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Abstract

We give a definition of 6-connected covering groups String(n) →
Spin(n) in terms of “local fermions” on the circle. These are certain
very explicit von Neumann algebras, the easiest examples of hyper-
finite type III1 factors. Given a Riemaniann string manifold Mn,
i.e. an n-dimensional manifold with prescribed lifts of the (deriva-
tives of the) coordinate changes to String(n), we define a classical
2-dimensional conformal field theory. The fields on space-time, a con-
formal surface, are maps to M . Another way to view the construction
is to say that it gives the spinor bundle over the loop space LM , to-
gether with a conformal connection, see Theorem 4. In physics lingo
we have constructed a 2-dimensional classical conformal field theory of
central charge dim(M), with the extra structure of fusion and gluing
along intervals (or open strings).

On the way, we give precise definitions and proofs for the fact
that orientations of LM are in canonical 1-1 correspondence to spin
structures on M (Theorem 9). Moreover, we show that the conformal
anomaly in the spinor bundle over LM can be resolved in the presence
of a string structure on M ( Theorems 1 and 2). Our new idea is to
make systematic use of the fusion operation on LM , which already
has been successfully applied to define a level preserving product of
finite energy representations of loop groups in [Wa].

∗We thank the Max-Planck Institute for it’s hospitality and support, and for providing
an incredible research setting. Both of us are also supported by NSF grants.
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1 Introduction

For large n, the first few homotopy groups of the orthogonal groups O(n) are
given in the following table:

k 0 1 2 3 4 5 6 7
πkO(n) Z/2 Z/2 0 Z 0 0 0 Z

It is well known that there are topological groups and homomorphisms

String(n) → Spin(n) → SO(n) → O(n)

which kill exactly the first few homotopy groups. More precisely, SO(n) is
connected, Spin(n) is simply-connected and String(n) is 6-connected, and
the above maps induce isomorphisms on all higher homotopy groups. This
homotopy theoretical description of k-connected covers actually works for
any topological group in place of O(n) but it only determines the groups
up to homotopy equivalence. For the 0-th and 1-st homotopy groups, it is
also well known how to construct the groups explicitely, giving the smallest
possible models. In our case, SO(n) is an (index 2) subgroup of O(n), namely
the identity component, and Spin(n) is the universal (double) covering of
SO(n). In particular, both of these groups are Lie groups. However, a group
String(n) cannot have the homotopy type of a Lie group since π3 vanishes,
and there has yet not been found a canonical construction which gives a
smallest possible model for it.

In this note we construct such a concrete model for String(n) in terms of
“local fermions” on the circle. These are certain very explicit von Neumann
algebras, the easiest examples of hyperfinite type III1 factors. We then
use this model to give a geometric explanation of the meaning of lifting the
(derivatives of the) coordinate changes of a manifold to String(n). Given
a smooth manifold M of dimension n, recall that a lift to O(n) is nothing
but the choice of a Riemannian metric. Lifting further to SO(n) gives an
orientation on M , and a lift to Spin(n) is a spin structure. Continuing in
this spirit, we call a lift to String(n) a string structure on M . From the above
homotopy theoretical description it follows that

1. M is orientable if and only if the Stiefel-Whitney class w1M vanishes.
Orientations of M are in 1-1 correspondence with H0(M ; Z/2).
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2. M is spin if and only if the Stiefel-Whitney classes w1M and w2M van-
ish. Spin structures on M are in 1-1 correspondence with H1(M ; Z/2).

3. M is string if and only if the Stiefel-Whitney classes w1M,w2M and
the characteristic class p1/2(M) ∈ H4(M ; Z) vanish. String structures
on M are in 1-1 correspondence with H3(M ; Z).

Recall that for any vector bundle E over M with spin structure, there is a
canonical cohomology class inH4(M ; Z), twice of which is the first Pontrjagin
class p1(E). Lacking a better name, one simply denotes it by p1/2(E).

The geometric relevance of a spin structure is that it enables one to

• define the spinor bundle SM on M ,

• define the Dirac operator, acting on the sections of SM ,

• compute the index of the Dirac operator which is the Â-genus of M ,

• show that this index is an obstruction to the existence of a metric with
positive scalar curvature on M .

The ultimate goal of our project is to generalize all of the above to loop
spaces. More precisely, let LM be the space of all piecewise smooth loops in
M . Then we would like to prove that for a string manifold M

• there is a spinor bundle SLM on LM ,

• there is a Dirac operator, acting on the sections of SLM ,

• it has an index which is the Witten genus of M .

• show that this index is an obstruction to the existence of a metric with
positive Ricci curvature on M .

In this note we shall only explain the first point in this list, so far the other
points seem out of reach for mathematicians. To motivate the first point,
we will show in Theorem 9 that orientations of LM are in canonical 1-1
correspondence to spin structures on M . This slogan is well known and was
made precise in [McL] in the simply-connected case by a purely topological
argument. Our definition and proof works for every manifold and we use
the Riemannian metric, hence our argument is better suited for our ultimate
purposes.
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Using our new model for String(n), we then explain how a string structure
on M gives a spin structure on LM and hence allows the definition of the
spinor bundle SLM on LM . To be more specific, we have to recall the most
important properties of spinor bundles. Just like for M , the fibres of SLM are
irreducible modules over the Clifford algebra of the tangent spaces of LM .
This implies that these fibres are infinite dimensional. However, there is a
very important new structure showing up in this infinite dimensional case
which is not usually discussed in the finite dimensional setting. It has to
do with the fact that two loops which agree on a common interval can be
fused to a third loop. Then one wants the relevant fibres of SLM to glue up
accordingly. More precisely, it is convenient to think of a piecewise smooth
loop γ : S1 → X as given by a pair of piecewise smooth paths γ1, γ2 : I → X
with common endpoints; we write γ = γ1 ∪ γ̄2. Now given two loops γ1 ∪ γ̄2

and γ2∪ γ̄3 with common segment γ2, we can form a new loop γ1∪ γ̄3; we say
that γ1 ∪ γ̄3 is obtained by fusing the loops γ1 ∪ γ̄2 and γ2 ∪ γ̄3, see figure .

