Link homotopy and non-repeating Whitney towers in the 4-ball

Rob Schneiderman & Peter Teichner

Lehman College CUNY & MPIM

November 2022

1/48

Theorem:

(1) A link $L = L_1 \cup L_2 \cup \cdots \cup L_m \subset S^3$ is almost trivial if and only if L bounds an order m - 2 non-repeating Whitney tower $W \subset B^4$.

(2) The Milnor invariant $\mu_L \in \mathbb{Z}[S_{m-2}]$ (as in Pete's talk) is the image of the non-repeating intersection invariant $\lambda_{m-2}(\mathcal{W}) \in \Lambda_{m-2}(m)$ under a specific 'choice of basis' isomorphism $\Lambda_{m-2}(m) \xrightarrow{\cong} \mathbb{Z}[S_{m-2}]$.

Corollary: For almost-trivial links L and L' the following statements are equivalent:

(i) *L* and *L'* are link-homotopic. (ii) $\mu_L = \mu_{L'} \in \mathbb{Z}[S_{m-2}]$. (iii) $\lambda_{m-2}(\mathcal{W}) = \lambda_{m-2}(\mathcal{W}') \in \Lambda_{m-2}(m)$ for any order m-2non-repeating Whitney towers \mathcal{W} and \mathcal{W}' bounded by *L* and *L'*, repspectively. ...**definitions/proof sketches later**... Recall: The *intersection forest* multiset t(W) of a Whitney tower W

'framed tree' $t_p \leftarrow p$ unpaired intersection with sign $\epsilon_p = \pm 1$, 'twisted tree' $J^{\infty} := J \longrightarrow \omega \leftarrow W_J$ with twisting $\omega(W_J) \neq 0 \in \mathbb{Z}$.

< 日 > り < ()

Definition

- The order of a tree is the number of trivalent vertices.
- The *order* of a <u>Whitney disk</u> or an <u>intersection point</u> is the order of the corresponding tree.

4/48

Non-repeating order *n* Whitney towers

 \mathcal{W} is an order *n* <u>non-repeating</u> Whitney tower if all $t_p \in t(\mathcal{W})$ having distinctly-labeled vertices are of order $\geq n$.

Example: The Bing double of the Hopf link bounds an order 2 non-repeating Whitney tower W.

Exercise: Draw $t_p \subset W$ and check W is order 2 non-repeating.

5/48

Non-repeating order *n* Whitney towers

 \mathcal{W} is an order *n* <u>non-repeating</u> Whitney tower if all $t_p \in t(\mathcal{W})$ having distinctly-labeled vertices are of order $\geq n$.

Note: Can ignore both repeating Whitney disks and twisted Whitney disks in this non-repeating setting.

Non-repeating Whitney towers characterize being able to 'pull apart' components:

Theorem (Pulling apart surfaces)

 $A = \cup_{i=1}^{m} A_i \hookrightarrow X$ admits an order m - 1 non-repeating \mathcal{W} if and only if

A is homotopic (rel ∂) to $A' = \bigcup_{i=1}^{m} A'_i$ with $A'_i \cap A'_j = \emptyset$ for all $i \neq j$.

Non-repeating Whitney towers and link homotopy

Theorem: $A = \bigcup_{i=1}^{m} A_i \hookrightarrow X$ admits an order m-1 non-repeating \mathcal{W} if and only if

A is homotopic (rel ∂) to $A' = \cup_{i=1}^{m} A'_i$ with $A'_i \cap A'_j = \emptyset$ for all $i \neq j$.

Corollary: Two *m*-component links in S^3 are link homotopic (homotopy preserves disjointness at all times) if and only if they cobound immersed annuli in $S^3 \times I$ admitting an order m - 1 non-repeating Whitney tower.

In particular, an *m*-component link is link-homotopically trivial if it bounds immersed disks admitting an order m-1 non-repeating Whitney tower in B^4 .

Proof of Corollary: "Singular concordance implies link homotopy" – Giffen, Goldsmith, (and PT for higher dim co-dimension 2).

