Order 1 intersection invariants in 4-manifolds

Rob Schneiderman \& Peter Teichner

Lehman College CUNY \& MPIM
30 Jan 2023

Before:
We used Milnor invariants to show that higher-order intersection invariants are well-defined for Whitney towers on disks in the 4-ball bounded by links in the 3-sphere.

Next:
We will define order 1 intersection invariants for Whitney towers on 2-spheres in (non-simply connected) 4-manifolds.

Outline of this talk

- Order 0 intersection form, pulling apart pairs of 2-spheres
- Order 1 intersection invariants, pulling apart triples of 2-spheres, stable embedding of m-tuples of 2 -spheres
- Open questions

Homotopy of surfaces in 4-manifolds

Regular homotopy $=$ isotopies + finger moves + (clean, framed) Whitney moves.

Arbitrary homotopy $=$ regular homotopy + local cusp homotopies.

Fundamental question:
"Given $A^{2} \rightarrow X^{4}$, is A homotopic to an embedding?"

First obstructions to making components disjointly embedded:
The intersection invariants $\lambda\left(A_{i}, A_{j}\right) \in \mathbb{Z}\left[\pi_{1} X\right]$
The self-intersection invariants $\mu\left(A_{i}\right) \in \mathbb{Z}\left[\pi_{1} X\right] /$ relations

In higher dimensions these obstructions are complete!

Intersection and Self-intersection invariants λ, μ for $A=\cup_{i} S^{2} \xrightarrow{A_{i}} X^{4}$

$$
\lambda\left(A_{i}, A_{j}\right):=\sum_{p \in A_{i} \pitchfork A_{j}} \epsilon_{p} \cdot g_{p} \in \mathbb{Z}\left[\pi_{1} X\right]
$$

Intersection and Self-intersection invariants λ, μ for $A=\cup_{i} S^{2} \xrightarrow{A_{i}} X^{4}$

$$
\lambda\left(A_{i}, A_{j}\right):=\sum_{p \in A_{i} \pitchfork A_{j}} \epsilon_{p} \cdot g_{p} \in \mathbb{Z}\left[\pi_{1} X\right]
$$

and

$$
\mu\left(A_{i}\right):=\sum_{p \in A_{i} \pitchfork A_{i}} \epsilon_{p} \cdot g_{p} \in \frac{\mathbb{Z}\left[\pi_{1} X\right]}{\mathbb{Z}[1] \oplus\left\langle g-g^{-1}\right\rangle} .
$$

Relations in target $\frac{\mathbb{Z}\left[\pi_{1} x\right]}{\mathbb{Z}[1] \oplus\left[g-g^{-1}\right\rangle}$ of the self-intersection invariant μ :

- $g-g^{-1}=0$ accounts for choice of orientation on loop determining $g_{p} \in \pi_{1} X$ for self-intersections $p \in A_{i} \pitchfork A_{i}$.
- $1=0$ accounts for cusp homotopies of A_{i} creating/eliminating self-intersections $p \in A_{i} \pitchfork A_{i}$ with trivial $g_{p}=1 \in \pi_{1} X$.
λ and μ are invariant under homotopies of A
(isotopies, finger moves, Whitney moves, cusp homotopies).

Can express λ and μ as sums of decorated order zero trees:

$$
\lambda\left(A_{i}, A_{j}\right)=\sum_{p \in A_{i} \pitchfork A_{j}} \epsilon_{p} \cdot i \xrightarrow{g_{p}} j \quad \text { for } i \neq j
$$

and

$$
\mu\left(A_{i}\right)=\sum_{p \in A_{i} \pitchfork A_{i}} \epsilon_{p} \cdot i \longrightarrow \xrightarrow{g_{p}} i
$$

modulo relations:

$$
i \longrightarrow \xrightarrow{g_{p}} i=i \xrightarrow{g_{\rho}^{-1}} i \quad \text { and } \quad i \longrightarrow \quad{ }^{1} i=0
$$

So these classical intersection invariants $\lambda_{0}:=\lambda$ and $\mu_{0}:=\mu$ can be expressed as a single order 0 'tree-valued' invariant:

$$
\tau_{0}(A):=\sum_{p \in A_{i} \pitchfork A_{j}} \epsilon_{p} \cdot i \longrightarrow \xrightarrow{g_{p}} j
$$

modulo relations:

$$
i \xrightarrow{g_{p}} j=i \xrightarrow{g_{\rho}^{-1}} j \text { and } i \longrightarrow \xrightarrow{1} i=0
$$

Before generalizing $\tau_{0}=0 \rightsquigarrow \tau_{1}$, will consider $\lambda_{0}=0 \rightsquigarrow \lambda_{1} \ldots$
$\lambda_{0}\left(A_{i}, A_{j}\right)=0 \Leftrightarrow \exists$ Whitney disks $W_{(i, j)}$ pairing all $A_{i} \cap A_{j}$.

$$
a, b, c \in \pi_{1} X
$$

$$
\lambda_{1}\left(A_{1}, A_{2}, A_{3}\right):=\sum \epsilon_{p} \cdot t_{p} \in \frac{\left\langle\pi_{1} X \text {-decorated order } 1 \text { Y-trees }\right\rangle}{\mathrm{AS}, \mathrm{HOL} \text { and INT relations }}
$$

sum over $p \in W_{(i, j)} \cap A_{k}$ for $i<j<k$ (cyclic ordering).

The Antisymmetry and Holonomy relations:

The AS relations make signs well-defined.

The HOL relations account for whisker choices on the Whitney disks.

The INT Intersection relations depend on A and $\pi_{2} X$ via λ_{0} :

over $S: S^{2} \rightarrow X$ representing generators for $\pi_{2}(X)$.