Theorem 1. For a string manifold M there is an (infinite dimensional)
vector bundle F = SLM → LM with the following properties:

1. (bimodule) The fiber F(γ) over a loop γ = γ1 ∪ γ̄2 is an irreducible
bimodule over A(γ1)−A(γ2), where A(γi) is the Clifford von Neumann
algebra generated by the real Hilbert space L2(γ∗iE) of L2-sections of
the pull-back bundle γ∗iE.

2. (fusion) For three paths γ1, γ2, γ3 with common endpoints, there is an
isomorphism of A(γ1)− A(γ3)-bimodules

G(γ1, γ2, γ3) : F(γ1 ∪ γ̄2) �A(γ2) F(γ2 ∪ γ̄3)
∼=−→ F(γ1 ∪ γ̄3),

where the left hand side is the fusion product a la Connes [Co] of the
bimodules F(γ1 ∪ γ̄2) and F(γ2 ∪ γ̄3). Moreover, these fusion isomor-
phisms satisfy associativity constraints (for four paths with common
endpoints).

It turns out that the fusion condition makes this bundle over LM behave
locally in M , and hence we call the structure constructed in Theorem 1 the
stringor bundle on M . We can then summarize the analogies with the spinor
bundle on M which is a Cl(M)−Cn -bimodule bundle, where Cl(M) is the
Clifford bundle on M and Cn is the (constant) Clifford algebra. Cl(M) exists
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canonically for every Riemannian manifold M . A spinor bundle on M is the
choice of a graded, irreducible Cl(M) − Cn -bimodule bundle on M . Note
that over a point m ∈M , there are exactly two isomorphism classes of such
modules, and each of them corresponds to a local orientation at m. Given
an orientation on M , there is still no reason, why these unique isomorphism
classes should fit together to a bimodule bundle over M .

Theorem 2. Let M be a Riemannian manifold.

1. If M is oriented then it is spin if and only if a spinor bundle on M
exists. Moreover, isomorphism classes of spinor bundles are in 1-1
correspondence with spin structures on M , and hence with H1(M ; Z/2).

2. If M is spin then it is string if and only if a stringor bundle on M
exists. Moreover, isomorphism classes of stringor bundles are in 1-1
correspondence with string structures on M , and hence with H3(M ; Z).

This theorem is really new in the sense that it shows in particular that
the fusion property of SLM implies the vanishing of p1/2(M), not just of its
transgression in H3(LM). The latter class actually vanishes if one has a
bundle F which only satisfies the first property in Theorem 1.

It turns out that we can make one tiny step towards the definition of the
Dirac operator on LM . To explain this step, recall the Feynman-Kac formula
for the Dirac operator D on a spin manifold M . It says that the operator
e−tD

2
is an integral operator, i.e.,

(e−tD
2

ψ)(x) =

∫
M

Kt(x, y)ψ(y)dy,

whose operator kernel Kt(x, y) ∈ Hom(Sy, Sx) is given by an integral

Kt(x, y) =

∫
γ

||S(γ)Dtγ.

Here the integral is taken over the space of continuous paths γ : [0, t] → M
with starting point y and end point x, and ||S(γ) : Sy → Sx is (stochastic)
parallel translation in the spinor bundle along γ (this is induced by the Levi-
Civita connection on TM). The measure Dt is the Wiener measure on the
space of continuous paths connecting y and x. From the McKean-Singer
Formula

index(D) = str e−tD
2

,
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it follows that the above path integral is all one needs for index calculations.
Moving further to LM , one can formally write down quite analoguous

expressions as above. The relevant operator kernel would then be a functional
integral over the space of maps of a surface intoM . Even though a reasonable
measure on this space has not been found, it is still interesting to ask what the
integrand in that functional integral could be. It should be the analogue of
parallel translation in the spinor bundle of M . We shall explain in Section 2
why the following structure is indeed exactly such an analogue.

Definition 3. Assume F is a stringor bundle as in Theorem 1. A conformal
connection on F is given by a family of triangles, one for each Riemaniann
spin manifold Σ with boundary S1, as follows:

F

PΣM LM
?�

�
�

�
��

V

-res

Here res denotes the restriction to the boundary. There are two axioms for
the section V, namely

• V is conformal, i.e. it depends only on conformal structure on Σ, and
an element ε in the Pfaffian line of DΣ. This dependence satisfies for
all λ ∈ C:

V(λε) = λdim(M) · V(ε).

• If ∂Σ1 = γ1 ∪ γ̄2 and ∂Σ2 = γ2 ∪ γ̄3 there is the gluing law

V(Σ1 ∪γ2 Σ2) = G(γ1, γ2, γ3)(V(Σ1)⊗ V(Σ2)),

As we shall see, the isomorphisms G(γ1, γ2, γ3) are actually determined
be the gluing laws above.

Theorem 4. The stringor bundle SLM of a string manifold M comes equipped
with a conformal connection as defined above.

It is worth pointing out that in physics lingo we have constructed a 2-
dimensional classical conformal field theory of central charge dim(M), with
the extra structure of fusion and gluing along intervals (or open strings).
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2 Spinor bundle and heat kernel in finite di-

mensions

Let Mn be a closed Riemaniann spin manifold. The spin structure is a
Spin(n)-principal bundle P whose underlying SO(n)-bundle is the oriented
frame bundle of TM . then

SM = P ×Spin(n) Cn

is the spinor bundle on M . It is Z/2-graded and carries a right action of the
Clifford algebra Cn. Moreover, the fibres Sx are irreducible C(TxM) − Cn-
bimodules.

We start with a description of the heat kernel e−tD
2
(x, y), for x, y ∈M and

t > 0. This is a section of the endomorphism bundle EndCn(S) of the spinor
bundle which is a bundle over over M ×M . It describes the distribution (as
a function of y ∈ M) of “Dirac heat” at time t, assuming that at time 0 a
unit of heat was concentrated at x ∈ M . It is an intuitive but difficult fact
that this heat distribution can be obtained as a functional integral over the
space of all path γ ∈ Pt(x, y) (along which heat moves). Here the path space
Pt(x, y) consists of continuous maps

γ : [0, t] −→M, with γ(0) = x, γ(t) = y

and

e−tD
2

(x, y) =

∫
γ

v(γ)Dtγ.