Non-repeating Whitney towers and pulling apart *m* components

Theorem: $A = \bigcup_{i=1}^{m} A_i \hookrightarrow X$ admits order m-1 non-repeating \mathcal{W} iff A is homotopic (rel ∂) to $A' = \bigcup_{i=1}^{m} A'_i$ with $A'_i \cap A'_i = \emptyset$ for all $i \neq j$.

The "if" direction is true by definition, since disjoint order 0 surfaces form a non-repeating Whitney tower of any order.

The "only if" direction uses 'pushing down' to clean up all Whitney disks:

のしてく 見つ

Theorem: $A = \bigcup_{i=1}^{m} A_i \hookrightarrow X$ admits order m-1 non-repeating \mathcal{W} iff A is homotopic to $A' = \bigcup_{i=1}^{m} A'_i$ with $A'_i \cap A'_j = \emptyset$ for all $i \neq j$.

Proof sketch of "only if" direction (see 'Pulling apart 2-spheres in 4-manifolds' arXiv:1210.5534 [math.GT]):

If \mathcal{W} contains no Whitney disks, then the A_i are pairwise disjoint. Consider a Whitney disk $W_{(I,J)}$ in \mathcal{W} of <u>maximal order</u>.

If $W_{(I,J)}$ is *clean*, then do the $W_{(I,J)}$ -Whitney move on W_I or W_J . If $W_{(I,J)}$ is not clean, then for any $p \in W_{(I,J)} \cap W_K$, at least one of (I, K) or (J, K) is a repeating bracket, so can push p down off of $W_{(I,J)}$ at cost of only creating repeating intersections. Repeating this procedure on all maximal order Whitney disks eventually yields the desired order m - 1 non-repeating Whitney tower with <u>no</u> Whitney disks (ie. disjoint order 0 surfaces A'_i).

Non-repeating obstruction theory

 $\Lambda_n(m) :=$ free abelian group on order *n* framed trees, each having univalent vertices labeled by distinct indices from $\{1, 2, ..., m\}$, modulo local *antisymmetry* (AS) and *Jacobi* (IHX) relations:

$$+ = 0 = - + +$$

Definition: If W is an order *n* non-repeating Whitney tower, the order *n* non-repeating intersection invariant $\lambda_n(W)$ is defined by

 $\lambda_n(\mathcal{W}) := [\sum \operatorname{sign}(p) \cdot t_p] \in \Lambda_n$

where the sum is over all order *n* non-repeating intersections $p \in W$. Theorem (non-repeating order-raising)

 $A \hookrightarrow X$ admits a non-repeating Whitney tower W of order n with $\lambda_n(W) = 0 \in \Lambda_n$ if and only if

A admits an order (n + 1) non-repeating Whitney tower.

Non-repeating obstruction theory

Proof of order-raising uses geometric realizations of IHX relations and 'transfer moves' to convert algebraically canceling trees into geometric canceling trees (intersections paired by Whitney disks)", modulo creating higher-order trees.

12/48

New higher-order Whitney disks are uncontrolled (they can only contribute higher-order intersections). Construction is supported near Whitney disks union an arc in original Whitney tower.

For details on the order-raising intersection/obstruction theory proof, including general order n Whitney towers ('repeating' labels allowed), see:

Section 4 of 'Whitney tower concordance of classical links' arXiv:1202.3463 [math.GT] (includes twisted Whitney towers)

Section 4 of 'Whitney towers and the Kontsevich integral' arXiv:math/0401441 [math.GT] (uses some slightly different notation)

The order *n* non-repeating tree groups $\Lambda_n(m)$

 $\Lambda_n(m) :=$ free abelian group on order *n* framed trees, each having univalent vertices labeled by <u>distinct</u> indices from $\{1, 2, ..., m\}$, modulo local *antisymmetry* (AS) and *Jacobi* (IHX) relations:

$$+$$
 $=$ 0 $=$ $+$ $(+$

The relations are homogeneous in labels, and order *n* trees have n + 2 univalent vertices, so choosing (n + 2)-element subsets of distinct indices decomposes $\Lambda_n(m)$ into the direct sum of $\binom{m}{n+2}$ -many isomorphic 'copies' of $\Lambda_n(n + 2)$.

