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1. Introduction

Advances in physics have often played an important role in the development of math-

ematics. In many cases, these advances pre-dated the relevant mathematical theory. For

example, the highly effective formalism of differential calculus as introduced by Newton

and Leibniz around 1675 did not become a rigorous mathematical theory until Cauchy

introduced the notion of limits in the 1820s. Another example is Dirac’s delta “function”

δ(x) introduced in the 1920s. It is characterized by the property that the integral over

any function f multiplied by δ has the value f(0). Clearly, such a function does not exist,

and a precise understanding of δ was not developed until Laurent Schwartz introduced

the theory of distibutions for which he was awarded the Fields Medal in 1950. Further

examples include the modern physical theories of quantum electrodynamics, quantum chro-

modynamics, or string theory. None of these theories are, to this day, based on rigorous

mathematical foundations. What is missing, from the path integral point of view, are the

Date: July 9, 2007.

1



appropriate measures on the spaces of fields. Note that these are well-defined mathemati-

cal objects in quantum mechanics: The relevant measure was defined by Wiener, and the

path integral formula for the quantum time evolution is due to Feynman and Kac. The

main simplification that arises in quantum mechanics is that the spaces of fields have finite

dimension only in this case.

In this class, we want to consider recent developments in algebraic topology related to

the quantum theories mentioned above. We will need quite a bit of background material,

and we will concentrate on the mathematical aspects.

Contents. The outline for the class is as follows:

(i) Classical field theories

• mechanics, symplectic manifolds

• Chern-Simons theory

• σ-models

(ii) Quantization

• linear quantization: Heisenberg (super) Lie algebras, Fock spaces

• geometric quantization

• path integrals

(iii) K-theory via Euclidian field theories

• Feynman-Kac formula and Wiener measure

• Dirac operators and index theorems

• super manifolds and their moduli spaces

(iv) Elliptic cohomology via conformal field theories

• von Neumann algebras and their bimodules

• fusion of bimodules

• elliptic objects

The main references are [Se1] and [ST]. References for specific topics will be given in

the corresponding sections.

2. Classical mechanics

Consider a configuration space given by a smooth manifold M . We want to study the

time evolution γ : [0, t] → M of the configuration, in the simplest case given by some

particle moving in space. In order to speak of the kinetic energy E we endow M with a

Riemannian metric g and let

E(γ(t) := g(γ̇(t), γ̇(t)) = ||γ̇(t)||2

where the mass of the particle is subsumed into the metric g. The potential energy is given

by a function U : M → R, so it only depends on the location of the particle. We describe

the three usual formalisms:
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Newton’s law. According to Newton, the time evolution is described by the equation

γ̈ = −∇U.

Here ∇U is the gradient vector field corresponding to dU under the identification TM
∼=→

T ∗M given by the metric g, and γ̈ = ∇γ̇ γ̇. Newton’s equation has a unique solution given

any initial condition (γ(0), γ̇(0)) ∈ TM .

Lagrange’s principle of least action. The classical action is a functional S : PM → R,

where PM := {γ : R→M smooth}, given by the formula

S(γ) :=

∫ b

a

L(γ(t), γ̇(t))dt

Here the Lagrangian L is the difference between the kinetic and the potential energy. The

critical points of the functional S are precisely the solutions to Newton’s equations.

Hamilton’s formalism. Define the Hamiltonian H : T ∗M → R to be the sum of the

kinetic and the potential energy. Note that the cotangent bundle T ∗M is a symplectic

manifold in a canonical way: Using the tautological 1-form α on T ∗M one obtains a

symplectic form −dα on T ∗M .

Let us describe Hamiltion’s formalism more generally for any symplectic manifold (X,ω)

equipped with a Hamiltonian H. In this situation, the smooth functions on X form a

Poisson algebra, i.e. we have a Lie bracket {f, g} compatible with the algebra structure

on C∞(X). It is defined as follows: Using the symplectic form we obtain an isomorphism

TX
ω→ T ∗X, and hence can identify df with a vector field Xf . In other words, Xf is the

vector field characterized by the relation

iXf
(ω) = Xfy ω = −df.

Then the Poisson bracket of two functions f, g is defined by

{f, g} = Xf (g) = ω(Xf , Xg) = −Xg(f) = −{g, f}

In order to describe the time evolution of the system we consider the time evolution of all

observables (a.k.a. functions) f : X → R. It is given by the equation

df

dt
(x) = {H, f}.

The relation between Lagrange’s and Hamilton’s formalism. Let M be just a

smooth manifold (’configuration space’) and L : TM → R a smooth map (’Lagrangian’).

Theorem 1. Given M and L there is

• a unique function EL : TM → R
• a unique 1-form αL on TM
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such that in local coordinates (qi, q̇i) we have

EL =
∑

i

q̇i
∂L

∂q̇i
− L and αL =

∂L

∂q̇i
dqi

Here the q̇i are the canonical coordinates on TM determined by the coordinates qi on M .

Example 2. If L is the classical Lagrange funtion coming from a metric g and a potential

U then

L(qi, q̇i) =
∑
i,j

gij(q)q̇iq̇j − U(q)

and EL is the classical Hamiltonian, i.e. the total energy

EL(qi, q̇i) =
∑
i,j

gij(q)q̇iq̇j + U(q).

Remark 3. A path γ : R → M is an extremal point of the functional S defined above if

and only if it satisfies “Newton’s law”

γ̈(t)y ωL = −dEL(γ̇(t))

an equality of 1-forms on TM along γ̇, where ωL := dαL.

Definition 4. L is non-degenerate if the matrix(
∂L

∂q̇i∂q̇j
(q, q̇)

)
i,j

is invertible for all (q, q̇).

Lemma 5. L is non-degenerate if and only if ωL is a symplectic form. Another equivalent

condition is that

(q1, . . . , qn,
∂L

∂q̇1
, . . . ,

∂L

∂q̇n
)

defines a local coordinate system on TM .

The Legendre transform is the isomorphism TM → T ∗M that is in local coordinates

given by the correspondence

(qi,
∂L

∂q̇i
)←→ (qi, pi),

where the pi are the canonical coordinates of the cotangent bundle determined by the qi.

Under this identification αL is transformed into the tautological 1-form α on T ∗M . The

function EL transforms into a function H on T ∗M , the ’Hamiltonian’.
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Noether’s theorem. Let us return to the general situation of a manifoldX equipped with

an almost symplectic structure ω (i.e. the 2-form ω is non-degenerate, but not necessarily

closed). As in the symplectic case we obtain a Poisson bracket on C∞(X) and for f ∈
C∞(X) an associated vector field Xf on X. Given a ’Hamiltonian’ f the classical solutions

are given by the flow lines of Xf . Note that by skew-symmetry of the Poisson bracket we

have Xf (f) = 0, i.e. Xf flows along level sets of f . Note that this is quite different (in fact

orthogonal) to the gradient flow known from Riemannian geometry!

The relation between symmetries and preserved quantities in classical mechanics is given

by the following theorem which in our framework is a tautology:

Theorem 6 (Noether). Let H be a Hamiltion for (X,ω), and let f ∈ C∞(X). Then the

condition {f,H} = 0 is satisfied if and only if f is a preserved quantity (i.e. XH(f) = 0).

This is also equivalent to Xf being a symmetry of the system (i.e. that Xf (H) = 0).

Furthermore, the Lie derivative satisfies LXf
(ω) = iXf

dω by Cartan’s formula. This is

equal to zero for all f if and only if ω is closed.

Integrability conditions. Let (X,ω) be an almost symplectic manifold. Then the fol-

lowing conditions are equivalent:

• (X,ω) is symplectic, i.e. dω = 0.

• The Poisson bracket satisfies the Jacobi identity.

• [Xf , Xg] = X{f,g} for all f and g. In particular, {Xf |f ∈ C∞(X)} ⊂ Vect(X) is

closed under the Lie bracket.

• ω is integrable, i.e. there are charts in which ω is locally the standard form

d(
∑

i

pidqi) =
∑

i

dpi ∧ dqi.

The last item is the only hard part of the theorem and it is known as Darboux’s theorem.

Let us compare the situation with the case of almost complex manifolds (X, J). Here J

is a selfmap of TX such that J2 = − id. Then the following conditions are equivalent:

• The Nijenhuis tensor of J vanishes.

• LJ ⊂ Vect(X)⊗C is closed under the Lie bracket. Here LJ is the (+i)-eigenspace

of J ⊗ id.

• J is integrable, i.e. there are J-holomorphic charts making X into a complex man-

ifold. This means that J is locally the standard complex structure on Cn.

The relation between almost symplectic and almost complex manifiolds is given by the

following proposition where a hermitian structure on X is defined to be an almost com-

plex structure with a hermitian product on each tangent space. This is equivalent to a

compatible almost symplectic structure as explained below.

Proposition 7. The following conditions are equivalent:
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• X has an almost symplectic structure.

• X has a almost complex structure.

• X has a hermitian structure (i.e. X is almost Kähler).

Why is this true? Equipping X2n with an almost symplectic or almost complex structure

corresponds to reducing the structure group of TX from GL2n(R) to Sp2n(R) or GLn(C),

resp. The point is that we can always equip X with a Riemannian metric, reducing its

structure group to O2n. However, the interections of the symplectic and the complex

general linear group with O2n are equal, namely to the unitary group,

Sp2n(R) ∩O2n = GLn(C) ∩O2n = Un ⊂ GL2n(R).

If h is a hermitian inner product then its real part is a positive definite inner product g

and its imaginary part is a nondegenerate skew form ω that are related by

g(v1, v2) = ω(v1, Jv2)

Remark 8. It is not possible to omit the word ’almost’ in the proposition: The corre-

sponding integrability conditions are distinct in all three cases.

Examples 9. We want to explain how to obtain symplectic manifolds as coadjoint orbits

(in fact, all these examples are Kähler). Let G be a Lie group and G→ GL(g∗) the action

dual to the adjoint action of G on g (’coadjoint action’).

Lemma 10. For each ξ ∈ g∗ there is a unique G-equivariant symplectic structure on the

coadjoint orbit Oξ := G · ξ ⊂ g∗ determined by

φ∗(ωξ) = dαξ,

where φ : G � G/Gξ
∼= Oξ denotes the quotient map, and αξ is the left-invariant 1-form

on G determined by αξ(e) = ξ. Here e ∈ G the identity element and Gξ is the stabilizer of

ξ.

Proof. Let us check that the form ωξ is indeed well-defined and non-degenerate at the

identity element. For v1, v2 ∈ g we have

(dαξ)e(v1, v2) = α([v1, v2]) = (v1(α))(v2),

where v1(α) is the coadjoint action of v1 ∈ g on α ∈ g∗. Hence for fixed v1 we have

(dαξ)e(v1, v2) = 0 for all v2 ∈ g ⇐⇒ v1(α) = 0 ⇐⇒ v1 ∈ gξ,

where gξ is the Lie algebra of the stabilizer Gξ. This shows that ωξ is well defined and

non-degenerate on the quotient g/gξ and hence it can be extended to a G-equivariant

symplectic form on the coadjoint orbit Oξ = G/Gξ. �
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As a special case, consider G = Un. Using the pairing

un × un → R, (x, y) 7→ Re(trace xy)

we can identify un with its dual. After conjugation we can assume that our element ξ ∈ un

is diagonal, i.e.

ξ =


ia1

.

.

ian


with ak ∈ R. Clearly, the orbit depends on the stabilizer of the action of Un at ξ. For

example, if all ak are distinct, then the stabilizer is the maximal torus T n = U1 × ...× U1.

Hence in this case we obtain flag manifolds. In the general case we have diagonal entries

ar with mulitplicity nr. Hence the corresponding coadjoint orbit is then the quotient of Un

by the stabilizer Un1 × ... × Unr . For example, if exactly n − 1 of the ak are equal we get

Un/U1 × Un−1, i.e. complex projective space of dimension n− 1.

Example 11. Let us consider the case G = SU2 more in detail. Again, we have su2
∼=

su∗2, so we can think of su∗2 as the skew-hermitian matrices with vanishing trace. Up to

conjugation, a general element is of the form

ξ =

(
ia1 0

0 ia2

)
, where ai ∈ R, a1 + a2 = 0.

If a1 6= 0 the stabilizer is a circle U1 so that

Oξ = CP1(a1) = SU2/U1,

where the latter notation expresses the dependence of the symplectic structure on a1. Since

the cases ±a1 are symmetric, we can assume a1 > 0. Since the form ωξ is SU2-equivariant it

is determined by its restriction to the tangent space at one point. Hence the only parameter

is a scaling factor a1 > 0, and this factor classifies the symplectic manifold CP1(a1). Note

that a1 is the volume of CP1(a1) and that the limit of a1 7→ 0 is indeed giving a single

point (= SU2/SU2).

Lemma 12. The coadjoint G-orbits are in 1-1-correspondence with g∗/G. Moreover,

g∗/G = HomRings(S(g)G,R),

where S(g)G denotes the G-invariant polynomial functions on g∗.

For example, in the case of SU2, S(g)G are all even degree polynonials in one variable.

The reason why part this lemma is interesting for us is the following difficult
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Theorem 13 (Harish-Chandra, Kirilov, Duflo). There is a bijection between S(g)G and

the center Z(g) of the universal enveloping algebra U(g) of g.

Remark 14. Given an irreducible unitary representation of g we get an irreducible *-

representation of U(g) which gives a ’character’ in HomRings(Z(g),C). Hence we obtain

an embedding of irreducible representations of g into the coadjoint G-orbits. Once we get

to the concept of geometric quantization, we can say more about the question what it

means for the coadjoint orbit to come from an integrable representation, namely one that

comes from a representation of the group G. These will be the integral coadjoint orbits.

Theorem 15. If X is a symplectic manifold with a transitive Poisson action by a connected

Lie group G, then X is a covering of a coadjoint orbit.

Before we explain the proof, we need to define the notion of a Poisson action. For every

symplectic manifold (X,ω) there is an exact sequence

0 −→ H0
dR(X) −→ C∞(X) −→ sp(X,ω) −→ H1

dR(X) −→ 0

Here sp(X,ω) is the Lie algebra of symplectic vector fields ξ on X, i.e. ξ’s that satisfy

Lξ(ω) = 0. The arrow from C∞(X) to sp(X,ω) is given by associating to f the corre-

sponding Hamiltionian vector field Xf . The map to H1
dR(X) is given by mapping ξ to ξyω.

Exactness at sp(X,ω) follows easily from Cartan’s formula. If G acts on (X,w) we can

differentiate to obtain a Lie algebra homomorphism

ρ : g→ sp(X,ω)

Definition 16. We call the action of G

• Hamiltonian if ρ maps into the the sub Lie algebra of hamiltonian vector fields on

X.

• Poisson if in addition ρ lifts to a Lie algebra map to C∞(X). The lift is part of

the datum of a Poisson action.

Remark 17. A symplectic G-action is Hamiltonian if any one of the following condition

holds:

• H1
dR(X) = 0,

• H1(g) = 0 ⇐⇒ g = [g, g],

• ω = dα and the G-action preserves α. This is true, since in this case we have for

a ∈ g that 0 = La(α) = diaα+ iadα = iadα. Hence, ia(ω) = ia(dα) = 0 ∈ H1
dR.

Remark 18. A Hamiltonian G-action is Poisson if any one of the following condition

holds:

• X is compact,
8



• H2(g) = 0, i.e. all central extensions are trivial,

• ω = dα and the G-action preserves α. In this case, we can define

g→ C∞(X) by a 7→ α(ρ(a)).

Examples 19. (i) Let G = S1 × S1 = R2/Z2 act on itself by translation. Here we

consider the symplectic form dx ∧ dy on S1 × S1. This action is not Hamiltonian:

For example, the generator ∂x ∈ g of the action maps to 0 6= [dy] ∈ H1
dR.

(ii) Now consider the translation action of R2 on itself, where we again look at the form

ω = dx∧ dy. Since R2 is contracible, this action is clearly Hamiltionian. However, it

is not Poisson: Possible lifts for ∂x and ∂y are the functions y+ c1 and x+ c2. Hence

we cannot lift g→ sp(R2, ω) to a Lie homomorphism g→ C∞(R2), since [∂x, ∂y] = 0,

but {x+ c2, y + c1} = 1 6= 0.

(iii) In order to make the last example work, we introduce the Heisenberg group Heis: It

is the central extension of R2 whose Lie algebra has exactly the commutator relations

we need in example (ii). More explicitly, Heis is the subgroup of GL3(R) of upper

triangular matrices with all diagonal entries equal to 1. It fits into an exact sequence

0 −→ R −→ Heis −→ R2 −→ 0,

and the first R in the sequence is the center of Heis. Correspondingly, for the Lie

algebra heis we have

0 −→ R =< z >−→ heis −→ R2 =< x, y >−→ 0,

and the generators x, y, z satisfy the commutator relations

[x, z] = 0, [y, z] = 0, and [x, y] = z.

From this description it is clear that Heis acts on R2 with a Poisson lift.

Definition 20. The moment map of a Poisson action is the map

µ : X → g∗, x 7→ (a 7→ λ(a)(x)),

where λ : g → C∞(X) is the chosen lift of the Poisson action of g. λ is sometimes called

the comoment map.

Remark 21. If G is connected, it follows from the fact that λ is a Lie homomorphism

that µ is G-equivariant.

Proof of Theorem 15. Since G acts transitively on X and since µ is G-equivariant, we see

that the image of µ is exactly a single G-orbit Oξ ⊂ g∗. This implies that the dimension

of X is bigger or equal to the dimension of Oξ. Moreover, the momemt map preserves the

symplectic structures and therefore is must be injective on each tangent space. Therefore,

it is a submersion with 0-dimensional fibres, and hence a covering. �
9



Exercise 1. Sept. 17

(i) Show that the G-action on coadjoint orbits is a Poisson action.

(ii) Verify that the formula in Remark 18 for the case ω = dα indeed defines a Poisson

action.