Such a functional integral expression is the content of the Feynman-Kac
formula for the heat kernel. Ignoring the details about the Wiener measure
Dt on Pt(x, y) (which is defined using the exponential of the energy of γ and
the scalar curvature of M), we just need to define the integrand v(γ). It must
take values in the fibre HomCn(Sx, Sy) of the endomorphism bundle of the
spinor bundle and it is the beast that’s averaged over the paths γ connecting
x and y to give e−tD

2
(x, y). This integrand v(γ) is usually described as the

parallel translation in the spinor bundle. However, in the generalization to
loop spaces we are trying to define this spinor bundle and hence we shall
avoid using it in finite dimensions.

It is important to remark that parallel translation along γ does not depend
on the parametrization or metric of the interval. One way to express this is
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to say that it is a conformal invariant, just like in the case of loop spaces.
The serious dependence on the length t of the interval only enters through
the Wiener measure. In the following, we carry the length along just to make
the gluing of intervals into an associative operation.

In order to be able to extract the Dirac operator from the heat kernel
e−tD

2
(x, y), we need to make sure that it has the semi-group property. This

means that the vectors v(γ) have to be defined compatibly with the gluing
of intervals. More precisely, there are obvious gluing maps

Pt1(x, y)× Pt2(y, z) −→ Pt1+t2(x, z)

covered by compositions

Hom(Sx, Sy)× Hom(Sy, Sz)
◦−→ Hom(Sx, Sz)

and we ask that v(γ2γ1) = v(γ1) ◦ v(γ2). This condition is obvious in the
case of parallel transport and it shows that the above definitions determine
a 1-dimensional classical conformal field theory. The fields in the theory are
maps of 0- and 1-manifolds into M , the action at a point x ∈ M is just the
spinor fibre Sx, and the action of a path γ is the parallel transport along γ.

We shall next explain the definition of the “vacuum” vectors v(γ), up to
sign, without even having to define the spinor bundle. Instead, we’ll only
define a Fock bundle W over M ×M such that the fibre over (x, y) is a real
irreducible graded representation W (x, y) of the real graded Clifford algebra

C(x, y) := C(−TxM ⊥ TyM) = C(−TxM)⊗ C(TyM) = Cop(x)⊗ C(y)

Using these canonical isomorphisms of graded algebras,W (x, y) can be thought
of as either a left C(x, y)-module or a C(y)−C(x)-bimodule. In the presence
of a spinor bundle, these representations satisfy W (x, y) ∼= HomCn(Sx, Sy) as
C(x, y)-modules.

Definition 5. A Fock bundle is a vector bundle W over M ×M whose fibre
over (x, y) is a real irreducible graded representations of C(x, y). Moreover,
W comes equipped with fusion isomorphisms of C(x, z)-modules

G(x, y, z) : W (x, y)⊗C(y) W (y, z)
∼=−→ W (x, z)
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which lie over the relevant maps of base spaces. A conformal connection on
a Fock bundle W is given by a triangle:

W

Maps(I,M) M ×M
?�

�
�

�
�

��3
v

-res

Here res denotes the restriction of a path to its boundary. There are two
axioms for the section v, namely

• v is conformal, i.e. it does not depend on a Riemaniann metric on the
interval I.

• If γ1 goes from x to y and γ2 goes from y to z then there is the gluing
law

v(γ2 ∪y γ1) = G(x, y, z)(v(γ1)⊗ v(γ2))

We shall see that the maps G(x, y, z) are actually determined be the
gluing equation for the vacuum vectors. The following result motivates our
Definition 3 of a Fock bundle with conformal connection.

Theorem 6. For a spin manifold M , let W (x, y) := HomCn(Sx, Sy). Then
these fibres fit together to give a Fock bundle W as in Definition 5, with
composition as gluing maps. Moreover, parallel transport in SM defines a
conformal connection on W .

The next purpose is to define the Fock bundle W with a conformal con-
nection, without using the spinor bundle SM . This new construction then
generalizes in a straight forward manner to loop spaces. First recall that
there are graded algebra isomorphism

C(x, y) ∼= Cn,n ∼= R(2n)

and thus there is, up to isomorphism, a unique (ungraded) real irreducible
representation ∆ (of dimension 2n) of C(x, y). The grading is picked out by
orientations of TxM and TyM which are given by assumption. Note that
since our algebra is a real matrix ring, it follows that

EndC(x,y)(∆) ∼= R
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Moreover, there is an inner product on ∆ such that ∆ is a ∗-representation.
Then the group of Clifford linear self isometries of ∆ only consists of ± id.
This is the undetermined sign in our discussion. We shall explain below why
the sign indeterminancy can be resolved, consistently with gluing, if and only
if M has a spin structure.

In our next linear algebra section we explain how to canonically define a
graded irreducible C(x, y)-module W (φ), the Fock space, for any orientation
preserving isometry φ : TxM → TyM . It will come equipped with an inner
product as well as a canonical vacuum vector v(φ). It satisfies the gluing law
in the sense that there are isomorphisms of C(x, z)-modules

G(x, y, z) : W (φ1)⊗C(y) W (φ2)
∼=−→ W (φ2 ◦ φ1)

such that the vacuum vectors glue by v(φ2 ◦ φ1) = G(v(φ1)⊗ v(φ2)). These
isomorphisms satisfy the obvious associativity condition. Assuming this lin-
ear algebra construction (and that M is connected), we define

W (x, y)
def
= W (γ)

def
= W (p(γ)),

where γ is a path from x to y and p(γ) is the isometry between the tangent
spaces given by parallel translation in the tangent bundle. Then the vacuum
vector v(γ) ∈ W (x, y) is just given by v(p(γ)) and the required gluing laws
follow from the fact that parallel translation composes nicely.

Note that for a different choice of γ there is a unique isomorphism (up to
sign) between the corresponding C(x, y)-modules, and hence we have defined
a projective version of the bundle W over M ×M . Note the we have not
used the spin structure on M , only the orientation (to get a grading on W ).
The spin structure will come in when we resolve the sign indeterminancy.

Theorem 7. Let M be a closed Riemannian spin manifold, and let S be the
graded spinor bundle on M . Up to sign, there are canonical isomorphism of
C(x, y)-modules

Φ : W (x, y) ∼= HomCn(Sx, Sy)

which carry the vacuum vectors v(γ) to the parallel transport in the spinor
bundle. Moreover, the sign indeterminancy can be resolved using the spin
structure as follows:

There is a canonical 1-1 correspondence between spin structures on M and
unprojective versions of the projective bimodule bundle W (with vacuum vec-
tors) constructed above. Using this correspondence, the above isomorphism
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Φ is determined canonically and the vacuum vectors v(γ) map to the parallel
transport in the spinor bundle.