So suffices to understand the groups $\Lambda_n(n+2)$, for $1 \le n \le m-2$.

Have $\binom{4}{0+2} = 6$ two-element subsets of $\{1, 2, 3, 4\}$:

 $\Lambda_0(4)=\Lambda_0(1,2)\oplus\Lambda_0(1,3)\oplus\Lambda_0(1,4)\oplus\Lambda_0(2,3)\oplus\Lambda_0(2,4)\oplus\Lambda_0(3,4)$

where $\Lambda_0(i, j)$ denotes the non-repeating tree group on order 0 trees labeled distinctly from $\{i, j\}$.

So $\Lambda_0(4) \cong \mathbb{Z}^6$ is the \mathbb{Z} -span of the six order 0 trees i - j for distinct labels $i \neq j$ from $\{1, 2, 3, 4\}$.

In the setting of link homotopy $\lambda_0(L) := \lambda_0(W) \in \Lambda_0(4)$ measures the pairwise linking of components of a 4-component link *L*, where W is any order 0 non-repeating Whitney tower bounded by *L* (immersed disks bounded by components).

Example: $\Lambda_1(4)$

Have
$$\binom{4}{1+2} = 4$$
 three-element subsets of $\{1, 2, 3, 4\}$:
 $\Lambda_1(4) = \Lambda_1(1, 2, 3) \oplus \Lambda_1(1, 2, 4) \oplus \Lambda_1(1, 3, 4) \oplus \Lambda_1(2, 3, 4)$

So $\Lambda_1(4) \cong \mathbb{Z}^4$ is the \mathbb{Z} -span of the four order 1 trees $i \longrightarrow_j^k$ with distinct labels i, j, k from $\{1, 2, 3, 4\}$.

We may take these generating trees to be canonically oriented (at the trivalent vertex) using the ordering of the labels.

In the setting of link homotopy $\lambda_1(\mathcal{W}) \in \Lambda_1(4)$ corresponds to Milnor's 'triple linking numbers' $\mu_{ijk}(L)$ for 3-component sublinks of a 4-component link *L*, where \mathcal{W} is any order 1 non-repeating Whitney tower bounded by *L* (which exists iff $\lambda_0(L) = 0$).

Example: $\Lambda_2(4)$

 $\Lambda_2(4)$ is the highest order (non-trivial) non-repeating group for four components, with a single $\binom{4}{2+2}$ four-element subset of $\{1, 2, 3, 4\}$. Since the order is ≥ 2 the IHX relations come into play:

$$\Lambda_2(4) = \langle \begin{smallmatrix} 3 \\ 1 \end{smallmatrix} > \stackrel{4}{\sim} \begin{smallmatrix} 4 \\ 2 \end{smallmatrix}, \begin{smallmatrix} 3 \\ 2 \end{smallmatrix} > \stackrel{4}{\sim} \begin{smallmatrix} 4 \\ 1 \end{smallmatrix} \rangle \cong \mathbb{Z}^2$$

since by the IHX relation we have

$$_4^3 > \stackrel{1}{\searrow} _2^1 = _1^3 > \stackrel{4}{\searrow} _2^4 + _2^3 > \stackrel{4}{\searrow} _1^4$$

Subsequent slides will find a basis for $\Lambda_{m-2}(m)\cong\mathbb{Z}^{(m-2)!}$

Will also describe relationship between Milnor invariants and $\lambda_n(L) := \lambda_n(W) \in \Lambda_n(m)$ for W any order n non-repeating Whitney tower bounded by an m-component link L.

Will see that $\Lambda_{m-2}(m) \cong \mathbb{Z}[S_{m-2}]$, where S_{m-2} is the symmetric group on $\{1, 2, \ldots, m-2\}$, with a basis given by the 'simple' trees $t(\sigma)$ for $\sigma \in S_{m-2}$:

Simple trees span $\Lambda_{m-2}(m)$

If the geodesic between the *m*-vertex and the (m-1)-vertex has length less than m-1, apply an IHX relation: I = H - X:

Eventually get length m-1 geodesics between the *m*-vertex and the (m-1)-vertex in each tree.