(iii) Show that a coadjoint orbit Oξ = G/Gξ is integral, i.e. the corresponding symplec-

tic form comes from integral cohomology, if there is a character Gξ → S1 whose

derivative is the restriction of ξ to the Lie algebra gξ of Gξ.

Symplectic reduction. We end this section on classical mechanics by mentioning a beau-

tiful construction of forming quotients in the symplectic category. Note that naive quotients

of symplectic manifolds cannot in general stay symplectic: the dimension might actually

become odd. So one needs to find a formalism in which the group is “divided out twice”.

Consider a Poisson action of G on (X,ω) with moment map by µ. Let α ∈ g∗ such that

π : µ−1(α) � µ−1(α)/Gα =: X �G

is a submersion of manifolds. Then

Theorem 22. X �G carries a canonical symplectic structure ωα that is determined by

π∗(ωα) = ω|µ−1(α).

Examples 23. (i) Let X = Cn with the canonical symplectic structure. Then the

action of G = S1 by scalar multiplication is Poisson: Differentiating the action one

finds that the Lie algebra generator ∂x ∈ s1 maps to the vector field z 7→ iz. This is

the Hamiltonian vector field coming from the function

f(z) =
1

2

∑
j

zj z̄j.

Hence the preimage of an element α ∈ R = (s1)∗ is the sphere with radius
√

2α

(empty when α < 0 and equal to a point for α = 0). Hence we obtain symplectic

structures on complex projective space,

Cn � S1 = CPn−1
α = S2n−1√

2α
/S1.

(ii) Let G be a Lie group and consider X = T ∗G with its canonical symplectic structure

and G-action. This action is Poisson and for α ∈ g∗ the preimage of α under

the moment map µ−1(α) ⊂ T ∗G ∼= G × g∗ is the graph of the G-invariant 1-form

corresponding to α. Hence

T ∗G �G = µ−1(α)/Gα
∼= G/Gα = Oα ⊂ g∗

is the coadjoint orbit of α.
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3. Quantization

In this section we will make the step from classical to quantum mechanics. It turns out

that quite a bit of representation theory comes in, namely of the Heisenberg group. This is

a noncompact Liegroup where the interesting representations are all infinite dimensional.

From a mathematical point of view, the representation theory of compact groups is slightly

easier because the irreducible representations are finite dimensional and the relevant sym-

plectic manifolds are compact.

From the last section we know that there is an injective map that associates to each

irreducible unitary representation of a compact Lie group G a coadjoint G-orbit. In this

section we want to find out which orbits are integral in the sense that they come from a

representation ofG. On such orbits we will define a map (’quantization’) back to irreducible

representations of G which is the content of Borel-Weil theory. The natural generalization

of this to nilpotent groups, like the Heisenberg group, is Kirillov theory and will be more

relevant for quantum mechanics.

Definition 24. A symplectic form ω on a manifold X is integral if the class [ω] ∈
H2

dR(X) ∼= H2(X; R) is integral, i.e. lies in the image of H2(X; Z). This is the case if

and only if for every closed orientable surface Σ and smooth map f : Σ→ X we have the

condition of integral periods: ∫
Σ

f ∗(ω) ∈ Z.

Theorem 25. Let (X,ω) be a symplectic manifold.

(i) The form ω is integral if and only if it is the curvature form of a unitary connection

on a line bundle L→ X.

(ii) The line bundle L (with connection) is uniquely determined up to a flat line bundle

over X, i.e. if L′ is another such bundle, then L′ ∼= L⊗ Lflat.

(iii) Flat line bundles over X are (up to isomorphism preserving the connection) classified

by their holomony, i.e. by an element in

Hom(π1(X), S1) ∼= Hom(H1(X), S1) = H1(X;S1).

A line bundle as above is sometimes called a prequantum line bundle. We will always

consider it as a bundle together with a unitary connection. We obtain the following diagram

of exact sequences of Lie algebras respectively Lie groups, connected by the exponential

map.

0 H0(X; R) C∞(X) sp(X,ω) H1(X; R) 0

0 H0(X;S1) Aut(L) Sp(X,ω) H1(X;S1) 0,

// //

��

//

��

//

��
exp

//

��
// //central // // //
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where L is a prequantum line bundle for ω. The group Aut(L) consists of all automor-

phisms of L (that preserve the connection) but which are allowed to act by a nontrivial

diffeomorphism of the base X. Since the curvature ω of the connection must be preserved

by such a diffeomorphism, we obtain the middle map in the second row. The first map is

the inclusion of those automorphisms which are the identity on the base, and hence can

only act by a scalar that is constant on connected components of X. Finally, the last map

takes a diffeomorphism f to the (holonomy of the) flat line bundle L̄⊗ f ∗(L).

Example 26. If it happens that there is a symplectic potential θ, i.e. a 1-form with dθ = ω

then on can choose the line bundle L to be trivial and a connection that is determined by

the covariant derivative (acting on complex valued functions on X)

∇X = X + iθ(X)

Prequantization. Before we get to canonical and geometric quantization we present a

nice mathematical formalism that associates to every symplectic manifold (X,ω) a complex

Hilbert space H and a Lie algebra homomorphism

O : C∞(X) −→ (essentially) skew-adjoint operators on H

such that O(1) = i11H .

Remark 27. Physicists usually consider self-adjoint operators associated to real valued

functions (‘observables’) and therefore replace the Lie homomorphism condition by

O(f1)O(f2)−O(f2)O(f1) = −i~O({f1, f2}).

Note that self-adjoint operators don’t form a Lie algebra, that’s why the constant i comes in.

This is not an important issue because multiplication by i induces a bijection between skew-

adjoint and self-adjoint operators. We shall also ignore Planck’s constant ~ in our discussion

because it can be subsumed as a factor into the symplectic form. Note however, that the

condition O(1) = i11H is essential from the physical point of view since it implements

Heisenberg’s uncertainty principle into the formalism.

Theorem 28. If (X,ω) is integral, then a natural prequantization (H,O) exists.

Proof. The first idea that comes to mind is to set H = L2(X; C), O(f) = Xf . Then O is

a Lie homomorphism, but does not satisfy the required normalization condition (‘Heisen-

berg’s uncertainty principle’). In a second attempt we could introduce a correction term

that fixes the normalization: If one takes O(f) = Xf + imf , where mf is the multipli-

cation operator defined by f , we have O(1) = i11H , but, unfortunately, this is not a Lie

homomorphism any more. Computing the commutators in this case leads to the definition

O(f) = Xf + i(mθ(Xf ) +mf )
12



that satisfies both requirements under the additional assumption that ω = dθ for some

1-form θ. Recall from Example 26 that the first two terms are nothing by the covariant

derivate ∇Xf
acting on sections of the trivial bundle. It is thus natural to define

O(f) := ∇Xf
+ imf

acting on sections of a prequantum line bundle π : L → X. This clearly satisfies O(1) =

i11H and since commutators can be calculated locally, it is also a Lie homeomorphism.

To explain this a little better, recall that the pullback of ω to L is equal to dA, where A

is the curvature of the connection on L. Hence in this case π∗ω is exact and we can apply

the above construction to the circle bundle (S(L), π∗ω). More precisely, we don’t consider

all functions on S(L) but only those that are S1-equivariant with respect to the to natural

S1 actions on range and domain. These functions can be identified with sections of L and

hence we define our Hilbert space to be

H := ΓL2(L
π→ X)

on which the above operators O(f) = ∇Xf
+ imf act in the desired way. �

Example 29. If (X,ω) is linear, i.e. X is a vector space with a skew-form ω, then ω is

exact. We can choose θ so that it is determined by ω (and hence natural for the symplectic

group) and satisfies

(vyθ)(x) = −ω(v, x), ∀v, x ∈ X.
Here we think of v as a constant vector field on X and of x as a point in X. Conceptually,

the above formulas can be interpreted as follows: The skew-form ω on the vector space X

can be thought of as a 2-form ω̄ ∈ Ω2(X) on the manifold X that is constant in x ∈ X:

ω̄x(v1, v2) = ω(v1, v2) ∀vi ∈ X = TxX.

Alternatively, ω gives a 1-form θ ∈ Ω1(X) that varies with x ∈ X according to the formula

θx(v) = ω(x, v) ∀v ∈ X = TxX.

A geometric way to explain the appearence of the Heisenberg group is to note that the

translations Tx, x ∈ X, do not leave θ invariant and hence they don’t preserve the unitary

connection d+ iθ (on the trivial line bundle over X).

What happens to linear functions v ∈ X ∼= X∗ ⊂ C∞(X) under prequantization? We

can act on (complex valued) functions on X and use the simple formula

O(f) = Xf + i(mθ(Xf ) +mf )

Computation yields that to v we associate the operator

∂

∂v
+ 2imv.
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on L2(X; C). However, this is not the answer one expects from quantum mechanics as we

shall explain next.

If X is a symplectic vector space, then the constant plus the linear functions

R · 1⊕X∗ ⊂ C∞(X)

form a sub Lie algebra of the Poisson algebra for (X,ω).

Definition 30. By definition, this is the Heisenberg Lie algebra heis(X,ω) associated with

(X,ω). It is a central extension of the two trivial Lie algebras R · 1 and X∗ ∼= X with the

canonical commutation relation

[v, v′] = ω(v, v′) · 1 ∀ v, v′ ∈ X

The corresponding Lie group Heis(X,ω) is also a central extension

1 −→ R −→ Heis(X,ω) −→ (X,+) −→ 1

but in the category of Lie groups. Note that the exponential map is the identity! In the

following, we will sometimes also consider a slightly modified Heisenberg group in which

X is centrally extended by a circle T instead of R. Hence, in this case we have an exact

sequence

1 −→ T −→ HeisT(X,ω) −→ (X,+) −→ 0,

and the multiplication of two elements in HeisT(X,ω) = T×X is given by

(z1, v1) · (z2, v2) = (z1z2e
iω(v1,v2), v1 + v2)

From the calculations above it follows that the prequantization procedure produces a

(unitary) representation of the Heisenberg Lie algebra determined by

U(v)(Ψ)(x) = Ψ(x+ v) · eiw(v,x)

for x, v ∈ X and Ψ ∈ L2(X; C). This is the natural implementation of the translation

symmetries of a linear symplectic manifold. From a physical point of view, however,

this representation is not satisfying: It is highly reducible even in the case of X = R2,

i.e. where the classical system is the phase space of an elementary particle moving in one

real dimension. It is a principle going back to Wigner that ‘elementary classical systems’,

i.e. homogenous symplectic manifolds, should quantize to irreducible representations of the

symmetry group. Since the translations act transitively on our vector space X, we are

really looking for an irreducible representation of the Heisenberg group. This leads us to

an attempt of “cutting down the prequantum Hilbert space by half the dimensions”.

14



Canonical quantization. Let again (X,ω) be a symplectic vector space. We choose a

splitting of X into position and momentum subspaces (they are real Lagrangians)

X = M ⊕M∗

such that ω vanishes on M and M∗ and is the natural evaluation on pairs of vectors from

M and M∗. Then the Heisenberg group HeisT(X,ω) acts unitarily on L2(M ; C) as follows:

• a central z ∈ T acts by multiplication with the constant function z.

• M acts by translation.

• ϕv ∈M∗ = Hom(M,R) acts by multiplication: ϕv(ψ) = eiϕvψ.

On the Lie algebra level this means that the central element 1 acts as the identity, v ∈M
acts as ∂

∂v
, and ϕ ∈M∗ acts by multiplication imϕ. One checks the relevant relation

[
∂

∂v
,mϕ] = ϕ(v) · 1.

Remark 31. Unlike for prequantization, this Lie algebra action does not extend to an

action of the whole Poisson algebra C∞(X). We shall see below that it does extends

to quadratic functions Sym≤2(X) which contains quadratic potentials (and the Fourrier

transform). However, the action of Sym2(X) is not the one predicted by the prequantization

rules since second order operators arise.

Theorem 32. (Stone-von Neumann)

(i) L2(M ; C) is an irreducible unitary representation of HeisT(X,ω).

(ii) It is the unique irreducible unitary representation of HeisT(X,ω) where T acts natu-

rally (i.e. by multiplication).

(iii) More generally, every irreducible unitary representation of Heis(X,ω) is isomorphic

to exactly one of the following two families:

Hλ, λ ∈ R r {0}, or Hα, α ∈ X∗.

The Hα are exactly the 1-dimensional representations (that are trivial on the center).

All Hλ are infinite-dimensional and determined by the scalar λ so that an element

t · 1 in the center acts by multiplication with e2πitλ. The representations that factor

through HeisT(X,ω) are those with λ ∈ Z and L2(M) corresponds to λ = 1.

As a consequence, there is a 1-1-correspondence between unitary irreducible representa-

tions of Heis(X,ω) and coadjoint Heis(X,ω)-orbits: Firstly, there are point orbits for each

α ∈ X∗ ⊂ heis∗. If α ∈ heis∗ is off this linear subspace, i.e. if α(1) 6= 0, then the orbit is

the codimension one affine space parallel to X∗ and determined by

λ := α(1) 6= 0.

This result is a special case of Kirrilov’s bijection between coadjointG-orbits and irreducible

unitary representation for any 1-connected nilpotent Lie group G.
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Remark 33. It follows from the theorem that the linear symplectic automorphism group

Sp(X,ω) of X acts projectively on each irreducible Hλ, e.g. on L2(M). This is the usual

intertwining argument that goes as follows: Each g ∈ Sp(X,ω) clearly induces an auto-

morphism ag of Heis(X,ω) and therefore one may use ag to get a new “twisted” action on

Hλ. But by the uniqueness part of the theorem, this twisted action must be isomorphic

to the untwisted one, i.e. there must be unitary intertwiners Ug : Hλ → Hλ satisfying the

following identity of operators on Hλ:

ag(h) = Ug ◦ h ◦ U∗
g ∀ h ∈ Heis(X,ω), g ∈ Sp(X,ω).

By Schur’s lemma, the Ug are unique up to phase and hence it follows from the composition

property of the ag that g 7→ Ug is a projective representation of Sp(X,ω). We shall see

later it is a 2-fold covering, the metaplectic group, that acts without projective anomaly.

Note that by construction we actually constructed a projective representation Hλ of the

semidirect product of Heis(X,ω) and Sp(X,ω). This explains the discussion of Remark 31,

namely that we have representations of Sym≤2(X), the Lie algebra of the above semidirect

product. To prove this, we need to show that the Lie algebra of Sp(X,ω) is isomorphic to

the space of quadratic functions Sym2(X) on X. This isomorphism is simply given by

A 7→ (x 7→ ω(x,Ax)).

Remark 34. The appearance of unbounded operators on the Lie algebra level is unavoid-

able: The commutator relation PQ−QP = 11 does not posses bounded solutions.

Example 35. Let us look at the easiest example (X,ω) = (R2, dx ∧ dy). In this case

H = L2(R; C) and the canonical (self-adjoint) generators act as

P = i∂x and Q = mx,

This is essentially the one-dimensional harmonic oscillator: If we define the creation and

annihilation operators

a :=
1√
2
(P + iQ) and a∗ :=

1√
2
(P − iQ),

then we can write the ‘total energy’ as

E :=
1

2
(−∂2

x +mx2) =
1

2
(P 2 +Q2) = a∗a+

1

2
.

One easily checks that the relation [a∗, a] = 11 follows from [P,Q] = i11.

Lemma 36. Let Ω := e−
1
2
x2 ∈ L2(R) be the ‘vacuum vector’. Then

(i) a∗Ω = 0 and [a∗, an] = n · an−1,

(ii) E(anΩ) = (n + 1
2
) · (anΩ), and these are, up to scalar multiples, all Eigenvectors of

E.
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(iii) anΩ, n ∈ N, is an orthogonal basis for L2(R).

(iv) The standard generators of sl2 = sp2 act on L2(R) as

i

2
P 2,

i

2
Q2, and

i

2
(PQ+QP ),

where so2 ⊂ sl2 comes from E. (This implies e2πiE = −1, so only the double cover

of SL2(R) acts; this is the metaplectic group.)

Proof. We leave the calculations in (i),(ii), (iv) to the reader. To prove the second assertion

in (ii) one first needs to verify that, up to scalars, Ω is the only L2-Eigenvector of E with

(minimal) Eigenvalue (‘energy’) 1
2
. Since Ω is nowhere vanishing, we can write any other

Eigenvector as uΩ. Plugging into the Eigenvalue equation leads to

∂2
x(u) = 2x · ∂x(u) and hence ∂x(u) = cex2

Unless c = 0, it follows that u(x) > c′ex2
and hence uΩ does not lie in L2. As a consequence,

we also know that Ω spans the line annihilated by a∗. It follows that anΩ are, up to scalars,

the only Eigenvectors of E: If v was another Eigenvector, then we can apply powers of

a∗ to produce new Eigenvectors of smaller energy, one unit per power smaller; this follows

directly from the commutation relations. This process either ends at zero (showing that

the spectrum of E is indeed 1
2
+ N) or at (a multiple of) Ω in which case we may conclude

that v was (a multiple of) anΩ to begin with.

Finally, to prove (iii), we can use the spectral decomposition of L2(R) with respect to the

essentially self-adjoint operator E. �

Remark 37. The lemma implies that we have a subspace

L2(R) ⊃ Halg :=
⊕
n∈N

span(anΩ) ∼= C[a] · Ω

on which a acts by ma and a∗ acts by ∂a, satisfying the relevant commutator relations,

i.e. giving a representation of the complexified Heisenberg Lie algebra. Moreover, there is

a unique inner product on Halg for which Ω has the right length and ma is the adjoint of

∂a. Then the Heisenberg group acts on the completion and thus this process reduces its

representation theory to pure algebra. We shall explain how this can be generalized as

soon as we get to complex polarizations.