The INT relations account for choices of the interiors of Whitney disks.

Theorem:

1. $\lambda_{1}\left(A_{1}, A_{2}, A_{3}\right)$ only depends on the homotopy classes of the A_{i}.
2. $\lambda_{1}\left(A_{1}, A_{2}, A_{3}\right)$ vanishes if and only if A_{1}, A_{2}, A_{3} can be made pairwise disjoint by a homotopy.
3. $\lambda_{1}\left(A_{1}, A_{2}, A_{3}\right)$ vanishes if and only if $A_{1} \cup A_{2} \cup A_{3}$ admits an order 2 non-repeating Whitney tower: All $W_{(i, j)} \pitchfork A_{k}$ paired by $W_{((i, j), k)}$ for distinct i, j, k.

Open Problem:

Show that the order 2 invariant $\lambda_{2}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ is well-defined... so far only partial progress.

2-sphere $A: S^{2} \rightarrow X^{4}, \mu_{0}(A)=0 \rightsquigarrow$ framed W_{r} pairing $A \pitchfork A$.
As before, $p \in W_{r} \pitchfork A \mapsto \pi_{1} X$-decorated Y-tree t_{p}.

$$
\tau_{1}(A):=\sum \epsilon_{p} \cdot t_{p} \in \frac{\left\langle\pi_{1} X \text {-decorated order } 1 \mathrm{Y} \text {-trees }\right\rangle}{\mathrm{AS}, \mathrm{HOL}, \mathrm{FR} \text { and INT relations }}
$$

sum over all $p \in W_{r} \cap A$.
The new FR Framing relations correspond to opposite boundary-twists along different arcs of ∂W :

FR:

Theorem:

1. $\tau_{1}(A)$ only depends on the homotopy class of A.
2. $\tau_{1}(A)$ vanishes if and only if A admits an order 2 Whitney tower. (Exist framed second order Whitney disks pairing all $\left.W_{r} \pitchfork A.\right)$
3. $\tau_{1}(A)$ vanishes if and only if A admits a height 1 Whitney tower. (Exist framed W_{r} pairing $A \pitchfork A$ which have interiors disjoint from A, but may have $W_{r} \pitchfork W_{s} \neq \emptyset$.)
4. $\tau_{1}(A)$ vanishes if and only if A is stably homotopic to an embedding. (A is homotopic to an embedding in $X{ }^{n} S^{2} \times S^{2}$.)

- X simply-connected $\Rightarrow \tau_{1}(A) \in \mathbb{Z} / 2 \mathbb{Z}$ or 0 .
- Example: $A=3 \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{2} \Rightarrow \tau_{1}(A)=1 \neq 0 \in \mathbb{Z} / 2 \mathbb{Z}$.

- Quotient of target by $\pi_{1} X \rightarrow 1 \Rightarrow \tau_{1}(A) \in \mathbb{Z} / 2 \mathbb{Z}$ or 0 .
- $\lambda_{0}(A, S)=1$ for some $S \in \pi_{2} X \Rightarrow \tau_{1}(A) \in \mathbb{Z} / 2 \mathbb{Z}$ or 0 .

In these settings $\tau_{1}(A)=\mathrm{km}(A)$, the Kervaire-Milnor invariant.

Non-trivial $\pi_{1} X$ edge decorations can make the target of τ_{1} large:
$\pi_{1} X$ left-orderable and INT trivial $\Rightarrow \tau_{1}(A) \in \mathbb{Z}^{\infty} \oplus(\mathbb{Z} / 2 \mathbb{Z})^{\infty}$.

Can realize values in target of τ_{1} in 4-manifolds with non-empty boundary via framed link descriptions.
E.g. Attach a 0 -framed 2-handle H to a null-homotopic knot K in ∂ (4-ball $\cup 1$-handles), where K is created by banding together the Borromean rings with bands running around the 1 -handles, and take $A=H \cup$ null-homotopy of K.

Open Problem:

Find an example of $A \rightarrow X$, where X is closed and $\tau(A) \neq 0$ after quotient of target which kills the Y-tree with all three edges labelled by the trivial element $1 \in \pi_{1} X$.

Even after trivializing all $\pi_{1} X$-decorations, τ_{1} sees global information in closed 4-manifolds:

Theorem: (Freedman-Kirby, Kervaire-Milnor, Stong)
Suppose X^{4} is closed and $H_{2}(X ; \mathbb{Z} / 2 \mathbb{Z})$ is spherical. If $A: S^{2} \rightarrow X$ is characteristic and $\mu_{0} A=0$, then

$$
\left(\pi_{1} X \rightarrow 1\right): \quad \tau_{1} A \quad \mapsto \quad \frac{A \cdot A-\operatorname{signature}(X)}{8} \quad \bmod 2
$$

Question:

What global info is carried by the π_{1}-decorations in $\tau_{1} A$?

Strategy for proving that $\tau_{1}(A)$ is a well-defined homotopy invariant:

1. Show that $\tau_{1}(A)$ does not depend on the choice of \mathcal{W} (Whitney disk interiors, boundaries, pairings of self-intersections and preimages of self-intersections) for a fixed immersion $A \rightarrow X$.
2. Homotopy invariance follows: If A is homotopic to A^{\prime}, then exists $A^{\prime \prime}$ which differs from each of A and A^{\prime} by finger moves which can be made disjoint from all Whitney disks by a small isotopy.

Open Problem:

Formulate and prove invariance of a next order $\tau_{2}(A)$.

Hard part: Showing independence of the choice of boundaries of the order 1 Whitney disks.