Placing a root at the *m*-vertex of each tree gives an isomorphism from $\Lambda_{m-2}(m)$ to the degree m-1 reduced free Lie algebra $\operatorname{RL}_{m-1}(m-1)$ which is the subgroup of non-repeating length m-1 brackets in the free Lie algebra (over \mathbb{Z}) on m-1 generators, with AS and IHX relations going to skew-symmetry relations and Jacobi identities.

The rank of $\operatorname{RL}_{m-1}(m-1)$ is (m-2)!, by Theorem 5.11 of Magnus, Karass and Solitar's book 'Combinatorial group theory' Dover Publications, Inc. (1976). See also Sections 4–5 of Milnor's 'Link Groups' Annals of Math. 59 (1954), and/or Pete's posted notes.

So the rank of $\Lambda_{m-2}(m)$ is (m-2)!, and the simple trees $t(\sigma)$ are linearly independent.

23/48

Recall:

A *link-homotopy* of an *m*-component link $L = L_1 \cup L_2 \cup \cdots \cup L_m$ in the 3-sphere is a homotopy of *L* which preserves disjointness of the link components, i.e. during the homotopy only self-intersections of the L_i are allowed.

24/48

The *Milnor group* $\mathcal{M}(L)$ of $L = \bigcup_{i=1}^{m} L_i \subset S^3$ has a presentation

$$\mathcal{M}(L) = \langle x_1, x_2, \dots, x_m \, | \, [\ell_i, x_i], \, [x_j, x_j^h] \rangle$$

where each x_i is represented by a meridian (one for each component), and the ℓ_i are words in the x_i determined by the link longitudes.

The *free Milnor group* $\mathcal{M}(m)$ is given by setting all $\ell_i = 1$ in this presentation.

The <u>reduced</u> free Lie algebra $RL(m) = \bigoplus_{n=1}^{m} RL_n(m)$ is the subgroup of the free \mathbb{Z} -Lie algebra on generators X_1, X_2, \ldots, X_m spanned by iterated Lie brackets on <u>distinct</u> generators.

$$X_i^{\pm 1} \mapsto \pm X_i$$
 induces $\mathcal{M}(m)_{(n)}/\mathcal{M}(m)_{(n+1)} \cong \mathsf{RL}_n(m)$

This isomorphism takes a product of length n commutators in distinct x_i to a sum of length n Lie brackets in distinct X_i .

In particular, $RL_n(m) = 0$ for n > m.

Define
$$\mathcal{M}^i(L) := \mathcal{M}(L)/\{x_i = 1\}$$

If longitudes $[\ell_i] \in \mathcal{M}^i(L)_{(n+1)}$ for all *i*, then we have isomorphisms:

$$\mathcal{M}(L)_{(n+1)}/\mathcal{M}(L)_{(n+2)} \cong \mathcal{M}(m)_{(n+1)}/\mathcal{M}(m)_{(n+2)} \cong \mathsf{RL}_{(n+1)}(m).$$

Definition

The elements $\mu_n^i(L) \in \mathsf{RL}_{(n+1)}^i(m)$ determined by the longitudes ℓ_i are the *non-repeating Milnor-invariants* of <u>order n</u>. Here $\mathsf{RL}^i(m)$ is the reduced free Lie algebra on the m-1 generators X_j , for $j \neq i$.

Note that <u>degree $n + 1 \leftrightarrow order n$ </u>: Via non-associative bracketings \leftrightarrow binary trees, have $RL_{(n+1)}(m) \leftrightarrow$ the abelian group on <u>order n</u> rooted non-repeating trees modulo IHX and antisymmetry relations.

Eta-maps connecting $\Lambda_n(m)$ and $RL_{(n+1)}^i(m)$

For each i, define a map

$$\eta_n^i: \Lambda_n(m) \to \mathsf{RL}^i_{(n+1)}(m)$$

by sending a tree t which has an *i*-labeled univalent vertex v_i to the iterated bracketing determined by t with a root at v_i . Trees without an *i*-labeled vertex are sent to zero.