This algebraic subspace is similar to the subspace of K-finite vectors V alg in a represen-

tation V of a non-compact group G, where K is a maximal compact subgroup of G. Here

V alg consists of those vectors in V that are contained in a finite dimensional K-invariant

subspace. As in our example, the group G usually doesn’t preserve V alg but the Lie algebra

g does. One studies representations V by looking at the action of the pair (K, g) on V alg.
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Bosonic Fock spaces. Now let us try to imitate the above construction for the one-

dimensional harmonic oscillator in the case of an arbitrary symplectic vector space (X,ω),

possibly infinite dimensional. Consider the complexified Heisenberg Lie algebra, heisC :=

heis⊗C, and choose a complex Lagrangian L ⊂ XC (see definition 40 below). In particular,

there is a hermitian inner product on L given by

〈`1, `2〉 := i · ωC(¯̀1, `2)

Now define the bosonic Fock space as the symmetric algebra on L, thought of as a quotient

of the tensor algebra T (L), i.e. as the polynomial functions on L̄:

FL := Sym(L) =
⊕
n∈N0

Symn(L) =: Pol(L̄),

the last identification being given by sending a ∈ L to the function x 7→ 〈x̄, a〉 on L̄.

Define an action of heisC on FL as follows (check that the relevant commutation relations

are satisfied!):

• The center acts by multiplication.

• a ∈ L acts by the creation operator ma, i.e. by multiplication with a. It maps a

tensor a1 · · · · · an to a · a1 · · · · · an.

• ā ∈ L̄ acts by the annihilation operator, i.e. the derivation ∂a (of degree −1) deter-

mined in degree one by ∂a(b) = ω(ā, b) for b ∈ L.

We put the usual inner product on FL: The spaces Symn(L) of degree n polynomials are

orthogonal and the inner product of a1 . . . an and b1 . . . bn is given by the sum over all

permutations
1

n!

∑
σ∈Sn

∏
i

〈aσ(i), bi〉

It is easy to check that the annihilators are then adjoint to the creators: m∗
a = ∂a ∀a ∈ L.

Lemma 38. This action makes the Fock space FL into an irreducible heisC-module.

Proof. Let M ⊆ FL be a nontrivial submodule and pick 0 6= m ∈ M . Then m contains

a homogenous term of highest degree n. After applying the appropriate n annihilation

operators we get a nontrivial multiple of the vacuum vector 1 ∈ Sym0(L). By applying

sequences of creators to 1 we see that M = FL. �

There is also a complexified Heisenberg group HeisC(X,ω); it is a central extension of

XC by C× with the usual commutation relations, e.g. for a, b ∈ L we have

āḃ = e−〈a,b〉 ḃ̄a

One gets a representation of this group on Hol(L̄) by letting a ∈ L act by multiplication

(a · f)(b̄) := e−〈a,b〉f(b̄)
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and ā ∈ L̄ by translations

(ā · f)(b̄) := f(b̄− ā)
It is shown in [PS, Prop.9.5.8] that HeisC acts unitarily on the subspace F̂L of Hol(L̄), the

Hilbert space completion of our Fock space FL. Moreover, this representation is irreducible

and hence by Theorem 32 it gives a different description of L2(R) for the case X = R2

discussed above.

Remark 39. If X is finite dimensional, Theorem 32 implies that the above representations

F̂L are independent of the Lagrangian L. However, in infinite dimensions, this no longer

holds. In fact, the Siegel-Naimark theorem implies that two such representations are

unitarily equivalent if and only if the two Lagrangians differ by trace-class operators. More

precisely, we need to replace Lagrangians by complex structures on X as in Lemma 41

before we can take ‘differences’. If one is interested in representations of the Heisenberg

Lie algebra, instead of the Lie group, then a similar criterion holds with trace class replaced

by Hilbert-Schmidt operators.

4. Geometric quantization

We now introduce the method of geometric quantization. The main problem with pre-

quantization was that the associated representation was reducible, violating the physicists

paradigm that elementary systems, i.e. homogeneous symplectic manifolds, should quan-

tize to irreducible representations. In the case of a linear space (X,ω) the formalism of

canonical quantization solved the problem. Now we will generalize it to the non-linear

case. We need the following

Definition 40. Let (X,ω) be a symplectic vector space.

(i) A real Lagrangian is an isotropic subspace L ⊂ X, i.e. a subspace on which the

symplectic form vanishes, and which is maximal with respect to this property. In

finite dimensions, the maximality means that L has half the dimension of X and in

infinite dimensions one should require a second isotropic subspace L′ such that L and

L′ span X.

(ii) A complex Lagragian is an isotropic subspace L ⊂ XC of the complexification

(XC, ωC) such that L̄⊕ L = XC and

i · ωC(¯̀, `) > 0

for all 0 6= ` ∈ L.

Note that real Lagrangians can be tensored to give Lagrangians L in XC satisfying L̄ = L.

This is the ‘opposite’ property of complex Lagrangians but it allows us to always work in

the complexification. There is also a mixed case which we shall not study here.
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Lemma 41. If X is finite dimensional, there are canonical bijections (actually, isomor-

phisms of complex manifolds) between:

• The space of complex Lagrangians of (X,ω),

• complex structures J : X → X compatible with ω in the sense that

ω(Jx, Jy) = ω(x, y) and ω(Jx, x) > 0,∀x 6= 0

• symmetric linear maps A : MC → MC whose imaginary part is positive definite.

This requires the choice of a real Lagrangian M ⊂ X. The space of such “complex

Gaußian’s” is also called “Siegel’s generalized upper half plane”.

• symmetric linear maps B : W → W ∗ whose operator norm is smaller than 1. This

requires the choice of one complex Lagrangian W . The set of such B’s is “Siegel’s

generalized unit disc”.

The last description gives an open, bounded subspace of Cn(n+1)/2 if dimX = 2n. This

shows most easily that these spaces are contractible.

Proof. The proof is straight forward, for example, the map from complex structures to

Lagrangians is given by mapping J to its (+i)-Eigenspace. Moreover, a symmetric map

A : MC →MC gives a Lagrangian via its graph. �

Definition 42. A (real respectively complex) polarization of a symplectic manifold (X,ω)

is an integrable complex distribution P ⊂ TCX such that Px is a (real respectively complex)

Lagragian for all x ∈ X.

Remark 43. Recall that a complex distribution P is integrable if and only if ∂̄2 = 0 where

the Dolbeaux operator ∂̄ is associated to P via the decomposition of the deRham operator

d = ∂ + ∂̄ : Ω0(X; C) −→ Ω1,0 ⊕ Ω0,1.

Here Ω1,0 is defined by P , thought of pointwise as a complex Lagrangian in TxX ⊗ C.

On any symplectic manifold, we can locally always find a real symplectic potential, i.e. a

1-form θ0 with dθ0 = ω but in the Kähler case it is better to work with complex potentials.

For simplicity, let us work in local coordinates (p, q) on R2 to explain this point. Here we

have ω = dp ∧ dq and we may choose the real potential to be

θ0 = 1/2(pdq − qdp).

Write z = p+ iq for the complex structure and define the Kähler potential by

K(z) := 1/2(zz̄)

Then it is easy to check that θ := i∂K = i/2(z̄dz) is a symplectic potential:

dθ = d(i∂K) = i(∂ + ∂̄)∂K = i∂∂̄K = 1/2(dz ∧ dz̄) = dp ∧ dq = w.
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This complex potential θ differs from the above real potential θ0 by the complex 1-form

(i/2)dK. Geometrically, this means that the connection d + iθ (on the trivial line bundle

over R2) is not unitary but it can be identified with the unitary connection d + iθ0 by

multiplying with the ‘Gaußian’ function e−K . This explains the appearence of this function

in section 4. We note that on any Kähler manifold, one can locally find a Kähler potential

function K satisfying

ω = i∂∂̄K

and that the corresponding Gaußian appears naturally in the L2-inner products.

Now let (X,ω) be an integral symplectic manifold, and let L be the associated pre-

quantum line bundle. Recall that L comes equipped with a Hermitian metric and a unitary

connection ∇ with curvature ω. Furthermore, let P be a complex polarization of (X,ω).

Define the geometric quantization of the quadruple (X,L,∇, P ) by

HP := { s ∈ ΓL2(L) | ∇ξ̄(s) = 0 for all ξ ∈ Γ(P ) }

HP is the completion of square-integrable C∞-sections ΓP (L) with respect to a suitable

L2-norm. Consider the subspace of functions

C∞
P (X) := { f ∈ C∞(X,C) | ξ̄(f) = 0 for all ξ ∈ Γ(P ) }.

Lemma 44. The prequantization action of C∞
P (X) ⊂ C∞(X,C) on Γ(L) preserves the

subspace ΓP (L).

Proof. Assume ∇ξ̄(s) = 0. Then for f ∈ C∞
P (X) we have

∇ξ̄(O(f)(s)) = ∇ξ̄(∇Xf
+ imf )(s) = ∇ξ̄∇Xf

(s) + i∇ξ̄(f · s).

Using the Leibniz rule and the assumptions on f and s one sees that the last term vanishes.

The first term can be simplified by using the definition of curvature:

∇ξ̄∇Xf
(s) = ∇Xf

∇ξ̄(s) + ω(ξ̄, Xf ) · s = 0− ξ̄(f) · s = 0.

All this follows from our assumptions and the definition of Xf . �

From the definition of a complex polarization P it is clear that it makes the symplectic

manifold (X,ω) into a Kähler manifold. This is the reason that the quantization procedure

above is sometimes also known as Kähler quantization.

Remark 45. Using the complex structure on X and the connection ∇ on L one can make

L into a holomorphic bundle in a canonical way: For any hermitian vector bundle E over

X, the complex structure on X gives a splitting

Ω1(X;E) = Ω1,0(X;E)⊕ Ω0,1(X;E)
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which in turn defines a decomposition of the hermitian connection

∇ = ∇1,0 +∇0,1 : Γ(E) = Ω0(X;E) −→ Ω1(X;E).

Now the operator ∂̄ := ∇0,1 defines a holomorphic structure on E, its kernel being the

holomorphic sections. With respect to these holomorphic structures on X and L we have

ΓP (L) = Γhol(L) and Cp(X) = Hol(X).

For completeness we recall that, vice versa, a holomorphic structure on E (in the sense of

holomorphic coordinate changes Uα ∩Uβ → GLn(C)) gives a canonical Dolbeaux operator

∂̄ : Ωp,q(X;E)⊕ Ωp,q+1(X;E)

that is determined on a (local) holomorphic frame {ei} by the formula

∂̄(
∑

i

wi ⊗ ei =
∑

i

∂̄(wi)⊗ ei

where wi are (local) scalar (p, q)-forms. If E has in addition a hermitian structure then

there is unique connection compatible with the holomorphic and hermitian structures on

E.

We shall discuss two important cases of Kähler quantization. First, we will look at the

case of a symplectic vector space, after that we will treat integral coadjoint orbits of a

compact Lie group G, which is essentially Borel-Weil theory.

Linear quantization. Let (X,ω) be a 2n-dimensional symplectic vector space. Pick a

compatible complex structure J on X. Since we are in the linear case, we have

Γhol(L) = Hol(X) ∼= Hol(L̄).

We want to complete the space of sections, so we introduce an inner product on Hol(L̄) as

follows:

〈φ1, φ2〉 :=

∫
X

φ̄1φ2e
− 1

2
Kε,

where ε is the standard Liouville volume form (n!)−1ωn on X and K is the positive definite

Kähler potential as in Remark 43

K(¯̀) := 〈`, `〉.

Of course, before we can complete, we have to restrict ourselves to integrable holomorphic

sections (containing all polynomial functions on X as a dense subspace). By comparing

to section 3 we see that the action of a polynomial p ∈ Pol(L) is given by multiplication

operators

Q(p) = mp

and that q ∈ Pol(L) can also be quantized acting as

Q(q) = ∂q.
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From this it is clear that their action leaves the subspace of polynomials in HJ invariant.

Borel-Weil theory. Let us now look at integral coadjoint orbits X = Oα for a compact,

connected Lie group G and α ∈ g∗. All such Oα are Kähler G-manifolds. One way to see

this is that when they are constructed via symplectic reduction the reduction process is

actually a Kähler reduction, since one can identify T ∗G with the complexification GC. A

more direct proof is as follows: Pick a maximal torus in T ⊂ G and observe that the set

of coadjoint orbits can be written as

{Oα ⊂ g∗} = g∗/G ∼= t∗/W,

where W is the Weyl group of T in G, i.e. W = N(T )/T . This means that we may consider

α ∈ t∗ and in the following we also assume that we are in the generic case where T is the

stabilizer of α. The tangent bundle of Oα can then be written as G×T g/t. Hence we can

define a polarization of Oα by giving a complex polarization of gC/tC and translating it

under the action of G. We decompose gC under the adjoint action of T to get

gC = tC ⊕
⊕

roots r

gr.

Here gr are the root spaces, i.e. the (simultaneous) eigenspaces for the action of the

(abelian) group T . They are indexed by roots r : T → S1 that describe the action of

T via

t · v = r(t)v ∀t ∈ T, v ∈ gr.

Now the choice of ’positive roots’ gives a polarization

gC/tC =
⊕
r>0

gr ⊕
⊕
r<0

gr.

Positivity can be defined by a choice of hyperplane in t∗, missing all (infinitesimal) roots.

It remains to check that the constructed polarization P ⊂ TCOα is integrable. This follows

from the Jacobi identity for Lie brackets which implies that

[gr1 , gr2 ] ⊂ gr1+r2 .

It follows that Oα is a Kähler G-manifold.

The next ingredient is the prequantum line bundle L. Here the integrality condition

on Oα comes in: By assumption, the class [ωα] ∈ H2
dR(Oα) is integral. This condition is

equivalent to α : t→ R being the derivative of a homomorphism a : T → S1. We can write

down L explicitly as the associated bundle

La := G×(T,a) C→ G/T ∼= Oα.

Hence the sections of La can be thought of as functions f : G→ C that satisfy the following

equivariance condition for t ∈ T :

f(gt) = a(t)−1f(g).
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The above decomposition into positive and negative roots induces a holomorphic structure

on La. One can translate this into saying that a function f as above is ‘holomorphic’ (at 1 ∈
G) if and only if its Lie derivative in the direction of all positive roots vanishes. Clearly, G

acts on (holomorphic) sections of La given in the above description by (h ·f)(g) = f(h−1g).

Theorem 46 (Borel, Weil). Let G be a connected, compact Lie group. Then there is a

bijection between G-integral coadjoint G-orbits and irreducible (complex) representations

of the group G. It is given by Kähler quantization, i.e. it associates with an integral orbit

represented by a : T → S1 the representation Γhol(La). The inverse is given by looking at

the highest weight of a given representation, see below.

We have to explain the notion of G-integrality. Let (X,ω) be an integral symplectic

manifold with prequantum line bundle L. Recall the diagram of Lie algebras and Lie

groups relating automorphisms of the line bundle L with symplectomorphisms of (X,ω).

If the action of G on (X,ω) is Poisson, we have, by definition, a lift

g −→ C∞(Oα).

However, this Lie algebra map does not necessarily come from a homomorphism of Lie

groups G→ AutL. If it does, we call the action of G on (X,ω) G-integral. As we saw in

the homework, the action of G on Oα is always Poisson and the G-integrality is exactly

the condition that α comes from a.

Examples 47. The easiest cases are

(i) G = S1. Then g∗ = g∗ = R, and each point in R is an S1-orbit. α : R → R is

S1-integral if and only if it is the derivative of a group homomorphism S1 → S1,

hence if and only if α is an integer a. This gives the well known classification of

irreducible representations of S1: they are all 1-dimensional and given by z 7→ za for

some a ∈ Z.

(ii) G = SU2. Recall from example 11 that the different coadjoint orbits are indexed by

a non-negative real number a. It turns out that the corresponding coadjoint orbit is

SU2-integral exactly if a ∈ 1
2
N0. The representations corresponding to integers are

exactly the ones that descend to SO3.

To be continued...

5. Path integrals

Geometric quantization as introduced above is, in the case of a general system (X,ω),

not very satisfying from a physical point of view, since it does not lead to the quantization

of many physically interesting functions. E.g. the Hamiltonian of a system is usually

quadratic in the momentum variables, but we did not quantize functions of this type,

leaving the generator of time evolution of the system unquantized (except for the case of
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a linear space, where we were able to quantize quadratic maps in the momentum variables

using the Stone-von Neumann theorem). We now want to outline how one can obtain the

time evolution operator eitĤ using path integrals for systems given by a Lagranian L.

We start out with the easy case

M = R, and L : R2 → R, (x, v) 7→ ‖v‖2.

In this case we know how to quantize the energy H = p2, namely, we saw that it acts as

Ĥ = ∂2
x. We will rewrite the time evolution operator eitĤ in terms of a path integral. This

representation will generalize to the case of an arbitrary quadratic Lagranian system. The

first step is a change of coordinates (’Wick rotation’) in order to get rid of the i in the

exponential, making the operators involved into Hilbert-Schmidt operators. We need the

following

Lemma 48. If Ĥ = ∂2
x, the integral kernel of the operator e−tĤ is

Pt(x, y) :=
1√
2πt

e
1
2t
|x−y|2 .

This is the well known “heat kernel”, describing the distribution of heat. More precisely, if

one puts a unit of heat at x and waits for time t, then Pt(x, y) gives the amount of heat at

y.

Recall that k : M ×M → R is an integral kernel for the operator O : L2(M)→ L2(M)

if for all f ∈ L2(M)

Ok(f)(x) =

∫
M

k(x, y)f(y)dy,

and that the operator Ok is Hilbert-Schmidt if and only if k ∈ L2(M ×M).

Now we will express e−tĤ as a path integral. We have for any n ∈ N:

e−tĤ(x, y) = e−
t
n

Ĥ · ... · e−
t
n

Ĥ(x, y)

=

∫
R
...