The proof of this theorem will be given after explaining the precise role
of the spin structure in resolving the sign indeterminancy.

Consider the following double covering L̂M of the loop space LM : Choose,
once and for all, the two points ±i on S1, subdividing the circle into a left
and a right interval. Then L̂M consists of pairs (α, ϕ) where α is a loop in
M and ϕ is an C(x, y)-module isometry between the representations W (γ1)
and W (γ2). Here α decomposes into two paths α = γ1 ∪ r(γ2) (right and
left), where the paths γi are parametrized by the left semicircle, they both
connect x and y and r reflects γ2 so that it becomes a map on the right part
of the circle (with orientation reversed) and hence γ1 ∪ r(γ2) is a loop in M .

This double covering has the following operation of fusion: Assume that
γk, for k = 1, 2, 3, are three path connecting x and y, parametrized by the
left semicircle. Then there are composition maps

Hom(W (γ1),W (γ2))× Hom(W (γ2),W (γ3))
◦−→ Hom(W (γ1),W (γ3))

which lie over the following composition of maps on LM coming from the
theta graph (formed from the three path γk meeting at x and y):

Θ(γ1 ∪ r(γ2), γ2 ∪ r(γ3))
def
= γ1 ∪ r(γ3).

We call a section s of L̂M fusion preserving if s(Θ(α1, α2)) = s(α1) ◦ s(α2)
for loops αi which happen to share the correct segments.

Definition 8. An orientation of LM is the choice of a fusion preserving
section of L̂M .

Note the analogy of this definition to an orientation of M , as the choice
of a section of the orientation double cover of M . One only needs to build in
the additional structure of fusion on LM .

Theorem 9. There is a canonical 1-1 correspondence between spin structures
on M and orientations of LM .

In particular, a spin structure on M exists if and only if an orientation
on LM exists. The same results hold for any oriented vector bundle (with
connection) over M in place of the tangent bundle.
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Proof of Theorems 7 and 9. We shall describe the claimed correspondences
as a circle in the following order:

• a spin structure on M induces

• an orientation of LM induces

• a bimodule bundle W on M ×M induces . . .

Start with a spin structure on M and recall that this is a bundle (with
induced connection) over M of bimodules S(x) over C(x)− Cn. For a path
γ connecting points x and y, there are canonical isomorphisms of C(x, y)-
modules

W (γ) = HomCn(Sx, Sy)

uniquely defined by sending the vacuum vector v(γ) to the parallel translation
pS(γ) from S(x) to S(y). The existence of such isomorphisms follows from the
defining property of W (γ), namely that v(γ) is annihilated by the Lagrangian
graph(p(γ)). So one just has to check that the C(x, y)-module on the right
hand side has this property with respect to pS(γ).

It is then clear how to fit these isomorphisms together to give a fusion
preserving section of L̂M as required for an orientation of LM . All one has
to use is that parallel translation in the bundle V composes under gluing of
path.

Now assume given a fusion preserving section s of L̂M . Consider the
space of pairs (γ, w) where w ∈ W (γ) and γ is a path from the left semicircle
to M . Then the required bundle Ws over M ×M is obtained by putting the
following relation on these pairs:

(γ1, w1) ∼ (γ2, w2) :⇐⇒ γ1(±i) = γ2(±i), w2 = s(γ1 ∪ r(γ2)) · w1

This relation is an equivalence relation if and only if the section s is fusion
preserving: Transitivity follows directly from the fact that s preserves fusion
(and this actually motivates the definition of fusion!). Fusion also implies
reflexivity, i.e. that s(γ ∪ r(γ)) = id because one may cancel a factor in the
fusion equation

s(γ ∪ r(γ)) = s(γ ∪ r(γ)) ◦ s(γ ∪ r(γ)).

Finally, the relation is symmetric by another application of the fusion rule:

id = s(γ1 ∪ r(γ1)) = s(γ1 ∪ r(γ2)) ◦ s(γ2 ∪ r(γ1)).
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Finally, assume that we have a module bundle W → M ×M over the
Clifford algebras C(x, y). Choose a base point x0 ∈ M and identify, once
and for all, Tx0M = Rn. Then the restriction map

M −→M ×M, x 7→ (x0, x)

can be used to pull back W to a bimodule bundle on M over the algbras
C(x)− Cn. But this is exactly a spin structure on M .

The last thing to check is that these 3 constructions, when run in a circle
starting from a spin structure on M , produce an equivalent spin structure.
This is left to the reader.

Remark 10. It is easy to check that the characteristic class of the double
covering L̂M comes from w2(M) under the transgression

H2(M ; Z/2) −→ H1(LM ; Z/2).

If this transgression is zero, then a section of L̂M exists but by the above
theorem it can be chosen to be fusion preserving if and only if w2(M) = 0.

It is a fun exercise for the reader to compute the affine space of fusion
preserving sections. This is the best place to see what can go wrong if M
is not simply-connected, and why the fusion property resolves the problems.
Assume that s is a fusion preserving section. To get a second section, we
can add any map to Z/2 from the set π0(LM), which is isomorphic to π1(M)
modulo conjugation. However, we only have an inclusion

H1(M ; Z/2) ∼= Hom(π1(M),Z/2) ↪→ Maps(π1(M)/conjugation,Z/2)

and the exercise is to check that the resulting section is again fusion pre-
serving if and only if the map we add comes from H1(M ; Z/2), i.e. is a
homomorphism. Moreover, under our isomorphism from the above theorem,
this operation behaves well with changing a spin structure by an element of
H1(M ; Z/2) in the usual way.

Remark 11. It is possible to formulate (and prove) Theorem 9 in the setting
where we, instead of an oriented vector bundle, start with a gerbe with band
Z/2 over M . Isomorphism classes of such gerbes are given by H2(M ; Z/2)
and the theorem (and proof) generalizes to give an equivalence of categories
between

• gerbes with band Z/2 on M .
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• double coverings L̂M of LM with fusion.

