to the formal bracket, and we identify
rooted trees with formal brackets. The inner product hI; Ji of
rooted trees I and J is the unrooted tree gotten by identifying
the roots of I and J to a single nonvertex point. Note that all
the univalent vertices of hI; Ji are labeled.

The order of a tree, rooted or unrooted, is defined to be the
number of trivalent vertices, and the following associations of
trees to Whitney disks and intersection points respects the notion
of order given in Definition 1.

To each order zero surface Ai is associated the order zero
rooted tree consisting of an edge with one vertex labeled by i,
and to each transverse intersection p ∈ Ai ∩ Aj is associated
the order zero tree tp ≔ hi; ji consisting of an edge with vertices
labeled by i and j. The order 1 rooted Y-tree ði; jÞ, with a single
trivalent vertex and two univalent labels i and j, is associated to
any Whitney disk W ði; jÞ pairing intersections between Ai and Aj.
This rooted tree can be thought of as an embedded subset of M,
with its trivalent vertex and rooted edge sitting in W ði; jÞ, and its
two other edges descending into Ai and Aj as sheet-changing
paths.

Recursively, the rooted tree ðI; JÞ is associated to any Whitney
diskW ðI; JÞ pairing intersections betweenWI andWJ (see the left-
hand side of Fig. 6); with the understanding that if, say, I is just a
singleton i, then WI denotes the order zero surface Ai. To any
transverse intersection p ∈ W ðI; JÞ ∩ WK between W ðI; JÞ and
any WK is associated the unrooted tree tp ≔ hðI; JÞ; Ki (see
the right-hand side of Fig. 6).

Intersection Trees for Whitney Towers. The group Tn (for each
n ¼ 0;1;2;…) is the free abelian group on (unitrivalent labeled
vertex-oriented) order n trees, modulo the usual AS (antisymme-
try) and IHX (Jacobi) relations:

In even orders we define ~T2n ≔ T2n, and in odd orders ~T2n−1
is defined to be the quotient of T2n−1 by the framing relations.
These framing relations are defined as the image of homomorph-
isms Δ2n−1: Z2 ⊗ Tn−1 → T2n−1, which are defined for genera-

tors t ∈ Tn−1 by ΔðtÞ ≔ ∑v∈ thiðvÞ;ðTvðtÞ;TvðtÞÞi, where TvðtÞ
denotes the rooted tree gotten by replacing v with a root, and
the sum is over all univalent vertices of t, with iðvÞ the original
label of the univalent vertex v.

The obstruction theory works as follows:

Definition 4: The order n intersection tree τnðWÞ of an order n
Whitney tower W is defined to be

τnðWÞ ≔ ∑ ϵp · tp ∈ ~Tn;

where the sum is over all order n intersections p, with ϵp ¼ �1 the
usual sign of a transverse intersection point (via certain orienta-
tion conventions; see, e.g., ref. 13).

All relations in ~Tn can be realized by controlled manipulations
of Whitney towers, and further maneuvers allow algebraically
canceling pairs of tree generators to be converted into intersec-
tion-point pairs admitting Whitney disks. As a result, we get the
following partial recovery of the “algebraic cancelation implies
geometric cancellation” principle available in higher dimensions:

Theorem 18. (13) If a collection A of properly immersed surfaces in a
simply connected 4-manifold supports an order n Whitney tower W
with τnðWÞ ¼ 0 ∈ ~Tn, then A is homotopic (rel. ∂) to A0, which
supports an order nþ 1 Whitney tower.

Intersection Trees for Twisted Whitney Towers. For any rooted tree J
we define the corresponding ∾-tree (“twisted-tree”), denoted by
J∾, by labeling the root univalent vertex with the symbol “∾”
(which will represent a “twist” in a Whitney disk normal bundle):
J∾ ≔ ∾ −− J.

Definition 5: The group T∾
2n−1 is the quotient of ~T2n−1 by the

boundary-twist relations:

hði; JÞ; Ji ¼ i −<
J
J
¼ 0.

Here J ranges over all order n − 1 rooted trees (and the first
equality is just a reminder of notation).

The group T∾
2n is gotten from ~T2n ¼ T2n by including order

n ∾-trees as new generators and introducing the following new
relations (in addition to the IHX and antisymmetry relations
on non-∾ trees):

J∾ ¼ ð− JÞ∾ I∾ ¼ H∾ þ X∾ − hH; Xi 2 · J∾ ¼ hJ; Ji:

The left-hand symmetry relation corresponds to the fact that the
framing obstruction on a Whitney disk is independent of its
orientation; the middle twisted IHX relations can be realized by
a Whitney move near a twisted Whitney disk, and the right-hand
interior twist relations can be realized by cusp-homotopies in
Whitney disk interiors. As described in ref. 16, the twisted groups
T∾

2n can naturally be identified with a universal quadratic refine-
ment of the T2n-valued intersection pairing h · ; · i on framed
Whitney disks.