∫
R
P t

n
(x, x1) · ... · P t

n
(xn−1, y)dx1...dxn−1

=

∫
Rn−1

dx1...dxn−1
1

(2πt)n/2
e−

1
2

Pn
i=1

|xi−xi−1|
2

t/n

=

∫
Rn−1

dx1...dxn−1
1

Zn(t)
e−

1
2

R t
0 |σ̇(t)|2dt,

where σ : [0, t] → R is the function that satisfies σ(t) = xi for t = it
n

and is linear on all

intervals [ it
n
, (i+1)t

n
]; here we let x = x0 and y = xn. Hence we can write

e−tĤ(x, y) =

∫
σn

1

Zn(t)
e−

1
2

R t
0 |σ̇n(t)|2dtdλn−1,

25



where σn ranges over all piecewise linear paths joining x and y having (n − 1) corners.

Taking a formal limit n→∞ we obtain the formula

e−tĤ(x, y) =

∫
σ

1

Z(t)
e−

1
2

R t
0 |σ̇(t)|2dtdλ,

where σ now ranges over the space Px,y of all continuous paths joining x to y. The right

side is given a precise meaning by the Wiener measure. Note that none of the 3 terms in the

above integral is well defined but the combination of all three makes good mathematical

sense. Note also that two of the three terms are defined for smooth path, however, these

have measure zero and hence are not so useful. There are two (dual) ways of understanding

the Wiener measure:

• One can consider evaluation maps e : Px,y → Mn = Rn, given by first partitioning

the interval [0, 1] by n intermediate points and then evaluating a path on these

intermediate points. There are obvious consistency relations among such maps and

there is a measure theoretic theorem of Kolmogorov, giving sufficient conditions for

a family of measures on Rn to be the push-forward of a unique measure on Px,y.

By considerations similar to the above, one can show that the heat measures on Rn

can be used to apply Kolmogorov’s theorem for the construction of Wiener measure.

Another way to formulate this is to consider cylinder functions on Px,y which are

just compositions of functions on Rn with the above evaluation maps. They serve

as ‘step functions’ whose integral is defined first, just by using the finite dimensional

measures. Then one needs to check the consistency of this definition to get the

integral of cylinder functions over all of Px,y.

• A much more direct relation of the above formulas to the actual Wiener measure is

given in [AD]. Anderson and Driver show that, for bounded continuous functions on

Px,y, the finite dimensional approximations by integrals over piecewise linear paths

actually converge to a finite number when making the partitions of the interval [0, t]

finer and finer. This number turns out to be the integral of the function with respect

to Wiener measure.

A similar formula and interpretation for path integrals exists for a general system consisting

of a configuration space M and a Lagrangian L : TM → R of the form

L(x, v) = g(v, v) + f(x)

for a Riemannian metric g on M and a potential f ∈ C∞(M). Denote by At the action

defined on the space of paths [0, t]→M . Then copying the above case yields

e−tĤ(x, y) =

∫
σ

eAt(γ) 1

Z(t)
Dλ.
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where σ ranges over all paths (in a certain class) joining x and y. As above, the right

side indeed makes sense as the limit of finite dimensional integrals on Mn if one replaces

piecewise linear paths by piecewise geodesics. This is explained very well in [AD].

In later sections, we shall need a further generalization of the path integral giving the

kernel of operators acting on sections of certain vector bundles over M , rather then just on

functions. An important example is the (square of the) Dirac operator acting on the spinor

bundle. To describe such a kernel, one needs an additional integrand in the path-integral

which turns out to be the parallel transport in the given bundle. Then a new problem

arises because the usual parallel transport is only defined for smooth path which have

measure zero. It turns out, however, that there is a subset of continuous paths of measure

1, with respect to the Wiener measure, for which the parallel transport can be defined as

the limit over parallel transports over piecewise geodesics. This is the so called probabilistic

parallel transport and it can be used to define these more general operator kernels via path

integrals.

Remark 49. Physicists usually keep the i in the exponent,

eitĤ(x, y) =

∫
σ

eiAt(γ) 1

Z(t)
Dλ.

and continue to compute with this formula, even though the integral doesn’t have a precise

(mathematical) meaning. In quantum mechanics,

〈y|eitĤ |x〉 = eitĤ(x, y)

describes the probability amplitude to get from x to y in time t, and the above represen-

tation is known as Feynman’s path integral.

6. Classical field theory

We describe the framework of classical field theory and how quantization leads to a

structure known as “quantum field theory”.

A classical field theory consists of the following components:

• A space-time M , i.e. a semi-Riemannian manifold (M, g). The realistic case is a

four-dimensional Lorentz manifold but we shall be very flexible in the following,

even allowing M to be 1-dimensional, i.e. to collapse space into a point. We also

study the ‘Euclidean’ case where g is positive definite.

• The ’field content’, i.e. a list of fields Φ(M) that appear (usually sections of vector

bundles over M , see the examples below).

• An action functional A : Φ(M)→ R on the space of fields.

We begin by giving a list of examples of fields on a space-time M ; this should be under-

stood as a ’dictionary’ explaining the mathematical meaning of certain physical notions.
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We order fields according to their spin. They are called bosonic if their spin is an integer

and fermionic if it is a half integer, i.e. an odd multiple of 1
2
.

(i) spin 0: One important class of spin 0 fields are scalar fields. This includes functions

C∞(M ; R) (’real scalar fields’) or, more generally, mapping spaces C∞(M ;V ) into a

vector space V (’linear scalar fields’). Other spin 0 fields are smooth maps M → X,

where the target X is a usually a Riemannian manifold.

(ii) spin 1: In this class we have 1-forms on M or ’gauge fields’ in Ω1M/dΩ0M . Recall

that 1-forms can be interpreted as connections on the trivial S1-bundle, and modding

out by the differentials of functions corresponds to dividing by the Gauge group. More

generally, one may consider connections (up to equivalence) ofG-principal bundles for

non-commutative Lie groups G (’non-commutative gauge fields’). Another possible

generalization is to replace 1-forms by differential forms of arbitrary degree p to

obtain ‘p-form fields’. It is not yet completely clear how to define the combination of

these two cases, namely ’non-commutative p-form fields’, or ’higher non-commutative

bundle gerbes’.

(iii) spin 2: Typical examples of spin 2 fields are sections of the second symmetric power

of the tangent bundle of M , e.g. metrics on M (’gravitational fields’).

(iv) spin 1
2
: Here we have sections of spinor bundles S → M . By a spinor bundle we

mean any vector bundle over M obtained from a Spin(r, s)-principal bundle P →M

by associating a representation of Spin(r, s) that comes from the Clifford algebra

Cl(r, s). Here the group Spin(r, s) is a double covering of the group SO(r, s) of

isometries of the inner product on Rr+s of signature (r, s). The principal bundle P

is a double covering of the SO(r, s)-bundle of orthonormal oriented tangent frames

of M and it exists if M has a spin structure.

(v) spin 3
2
: Same as for spin 1

2
, but with S replaced by an irreducible part of S ⊗ TM .

These are called ’Rarita-Schwinger fields’.

Next, we explain the names physicists give to some field theories. The spin of a field

theory is the highest spin occurring among its fields.

(i) A field theory that only contains (linear) scalar fields is called a bosonic (linear)

σ-model and has spin 0.

(ii) The fields of a bosonic gauge theory usually involve connections and scalar fields.

Accordingly, the spin is 1.

(iii) When talking about gravity, one has metrics, as well as connections and scalar fields

in the game, hence the spin is 2.

In a supersymmetric field theory there is a ’supersymmetry’ exchanging bosons and

fermions, in particular, both of these types of fields must occur. The main examples

are

(i) A supersymmetric σ-model has scalar fields and spinor fields.

28



(ii) In supersymmetric gauge theory one has spinor fields, connections, and potentially

scalar fields.

(iii) Finally, super gravity involves Rarita-Schwinger fields, metrics, connections, and

scalar fields.

Examples 50. After this truckload of terminology, let us look at some basic examples of

classical field theories.

(i) In classical mechanics, the space-time is just M = R, i.e. space is just a point. The

(scalar) fields are smooth maps from R to a configuration space Q. The action A is

given by a Lagrangian L : TQ→ R:

A(φ) =

∫
R
L(φ(t), φ̇(t))dt.

The critical points of A are the classical solutions to the equations of motion.

(ii) (Relativistic) electromagnestism is a spin 1 gauge theory, where M = R1,3. The

electromagnetic potential is given by a 1-form A ∈ Ω1(M), the corresponding elec-

tromagnetic field is F = dA. The action is

A : Ω2
closed(M)→ R, A(F ) :=

∫
M

F ∧ ∗F =

∫
M

|F |2.

The classical solutions are exactly the F ’s that are closed and co-closed, i.e.

dF = 0 = d ∗ F,

where ∗ is the Hodge star operator and the first equation follows automatically from

the existence of the potential A. These are solutions of Maxwell’s equations in the

vacuum.

Now we want to explain how the space of classical solutions, i.e. the space of critical

points of the action functional A, can (in good cases) be endowed with a symplectic struc-

ture. For this, we restrict to the case in which the fields are sections over vector bundles

over M and make some mild assumptions on the action A. Denote by Jr
Φ(M) the r-jets of

Φ(M). This space can be described as the total space of the fiber bundle over M whose

fiber Jr
Φ(m) over m ∈ M are equivalence classes of fields [φ], where [φ1] = [φ1] if and only

if φ1 and φ2 have the same derivatives up to order r at m. Note that in order for this

definition to be meaningful we need connections on the vector bundles involved. These

come either from Levi-Civita connections on TM and its associated bundles, or from the

connection associated to a Gauge field.

We will from now on assume that the action A is of the form

A(φ) =

∫
M

L(φm)|dm|,
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where L : Jr
Φ(M) → R and φm denotes the image of φ under the obvious map Φ(M) →

Jr
Φ(m). In other words, we assume that the Lagranian L only depends on the r-jets of

Φ(M) for some r. In the absence of a measure dm on M , we assume that L is a density

and hence the above integral is still defined.

Let us first consider the case M = R. Fix a compact interval [a, b] ⊂ R. Define

Aab : Φ([a, b]) −→ R, φ 7→
∫ b

a

L(φm)|dm|.

Then

dAab(φ, δφ) =

∫ b

a

δL

δφ
δφ dt+ α(φb, δφb)− α(φa, δφa)

Hence, restricting Aab to the space X of classical solutions of A we have

dAab = αb − αa,

where αt ∈ Ω1(X) for all t ∈ R. Hence

ω := dαt

is independent of t. Clearly, dω = 0 but the non-degeneracy of ω is not automatic and

requires appropriate additional assumptions. If these are satisfied, ω is the symplectic

form on the space of classical solutions X. The Hamiltionian H : X → R can be found as

follows: Time translation defines a vector field ξ on X. We have

iξ(αa)− iξ(αb) = iξ(dAab) = ξ(Aab) = Lb − La,

where Lt : X → R is given by φ 7→ L(φt). Thus, H : X → R defined by

H(φ) = iξ(αt)− Lt

is independent of the choice of t. In fact, ξ is the Hamiltionian vector field generated by

H.

Now let Mn+1 be any space time. Consider a compact submanifold Σn+1 in M , and set

Sn := ∂Σ. For the restricted action functional

AΣ : Φ(Σ) −→ R, φ 7→
∫

Σ

L(φm)|dm|,

we have

dAΣ(φ, δφ) =

∫
Σ

δL

δφ
δφ|dm|+

∫
∂Σ

α(φx, δφx)|dx|.

Consequently, on the classical solutions X ⊂ Φ(M), we have

dAΣ = αS ∈ Ω1(X)

Hence, for a codimension 1 submanifold Sn ⊂Mn+1 we obtain a 1-form αS on X. As one

sees from the above expressions, this 1-form really depends on a (germ of a) neighborhood

νS of S in M . The 2-form ω[S] := dαS only depends on the homology class [S] ∈ Hn(M). If
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M = R×S, we obtain a Hamiltonian H : X → R just like before (consider Σ = [a, b]×S ⊂
M).

Now we want to go a step further and quantize in order to obtain a QFT . There are two

approaches: Geometric quantization of (X,ω,H), or path integrals. We begin by explaining

the path integral approach before we get to the mathematically rigorous technique of

geometric quantization (which unfortunately only works in very special circumstances).

We ’define’ HS := L2(Φ(νS)) for Sn ⊂Mn+1, where L2 only carries a heuristic meaning:

In many interesting cases a measure on the space of fields is not known. Furthermore, for

a bordism Σn+1 from S0 to S1 we have an operator

OΣ : HS0 −→ HS1

that is given by the operator kernel

OΣ(φ0, φ1) =

∫
eiA(φ)Dφ,

where the integral is taken over φ ∈ Φ(Σ) such that φ|∂Σ = φ1 − φ0. The idea is that in

good cases the integrand defines a measure on Φ(Σ). For example, if Σ = [0, t]× S, OΣ is

the operator obtained by quantizing time translation by t. Since this is the time evolution

in quantum theory, it should be a well defined operator in a theory that describes nature.

7. Axiomatic quantum field theory

We now want to define quantum field theories axiomatically following Atiyah and Segal.

We will motivate the definition by extracting the formal properties of the quantum field

theories we obtained by quantization from classical field theories. Recall that (formally)

we obtained operators

OΣ : H∂inΣ −→ H∂outΣ

by the path integral

OΣ(ϕin, ϕout) =

∫
eiAΣ(φ) Dφ,

where φ ranges over all fields whose boundary values are given by ϕin and ϕout. We have

the following formal properties:

(i) HS1qS2 = HS1 ⊗HS2 and OΣ1qΣ2 = OΣ1 ⊗OΣ2 .

(ii) If Σ = Σ1 ∪S Σ2, then OΣ = OΣ2 ◦ OΣ1 .

We outline why these identities hold.
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(i) We only consider the first equation.

HS1qS2 = L2(Φ(S1 q S2))

= L2(Φ(S1)× Φ(S2))

= L2(Φ(S1))⊗ L2(Φ(S2)) by ’Fubini’s theorem’

= HS1 ⊗HS2

(ii) Since the action AΣ is given by integrating the Lagrangian density over Σ, it is clear

that AΣ = AΣ1 + AΣ2 . Using this and ’Fubini’s theorem’ one sees that∫
φ∈Φ(Σ)

e−AΣ(φ) = OΣ2(ψ, ϕout)OΣ1(ϕin, ψ),

where the integral is taken over all φ such that

∂inφ = ϕin, ∂outφ = ϕout and φ|S = ψ.

Integrating the left side over all ψ ∈ Φ(S) yields OΣ(ϕin, ϕout). On the other hand,

integrating the right side over all ψ ∈ Φ(S) gives the integral kernel

(OΣ2 ◦ OΣ1)(ϕin, ϕout).

This shows the second formula.

Now we define QFTs axiomatically. We denote the (Riemannian) cobordism category of

dimension n+ 1 by Cobn+1
n . The objects of this category are closed, oriented Riemannian

n-manifolds. Morphisms between S1 and S2 come in two kinds: We have cobordisms and

isometries. By a cobordism, we mean a triple (Σ, [αin], [αout]), where Σ is an oriented, com-

pact Riemannian (n+ 1)-manifold with a decomposition of its boundary into an incoming

and outgoing part, and

αin : S1 × [0, ε)
∼=−→ ν(∂inΣ)

is an orientation-reversing isometry of a thickening of S1 onto an open neighbourhood of

the incoming boundary part. αout is defined similarly, however, this time the isometry is

orientation-preserving. The brackets around the α’s indicate that we are only interested

in germs of such α’s. Furthermore, we consider two bordisms to give the same morphism

if they are isomorphic relative boundary. The second part of the morphisms are isometries

S1 → S2. Composition of cobordisms is given by gluing, cobordisms and isometries are

composed by altering the incoming (or outgoing) boundary embedding α by the given

isometry.

Let Hilb be the category of complex Hilbert spaces and bounded operators between

them. Note that both Cob and Hilb are symmetric monodial categories (with respect

to disjoint union and tensor product, respectively). Furthermore, there are certain addi-

tional structures on these categories, namely, involutions, anti-involutions, and so-called

adjunction transformations. See [ST] for details.
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Definition 51. An (n+ 1)-dimensional quantum field theory is a monodial functor

Cobn+1
n −→ Hilb

respecting the ’additional structures’.

Note that there are other notions of ’field theories’ that are variants of what we called

a QFT. For example, a conformal field theory is one that only depends on the conformal

class of the Riemannian metric. A toplogical quantum field theory is one that only depends

on the diffeomorphism classes of the manifolds involved.

We should mention that in a similar fashion one can define supersymmetric quantum field

theories. Roughly speaking, one replaces Cob by a bordism category of super manifolds

and instead of functors one considers ’super functors’, i.e. one makes the target and domain

categories into categories enriched over super manifolds and looks at enriched functors

between them. We will not explain this here, but our definition of the spaces EFTn in the

next section is motivated by this point of view.

8. Super manifolds

We introduce some basic notions of super geometry. Almost all the material is taken

from the beautiful article on supersymmetry by Deligne and Morgan, [DM].

Let us begin by explaining briefly what ’super’ means in an algebraic context. A super

vector space or algebra is just a vector space or algebra equipped with a Z2-grading (i.e. a

splitting into an ’even’ and ’odd’ part). The basic rule is

• Sign rule: Commuting two odd quantities yields a sign −1.

E.g., a super algebra is (super) commutative if for all homogenenous a, b ∈ A we have

ab = (−1)|a||b|ba,

where |.| denotes the parity of an element. Examples of commutative super algebras are

• The cohomology ring H∗(X) of a space X

• Exterior algebras Λ∗(Rq), or, more generally, tensor products Λ∗(Rq) ⊗ A, where A

is a commutative algebra (with trivial grading).

The latter example is relevant for the definition of super manifolds: Their rings of functions

are obtained by considering usual smooth functions and tensoring them (locally) with an

exterior algebra. The generators of Λ∗(Rq) yield so-called odd coordinates; these are useful

when one tries to describe physical systems involving Fermions.