The theorem above treats in this language “trivializations” of objects in the
above categories. So by definition, a trivialization of a gerbe is the analogue
of a spin structure, and a trivialization of L̂M is a fusion preserving section.
If the gerbe comes from a real vector bundle E then one can construct the
projective bimodule bundle P (WE) as above and a trivialization of P (WE)
is an unprojective version WE of this bimodule bundle.

In [Bry] it is explained how to construct L̂M out of a gerbe. To go
backwards, consider the following bundle gerbe over M : The total space are
path starting at a fixed base point x0, with the end-point projection to M .
The necessary Z/2-torsor associated to a pair of path with the same end-
point is then given by the fibre of L̂M over the loop constructed by gluing
together the two path. Note that the fusion product on L̂M is the same
information as the composition of morphisms in this bundle gerbe.

The same exact results is true if one replaces the band Z/2 by S1. This
then gives an interpretation of the sheaf cohomology group H2(M ; T) ∼=
H3(M ; Z).

Remark 12. After talking to Dan Freed, we realized that the above dis-
cussion fits beautifully with the supersymmetric version of the path integral
expression for the heat kernel of the Dirac operator. Namely, supersymme-
try predicts that for a given path γ from x to y, the integrand (or vacuum
vector) v(γ) in the path integral should really be a fermionic integral over
the odd fields lying over γ. In the usual model, these odd fields ψ are just
vector fields along γ and the odd part of the action functional is given by

e
R

I〈ψ,∇γ̇(ψ)〉dt

with covariant differentiation ∇γ̇ acting on the sections of γ∗TM . This is
a real skew adjoint operator and it has a real Pfaffian line after fixing the
boundary conditions. The Pfaffian pf(∇γ̇) of the operator is then an element
in this line, or better, it is a section of the Pfaffian line bundle Pf(∇γ̇) over
the space of boundary conditions. Recall that an elliptic boundary condition
for ∇γ̇ is given by a Lagrangian subspace of −TxM ⊥ TyM . We denote the
manifold of all Lagrangian subspaces by Gr(x, y).

Hence one expects the result of the fermionic path integral (over
all odd ψ but with fixed γ) to be the section pf(∇γ̇) of Pf(∇γ̇).

We shall next discuss why this is explained by our vacuum vector in
the Fock bundle W . For this purpose, it is useful to study the reason why
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the fermionic path integral should be a section of some line bundle. This
involves the Hamiltonian formalism: The classical solutions (γ, ψ) of the
supersymmetric Lagrangian

〈γ̇, γ̇〉+ 〈ψ,∇γ̇(ψ)〉

are solutions of the ODE’s

∇γ̇ γ̇ =
1

2
R(ψ, ψ)γ̇ and ∇γ̇ψ = 0.

Note that this implies that spinning particles (ψ 6= 0) do not move along
geodesics. It is still true, however, that one may parametrize the solutions
for γ : R → M by TM and that for such a fixed even part of a classical
solution the odd parts ψ form the space of vectorfields parallel along γ and
hence are determined by the initial value. This is a discussion where space
is a point and time is the real line.

Now fix two points x and y in M of opposite orientation. Then the odd
parts of the solution set form the odd symplectic manifold −TxM ⊥ TyM ,
which happens to be a vector space (with the symmetric inner product given
by the metric on M). In the Hamiltonian formalism, we need to quantize this
odd symplectic manifold to figure out the possible values of the path integral.
In the linear case, this quantization is determined by a Lagrangian subspace
of −TxM ⊥ TyM , and these subspaces form the Grassmannian Gr(x, y) of
boundary conditions. As explained in Section 3, a base point L ∈ Gr(x, y)
determines a real line bundle, the Pfaffian bundle Pf(L) over Gr(x, y), and
a “holomorphic” section pf(L) of this Pfaffian. More precisely, L determines
the Fock spaceW (L) together with a vacuum vector v(L) ∈ W (L). Given any
other L′ ∈ Gr(x, y) we can then consider the corresponding annihilator line
Pf(L : L′) ⊂ W (L) and we may project v(L) onto Pf(L : L′) (using the inner
product on W (L)) to obtain a section pf(L). By definition, the holomorphic
sections of Pf(L) are comprised by this construction from vectors in W (L)
hence a quantization of −TxM ⊥ TyM is given by W (L) = Γhol(Pf(L)) itself.

Given a path γ from x to y, the graph of parallel translation along γ
in the tangent bundle provides a base point in Gr(x, y), and then the quan-
tization is just the Fock space W (γ) used in Definition 5. Moreover, the
vacuum vector v(γ) ∈ W (γ) is a “holomorphic” section of the Pfaffian line
bundle as explained above. This motivates the name “Pfaffian” because of
the identifications

v(γ) = pf(∇γ̇) ∈ W (γ) = Γhol(Pf(∇γ̇)).

15



They also explain why the fermionic integration (for fixed γ) is expected to
lead to the vacuum vector v(γ).

For the path integral for the heat kernel to make sense, we need to be
able to add the vectors v(γ) for all paths γ from x to y. This is in general
impossible since v(γ) ∈ W (γ) are varying vector spaces. But as explained in
Theorem 9 that’s exactly where the spin structure on M is used: In the guise
of a fusion preserving section of the Pfaffian line bundle over LM , we showed
that it enables one to identify any two vector spaces W (γ) and W (γ′) in a
consistent way. Thus there really is a well defined quantization W (x, y) of
−TxM ⊥ TyM , and these fit together to give the Fock bundle on M ×M .

3 Linear algebra of Fock spaces

Let V be a real or complex vector space equipped with a bilinear form b.
Assume that there is an isometric involution v 7→ v̄ on V (C-anti-linear in
the complex case) such that

〈v, w〉 def
= b(v̄, w)

is an inner product (positive definite, and hermitian in the complex case). We
will then construct canonical ∗-representations (real respectively complex)
of the Clifford algebra C(V, b). They will be graded irreducible and come
equipped with an inner product and a vacuum vector. The input datum is
a Lagrangian L of (V, b), which means that b vanishes identically on L and
that V = L⊕ L̄. Then define

W (L)
def
= Λ∗(L),

equipped with the usual inner product induced from 〈 〉. If V is infinite
dimensional, we actually complete Λ∗(L) with respect to this inner product
to get W (L). The vacuum vector v(L) is given by the zero-form 1. Finally,
C(V, b) acts as creation operator for L and annihilation operators for L̄. More
precisely, it is clear that W (L) is an irreducible module over the Clifford
algebra C(L ⊕ L∗) (formed with respect to the hyperbolic form). But our
assumptions give a canonical isomorphism L∗ ∼= L̄ which lead to an isometry
of the hyperbolice form on L⊕L∗ with (V, b). Hence C(V, b) acts irreducibly
on W (L). The grading is also obvious.