Recalling from Definition 3 that twisted Whitney disks occur
only in even order twisted Whitney towers, intersection trees for
twisted Whitney towers are defined as follows:

Definition 6: The order n intersection tree τ∾n ðWÞ of an order n
twisted Whitney tower W is defined to be

Fig. 5. (Left to Right) An unpaired intersection in a Whitney tower, (part of)
its associated tree, and the result of surgering to a grope.

K
p

( I , J )W

W

W

I

J

W

W

W

I

J

Fig. 6. Local pictures of the trees associated to a Whitney diskW ðI; JÞ, and an
intersection point p ∈ W ðI; JÞ ∩ WK .
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τ∾n ðWÞ ≔ ∑ ϵp · tp þ∑ωðWJÞ · J∾ ∈ T∾
n ;

where the first sum is over all order n intersections p and the
second sum is over all order n∕2 Whitney disks WJ with twisting
ωðWJÞ ∈ Z (computed from a consistent choice of local orien-
tations).

By “splitting” the twisted Whitney disks (13), it can be ar-
ranged that jωðWJÞj ≤ 1, leading to signs like ϵp (or zero coeffi-
cients). The obstruction theory also holds for twisted Whitney
towers:

Theorem 19. (13) If a collection A of properly immersed surfaces in a
simply connected 4-manifold supports an order n twisted Whitney
tower W with τ∾n ðWÞ ¼ 0 ∈ T∾

n , then A is homotopic (rel. ∂) to
A0, which supports an order nþ 1 twisted Whitney tower.

Remark on the Framing Relations. The framing relations in the
groups ~T2n−1 correspond to the twisted IHX relations among
∾-trees inT∾

2n via a geometric boundary-twist operation that con-
verts an order n ∾-tree ði; JÞ∾ to an order 2n − 1 (non-∾)
tree hði; JÞ; Ji.

RealizationMaps. In ref. 13 we describe how to construct surjective
realization maps ~Rn: ~Tn↠Wn and R∾

n : T∾
n↠W∾

n by applying
the operation of iterated Bing doubling. This construction is
essentially the same as Cochran’s realization method for Milnor
invariants (33, 34) and Habiro’s clasper-surgery (35), extended to
twisted Bing doubling (Figs. 4 and 7). To prove the realization
maps are well-defined, we need to use Theorems 18 and 19,
respectively.

The above Conjecture 9 on the nontriviality of the higher-
order Arf invariants can be succinctly rephrased as the assertion
that the realization maps ~Rn and R∾

n are isomorphisms for all n.
Progress toward confirming this assertion—namely complete
answers in 3∕4 of the cases and partial answers in the remaining
cases, as described by the above-stated results—has been accom-
plished by identifying intersection trees with Milnor invariants, as
we describe next.

Intersection Trees and Milnor’s Link Invariants. The connection
between intersection trees and Milnor invariants is via a surjec-
tive map ηn: T∾

n → Dn, which converts trees to rooted trees
(interpreted as Lie brackets) by summing over all ways of choos-
ing a root:

For v a univalent vertex of an order n (un-rooted non-∾) tree,
denote by BvðtÞ ∈ Lnþ1 the Lie bracket of generators
X1; X2;…; Xm determined by the formal bracketing of indices
which is gotten by considering v to be a root of t.

Denoting the label of a univalent vertex v by
ℓðvÞ ∈ f1;2;…; mg, the map ηn: T∾

n → L1 ⊗ Lnþ1 is defined on
generators by

ηnðtÞ ≔ ∑
v∈ t

XℓðvÞ ⊗ BvðtÞ and ηnðJ∾Þ ≔
1

2
ηnðh J; JiÞ;

where the first sum is over all univalent vertices v of t, and the
second expression lies in L1 ⊗ Lnþ1 because the coefficient of
ηnðh J; JiÞ is even.

The proof of the following theorem (which implies Theorem 11
above) shows that the map η corresponds to a construction that
converts Whitney towers into embedded gropes (18), via the
grope duality of ref. 36:

Theorem 20. (14) If L bounds a twisted Whitney tower W of order n,
then the total Milnor invariants μkðLÞ vanish for k < n,
and μnðLÞ ¼ ηn ∘ τ∾n ðWÞ ∈ Dn.

Thus one needs to understand the kernel of ηn before the ob-
struction theory can proceed. This is accomplished by resolving
(15) a closely related conjecture of Levine (25), as discussed next.

The Levine Conjecture and Its Implications. The bracket map kernel
Dn turns out to be relevant to a variety of topological settings (see,
e.g., the introduction to ref. 15) and was known to be isomorphic
to Tn after tensoring with Q, when Levine’s study of the cobord-
ism groups of 3-dimensional homology cylinders (24, 25) led him
to conjecture that Tn is, in fact, isomorphic to the quasi-Lie
bracket map kernel D0

n, via the analogous map η0n, which sums
over all choices of roots (as in the left formula for η above).

Levine made progress in refs. 25 and 26, and in ref. 15 we
affirm his conjecture:

Theorem 21. (15) η0n: Tn → D0
n is an isomorphism for all n.