Let A be a commutative super algebra. The derivations on A are R-linear maps (not

necessarily grading preserving) A→ A satisfying the Leibniz rule1

DerA = {D : A −→ A |D(ab) = Da · b+ (−1)|D||a|a ·Db }.
1Whenever we write formulas involving the degree |.| of certain elements, we implicitly assume that

these elements are homogenous.
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This is a super Lie algebra with respect to the bracket operation

[D,E] := DE − (−1)|D||E|ED,

This means that the bracket is (super) skew symmetric

[D,E] + (−1)|D||E|[E,D] = 0

and satisfies the (super) Jacobi identity

[D, [E,F ]] + (−1)|D|(|E|+|F |)[E, [F,D]] + (−1)|F |(|D|+|E|)[F, [D,E]] = 0.

Note that we cyclically permuted the 3 symbols and put down the signs according to the

above rule. Another way to remember the signs in the super Jacobi identity is to say that

the map

D 7→ (E 7→ [D,E])

sends the super Lie algebra L to its algebra of derivations DerL (which is defined by the

above sign rule).

Super manifolds. We will define super manifolds as ringed spaces following [DM]. By

a morphism we will always mean a map of ringed spaces. The local model for a super

manifold of dimension (p|q) is Euclidian space Rp equipped with the sheaf of commutative

super R-algebras U 7→ C∞(U)⊗ Λ∗(Rq). This is usually denoted Rp|q.

Definition 52. A super manifold M of dimension (p|q) is a pair (|M |,OM) consisting of

a topological space |M | together with a sheaf of commutative super R-algebras OM that is

locally isomorphic to Rp|q. Morphisms between super manifolds are defined as continuous

maps together with maps of sheafs covering them.

To every super manifold M there is an associated reduced manifold

M red := (|M |,OM/nil)

obtained by dividing out nilpotent functions. By construction, this gives a smooth mani-

fold structure on the underlying topological space |M | and there is an inclusion of super

manifolds M red ↪→M .

Other geometric super objects can be defined in a similar way. For example, replacing R
by the complex numbers and C∞ by analytic functions one obtains complex (analytic) super

manifolds. Furthermore, there is the notion of cs manifolds. These are spaces equipped

with sheaves of super C-algebras that locally look like (Rp, C∞
C ⊗ ΛC(Cq)), i.e. one just

replaces smooth real-valued functions by smooth complex-valued functions. The relevance

of cs manifolds is that they appear naturally as the smooth super manifolds underlying

complex analytic super manifolds.
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Example 53. Let E →M be a vector bundle of fiber dimension q over the manifold Mp.

Then (M,Γ(Λ∗E)) is a super manifold of dimension (p, q), and denoted by πE. Bachelor’s

theorem says that every super manifold is isomorphic (but not canonically) to one of this

type. This result does not hold in analytic categories, it is important that we consider C∞

functions.

The following proposition shows that morphisms between super manifolds can be de-

scribed using coordinates.

Proposition 54. Let S, M be super manifolds. There is a natural bijection between

• morphisms φ from S to M , and

• super R-algebra homomorphisms φ∗ : OM → OS, where OX := OX(X) denotes the

algebra of global sections; these are by definition the functions on X.

In the language of algebraic geometry one may say that ’super manifolds are affine’. If M ⊂
Rp|q is an open super submanifold (a domain), maps S →M are in 1-to-1-correspondence

with

{ (f1, ..., fp, η1, ..., ηq) ∈ (Oev
S )p × (Oodd

S )q | (f1(s), ..., fp(s)) ∈ |M | ⊂ Rp for all s ∈ |S| }

The fi, ηj are called the coordinates of φ and they are given by

fi = φ∗(xi) and ηj = φ∗(θj),

where x1, ..., xp, θq, ..., θp are coordinates on M .

The proof of the first part is based on the existence of partitions of unity for super

manifolds, so it is again false in analytic settings. The second part always holds and is

proved in [Lei].

The functor of points approach. Since sheaves are generally difficult to work with,

one often thinks of super manifolds in terms of their ’S-points’, i.e. instead of M itself one

considers the morphism sets Hom(S,M), where S varies over all super manifolds S. More

formally, using the Yoneda lemma we embed the category Smfds of super manifolds in

the category of functors from Smfds to Sets by

M 7→ ( S 7→ Hom(S,M) ).

This embedding identifies super manifolds with representable contravariant functors

Smfds → Sets and morphisms between super manifolds with natural transformations.

Note that the last proposition makes it easy to describe the morphism sets Hom(S,M).

We’d also like to point out that the functor of points approach is very close to the formalism

that physicists use to make computations involving odd quantities.
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Super Lie groups. According to the functor of points approach, a group object in Smfds

can be described by giving a representable contravariant functor G : Smfds → Sets

together with functorial group structures on G(S) for all S.

Examples 55. The most important super Lie groups are as follows.

(i) The additive structure on Rp|q is given by the formula

Hom(S,Rp|q)×Hom(S,Rp|q) −→ Hom(S,Rp|q), (f1, ..., ηq), (h1, ..., ψq) 7→ (f1+h1, ..., ηq+ψq).

(ii) The super general linear group GL(p|q) is defined by

GL(p|q)(S) := AutOS
(Op|q

S ) ∼= AutOS
(O

p|q
S ),

where Ap|q denotes the A-module freely generated by p even and q odd generators.

We need to check that this is representable. We claim that GL(p|q)( ) is represented

by the open super submanifold G ⊂ Rp2+q2|2pq characterized by

|G| = { x ∈ Rp2+q2 | x ∈ GLp ×GLq }.

This follows directly from proposition 53 using that a map between super algebras

is invertible if and only if it invertible modulo nilpotent elements.

(iii) Using the Berezinian, a super version of the determinant, one can define a super

subgroup SL(p|q) ⊂ GL(p|q).
(iv) On R1|1 one has a ’twisted’ super group structure µ defined by

Hom(S,R1|1)× Hom(S,R1|1) −→ Hom(S,R1|1), (f, η), (h, ψ) 7→ (f + h+ ηψ, η + ψ).

The relevance of this super group lies in the particular structure of its super Lie

algebra: gR1|1 is a super Lie algebra freely generated by one odd generator. This

property also explains the appearance of R1|1 in the context of odd ODEs on super

manifolds (see below). For us, the multiplication µ (restricted to R1|1
>0) will turn out

to be important, since it describes the gluing of ’Riemannian’ super intervals, see

section 9.

Even though we haven’t introduced the super Lie algebra of a super Lie group yet, we

want to explain how super Lie groups can be understood in terms of super Lie algebras.

Theorem 56. The following categories are equivalent:

• The category of 1-connected super Lie groups.

• The category of tripels (G0, g, a), where G0 is a 1-connected Lie group, g is a super

Lie algebra whose even part is the Lie algebra of G0, and a is an action of G0 on g

extending the adjoint action of G0.

• The category of (finite-dimensional) super Lie algebras over R
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The first equivalence holds even without the assumption on the fundamental group. The

second equivalence follows from Lie’s theorem. Finite-dimensional simple complex super

Lie algebras have been completely classified by Victor Kac in the 70s.

Super vector bundles. What is a (super) vector bundle over a super manifold M? There

are two reasonable answers that come to mind:

• A (super) fiber bundle E →M with structure group GL(p|q).
• A locally free sheaf E of OM -modules of dimension (p|q).

The two answers are equivalent. The main point is that coordinate changes between

local trivializations are given by the same data in both cases: For a fiber bundle E →M ,

a change of trivialization over U ⊂ M is given by a map ϕ : U → GL(p|q). However, this

is nothing but an automorphism of Op|q
U (recall the definition of GL(p|q) in terms of its

S-points) which is exactly the datum giving a change of local trivializations of a locally

free sheaf of dimension (p|q).
Let us now look at the basic example of a super vector bundle, the tangent bundle of a

super manifold Mp|q. It is the sheaf of OM -modules TM defined by

TM(U) := DerOM(U).

TM is locally free of dimension (p|q): If x1, ..., θq are local coordinates on M , then a local

basis is given by ∂x1 , ..., ∂θq .

The cotangent bundle of M is the sheaf of OM -modules Ω1M dual to TM . As in the case

of usual manifolds on obtains differential forms on M by looking at the exterior algebra of

Ω1M . Furthermore, a de Rham differential d on Ω∗M can be defined. The cohomology of

this complex is just the usual cohomology H∗(|M |; R).

The super Lie algebra of a super Lie group. Now we can define the super Lie algebra

g of a super Lie group G. A vector field ξ ∈ Γ(TG) is called left-invariant if ξ is related

to itself under the left-translation by all f : S → G:

S ×G f×id−→ G×G µ−→ G.

Here we interpreted ξ as a vector field on S×G in the obvious way. The super Lie algebra g

consists of all left-invariant vector fields on G. Evaluation at e ∈ G defines an isomorphism

g ∼= TeG, in particular, the vector space dimension of g is (p|q).

Example 57. For the twisted super group structure on R1|1, left-translation by a map

f = (f1, f2) : S → R1|1 is given by the formula

S × R1|1 → R1|1, (s, t, θ) 7→ (f1(s) + t+ f2(s)θ, f2(s) + θ)

Differentiation yields that this maps the vector fields ∂t and ∂θ to

∂t and − f2(s)∂t + ∂θ.
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Hence ∂t is a left-invariant vector field. Solving the appropriate linear equation, one sees

easily that the second left-invariant vector field is given by

D := −θ∂t + ∂θ satisfying D2 =
1

2
[D,D] = −∂t.

Hence we see that the Lie algebra of R1|1 is freely generated by one odd generator D.

This is the reason why R1|1 with the twisted super group structure plays a role for odd

ODEs on super manifolds: An odd vector field ξ ∈ Γodd(TM) determines a unique map

from the super Lie algebra of R1|1 to vector fields on TM . This, in turn, generates an

action of R1|1 of M . This action M × R1|1 → M is the flow of ξ. Hence the flow property

for the flow of an odd vector field on a super manifold is expressed in terms of the twisted

super group structure of R1|1.

All the subtleties regarding how long the flow is defined only take place in the reduced

manifold. An important case of a flow that’s always defined is when [ξ, ξ] = 0. Then one

obtains an action of R0|1 on M . Conversely, any R0|1-action leads to an operator with

square zero. An important example is the em odd tangent bundle πTM . By definition,

the functions are just differential forms on M . Moreover, πTM turns out to be the super

manifold of maps

R0|1 −→M

so it has an obvious action of R0|1 given by translation. This is the most conceptual

interpretation of the deRham differential d. Note that R× also acts on the above space of

maps, and it turns out that this leads to the grading on differential forms.

Supersymmetric classical mechanics. We briefly describe a supersymmetric variant

of classical mechanics in which time R is replaced by R1|1. This should be thought of as

a kind of ’super-time’. We denote coordinates on R1|1 by (s, η). The fields Φ(R1|1) are

defined to be morphisms of super manifolds F : R1|1 → X, where X is some configuration

space. Let D := ∂η − η∂s. We define the action functional by

A(F ) = −1

2

∫
R1|1
〈∂sF,DF 〉 dsdη.

For Q = ∂η + η∂s satisfies [Q,D] = 0, the vector field Q generates a supersymmetry on

Φ(R1|1). If X is a spin manifold then quantization of this classical field theory gives the

L2-spinors on X. Furthermore, the supersymmetry Q acts as the Dirac operator of X.

The quantum ’super-time’ evolution is given by e−tD2+θD. It should be possible to obtain

the integral kernel of this operator as a super path integral analogous to the Feynman-

Kac-fomula.
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Z/2-graded vector spaces and super manifolds. We conclude the section by describ-

ing linear infinite-dimensional super manifolds. More precisely, we describe what maps from

usual finite-dimensional super manifolds into a Z/2-graded Banach space B = B0 ⊕ B1,

considered as a super manifold, are. This exactly amounts to describing the S-points of

B, i.e. the functor

B : Smfds −→ Sets, S 7→ B(S) = ” Hom(S,B)”

Since morphisms are defined locally, it suffices to consider the case S = Up|q of super

domains; the general case can be obtained from this by gluing. Let x1, ..., θq be coordinates

on U . A morphism f ∈ B(U) is given by a finite sum∑
I

fIθ
I , where I ⊂ {1, ..., q}, θI :=

∏
j∈I

θj, and the fI are smooth maps |U | → B|I|.

If ϕ : U ′ → U is a map of super domains, the natural transformation B(ϕ) is defined using

the formal Taylor expansion as in the case of usual super manifolds. This defines B on

super domains.

9. Supersymmetric quantum mechanics and K-theory

In this section we’ll begin to explain the relation between the physical topics treated

up to now and topology. The punchline is the following: The ’space’ of supersymmetric

quantum field theories of dimension 0 + 1 (with N = 1 supersymmetry) is a model for

the classifying space of K-theory. Let us remark that this is the case of a 0-dimensional,

i.e. pointlike, space and a physicist would never call this a field theory because it treats

particles rather than fields. From a mathematical point of view, the formalism is exactly

the same, regardless of the dimension of space, so we continue our notation. However,

we should point out that the theory below would be called “supersymmetric quantum

mechanics” in the physics community.

We sum up the situation in the following diagram whose meaning we will explain below.
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{
closed Riemannian

spinc n-manifolds

} {
Z if n is even

0 if n is odd

{
(0 + 1)-dim. classical super-

symmetric field theories

}
Kn(pt)

{
(0 + 1)-dim. susy quantum

field theories of degree n

}
π0(EFTC

n)

���
� �
� �
� �
� �
� �
� �
� �

classical susy

mechanics

//index of D

���
� �
� �
� �
� �
� �
� �
� �

geometric

quantization

OO� � � � � � � � � � � � � � � � �

∼=

//π0

OO� � � � � � � � � � � � � � � � � � �

∼=

The left side of the diagram comes from (susy) quantum mechanics as outlined in the

previous sections. It turns out that the quantization of the supersymmetric classical me-

chanical system associated with a Riemannian spinc n-manifold X can be expressed in

terms of spinor bundles and Dirac operators, see [Wi]. The quantization we have in mind

is a slightly different one: We want to consider the Cln-linear spinor bundle SX over X

(cf. [LM], chapter 2, §7). The Hilbert space of L2-sections of this bundle is a Cln-module,

and the canonically associated Dirac operator D on L2(SX) is Cln-linear. Using D we

obtain a (0 + 1)-dimensional susy quantum field theory, EFT2, of degree n by associating

to the super time (t, θ) the operator e−tD2+θD.

The degree n, i.e. the Cln-action, is important if one wants to ensure that the space of

susy EFTs has the same homotopy type as a classifying space for the functor K−n. Hence

it would we very desirable to know a classical field theory (i.e. the appropriate Lagrangian)

associated with a Riemannian spinc manifold whose quantization gives the Cln-linear spinor

bundle and Dirac operator.

The diagram indicates that following the arrows counter-clockwise starting on the top

left yields the index of the operator D. This is in fact the case, since the index of D can

be computed as the super trace of e−tD2
according to the Feynman-Kac formula.

2EFT is short for Euclidian field theory; the terminology refers to the missing i in the exponent, i.e. to
the fact that our operators are not unitary but rather Hilbert-Schmidt operators
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We have not yet explained what we mean by the ’space’ of (0 + 1)-dim. susy quantum

field theories of degree n. This is given a precise meaning on the right side: We will define

the topological space EFTC
n of (0 + 1)-dimensional Euclidian field theories below.

There is also a real version of the above diagram: Replacing the complex Clifford algebras

and Hilbert spaces in the game by their real analogues yields spaces EFTR
n that constitute

a model for real K-theory. In fact, this is the mathematically more interesting case, and in

the following we will pay more attention to it than to the complex variant. Finally, there

is a version of the diagram in which everything happens over a parameter space B:

{
closed Riemannian spinc

n-manifolds parametrized by B

}

{
(0 + 1)-dim. classical super-

symmetric field theories over B

}
K−n(B)

{
(0 + 1)-dim. susy quantum field

theories of degree n over B

}
π0(Maps(B,EFTC

n)) = [B,EFTC
n ]

��

classical susy

mechanics

))RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

family index

��

geometric

quantization

//π0

OO

∼=

We will now give the definition of the spaces EFTF
n, and in the next section we will prove

that they form an Ω-spectrum representing K-theory. In particular, we shall prove that

the vertical arrow on the right of the above diagram is indeed an isomorphism.

Denote by Cn the Clifford algebra associated with Rn equipped with its usual Euclidian

inner product; this is the unital R-algebra with n generators e1, ..., en satisfying the relations

e2i = −1 for all i and eiej = −ejei if i 6= j.

In the following, we will fix, for each n ≥ 0, a separable Hilbert space Hn with an action

of Cn−1 such that each generator ei acts as a bounded, skew-adjoint operator and such

that each irreducible representation of Cn−1 appears with infinite multiplicity. From this,

we obtain a Z/2-graded Cn-module

Hn := Hn ⊗Cn−1 Cn,
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where we embed Cn−1 in Cn using the identification

Cn−1

∼=−→ Cev
n , ei 7→ eien for i = 1, ..., n− 1.

Definition of EFTn. The discussion in [ST], chapter 3, explains why it is reasonable to

define a super symmetric Euclidian field theory of dimension (0 + 1|1) and degree n as a

super semi group homomorphism

φ : R1|1
>0 −→ HSsa

Cn
(Hn).

Here R1|1
>0 denotes the open sub super manifold of R1|1 defined by the inclusion R>0 ⊂ R.

Note that the twisted super group structure on R1|1 defined in section 7 restricts to a multi-

plication µ on R1|1
>0. Furthermore, we interpret the Z/2-graded real Hilbert space HSsa

Cn
(Hn)

(equipped with the Hilbert-Schmidt norm) as an infinite-dimensional super manifold, see

the discussion at the end of section 7. Accordingly, a map φ : R1|1
>0 → HSsa

Cn
(Hn) is given

by

A(t) + θB(t), where A : R>0 → HSsa,ev
Cn

(Hn) and B : R>0 → HSsa,odd
Cn

(Hn)

are smooth maps. HSsa
Cn

(Hn) has a super semi group structure coming from composition.

