Order 1 intersection invariants in 4-manifolds

Rob Schneiderman & Peter Teichner

Lehman College CUNY & MPIM

30 Jan 2023

Before:

We used Milnor invariants to show that higher-order intersection invariants are well-defined for Whitney towers on disks in the 4-ball bounded by links in the 3-sphere.

Next:

We will define order 1 intersection invariants for Whitney towers on 2-spheres in (non-simply connected) 4-manifolds.

- Order 0 intersection form, pulling apart pairs of 2-spheres
- Order 1 intersection invariants, pulling apart triples of 2-spheres, stable embedding of *m*-tuples of 2-spheres
- Open questions

Regular homotopy =

isotopies + finger moves + (clean, framed) Whitney moves.

Arbitrary homotopy =

regular homotopy + local cusp homotopies.

Fundamental question:

"Given $A^2 \hookrightarrow X^4$, is A homotopic to an embedding?"

First obstructions to making components disjointly embedded:

The intersection invariants $\lambda(A_i, A_j) \in \mathbb{Z}[\pi_1 X]$

The self-intersection invariants $\mu(A_i) \in \mathbb{Z}[\pi_1 X]/\text{relations}$

In higher dimensions these obstructions are complete!

Intersection and Self-intersection invariants λ, μ for $A = \cup_i S^2 \stackrel{A_i}{\hookrightarrow} X^4$

$$\lambda(A_i, A_j) := \sum_{p \in A_i \pitchfork A_j} \epsilon_p \cdot g_p \in \mathbb{Z}[\pi_1 X]$$

Intersection and Self-intersection invariants λ, μ for $A = \cup_i S^2 \stackrel{A_i}{\hookrightarrow} X^4$

$$\lambda(A_i, A_j) := \sum_{p \in A_i \pitchfork A_j} \epsilon_p \cdot g_p \in \mathbb{Z}[\pi_1 X]$$

and

$$\mu(A_i) := \sum_{p \in A_i \pitchfork A_i} \epsilon_p \cdot g_p \in \frac{\mathbb{Z}[\pi_1 X]}{\mathbb{Z}[1] \oplus \langle g - g^{-1} \rangle}$$

Relations in target $\frac{\mathbb{Z}[\pi_1 X]}{\mathbb{Z}[1] \oplus \langle g - g^{-1} \rangle}$ of the self-intersection invariant μ :

- g − g^{−1} = 0 accounts for choice of orientation on loop determining g_p ∈ π₁X for self-intersections p ∈ A_i ⋔ A_i.
- 1 = 0 accounts for cusp homotopies of A_i creating/eliminating self-intersections p ∈ A_i h A_i with trivial g_p = 1 ∈ π₁X.

 λ and μ are invariant under homotopies of A (isotopies, finger moves, Whitney moves, cusp homotopies).

Can express λ and μ as sums of *decorated order zero trees*:

$$\lambda(A_i, A_j) = \sum_{p \in A_i \cap A_j} \epsilon_p \cdot i \longrightarrow j \quad \text{for } i \neq j$$

and

$$\mu(A_i) = \sum_{p \in A_i \pitchfork A_i} \epsilon_p \cdot i \xrightarrow{g_p} i$$

modulo relations:

$$i \xrightarrow{g_{p}} i = i \xrightarrow{g_{p}^{-1}} i$$
 and $i \xrightarrow{1} i = 0$

So these classical intersection invariants $\lambda_0 := \lambda$ and $\mu_0 := \mu$ can be expressed as a single order 0 'tree-valued' invariant:

$$\tau_0(A) := \sum_{p \in A_i \pitchfork A_j} \epsilon_p \cdot i \xrightarrow{g_p} j$$

modulo relations:

$$i \xrightarrow{g_{\rho}} j = i \xrightarrow{g_{\rho}^{-1}} j$$
 and $i \xrightarrow{1} i = 0$

Before generalizing $\tau_0 = 0 \rightsquigarrow \tau_1$, will consider $\lambda_0 = 0 \rightsquigarrow \lambda_1$...

 $\lambda_0(A_i, A_j) = 0 \Leftrightarrow \exists$ Whitney disks $W_{(i,j)}$ pairing all $A_i \cap A_j$.

 $a, b, c \in \pi_1 X$

 $\lambda_1(A_1, A_2, A_3) := \sum \epsilon_p \cdot t_p \in \frac{\langle \pi_1 X \text{-decorated order 1 Y-trees} \rangle}{\text{AS, HOL and INT relations}}$ sum over $p \in W_{(i,j)} \cap A_k$ for i < j < k (cyclic ordering). The Antisymmetry and Holonomy relations:

The AS relations make signs well-defined.

The HOL relations account for whisker choices on the Whitney disks.

The INT *Intersection* relations depend on A and $\pi_2 X$ via λ_0 :

over $S: S^2 \to X$ representing generators for $\pi_2(X)$.

The INT relations account for choices of the interiors of Whitney disks.