For V = C2n, W (L) is the irreducible C(V )-module, and similarly for
(V, b) = Rn|n. This is the case needed in the application to heat kernels. We
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can actually start more generally with two real inner product spaces V1 and
V2 of the same dimension and then define

(V, b)
def
= (−V1 ⊥ V2)

with the involution (v1, v2) := (−v1, v2). It is then clear that our induced
form 〈 〉 is just V1 ⊥ V2 and hence an inner product. Finally, one easily
checks that Lagrangians for b are exactly graphs of isometries φ : V1 → V2.

If V is complex and infinite dimensional, we’ll need the following classi-
fication theorem.

Theorem 13 (Segal’s equivalence criterion). Two complex representation
W (L) and W (L′) of C(V, b) are isomorphic if and only if the composition of
inclusion and projection maps, orthogonal with respect to 〈 〉,

L′ ↪→ V � L̄

is a Hilbert-Schmidt operator. Moreover, this isomorphism preserves the
grading if and only if dim(L̄ ∩ L′) is even.

Note that the above relative dimension makes sense because the composi-
tion L′ ↪→ V � L is a Fredholm operator if L′ ↪→ V � L̄ is Hilbert-Schmidt.

Definition 14. Let (V, b) be infinite dimensional. A sub-Lagrangian is an
isotropic subspace L of (V, b) such that L⊕ L̄ has finite codimension.
Furthermore, a polarization of (V, b) is an equivalence class of sub-Lagrangians,
where L and L′ are identified if they satisfy the above Segal criterion that
L′ ↪→ V � L̄ is a Hilbert-Schmidt operator.
If the grading is relevant, we also ask that dim(L̄ ∩ L′) is even.

Example 15. If S1 γ−→M is a loop in a Riemannian manifold M , then we
form the Hilbert space

V (γ)
def
= L2(SS1 ⊗ γ∗TM)

Here SS1 is the spinor bundle on the circle with respect to some chosen
spin structure. Since C1

∼= C we have a complex structure on V (γ) and the
grading involution is C-antilinear. Thus we have all the structures needed for
our linear algebra above, in particular we have a C-biliear form b and we can
try to construct representations of the Clifford algebra C(γ) := C(V (γ), b).
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For this we need a sub-Lagrangian in V (γ) constructed as follows: The
Levi-Civita connection on TM induces a connection on f ∗TM and hence
we can form the twisted Dirac operator Dγ acting on V (γ). This is a self-
adjoint elliptic operator of order one, and we can consider the Hilbert sum of
Eigenspaces corresponding to Eigenvalues λ > 0. This is a sub-Lagrangian
L> for the form b and hence defines the isomorphism class of the representa-
tion W (L>). There is a missing detail here since one cannot always enlarge
L> to a Lagrangian. However, one can instead pick a representation of the
Clifford algebra on the Kernel of Dγ.

Another way to obtain a Lagrangian in V (γ) is as follows. Let Σ2 be
a Riemannian spin manifold with boundary S1, and let Γ: Σ → M be a
smooth map extending γ. Let SΣ be the Clifford linear spinor bundle on Σ,
a Z/2-graded vector bundle over Σ whose fibers are graded rank 1 modules
over C2

∼= H. We note that the restriction of S+
Σ to the boundary can be

identified with with the full spinor bundle bundle SS1 . Let

DΓ : C∞(S+
Σ ⊗ Γ∗TM) −→ C∞(S+

Σ ⊗ Γ∗TM)

be the Dirac operator on S+
Σ twisted by Γ∗TM (equipped with the pull-back

of the Levi-Civita connection on TM) and composed with right multipli-
cation e2 : S−Σ −→ S+

Σ . The elements in the kernel of DΓ are referred to
as (twisted) harmonic spinors. The boundary values of harmonic spinors
form a Lagrangian subspace LΓ ⊂ V (γ) by the usual arguments for elliptic
operators.

Theorem 16. The Lagrangian LΓ ⊂ V (γ) represents the same polarisation
as the sub-Lagrangian L>. Moreover, dim(L̄Γ ∩ L>) = index(DΓ) ∈ KO2 =
Z/2. Here we use the elliptic operator DΓ obtained by requiring the skew-
adjoint boundary conditions given by L>.

Corollary 17. Let Σ1
Γ1−→ M and Σ2

Γ2−→ M be smooth maps with ∂Γ1 =
∂Γ2 = γ. Then the associated Fock type modules W (LΓ1) and W (LΓ2) are
isomorphic as modules over the Clifford algebra C(γ).

4 Extensions of compact Lie groups

In this section we construct extensions of topological groups

PU(Aρ) −→ Gρ −→ G, (18)
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one for each projective unitary representation ρ of the loop group LG of a
Lie group G. Here Aρ is a certain von Neumann algebra, the “local loop

algebra”, and the projective unitary group PU(Aρ)
def
= U(Aρ)/T has the

homotopy type of a K(Z, 2). Thus our extension has an obstruction class in
H3(G), which we call the level of ρ.

In the special case where G = Spin(n) and ρ is the level 1 positive en-
ergy representation which is the trivial 1-dimensional representation of G at
energy 0, this is the extension String(n) → Spin(n) announced in the intro-
duction. Then Aρ is a hyperfinite type III1-factor, the “local fermions” on
the circle.

Remark 19. The loop group considered in the literature consists of all
smooth loops γ : S1 → G. For technical reasons that will become clear be-
low, we prefer to work with the larger loop group consisting of all piecewise
smooth (and continuous) loops. This will be what we mean by the ‘free
loop group’ LG. The important fact is that the theory of positive energy
representations of loop groups still works for these larger groups (cf. [PS]).