It is defined by

HSsa
Cn

(Hn)(U)× HSsa
Cn

(Hn)(U)→ HSsa
Cn

(Hn)(U), (A,B) 7→ AB

for a super domain U . The homomorphism property of φ may be expressed as the com-

mutativity of the diagram

Hom(U,R1|1
>0)× Hom(U,R1|1

>0) Hom(U,R1|1
>0)

HSsa
Cn

(Hn)(U)× HSsa
Cn

(Hn)(U) HSsa
Cn

(Hn)(U).

//µ

��
φ×φ

��
φ

//

for all U .

Remark 58. The super manifold R1|1
>0 appearing here should be thought of as the moduli

super manifold of ’Euclidian’ super intervals. By this, we mean (1|1)-dimensional super

manifolds (with boundary) equipped with a geometric structure that allows one to associate

a ’super length’ with such an interval. It turns out that the moduli super manifold of such

intervals is R1|1
>0 (i.e. an interval is classified by its super length) and that gluing induces

the twisted super semi group structure µ on R1|1.

Examples 59. The most important examples of EFTs are as follows.

(i) If D is the Cn-linear Dirac operator on a spin manifold X, then there is a corre-

sponding field theory given by associating to the super time (t, θ) the operator

e−tD2+θD = e−tD2

+ θDe−tD2

.
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(ii) More generally (and precisely), given any Cn-submodule V∞ ⊂ Hn and any odd,

densely defined, self-adjoint operator D on V ⊥
∞ with compact resolvent, there is a

unique super semi group homomorphism into the C∗-algebra of compact operators,

self-adjoint and Clifford-linear

φ = A+ θB : R1|1
>0 −→ Ksa

Cn
(Hn)

defined (using functional calculus) by

A(t) = e−tD2

and B(t) = De−tD2

on V ⊥
∞

and A(t) = B(t) = 0 on V∞. Checking that this is indeed a super semi group

homomorphism is a nice exercise for the reader; the calculation can be found in [ST],

page 38. D defines an EFT if and only if A and B are Hilbert Schmidt for all t.

This is the case if the eigenvalues of D converge to ∞ sufficiently fast. For example,

this is true for Dirac operators, see [LM], chapter 3. It is not hard to see that A

and B are smooth with respect to the operator norm on K(Hn). In fact, if A and B

are families of Hilbert-Schmidt operators, they are even smooth with respect to the

Hilbert-Schmidt norm on HS(Hn).

We now define the space EFTn := EFTR
n to be the space of super semi group homomor-

phisms R1|1
>0 −→ HSsa

Cn
(Hn). We endow it with the topology of pointwise convergence in A

and B. Similarly, one can define spaces EFTC
n by replacing Hn by a complex Hilbert space

that is a graded Cln-module. We can now state the main result:

Theorem 60. The spaces EFTF
n, where F = R or C, constitute an Ω-spectrum representing

real and complex K-theory, resp.

We will prove this in the next section. In the remainder of this section we will give an

interpretation of the spaces EFTn in terms of configurations on the (compactified) real line

indexed by subspaces of the Hilbert space Hn.

Configurations spaces. Let H be a Z/2-graded Hilbert space and (X,A), A ⊂ X, a pair

of spaces equipped with an involution α. Define the space of configurations Conf(X,A)

over (X,A) indexed by subspaces of H to be the space of maps c : X → Proj(H) such that

• c(x) is orthogonal to c(y) if x 6= y.

• dim c(x) <∞ for all x ∈ X r A

• { x ∈ X r A | c(x) 6= 0 } is a discrete subset of X r A.

• H is equal to the Hilbert sum of the c(x), x ∈ X.

• c(s(x)) = α(c(x)) for all x ∈ X.

We consider finest topology on this set that allows the following things to happen:

• As long as the nonzero labels x ∈ X don’t collide, the corresponding subspaces c(x)

inherit their topology from that of the Graßmannian.
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• If two (or more) labels xi meet, the the associated spaces c(xi) add.

We will also need the subspace Conffin(X,A) ⊂ Conf(X,A) of finite configurations,

where the word ’discrete’ in the definition is replaced by ’finite’. Finally, if C is an R-

algebra and H is a C-module, we can replace subspaces of H by C-submodules in order to

obtain spaces ConfC(X,A). The main examples will be Clifford algebras C = Cn.

For fixed H the association (X,A) 7→ Conf(X,A) is a functor: Given a continuous map

f : (X,A)→ (Y,B), there is an induced continuous map Conf(X,A)→ Conf(Y,B). It is

clear that such a map preserves the subspace of finite configurations.

We suppressed the Hilbert space H in our notation for the configuration spaces. In

the following, it will be understood that, whenever there is a Cn in the notation, the

configurations are indexed by subspaces of Hn.

Proposition 61. Let R̄ := R ∪ {∞}. For all n there is a homeomorphism

{ super semi group homomorhisms R1|1
>0 → Ksa

Cn
(Hn) } ∼= ConfCn(R̄,∞),

where we endow the one-point compactification R̄ with the involution s(x) = −x.

Proof. We use the following technical lemma:

Lemma 62. Let A,B : R>0 → Ksa(H) be smooth families of self-adjoint compact operators

on the Hilbert space H, and assume that the following relations hold for all s, t > 0:

A(s+ t) = A(s)A(t)(1)

B(s+ t) = A(s)B(t)(2)

A′(s+ t) = −B(s)B(t)(3)

Then H decomposes uniquely into orthogonal subspaces Hλ, λ ∈ R∪{∞}, such that on Hλ

A(t) = e−tλ2

and B(t) = λe−tλ2

(where we set e−∞ = 0, ∞ · 0 = 0). For λ ∈ R the dimension of Hλ is finite; furthermore,

the subset of R consisting of λ ∈ R with Hλ 6= 0 is discrete.

Proof. The identities (1) and (2) show that all operators A(s), B(t) commute. We apply

the spectral theorem for self-adjoint compact operators to obtain a decomposition of H

into simultaneous eigenspaces Hλ of the A(s) and B(t); the label λ takes values in R∪{∞}
and will be explained presently. We define functions Aλ, Bλ : R>0 → R by

A(t)x = Aλ(t)x and B(t)x = Bλ(t)x for all x ∈ Hλ

Clearly, Aλ and Bλ are smooth and satisfy the same relations (1) - (3) as A and B.
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From (1) we see that Aλ is non-negative, and (3) shows A′λ ≤ 0, i.e. Aλ is decreasing.

On the other hand, (1) implies Aλ(
1
n
) = n

√
Aλ(1), so that

Aλ(0) := lim
t→0

Aλ(t) exists and equals 0 or 1.

In the first case we conclude Aλ ≡ 0 and thus also Bλ ≡ 0; the label of the corresponding

subspace is λ =∞. In the second case, we have Aλ(1) 6= 0 and using (1) again we compute

A′λ(s) =
Aλ(1)

Aλ(1)
lim
t→0

Aλ(s+ t)− Aλ(s)

t
=
Aλ(s)

Aλ(1)
lim
t→0

Aλ(1 + t)− Aλ(1)

t
= −λ2Aλ(s),

where λ2 := −A′λ(1)/Aλ(1). Because solutions of ODEs are unique, we must have

Aλ(t) = e−tλ2

.

Finally, (3) gives

Bλ(t) =
√
λ2e−2tλ2 = λe−tλ2

,

picking the appropriate sign for the label λ. �

Now, given a super semi group homomorphism φ = A + θB, we want to exploit the

homomorphism property of φ for U = R0|2. Let θ, η be the usual odd coordinates on R0|2

and let s, t ∈ R>0, considered as constant (even) functions on R0|2. We then have

φ(s+ t+ ηθ, η + θ) = A(s+ t+ ηθ) + (η + θ)B(s+ t+ ηθ)

= A(s+ t) + A′(s+ t)ηθ + (η + θ)(B(s+ t) +B′(s+ t)ηθ)

= A(s+ t) + ηB(s+ t) + θB(s+ t) + ηθA′(s+ t)

which equal to

φ(s, η)φ(t, θ) = (A(s) + ηB(s))(A(t) + θB(t)

= A(s)A(t) + ηB(s)A(t) + θA(s)B(t)− ηθB(s)B(t).

Comparing the coefficients3 yields exactly the relations in lemma 62 which immediately

gives the desired decomposition of Hn. Furthermore, since the operators B(t) are odd, we

have

αB(t)α = −B(t) or α(Hλ) = H−λ,

i.e. the have obtained a configuration on (R̄,∞). Finally, it is clear that in the Cn-linear

case the spacesHλ are Cn-submodules ofHn, so that we obtain an element in ConfCn(R̄,∞)

associated with φ. Conversely, every Cn-linear configuration {Vλ} defines an odd, self-

adjoint operator D as in example 59 (ii) and thus a super semi group homomorphism

R1|1
>0 → Ksa

Cn
(Hn). It is not hard to check that this bijection is a homeomorphism. �

3Just to make the formal aspect of this computation clearer we would like to point out that the considered
identity is an equation in the algebra HSsa

Cn
(Hn)(R0|2) = HSsa

Cn
(Hn)[θ, η].
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Let Confn := Conffin
Cn

(R̄,∞).

Corollary 63. We have a homotopy equivalence

EFTn ' Confn .

Proof. Pick K > 0 and an increasing continuous map h1 : R̄
∼=→ R̄ such that h|(−K,K) is a

homeomorphism onto R and h|(−K,K)c =∞. Clearly, there is a (linear) homotopy ht from

h1 to the identity h0. Applying the functoriality of configuration spaces we see that h1

is a homotopy equivalence from ConfCn(R̄,∞) to Confn. Now, using the proposition we

can interpret EFTn as a subspace of ConfCn(R̄,∞). From the construction it is clear that

the maps ht preserve the subspace EFTn for all times t, and hence the restriction of h1 to

EFTn yields a homotopy equivalence EFTn ' Confn. �

10. EFTs and spaces of Fredholm operators

The goal of this section is to prove the isomorphisms

K−n(B) ∼= [B,EFTC
n ] and KO−n(B) ∼= [B,EFTR

n ]

that appeared in the diagram in the last section and its real analogue. More precisely,

we will show that the spaces EFTF
n form an Ω-spectrum representing complex and real

K-theory, respectively. This will be accomplished by comparing EFTF
n to certain spaces

of Fredholm operators FF
n introduced by Atiyah and Singer in [AS], where they also show

that these spaces form an Ω-spectrum representing K-theory. We begin with some intro-

ductory material on Ω-spectra and K-theory. We then turn to the Atiyah-Singer spaces

and construct a homotopy equivalence between FF
n and EFTF

n using the Dold-Thom theory

of quasi-fibrations.

Generalized cohomology theories and Ω-spectra. Let h∗ be a generalized cohomol-

ogy theory. Recall that by Brown’s representation theorem h∗ can be represented by an

Ω-spectrum (En, hn)n∈Z, i.e.

hn(X) = [X,En] for all spaces X and n ∈ Z.

If h∗ is multiplicative, the graded ring structure on h∗(X) is given by

Em ∧ En −→
µm,n

Em+n,

the identity element comes from a map ι : S0 → E0, and the suspension map is induced

by σ : S1 → E1 such that under the suspension-loop adjunction

S1 ∧ En −→
σ∧id

E1 ∧ En −→
µ1,n

En+1 corresponds to hn : En
'−→ ΩEn+1
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Given an Ω-spectrum E we have associated (co)homology theories

En(X) = [X,En] and En(X) = πn(E ∧X) = lim
n→∞

πn+r(Er ∧X).

It follows in particular that πn(E0) = π0(E−n).

K-theory and spectra representing it. TheK-groupK0
F(X) associated with a compact

space X is the Grothendieck group of the semi group of F-vector bundles over X with

respect to Whitney sums. In fact, K0
F(X) is a commutative ring with multiplication coming

from the tensor product of vector bundles. K0
F is a contravariant functor satisfying the

homotopy and exactness axioms of Brown’s representation theorem. Hence there exists a

classifying space E0 for K0
F. Note that the functor K0

F extends to a cohomology theory if

and only if there exist ’deloopings’ En of E0, i.e. spaces En such that ΩnEn ' E0. In other

words, if E0 is an infinite loop space. This is, for example, the case if E0 = ΩkE0 for some

k; the corresponding cohomology theory is then automatically k-periodic. In the case of

K-theory E0 is of this type as follows from the Bott periodicity theorem:

Theorem 64 (Bott). For all X we have

K̃0
C(Σ2X) ∼= K̃0

C(X) and K̃0
R(Σ8X) ∼= K̃0

R(X).

Equivalently,

EC
0 ' Ω2EC

0 and ER
0 ' Ω8ER

0 .

Often, one chooses E0 to be Z cross an infinite Graßmannian. In the next section we

introduce a more geometric model for E0, namely the space of Fredholm operators on a

Hilbert space H.

Fredhom operators. Recall that a Fredholm operator T : H1 → H2 is a bounded operator

whose kernel and cokernel are finite dimensional. Using the operator norm we make the set

of Fredhom operators into a topological space. If H1 = H2 = H the space Fred(H) ⊂ B(H)

is exactly the preimage of the units in the Calkin algebra C(H) := B(H)/K(H) of bounded

modulo compact operators under the projection c : B(H)→ C(H). In other words,

A is Fredholm ⇐⇒ c(A) ∈ C(H) is invertible.

The most important invariant of a Fredholm operator T is its index

index(T ) := dim(kernelT )− dim(cokernelT ).

It turns out that the index is invariant under deformations, i.e. it is a locally constant

function on Fred(H), and that it detects the connected component of T ∈ Fred(H), see

below.
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Elliptic differential operators and Fredholm operators. Interesting examples of

Fredholm operators arise from elliptic differential operators on vector bundles. Let Ei → X,

i = 1, 2, be vector bundles over the Riemannian manifold X.

Definition 65. (i) A linear map P : Γ(E1) → Γ(E2) is a differential operator if P is

local, i.e. P (s)(x) depends only on s|U for any neighborhood U of x. By a result of

Petree this is equivalent to saying that P can in local coordinates be written as

P (x) =
∑
|α|≤m

Aα(x)
∂|α|

∂xα
,

where Aα is a matrix-valued function on X. We assume that m is minimal in the

sense that Aα is non-trival for some α with |α| = m. The number m is called the

degree of P .

(ii) The principal symbol of P is given by a map of vector bundles

σξ(P ) : E1 −→ E2 for each ξ ∈ Ω1(X)

that is locally given by

σξ(P )(x) :=
∑
|α|≤m

Aα(x)ξα(x).

P is elliptic if σξ(P )(x) is invertible whenever ξ(x) 6= 0.

Examples 66. (i) Let Ei = X × R. The Laplace operator

P = ∆ := d∗d

is an elliptic differential operator that is locally given by

∆(f) =
∑
i,j

gij
∂f

∂xi∂xj

+ lower order terms.

The principal symbol is locally given by

σξ(∆)(x) =
∑
i,j

ξi(x)ξj(x) = ||ξ(x)||2

which immediately implies the ellipticity of ∆.

(ii) The Dirac operatorD on the spinor bundle of a spin manifold is a differential operator

of degree 1. Its principal symbol σξ(D)(x) is given by Clifford multiplication by ξ;

thus D is elliptic.

The Sobolev s-norm of a section Γ(E) is defined by

||u||2s =
s∑

j=0

∫
X

|∇...∇u|2,
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where the covariant derivative ∇ is applied j-times. From a differential operator one

obtains Fredholm operators using the following

Theorem 67. (i) A differential operator P of degree m extends to a bounded linear

map

Ps : L2
s(E1) −→ L2

s−m(E2) for all s ≥ m.

(ii) If P is elliptic, Ps is a Fredholm operator.

(iii) For all s ≥ m

index(Ps) = index(P ) := dim ker(P )− dim ker(P ∗).

Let us now return to the relation between Fredholm operators and K-theory.

Fredholm operators and the functor K0
F. The connection between the space of Fred-

holm operators Fred(HF) on the separably infinite-dimensional Hilbert spaceHF over F = R
or C and the functor K0

F is given by

Theorem 68 (Atiyah, Palais, Jänich). Fred(HF) is a classifying space for the functor K0
F,

i.e. for all compact spaces X we have

K0
F(X) ∼= [X,Fred(HF)].

The isomorphism in the theorem is defined as follows: Given a class α ∈ [X,Fred(HF)],

one can always find a representative f such that the dimensions of the kernel and the

cokernel of f(x) are locally constant. This implies that kernel f(x) and cokernel f(x) are

vector bundles over X, and we define the image of α to be

[kernel f(x)]− [cokernel f(x)] ∈ K0
F(X).

In the case X = pt the theorem gives an isomorphism

π0(Fred(HF)) ∼= K0
F(pt) ∼= Z,

and from the proof of the theorem it is clear that it is given by sending [T ] ∈ π0 Fred(HF)

to the index of T .

The other spaces En in the Ω-spectrum representing K-theory can also be constructed

using spaces of Fredholm operators. This will be explained in the next subsection.

The Atiyah-Singer spaces FF
n . From now on we will restrict our attention to the real

case. We will only define the spaces Fn := FR
n and prove the main theorem in this case.

The complex case is similar, and the interested reader can certainly work it out after

looking up the definition of FC
n in [AS].

Let Hn be a real Hilbert space with an action of Cn−1 as in the last section. Now let

Fn := { T ∈ Fred(Hn) | T ∗ = −T and Tei = −eiT for i = 1, ..., n− 1 }.
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If n ≡ 3 (4) we require the operators T ∈ Fn to satisfy the following additional condition:

The essential spectrum of the self-adjoint operator e1...en−1T contains positive and nega-

tive values (’e1...en−1T is neither essentially positive nor negative’). The reason we need

to impose this condition is that for n ≡ 3 (4) the space Fn(Hn), if defined without the

additional condition, has three connected components two of which are contractible. How-

ever, we are only interested in the third component whose elements can be characterized

by the above requirement on the essential spectrum of e1...en−1T . We remind the reader

of the definition of the essential spectrum of a self-adjoint operator T ∈ B(H): There is a

decomposition of the spectrum

σ(T ) = { λ ∈ C | λI − T is not invertible }

into two parts,

σ(T ) = σdiscrete(T )q σess(T ),

where σdiscrete(T ) consists of the discrete points in σ(T ) such that the corresponding

eigenspace has finite dimension. A second, equivalent, way to define σess(T ) is via the

equality

σess(T ) = σ(c(T )),

where c(T ) is the image of T in the Calkin algebra (which is a C∗-algebra and hence every

element has a well defined spectrum). The main result in [AS] can be formulated as follows:

Theorem 69. The spaces Fn constitute an Ω-spectrum representing real K-theory.