Theorem:

- 1. $\lambda_1(A_1, A_2, A_3)$ only depends on the homotopy classes of the A_i .
- 2. $\lambda_1(A_1, A_2, A_3)$ vanishes if and only if A_1, A_2, A_3 can be made pairwise disjoint by a homotopy.
- λ₁(A₁, A₂, A₃) vanishes if and only if A₁ ∪ A₂ ∪ A₃ admits an order 2 non-repeating Whitney tower: All W_(i,j) h A_k paired by W_{((i,j),k)} for distinct i, j, k.

Open Problem:

Show that the order 2 invariant $\lambda_2(A_1, A_2, A_3, A_4)$ is well-defined... so far only partial progress.

2-sphere $A: S^2 \hookrightarrow X^4$, $\mu_0(A) = 0 \rightsquigarrow$ framed W_r pairing $A \pitchfork A$.

As before, $p \in W_r \pitchfork A \mapsto \pi_1 X$ -decorated Y-tree t_p .

 $\tau_1(A) := \sum \epsilon_p \cdot t_p \in \frac{\langle \pi_1 X \text{-decorated order 1 Y-trees} \rangle}{\mathsf{AS, HOL, FR and INT relations}}$ sum over all $p \in W_r \cap A$.

The new FR *Framing* relations correspond to opposite boundary-twists along different arcs of ∂W :

Theorem:

- 1. $\tau_1(A)$ only depends on the homotopy class of A.
- 2. $\tau_1(A)$ vanishes if and only if A admits an <u>order 2</u> Whitney tower. (Exist framed second order Whitney disks pairing all $W_r \pitchfork A$.)
- 3. $\tau_1(A)$ vanishes if and only if A admits a height 1 Whitney tower. (Exist framed W_r pairing $A \pitchfork A$ which have interiors disjoint from A, but may have $W_r \pitchfork W_s \neq \emptyset$.)
- 4. $\tau_1(A)$ vanishes if and only if A is stably homotopic to an embedding. (A is homotopic to an embedding in $X \# S^2 \times S^2$.)

- X simply-connected $\Rightarrow \tau_1(A) \in \mathbb{Z}/2\mathbb{Z}$ or 0.
- Example: $A = 3\mathbb{CP}^1 \hookrightarrow \mathbb{CP}^2 \Rightarrow \tau_1(A) = 1 \neq 0 \in \mathbb{Z}/2\mathbb{Z}$.

Quotient of target by π₁X → 1 ⇒ τ₁(A) ∈ ℤ/2ℤ or 0.

• $\lambda_0(A, S) = 1$ for some $S \in \pi_2 X \Rightarrow \tau_1(A) \in \mathbb{Z}/2\mathbb{Z}$ or 0.

In these settings $\tau_1(A) = \operatorname{km}(A)$, the *Kervaire–Milnor* invariant.

Non-trivial $\pi_1 X$ edge decorations can make the target of τ_1 large:

 $\pi_1 X$ left-orderable and INT trivial $\Rightarrow \tau_1(A) \in \mathbb{Z}^{\infty} \oplus (\mathbb{Z}/2\mathbb{Z})^{\infty}$.

Can realize values in target of τ_1 in 4-manifolds with non-empty boundary via framed link descriptions.

E.g. Attach a 0-framed 2-handle H to a null-homotopic knot K in ∂ (4-ball \cup 1-handles), where K is created by banding together the Borromean rings with bands running around the 1-handles, and take $A = H \cup$ null-homotopy of K.

Open Problem:

Find an example of $A \hookrightarrow X$, where X is <u>closed</u> and $\tau(A) \neq 0$ after quotient of target which kills the Y-tree with all three edges labelled by the trivial element $1 \in \pi_1 X$. Even after trivializing all $\pi_1 X$ -decorations, τ_1 sees global information in <u>closed</u> 4-manifolds:

Theorem: (Freedman–Kirby, Kervaire–Milnor, Stong) Suppose X^4 is closed and $H_2(X; \mathbb{Z}/2\mathbb{Z})$ is spherical. If $A : S^2 \hookrightarrow X$ is characteristic and $\mu_0 A = 0$, then

$$(\pi_1 X o 1): \quad au_1 A \quad \mapsto \quad rac{A \cdot A - \mathit{signature}(X)}{8} \mod 2$$

Question:

What global info is carried by the π_1 -decorations in $\tau_1 A$?

Strategy for proving that $\tau_1(A)$ is a well-defined homotopy invariant:

- 1. Show that $\tau_1(A)$ does not depend on the choice of \mathcal{W} (Whitney disk interiors, boundaries, pairings of self-intersections and preimages of self-intersections) for a fixed immersion $A \hookrightarrow X$.
- Homotopy invariance follows: If A is homotopic to A', then exists A'' which differs from each of A and A' by finger moves which can be made disjoint from all Whitney disks by a small isotopy.

Open Problem:

Formulate and prove invariance of a next order $\tau_2(A)$.

Hard part: Showing independence of the choice of boundaries of the order 1 Whitney disks.