The proof of Theorem 21 uses techniques from discrete Morse
theory on chain complexes, including an extension of the theory
to complexes containing torsion. A key idea involves defining
combinatorial vector fields that are inspired by the Hall basis
algorithm for free Lie algebras and its generalization by Levine
to quasi-Lie algebras.

As described in ref. 16, Theorem 21 has several direct applica-
tions to Whitney towers, including the completion of the calcula-
tion of W∾

n in three out of four cases:

Theorem 22. (16) ηn: T∾
n → Dn are isomorphisms for n≡ 0 , 1, 3

mod 4. As a consequence, both the total Milnor invariants
μn: W∾

n → Dn and the realization maps R∾
n : T∾

n → W∾
n are iso-

morphisms for these orders.

The consequences listed in the second statement follow from
the fact that ηn is the composition

μn: T∾
n↠

R∾n W∾
n↠

μn Dn:

Theorem 21 is also instrumental in determining the only
possible remaining obstructions to computing W∾

4k−2:

Proposition 23. (16) The map sending a rooted tree J to
ðJ; JÞ∾ ∈ T∾

4k−2 induces an isomorphism

Z2 ⊗ Lk ≅ Kerðη4k−2Þ:

These symmetric ∾-trees ðJ; JÞ∾ correspond to twisted Whitney
disks and determine the higher-order Arf-invariants Arfk. All
of our above conjectures are equivalent to the statement that
W∾

4k−2 is isomorphic to D4k−2 ⊕ ðZ2 ⊗ LkÞ via these maps.Fig. 7. Realizing an order 2 tree in a Whitney tower by Bing-doubling.
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Theorem 22 and Proposition 23 imply Theorem 11 and
Corollary 12 above, and ref. 16 describes analogous implications
of the above-described results in the framed setting (Theorems 6,
7, 8, and Corollary 10).

Framed Versus Twisted Whitney Towers
This section describes how the higher-order Sato–Levine and Arf
invariants can be interpreted as obstructions to framing a twisted
Whitney tower. The starting point is the following surprisingly
simple relation between twisted and framed Whitney towers of
various orders:

Proposition 24. (13, 16) For any n ∈ N , there is a commutative dia-
gram of exact sequences

Moreover, there are isomorphisms

CokðT2n → T∾
2nÞ ≅ Z2 ⊗ L0nþ1 ≅ Kerð ~T2n−1 → T∾

2n−1Þ:

In the first row, all maps are induced by the identity on the
set of links. To see the exactness, observe that there is a natural
inclusion Wn ⊆ W∾

n , and by definition W∾
2n−1 ¼ W2n−1. One then

needs to show that indeed W∾
2n ⊆ W∾

2n−1, which is accomplished
in ref. 13, and then the exact sequence in Proposition 24 follows
because Wn ≔ Wn∕Wnþ1 and W∾

n ≔ W∾
n∕W∾

nþ1.
If our above conjectures hold, then for every n the various

(vertical) realization maps in the above diagram are isomorph-
isms, which would lead to a computation of the cokernel and
kernel of the mapWn → W∾

n . As a consequence, we would obtain
new concordance invariants with values in Z2 ⊗ L0nþ1 and defined
onW∾

2n, as the obstructions for a link to bound a framed Whitney

tower of order 2n. In fact (16), the above-defined higher-order
Sato–Levine invariants detect the quotient Z2 ⊗ Lnþ1 of Z2 ⊗
L0nþ1. Levine (25) showed that the squaring map X ↦ ½X;X �
induces an isomorphism

Z2 ⊗ Lk ≅ KerðZ2 ⊗ L02k↠Z2 ⊗ L2kÞ;

which leads to our proposed higher-order Arf invariants Arfk.
It is interesting to note that the case n ¼ 0 leads to the predic-

tion CokðW0 → W∾
0 Þ ≅ Z2 ⊗ L1 ≅ ðZ2Þm. This is indeed the

group of framed m-component links modulo those with even
framings! In fact, the consistency of this computation was the mo-
tivating factor to consider filtrations of the set of framed links L,
rather than just oriented links.

Filtrations of Homology Cylinders
Garoufalidis and Levine (37) studied the group Hg of homology
cylinders over the compact orientable surface of genus g with one
boundary component, modulo homology cobordism. It carries the
Johnson (relative weight) filtration Jn and the Goussarov–Habiro
(clasper) filtration Y n. We improve results on the comparison of
the associated graded groups Jn and Yn.

Theorem 25. (17) For all k ≥ 1, there are exact sequences

i. 0 → Y2k → J2k → Z2 ⊗ Lkþ1 → 0,
ii. 0 → Z2 ⊗ L2kþ1 → Y4k−1 → J4k−1 → 0,
iii. 0 → KY

4k−3 → Y4k−3 → J4k−3 → 0,

iv. Z2 ⊗ Lk→
akKY

4k−3 → Z2 ⊗ L2k → 0.
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