Remark 70. We want to explain how this result together with the classification of Clif-

ford algebras implies Bott periodicity. We begin by some general remarks about Morita

equivalence.

Denote by C the category whose objects are rings and in which the morphism set C(R,S)

is given by isomorphism classes of R-S-bimodules. The composition of two bimodules

RMS and SNT given by their tensor product over S. The identity morphism R → R is

R considered as a bimodule over itself. Two rings are called Morita equivalent if they are

isomorphic in C. More explicitly, R and S are Morita equivalent if and only if there are

bimodules RMS and SNR such that

RMS ⊗
S

SNR
∼= R and SNR ⊗

R
RNS

∼= S.

For example, taking M and N to be Rn shows that the ring of n×n-matrices with entries

in R is Morita equivalent to R.

Lemma 71. If R and S are Morita equivalent, then the categories ModR and ModS of

R and S left modules are equivalent.
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Proof. We have isomorphisms M : R
∼=↔ S : N as above. Define

ModR −→ModS, P 7→ SNR ⊗
R

RP ,

and similarly ModS → ModR by tensoring with M . It is clear that the composition of

these two functors is naturally equivalent to the identity functors on ModR and ModS. �

Now, using the lemma and Cn+8
∼= M16(Cn) (see e.g. [LM], chapter 1, §4) we see, in

particular, that Fn+8
∼= Fn. Here we also used thatHn+8

∼= Hn⊗CnCn+8 which follows since

each irreducible representation of Ck appears infinitely often in Hk. In a similar fashion one

can deduce from the complex version of the Atiyah-Singer theorem that complex K-theory

has period 2.

Using the result of Atiyah and Singer we see that our main theorem is implied by the

following homotopy equivalence whose proof comprises the remainder of this section. Note

that the annoying condition for n ≡ 3 mod 4 does not come up in the definition of our

spaces EFTn.

Theorem 72. For F = R,C and all n ≥ 0, there are homotopy equivalences

EFTF
n ' FF

n .

As said before, we will only deal with the case F = R. The first part of the proof consists

of showing that the spaces Fn are homotopy equivalent to certain spaces of configurations.

In the second part, we will use Dold-Thom theory to relate these configuration spaces to

the configuration spaces that appeared in connection with the spaces EFTn.

Interpreting the Atiyah-Singer spaces in terms of configurations.

Fact 73. Let T ∈ Fred(H). Then

σess(T ) ∩ (−ε(T ), ε(T )) = ∅ for ε(T ) = ||c(T )−1||−1
C(H).

Here ||.||C(H) is the C∗-norm on the Calkin algebra. In other words: The essential spectrum

of T has a gap of size at least ε(T ) around 0. Note that ε(T ) depends continuously on T .

Proof. This follows directly from the characterization of the essential spectrum as the

spectrum of c(T ) in C(H). �

Now we can express Fn as a configuration space. Let R̃ := [∞,∞]. We have

F̃n
∼= Fredodd,sa

Cn
(Hn)

' Conffin
Cn

(R̃, {±∞})

Here F̃n is the same as Fn if n is not congruent 3 mod 4 and if n ≡ 3 mod 4, it denotes

the full space of Fredholm operators defined above with the additional condition omitted.
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Hence, for all n we have identified Fn with a connected component Conf±∞n of the space

Conffin
Cn

(R̃, {±∞}), and only if n ≡ 3 mod 4 this component is a proper subspace.

The first map is a homeomorphism and given by sending an operator T to T̂ := T ⊗ en.

If we decompose Hn w.r.t. the grading, Hn
∼= Hn ⊕Hn, we have

T̂ ∼=
(

0 T ∗

T 0

)
.

From this it is clear that T̂ is odd and self-adjoint.

The second map is the homotopy equivalence given by pushing the spectrum of T̂ outside

of [−ε(T̂ )
2
, ε(T̂ )

2
] to ±infinity. One way to make this precise is to rescale T̂ to have norm one

and then to apply functional calculus using a function [−1, 1] → [−1, 1] that restricts to

a homeomorphism [−ε(T̂ )
2
, ε(T̂ )

2
]

∼=−→ [−1, 1] and is equal to ±1 on [−1, −ε(T̂ )
2

] and [ ε(T̂ )
2
, 1],

resp. This gives a homotopy equivalence to the configurations space Conffin
Cn

([−1, 1], {±1})
Now use the obvious homeomorphism ([−1, 1], {±1}) ∼= (R̃∪, {±∞}). We’d like to point

out that for the continuity of this map the continuous dependence of the size ε(T̂ ) of the

spectral gap is crucial.

The Dold-Thom theory of quasi-fibrations. The next ingredient in the proof is the

Dold-Thom theory of quasi-fibrations, see [DT]. The basic notion is

Definition 74. A map p : E � B is a quasi-fibration if for all b ∈ B, i ∈ N, and

e ∈ p−1(b) p induces an isomorphism

πi(E, p
−1(b), e)

∼=−→ πi(B, b).

From the long exact sequence of homotopy groups for a pair it follows that p is a quasi-

fibration exactly if there is a long exact homotopy sequence connecting fibre, total space

and base space of p, just like for a fibration. However, p does not need to have any (path)

lifting properties as the following example shows.

Example 75. The prototypical example of a quasi-fibration that’s not a fibration is the

projection of a ’step’

(−∞, 0]× {0} ∪ {0} × [0, 1] ∪ [0,∞)× {1} ⊂ R2

onto the x-axis. Even though all fibers have the same homotopy type (they are con-

tractible), the map doesn’t have the lifting property of a fibration, since it is impossible to

lift a path that passes through the origin.

The following sufficient condition for a map to be a quasi-fibration is proved in [DT]:

Theorem 76. The map p : E � B is a quasi-fibration if there exists a filtration

F0 ⊂ F1 ⊂ F2 ⊂ ... of B such that
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(i) For all i the restriction p|FirFi−1
is a fibration.

(ii) For all i there exists a neighborhood Ni of Fi in Fi+1 and a homotopy h on Ni such

that h0 = id and h1(Ni) ⊂ Fi.

(iii) h is covered by H : p−1(Ni)× I → p−1(Ni) with H0 = id and for all

x ∈ Ni we have H1(p
−1(x)) ⊂ p−1(h1(x))

Conclusion of the proof of theorem 72 (and thus of theorem 60). We have already shown

that

EFTn ' Confn := Conffin
Cn

(R̄,∞) and Fn ' Conf±∞n ⊆ Conffin
Cn

(R̃, {±∞})

where R̃ := [−∞,+∞] is the two-point compactification of R and R̄ is the one-point

compactification. Recall that the right hand inclusion is an equality unless n ≡ 3 mod 4.

The obvious map R̃→ R̄ that is the identity on R and maps ±∞ to ∞ induces a map

p : Conffin
Cn

(R̃, {±∞}) −→ Confn .

We claim that, when restricted to Conf±∞n , p is a quasi-fibration with contractible fiber and

hence a homotopy equivalence. This follows from the Dold-Thom theorem and Whitehead’s

theorem together with the fact that the spaces involved have the homotopy type of CW -

complexes. The full map p makes sense without restricting to Conf±∞n but if n ≡ 3 mod 4

it is not a quasi-fibration as well shall see below (the fibres have distinct homotopy groups).

Let us now prove the claim. We begin by computing the fiber of p over a configuration

c ∈ Confn. We have

p−1(c) = space of decompositions of V∞ := c(∞) as V∞ = V ⊥ αV,

where α is the grading involution on Hn. If c̃ ∈ p−1(c) then we may define V := c̃(−∞)

and, vice versa, given V an element in p−1(c) is determined by this formula. This implies

that p−1(c) is homeomorphic to the space

{ β : V∞ → V∞ Cn-linear | β2 = id, β = β∗, αβ = −βα }

The matrix representation of β with respect to the decomposition V∞ = V ev
∞ ⊕ V odd

∞ is of

the form

β =

(
0 β∗0
β0 0

)
,

where β0 is orthogonal, Cev
n -linear and with

β1 := e ◦ β0, e := e1 · e2 · · · en ∈ Codd
n .

a self-adjoint operator on V ev
∞ . Here we assume that n ≡ 3 mod 4, otherwise those sub-

tleties do not appear. We conclude that the fiber p−1(c) is homeomorphic to the space of

Cev
n -linear orthogonal (and self-adjoint) involutions

β1 : V ev
∞ −→ V ev

∞
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If we intersect this fibre with Conf±∞n then we are sure that the ±1 Eigenspaces of all the

β1 in question are infinite dimensional. Hence (the Cev
n -linear version of) Kuiper’s theorem

on the contractibility of the orthogonal group of a separable Hilbert space shows that the

fibers of p are contractible.

To complete the proof we have to show that p is indeed a quasi-fibration. This follows

from theorem 76; we only outline the argument. The filtration Fi is defined by

Fi := { c ∈ Confn | dim(⊕x∈Rc(x)) ≤ 2i }.

The neighborhoods Ni consist of configurations c ∈ Fi+1 such that c(x) 6= 0 for exactly one

x ∈ R>1 with dim c(x) = 1. The map H1 is the inclusion of a smaller unitary group into a

bigger one. This completes the proof of theorem 60. �

There is yet another, quite simple, relationship between our spaces EFTn and the Milnor

spaces Ωn introduced in [Mi] (which also represent K-theory as an Ω-spectrum). It turns

out that space of finite rank EFTs of degree n, Confn, is actually homeomorphic to Ωn−1

for n ≥ 1.

11. Conformal field theories and topological modular forms

We now turn to the 2-dimensional case. The main idea is that there should be a close

relationship between the space of susy CFTs of degree n and the −nth space in the spec-

trum TMF of topological modular forms, i.e. the universal ’elliptic’ cohomology theory

constructed by Hopkins and Miller. In this context the index of the Dirac operator is re-

placed by the Witten genus which should be thought of as the index of the S1-equivariant

Dirac operator on the loop space of a string manifold X. The situation is illustrated by

the diagram
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{
closed Riemannian

string n-manifolds

}
MFZ

∗

{
2-dim. classical susy conformal

field theories of degree n

}
π0(TMFn)

{
2-dim. susy conformal

field theories of degree n

}
π0(CFTn)

���
� �
� �
� �
� �
� �
� �
�

classical mechanics in LX

//Witten Genus

���
� �
� �
� �
� �
� �
� �
�

quantization

OO� � � � � � � � � � � � � � � � � �

//π0

OO� � � � � � � � � � � � � � � � � �

∼= (conjecture!)

Let us explain the components of the diagram more in detail.

String manifolds, the Witten genus, and integral modular forms. The Witten

genus w is a genus (in the sense of Hirzebruch) with values in the power series ring R[[q, q̄]]

(Q?). It is defined for all smooth manifolds X; however, it is most interesting to consider

its properties for manifolds satisfying higher orientability conditions. For example, if X

is spin, the coefficients of w(X) are integers. Moreover, if X is string, i.e. X is spin and

the characteristic class p1

2
(X) is zero, then no q̄’s appear. In fact, in this case w(X) is the

q-expansion of a modular form. For Witten’s interpretation of w(X) as the index of the

S1-equivariant Dirac operator on the loop space LX, see [Wi].

Classical mechanics on LX and conformal field theory. Consider a 2-dimensional

space-time M , a target X, and the fields Φ(M) := C∞(M,X). The classical action given

by the ’kinetic energy’ is

(σ : M → X) 7→
∫

M

||Dσ||2 volM .

This action depends only on the conformal structure on M and hence defines a classical

conformal field theory.

In the case M = S1 × R we have

Φ(M) = C∞(S1 × R, X) = C∞(R, LX),
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i.e. this is the same as classical mechanics on the (free) loop space LX of X. The classcial

solutions are indexed by elements in T ∗(LX).

Quantization leads to a conformal field theory. According to the formalism of canonical

quantization we would expect

HS1 = L2(LX) and that OS1×[0,t] : HS1 −→ HS1

is given by

e−tH =

∫
σ

e−A(σ)Dσ.

However, these things are not defined mathematically. However, as explained in section 8

there is a mathematical notion of a conformal field theory. For more about this and some

examples, see the beautiful article by Segal, [Se1].

Topological modular forms. The spectrum TMF was introduced by Hopkins and Miller,

see [H]. It has the crucial properties one expects from ’elliptic cohomology’: It is the home

of the parametrized Witten genus, carries an orientation for string vector bundles, and...

However, its construction is purely homotopy theoretic and thus not quite satisfactory from

a geometric point of view. The goal of our considerations is to give a geometric description

of this theory using conformal field theory. The main reasons to believe that there is a

close connection between CFTs and TMF are that to every CFT there is an associated

modular form and that the consideration of CFTs leads to an orientation for string vector

bundles, see [ST]. We will elaborate on the first point in the next two sections.

12. Modular forms and the moduli space of elliptic curves

We denote by h ⊂ C the upper half plane.

Definition 77. (i) A map f : h→ C is a modular form of weight k ∈ Z if

• f is holomorphic.

• We have

f(
aτ + b

cτ + d
) = (cτ + d)kf(τ) for all τ ∈ h and

(
a b

c d

)
∈ L2(Z).

In particular, f(τ + 1) = f(τ), i.e. f factors through a map f̄(q),

h D̊2 \ {0}

C

//exp

��?
??

??
??

??
?

f
���
� �
� �
�

f̄

where exp(τ) =: e2πiτ =: q.
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• f̄ is holomorphic at q = 0, i.e. the Laurent series of f̄ around zero is of the form

f̄(q) :=
∑
n≥0

anq
n.

(ii) A weak modular form is defined in a similar way, but now we allow that the q-

expansion is of the form f̄(q) :=
∑

n≥N anq
n for some N ∈ N, i.e. f̄ may have a

pole at 0.

(iii) f is integral if all coefficients an are integers.

We will now explain how modular forms can be interpreted as functions on the space of

(rank 2) lattices in C = R2. Let

L := { space of lattices in R2 } = GL2(R)/GL2(Z).

We will see that L can be identified with an open dense subset of C2 \ {0}.

Definition 78. A map F : L → C is a lattice function of weight k if

• F is holomorphic.

• F (λΓ) = λ−kF (Γ) for all λ ∈ C× and lattices Γ ∈ L.

• F extends to a holomorphic map F̄ : C2 \ {0} → C
We write Γhol(L

⊗k) for this space of F ’s.4

Lemma 79. There is an isomorphism of graded rings⊕
k

Γhol(L
⊗k) −→ MF∗, F 7→ f(τ) := F (τZ + Z).

Proof. The transformation properties of the lattice function F and the modular form f

correspond to each other; this follows from the computation

(cτ+d)−kf(
aτ + b

cτ + d
) = (cτ+d)−kF (

aτ + b

cτ + d
Z+Z) = F ((aτ+b)Z+(cτ+d)Z) = F (τZ+Z) = f(τ)

For the other statements we refer to the discussion below. �

Consider the following diagram.

4The reason for this notation is that lattice functions can be interpreted as holomorphic sections of the
kth power of the (singular) line bundle L = L ×

C×
C over L/C×.
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GL2(R) = { based lattices in R2 }

L = GL2(R)/GL2(Z) SO2\SL2(R) ∼= h

SO2\SL2(R)/SL2(Z)

ssggggggggggggggggfree GL2(Z)

++WWWWWWWWWWWWWWWW
free C×

++WWWWWWWWWWWWWWWW

non-free C× ssgggggggggggggggg

non-free SL2(Z)

The diagram illustrates the isomorphism given in the lemma: The spaces L and h are

resolutions of the same singular space SO2\SL2(R)/SL2(Z). Thinking of modular forms as

sections of certain line bundles over SO2\SL2(R)/SL2(Z) we see that the two descriptions

given above are just two sides of the same coin.

We will see soon that the bi-quotient SO2\SL2(R)/SL2(Z) can be interpreted as the

moduli space of elliptic curves over C. In fact, one can think of a modular form as an

algebraic function on the moduli stack of elliptic curves over C. It is a theorem of Deligne

that the integral modular forms correspond precisely to algebraic functions on the moduli

stack of elliptic curve over all rings.

Examples 80. For k > 2 the Eisenstein series

gk(Γ) := Kk

∑
ω∈Γ\{0}

1

ωk

defines a lattice function of weight k. From the symmetry of the lattice Γ it follows that

for gk is zero for odd k. The Kk in the formula are constants, we only care to know their

value for k = 4, 6:

K4 = 60 and K6 = 140.

It turns out that MF∗ is a polynomial ring in g4 and g6, see corollary 87.

Groupoids and moduli of tori, cubics, and curves. We now explain in more detail

how the bi-quotient SO2\SL2(R)/SL2(Z) is related to the moduli of elliptic curves over

C. Because of the problem of automorphisms, we have to consider groupoids rather than

just the space SO2\SL2(R)/SL2(Z). Recall that a groupoid is a category in which all

morphisms are invertible.

Definition 81. Let X be a space with an action of a group G. We define the associated

groupoid (X,G) by

Obj := X and Mor := X ×G
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The domain and target maps X ×G→ X are given by the projection onto the first factor

and the G-action, resp. The identity morphisms are given by idX ×eG : X → X ×G.

Remark 82. If G acts freely on X we have (X,G) ∼= (X/G, {e}).