4.1 Construction of the local loop algebra.

Let ρ be a projective unitary representation of LG, i.e., a homomorphism

ρ : LG → PU(H) from LG to the projective unitary group PU(H)
def
=

U(H)/T of some complex Hilbert space H. Note that by definition, we
are assuming that ρ is defined for all piecewise smooth loops in G. Pulling
back the canonical circle group extension

T −→ U(H) −→ PU(H)

via ρ, we obtain an extension

T −→ L̃G −→ LG,

and a unitary representation ρ̃ : L̃G→ U(H).
Let I ⊂ S1 be the upper semi-circle consisting of all z ∈ S1 with non-

negative imaginary part. Let LIG ⊂ LG be the subgroup consisting of those
loops γ : S1 → G with support in I (i.e., γ(z) is the identity element of G for
z /∈ I). Let L̃IG < L̃G be the preimage of LIG. We define

Aρ
def
= ρ̃(L̃IG)′′ ⊂ B(H).

19



to be the von Neumann algebra generated by the operators ρ̃(γ) with γ ∈
L̃IG. Recall that von Neumann’s double commutant theorem implies that
this is precisely the weak (and strong) closure of L̃IG in the algebra B(H)
of all bounded operators on H.

To construct the group extension (18) we start with the group extension

LIG −→ P I
11G −→ G,

where P I
11G = {γ : I → G | γ(1) = 11}, the left map is given by restriction

to I ⊂ S1 (alternatively we can think of LIG as maps γ : I → G with
γ(1) = γ(−1) = 11), and the right map is given by evaluation at z = −1.
The idea is to modify this extension by replacing the normal subgroup LIG
by the projective unitary group PU(Aρ) of the von Neumann algebra Aρ (the
unitary group U(Aρ) ⊂ Aρ consists of all a ∈ Aρ with aa∗ = a∗a = 1), using
the homomorphism

ρ : LIG −→ PU(Aρ), (20)

given by restricting the representation ρ to LIG ⊂ LG. We note that by
definition of Aρ ⊂ B(H), we have ρ(LIG) ⊂ PU(Aρ) ⊂ PU(H).

4.2 The group extension of G

In order to construct the desired extension (18), we observe that P I
11G acts on

LIG by conjugation and that this action extends to a left action on PU(Aρ).
In fact, this action exists for the group P IG of all piecewise smooth path
I → G (of which P I

11G is a subgroup): To describe how δ ∈ P IG acts on
PU(Aρ), extend δ : I → G to a piecewise smooth loop γ : S1 → G and pick
a lift γ̃ ∈ L̃G of γ ∈ LG. We decree that δ ∈ P IG acts on PU(Aρ) via

[a] 7→ [ρ̃(γ̃)aρ̃(γ̃−1)].

Here a ∈ U(Aρ) ⊂ B(H) is a representative for [a] ∈ PU(Aρ). It is clear that
ρ̃(γ̃)aρ̃(γ̃−1) is a unitary element in B(H); to see that it is in fact in Aρ, we
may assume that a is of the form a = ρ̃(γ̃′) for some γ̃0 ∈ L̃IG (these elements
generate Aρ as von Neumann algebra). Then ρ̃(γ̃)aρ̃(γ̃−1) = ρ̃(γ̃γ̃0γ̃

−1),
which shows that this element is in fact in Aρ and that it is independent of
how we extend the path δ : I → G to a loop γ : S1 → G, since γ0(z) = 1 for
z /∈ I.
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Lemma 21. With the above left action of P IG on PU(Aρ), the represen-
tation ρ : LIG → PU(Aρ) is P IG-equivariant. Therefore, there is a well
defined monomorphism

r : LIG −→ PU(Aρ) o P IG, r(γ)
def
= (ρ(γ−1), γ)

into the semidirect product, whose image is a normal subgroup.

Before giving the proof of this Lemma, we note that writing the semidirect
product in the order given, one indeed needs a left action of the right hand
group on the left hand group. This follows from the equality

(u1g1)(u2g2) = u1(g1u2g
−1
1 )g1g2

because u 7→ gug−1 def
= ug is a left action on u ∈ U . The fact that we put the

g on the upper right is an annoying TeX problem.

Proof. The first statement is obvious from our definition of the action on
PU(Aρ). To check that r is a homomorphism, we compute

r(γ1)r(γ2) = (ρ(γ−1
1 ), γ1)(ρ(γ

−1
2 ), γ2)

= (ρ(γ−1
1 )[ρ(γ−1

2 )γ1 ], γ1γ2)

= (ρ(γ−1
1 )[ρ(γ1)ρ(γ

−1
2 )ρ(γ−1

1 )], γ1γ2)

= (ρ(γ−1
2 )ρ(γ−1

1 ), γ1γ2) = (ρ(γ1γ2)
−1, γ1γ2)

= r(γ1γ2)

To check that the image of r is normal, it suffices to check invariance under the
two subgroups PU(Aρ) and P IG. For the latter, invariance follows directly
from the P IG-equivariance of ρ. For the former, we check

(u−1, 1)(ρ(γ−1), γ)(u, 1) = (u−1ρ(γ−1), γ)(u, 1)

= (u−1ρ(γ−1)uγ, γ)

= (u−1ρ(γ−1)ρ(γ)uρ(γ)−1, γ)

= (r(γ−1), γ)

This actually shows that the two subgroups r(LIG) and PU(Aρ) commute in
the semidirect product group. Finally, projecting to the second factor P IG
one sees that r is injective.
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Definition 22. We define the group Gρ to be the quotient of PU(Aρ)oP I
11G

by the normal subgroup r(LIG), in short

Gρ
def
= PU(Aρ) oLIG P

I
11G

Then there is a projection onto G by sending [u, γ] to γ(−1) which has kernel
PU(Aρ).

We observe that there is a group extension

Gρ −→ PU(Aρ) oLIG P
IG −→ G

where the right hand map sends [u, γ] to γ(1). This extension splits because
we can map g to [11, γ(g)], where γ(g) is the constant path with value g. This
implies the isomorphism

Gρ oG ∼= PU(Aρ) oLIG P
IG (23)

with the action of G on Gρ defined by the previous split extension. Note
that after projecting Gρ to G this action becomes the conjugation action of
G on G because the splitting used constant paths.