Examples 83. (i) We define the groupoid of flat tori and scalings to be (L,C×). From

the remark and the diagram above we see that

(L,C×) ' (h, SL2(Z)).

Note that the flat torus associated with an object in (L,C×) has a canonical base

point. This is the reason why we also introduce base points in the subsequent exam-

ples.

(ii) The objects of the groupoid of smooth cubics (in CP2) are smooth cubics in CP2

that go through the point [0, 1, 0]. Morphisms are global isomorphisms of CP2 fixing

[0, 1, 0] and taking one cubic to another.

(iii) The groupoid of elliptic curves over C has as objects smooth algebraic curves over C
equipped with a base point, and morphisms are base point preserving isomorphisms.

(iv) Compact Riemann surfaces of genus 1 with a distinguished point and their isomor-

phisms define the groupoid of complex curves of genus 1. As a slight variation we

can consider the groupoid of oriented conformal tori with a base point. This is iso-

morphic to the groupoid of genus 1 complex curves, because the structure groups

coincide:

GL1(C) = C× = SO2 × R× ⊂ GL2(R)

Theorem 84. The four groupoids described in the example are equivalent.

Proof. We will define maps from each example to the next and from (iv) to (i). It is then

not hard to check that composing these four yields a functor equivalent to the identity,

no matter at which groupoid one starts. The maps from (ii) to (iii) and (iii) to (iv) are

obvious. Let us consider the two remaining interesting cases.

(i) → (ii): Given Γ ∈ L, the Weierstraß function

℘Γ(z) =
1

z2
+

∑
ω∈Γ\{0}

(
1

(z − ω)2
− 1

ω2

)
is a meromorphic function on C with poles of order 2 exactly at the points of the lattice Γ.

℘Γ is elliptic, i.e. it factors through the torus C/Γ. This follows easily by first considering

its derivative

℘′Γ(z) =
∑
ω∈Γ

− 2

(z − ω)3
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which is (obviously!) an elliptic function. Furthermore, it is not hard to check that ℘Γ and

℘′Γ satisfy the differential equation

℘′Γ(z)2 = 4℘Γ(z)3 − g4(Γ)℘Γ(z)− g6(Γ).

Using the differential equation for ℘Γ one can show that there is a biholomorphism

φ : C/Γ ∼= E(g4, g6) := { [p, q, 1] ∈ CP2 | q2 = 4p3 − g4p− g6 } ∪ { [0, 1, 0] }

given by

[z] 7→ [℘Γ(z), ℘′Γ(z), 1] if z /∈ Γ and [z] 7→ [0, 1, 0] if z ∈ Γ.

One way to see that this gives a biholomorphism is to consider the 2-fold branched covers

C/Γ E(g4, g6)

CP1

//φ

$$JJJ
JJJ

J

℘Γ zzttt
ttt

t
pr1

and to check that they have the same branch points (namely e1, e2, e3 and∞, where the ei

are the roots of the cubic 4p3− g4p− g6 = 0). Hence we associated with each lattice Γ ⊂ C
the smooth cubic E(g4, g6) in CP2 that goes through [0, 1, 0]. This gives desired map (i)

→ (ii).

(iv) → (i): Let X be a complex curve of genus one with base point x0. The Riemann-

Roch theorem implies that there exists a non-vanishing holomorphic 1-form θ on X. Define

the period mapping

PM : π1(X, x0) −→ C by [γ] 7→
∫

γ

θ.

This is well defined, since θ is holomorphic and hence closed. Denoting by Γ ⊂ C the image

of the PM , it is clear that we have a biholomorphism

X ∼= C/Γ given by x 7→
∫ x

x0

θ.

We would like to point out that in the case X = E(g4, g6) one can choose θ = dp
q

and does

not need the Riemann-Roch theorem. Furthermore, picking x0 = [0, 1, 0] we get∫ [p,q,1]

[0,1,0]

θ =

∫ [p,q,1]

[0,1,0]

dp

q
=

∫ [p,q,1]

[0,1,0]

dp√
4p3 − g4p− g6

=

∫ y

0

℘′(z)√
4℘(z)3 − g4℘(z)− g6

=

∫ y

0

dz = y

which implies that if we start with a lattice in C and go through the four equivalences, we

indeed get the same lattice back. �

Corollary 85. Let ∆ := g3
4 − 27g2

6. We have a diffeomorphism

L
∼=−→ { (g4, g6) ∈ C2 |∆ 6= 0 }, Γ 7→ (g4(Γ), g6(Γ)).
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Proof. The condition ∆ 6= 0 says that the cubic in CP2 given by the coefficients g4 and g6 is

smooth. To see this, note that in terms of the zeroes e1, e2, e3 of the equation 4p3−g4p−g6 =

0 ∆ can be expressed as

∆ = (e1 − e2)(e1 − e3)(e2 − e3)
Now the theorem implies that the map Γ 7→ (g4, g6) has an inverse. �

Remark 86. The group structure on the quotient C/Γ, considered as a cubic in CP2 as

above, can be described as follows: The zero element is [0, 1, 0], and

P1 + P2 + P3 = 0 ⇐⇒ The Pi lie on one line in CP2.

This leads to an elliptic cohomology theory h s.t.

h∗(pt) = Z[
1

6
, g4, g6],

where gi ∈ h2i(pt). The theory h is complex oriented and its associated formal group law

is the formal group law of the elliptic curve C/Γ. There is a map

TMF∗(pt) −→ h∗(pt)

whose image lies in MFZ
k
2

∼= Z[g4, g6] ⊂ h∗(pt).

The structure of the ring of modular forms. Let us now return to our discussion of

modular forms and lattice functions. Consider again the embedding

L
∼=−→ { (g4, g6) ∈ C2 |∆ 6= 0 } ↪→ C2 \ {0}

The C×-action on L corresponds to the C×-action on C2 \ {0} given by

λ(g4, g6) = (λ4g4, λ
6g6).

We have a commutative diagram

L { (g4, g6) ∈ C2 |∆ 6= 0 } C2 \ {0}

L/C× h/SL2Z (C, 2, 3)

//
∼=

���
� �
� �
� �
�

C×

//

���
� �
� �
� �
�

C×

//
∼=

//j

Hence a modular form is the same as a holomorphic function on { (g4, g6) ∈ C2 |∆ 6= 0 }
that is equivariant w.r.t. the C×-action on C2 \ {0}. Holomorphicity at i∞ corresponds to

a holomorphic extension to C2\{0}. A holomorphic function on C2\{0} that is equivariant

w.r.t. the C×-action we described above is necessarily a polynomial in g4 and g6. Hence

we obtain:
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Corollary 87. There is an isomorphism

MF∗ ∼= C[g4, g6].

Furthermore, since multiplication by a sufficiently high power of the discriminant ∆ makes

every weak modular form into an honest one, we have

wMF∗ ∼= C[g4, g6,∆]/(g3
4 − 27g2

6 = ∆).

The ring of integral modular forms was computed by Tate:

Theorem 88 (Tate). The ring of integral modular forms is

MFZ
∗
∼= Z[c4, c6,∆]/(c34 − c26 = 1728∆),

where

c4 = 12g4 and c6 = 216g6.

The q-expansions of c4, c6, and ∆ are given by

c4(q) = 1 + 240
∑
n≥0

σ3(n)qn and c6(q) = 1− 504
∑
n≥1

σ5(n)qn,

where σk(n) :=
∑

d|n d
k, and

∆(q) = q
∏
n≥0

(1− qn)24.

In particular, we see that these forms are indeed integral. Tate’s theorem implies that

MFZ
12∗ = Z[∆, c34].

Theorem 89 (Hopkins, Mahowald). Consider the map TMF∗(pt) → MFZ
∗/2. The image

of π24∗(TMF) in MFZ
12∗ is spanned by the monomials

c3a
4 ∆b (a > 1, b ≥ 0) and

24

(24, b)
∆b (b ≥ 0).

In particular, 24∆ and ∆24 lie in the image.

Corollary 90. If M24 is a string manifold, then 24 | Â(M,TMC).

We would like to point out that there is no geometric proof of this theorem yet; it would

be nice to have one.
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13. CFTs and modular forms

We now explain how conformal field theories and (weak) modular forms are connected.

Theorem 91. There is a map π0 CFT2k → wMFZ
k .

Remark 92. Introducing the appropriate product structure on CFTs and summing over

all k, this will become a ring homomorphism.

We have to define the spaces CFTn. We will not be too precise about this, and the

2-category aspect of the story (see [ST]) will be ignored completely. However, we will take

the super symmetric aspects into account, since they are crucial for obtaining a modular

form. We begin with some preparatory material.

Spin structures on 1-dimensional real and complex manifolds. Let F = R or C.

Let X be a 1-dimensional manifold over F. A spin structure on X is an F-vector bundle

SX over X together with an isomorphism ψX : SX ⊗F SX
∼= T ∗X. In the case F = C we

assume that SX and ψX are holomorphic. In the case F = R, we obtain an orientation on

X from a spin structure by considering all vectors in T ∗X that are squares, i.e. of the form

v2 := ψX(v ⊗ v).
A spin structure on a complex 1-manifold X with boundary induces a spin structure on

∂X as follows. Define

S∂X = { v ∈ SX |∂X | v2 annihilates T (∂X) ⊂ TX|∂X }

For example, if X = D2 ⊂ C is the unit disc with its unique spin structure, the spin

structure induced on the boundary is given by the Möbius bundle.

1
2
-forms, Cliffords algebras, and Fock spaces. Now, for X equipped with a spin

structure define

Ω
1
2 (X) := Γ(SX)

If F = R, this has an inner product that is invariant under spin diffeomorphisms of S1; it

is defined by

〈w1, w2〉 :=

∫
X

ψX(w1(x)⊗ w2(x)).

If F = C, the holomorphic structure gives a Dolbeault operator

∂̄ : Ω
1
2 (X) −→ Ω

3
2 (X),

and ker ∂̄ is the space of holomorphic 1
2
-forms on X. The map ∂̄ can be identified with the

Dirac operator on X, and under this identification the holomorphic 1
2
-forms correspond

to harmonic spinors. If X is closed, ∂̄ is self-adjoint and ellliptic and hence the space

of holomorphic 1
2
-forms is finite-dimensional. In the case ∂X 6= ∅ the elements in ker ∂̄

restrict to give a Lagrangian subspace in Ω
1
2 (∂X)⊗ C.
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We will now associate to each closed spin 1-manifold an algebra C(X) and to each

Riemann spin surface Σ a module over C(∂Σ). C(X) is defined to be the Clifford algebra

associated with the inner product space

(Ω
1
2 (X)⊗ C, 〈., .〉),

where 〈., .〉 is the C-linear extension of the inner product described above. For a surface Σ

we define its associated Fock space by

F (Σ) :=

{
Pf(Σ) = Λtop(ker ∂̄) if Σ closed

Λ∗(ker ∂̄) if ∂X 6= ∅
This is a graded irreducible C(∂Σ)-module, see e.g. [ST].

Denote by S1
P and S1

A the circle equipped with the non-bounding (Periodic) and bounding

(Anti-periodic) spin structure. In the following we will, for simplicity, assume that all 1-

manifolds occuring are disjoint unions of such standard circles. In order to define CFTs

of degree n we fix two graded representations HP and HA of the algebras C(S1
P )⊗n and

C(S1
A)⊗n, respectively.

Definition 93. A (non-super symmetric) CFT E of degee n is a C(∂Σ)⊗n-linear assign-

ment

(Σ2, ω) 7→ E(Σ, ω) ∈ H(∂Σ)

that satisfies the usual gluing laws.

Here ω is an element in the nth power of the Fock space F (Σ)⊗n. The Hilbert spaceH(∂Σ)

is an appropriate tensor product of copies of HP and HA and their duals with multiplicities

according to the usual disjoint union axiom. There is an action of C(∂Σ)⊗n onH(∂Σ), since

C(∂Σ)⊗n is a tensor product of C(S1
P )⊗n, C(S1

A)⊗n, and their opposite algebras with the

same multiplicities as for H(∂Σ). This explains what we mean by C(∂Σ)⊗n-linearity in the

definition. We should also point out that giving a vector inH(∂Σ) is the same as prescribing

a Hilbert-Schmidt operator from H(∂inΣ) to H(∂outΣ), because of the isomorphism

H(∂Σ) = H(∂inΣ)∗ ⊗H(∂outΣ) ∼= HS(H(∂inΣ),H(∂outΣ)).

Remark 94. We want to explain how the same formalism leads to the notion of degree n

previously introduced in the case of 1-dimensional Euclidian field theories. For simplicity,

we will only look at points and intervals. We have the Clifford algebra

C(pt) = C(Ω
1
2 (pt), 〈., .〉) = C1

and hence C(pt)⊗n = C⊗n
1
∼= Cn. Furthermore,

F ([0, t]) = Λ∗( harmonic 1/2-forms on [0, t] ) ∼= C1 as Cop
1 ⊗ C1-modules,
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since harmonic 1/2-forms on [0, t] are constant. We thus have F ([0, t])⊗n ∼= Cn as an

Cop
n ⊗ Cn-module or, equivalently, as a Cn-Cn-bimodule. If we let Op([0, t]) := E([0, t], 1)

for a EFT E, then,

Op([0, t]) = E([0, t],−ei1ei) = −eiOp([0, t])ei for all i,

i.e. Op([0, t]) is Cn-linear. Here we used the identification HS(Hn) ∼= H∗
n⊗Hn. So it turns

out that our new notion of degree coincides with the one introduced earlier.

The modular form associated with a CFT. Consider a CFT E of degree n. For a

complex torus T we used a non-vanishing 1-form θ and a base-point x0 to define

Γθ := {
∫

γ

θ ∈ C | γ is a loop at x0 }

and an isomorphism

T
∼=−→ C/Γθ, x 7→

∫ x

x0

θ.

In other words, the line bundle associated with the C×-principle bundle L → MEll has

fiber Ω1
hol(T )∗ ∼= ΛtopΩ1

hol(T ) = Det(T ) over T . This implies that the restriction of E to

tori defines a (not necessarily holomorphic) lattice function

E(tori) : L −→ C

of weight n
2
. This (and the role of the factor 1

2
) can be seen directly from the identification

Pf(Σ)⊗2 ∼= Det(T ).

This suggest that we might be able to associate a modular form to every CFT. However,

there is no reason why E(tori) should be holomorphic. To ensure this, we need supersym-

metry.

Theorem 95. If E is super symmetric in the sense explained below the map

E(tori) : L −→ C

is a weak integral modular form of weight n
2
.

We will be very brief concerning the meaning of ’supersymmetric’ and concentrate on the

aspects that imply that E(tori) is holomorphic and integral. Roughly speaking, we replace

conformal surfaces by super conformal surfaces and define ’super CFTs’ to be (operator

valued) functions on the associated super moduli space.

Recall that a complex structure on a surface Σ is just a decomposition

TΣ⊗ C = T 1,0 ⊕ T 0,1
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and that locally these subbundles are spanned by vector fields ∂z and ∂z̄. Now, a super

conformal structure on a super manifold of dimension (2|1) is a decomosition

TΣ2|1 ⊗ C = T (0,1)|0 ⊕ T (1,0)|0 ⊕ T 0|1.

Locally, these are spanned by vector fields ∂z, ∂z̄, and D = ∂θ − θ∂z̄. Note that D2 = −∂z̄.

We remind the reader that in the K-theory case supersymmetry changed the moduli

space of intervals R>0 to the super moduli space of super intervals R1|1
>0, and the significant

feature of this super semi group was the structure of its Lie algebra, which is free in one

odd generator. In the 2-dimensional case a similar thing happens. We consider the semi

group of ’toy annuli’ whose boundary parametrizations are of a particularly simple form.

Every conformal annulus A is isomorphic to one of the form {z | t ≤ |z| ≤ 1} ⊂ C for some

t ∈ (0, 1). We consider the semi group of annnuli whose boundary parametrizations S1 →
{z | t ≤ |z| ≤ 1} are given by multiplication by a complex number. After multiplication by

z ∈ S1 we can assume that the parametrization of the outgoing boundary is the identity

on S1. Hence such an annulus is characterized by the complex number q ∈ D2 \ {0} that

gives the parametrization of the incoming boundary. Gluing of two such annuli Aq and

Aq′ yields Aqq′ so that the semi group of toy annuli is D2 \ {0}. It turns out that the

corresponding super semi group of super conformal toy annuli is D2|1 \ {0}. The super Lie

algebra of this is the direct sum of two free super Lie algebras, one with an even and one

with an odd generator. This means that in the super version one of the generators of the

Lie algebra of the toy annuli group has an odd square root.

Now, from the gluing properties of a CFT one obtains the formula

E(Tq) = strace(Aq),

that describes the value of E on the torus obtained from gluing incoming and outgoing

boundary components of the annulus Aq together. Recall that in order to evaluate a CFT

we also need not only a surface, but also an element in the associated Fock space. For

each annulus Aq we have a canonical element in F (Aq), namely the vacuum vector. From

this one can construct a canonical element in the Fock space of Tq, see [ST], page 43. If

we write E(Tq) it is understood that we use this distinguished element in F (Tq).

Now, every Z/2-equivariant semi group homomorphism D2 → HSsa can be written as

E(Aq) = qAq̄B,

where A and B have discrete spectrum and commute. Furthermore, the spectrum of A−B
is contained in Z. Taking the super trace we obtain

E(Tq) =
∑

λ∈σ(A), µ∈σ(B)

qλq̄µ sdimEλ,µ.
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If E is super symmetric, then B = G2 for some odd operator G that commutes with

A. G gives isomorphisms Eλ,µ
∼= Eλ,µ̄, which implies that all contributions in the sum for

µ 6= 0 are zero. Thus,

E(Aq) = strace(qA|ker B) =
∑
n∈Z

qn sdimEn,0,

where the second equality uses the integrality of A − B. It turns out that this series is

bounded below (otherwise one runs into a contradiction to E(Aq) being Hilbert-Schmidt)

and so we can conclude that E(tori) is an integral weak modular form.
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