Lemma 24. There is a homomorphism

Φ : PU(Aρ) oLIG P
IG −→ Aut(Aρ) Φ([u], γ)

def
= cu ◦ φ(γ)

where cu is conjugation by u ∈ U(Aρ) and φ(γ) is the previously defined
action of P IG on Aρ (which was so far only used for its induced action on
PU(Aρ)).

Proof. The statement follows (by calculations very similar to the ones given
above) from the fact that

φ(γ) ◦ cu = cuγ ◦ φ(γ)

We summarize the above results as follows.

Proposition 25. There is a homomorphism Gρ o G −→ Aut(Aρ) which
reduces to the conjugation action PU(Aρ) � Inn(Aρ) ⊂ Aut(Aρ) on

PU(Aρ) = ker(Gρ −→ G) = ker(Gρ oG −→ GoG)

The action of G on G in the right hand semidirect product is given by conju-
gation which implies the isomorphism GoG ∼= G×G sending (g, 1) to (g, 1)
and (1, g) to (g, g).
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5 Bimodule bundles associated to principal

Gρ-bundles

5.1 Positive energy representations as bimodules.

Let ρ : LG→ PU(H) be a positive energy representation of the loop group
LG on a complex Hilbert space H and assume that G is semisimple and
simply connected. Let L̃G be the extension of LG obtained by pull-back via
the extension U(H) → PU(H), and recall that the subgroup G < LG of
constant loops admits a canonical splitting G → U(H). Moreover, we shall
need that this splitting is equivariant with respect to the action of G on Aρ
constructed in Proposition 25. Here Aρ ⊂ B(H) acts canonically on H.

Recall also that the Möbius group acts on H intertwining with ρ. Here
the orientation preserving (resp. reversing) Möbius transformations act by
complex linear (resp. anti-linear) operators on H. In particular the ‘flip’
S1 → S1 given by z 7→ z̄ is implemented by a complex anti-linear operator
J : H → H with J2 = 1.

As in the previous section, we may define the local loop algebra Aρ. This
algebra can be defined for an arbitrary interval I ⊂ S1 mand we want to
ephasize this dependence by the notation AI = Aρ (since ρ is now fixed).

An important fact is that if Ic ⊂ S1 is the complementry segment S1 \ Ī,
then the elements of AI ⊂ B(H) commute with the elements of AI

c
. This

follows from the fact that LIG and LI
c
G are commuting subgroups of LG

and hence the centrally extended groups must commute up to elements in
the center T. One gets homomorphisms (for fixed γc ∈ L̃Ic

G)

LIG −→ T, γ 7→ γ̃γc(γ̃)−1(γc)−1

which by the semisimplicity of G must factor through the connected com-
ponent group π1G. By assumption, this group also vanishes and hence the
two groups L̃IG and L̃I

c
G commute (and so do the von Neumann algebras

generated by them). This important locality property allows us to regard our
Hilbert space H as a module over AI ⊗ AI

c
.

If I is upper semi-circle, then the flip interchanges I and Ic. It follows the
anti-unitary J : H → H which implements the flip on H gives a isomorphism
of von Neumann algebras:

(AI)op
∼=−→ AI

c

a 7→ Ja∗J,
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where (AI)op is the opposite von Neumann algebra. Note that the map
a 7→ JaJ is not a ∗-homomorphism of von Neumann algebras since it is not
complex linear due to the fact that F is anti-linear. Moreover, the element
a∗ ∈ B(H) is C− linear with the property (λa)∗ = λ̄a∗ for all λ ∈ C.

This allows us to interpretH as an (AI−AI)-bimodule. It is an important
fact that no information about the representation ρ is lost when passing to
the corresponding bimodule in the sense that the map from isomorphism
classes of positive energy representations to isomorphism classes of bimodules
injective (this is the irreducibility statement in [Wa, p. 472]).

5.2 The bimodule bundle over based loop space.

Let G be a semisimple and simply connected Lie group, and let ρ : LG →
PU(H) be the vacuum representation of the loop group LG (at some level

k ∈ H3(G) defined by our previously constructed extension Ĝ
def
= Gρ of G.

Then the A− A-bimodule H constructed in the previous section is actually
isomorphic to the canonical bimodule L2A, a fact which we shall use instantly.

Given a principal G-bundle E → X, there is an obstruction k(E) ∈
H4(X) which measures whether the structure group of E lifts to Ĝ. This
obstruction is just the pull back of the level k ∈ H3(G) ∼= H4(BG) under
a classifying map X → BG of the bundle E. We would like to define the
following structure on X, provided k(E) = 0.

• A bundle A → P IX of von Neumann algebras over path space, whose
fibers are isomorphic to A.

• A bundle B → LX over loop space, whose fiber over γ ∪ −γc is a
bimodule over Aγ−Aγc , where S1 = I ∪Ic. This bimodule is supposed
to satisfy the fusion property from Theorem 1.

We first explain this structure over the based loop space ΩX, where we
fix base points x0 ∈ X and e0 ∈ E. Then the algebra bundle is defined to
be the trivial A-bundle and the A−A-bimodule structure over a based loop
γ is given as follows. Pick a Ĝ-structure on E which is a Ĝ-principle bundle
over X, and equip it with a connection. Then we get a fusion preserving
holonomy map

ΩX −→ Ĝ
Φ−→ Aut(A)

which we have composed with the homomorphism Φ from Proposition 25.
But given the automorphism F = Φ(hol(γ)) of the algebra A, we may use it
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to change the original A−A-bimodule structure on H by twisting the (say)
left multiplication with F , and leaving the right multiplication unchanged.
This has the advantage that by a Lemma of Connes [Co], the composition of
based loops (which is sent to the composition of automorphisms) will then
correspond to Connes fusion of A − A-bimodules, as desired. This follows
from the fact that H ∼= L2A. Note that this property of fusion was one of
the motivations to introduce bimodules and their fusion as a generalization
of homomorphisms (of von Neumann algebras) and their composition.

It is easy to check that this construction does not depend on the choice
of e0, up to a canonical isomorphism. We have thus finished the proof of
Theorem 1 for based loops (but for all groups G, not just Spin(n). Note

that the choice of a Ĝ-structure (or string structure for G = Spin(n)) was
essential in the construction, and we shall indeed show that these are in 1-1
correspondence with isomorphism classes of bimodule bundles as claimed in
Theorem 2.
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