Examples:

$$\eta_{1}^{1}\left(1 - \frac{3}{2}\right) = -\frac{3}{2} = [X_{2}, X_{3}]$$

$$\eta_{2}^{1}\left(\frac{1}{2} - \frac{4}{3}\right) = 2 - \frac{4}{3} = [X_{2}, [X_{3}, X_{4}]]$$

$$\eta_{2}^{4}\left(\frac{1}{2} - \frac{4}{3}\right) = \frac{1}{2} - \frac{1}{3} = [[X_{1}, X_{2}], X_{3}]$$

28/48

Lemma: $\sum_{i=1}^{m} \eta_n^i : \Lambda_n(m) \longrightarrow \bigoplus_{i=1}^{m} \mathsf{RL}_{(n+1)}^i(m)$ is a monomorphism.

Proof sketch:

Putting an *i*-label in place of the root in a tree corresponding to a Lie bracket in $RL_{(n+1)}^{i}(m)$ gives a left inverse to η_{n}^{i} .

For the top degree n + 2 = m, this is an inverse because every index *i* appears exactly once in a tree *t* of order n = m - 2.

For arbitrary *n*, composing the sum of these left inverse maps with $\sum_{i=1}^{m} \eta_n^i$ is multiplication by n + 2 on $\Lambda_n(m)$.

Since $\Lambda_n(m)$ is torsion-free, it follows that $\sum_{i=1}^m \eta_n^i$ is injective.

Theorem (" $\lambda(\mathcal{W}) = \mu(L)$ "**)**

If an m-component link $L \subset S^3$ bounds a non-repeating Whitney tower W of order n on immersed disks $D = \bigcup_{i=1}^m D_i^2 \hookrightarrow B^4$, then for each i the longitude ℓ_i lies in $\mathcal{M}^i(L)_{(n+1)}$, and

$$\eta_n^i(\lambda_n(\mathcal{W})) = \mu_n^i(L) \in \mathsf{RL}^i_{(n+1)}(m)$$

Since the sum of the η_n^i is injective, the intersection invariant $\lambda_n(\mathcal{W}) \in \Lambda_n(m)$ does not depend on the Whitney tower \mathcal{W} and is a link homotopy invariant of L, denoted by $\lambda_n(L)$.

Corollary: *L* is link homotopically trivial, if and only if $\lambda_n(L) = 0$ for $1 \le n \le m - 2$, if and only if *L* has all vanishing Milnor invariants.

Example: Bing double of Hopf link

Example: Bing double of Hopf link

 $\lambda_2(L) = \frac{1}{2} > 4 \longrightarrow \mu_2^1(L) = \eta_2^1(\frac{1}{2} > 4) = 2 > 4 = [X_2, [X_3, X_4]]$

To read *i*th longitude $L_i = \partial D_i$, convert D_i to a grope $G_i \subset B^4 \setminus W^i$, where W^i is formed from W by deleting every Whitney disk whose tree contains an *i*-labeled vertex.

Then G_i displays $L_i = \partial G_i$ as iterated commutator (bracket).

Outline of proof that $\eta_n^i(\lambda_n(\mathcal{W})) = \mu_n^i(L) \in \mathsf{RL}^i_{(n+1)}(m)$

- 1. Arrange (using splitting, pushing down, and deleting repeating Whitney disks) that the only repeating intersections in \mathcal{W} are self-intersections in the order 0 disks D_j .
- 2. Convert the order 0 disk D_i to a <u>grope</u> G_i of class n + 1 bounded by L_i , such that G_i is in the complement $B^4 \\ \\ W^i$, where W^i is the result of deleting from W the disk D_i and each Whitney disk whose tree contain an *i*-labeled vertex. Then G_i will display the longitude ℓ_i in $\pi_1(B^4 \\ W^i)$ as a product of (n + 1)-fold commutators of meridians to the order 0 surfaces $D^i := \bigcup_{j \neq i} D_j$ of W^i by the same formula as in the definition of the map η_n^i .
- 3. Use Whitney tower-grope duality and Dwyer-Freedman-Teichner's theorem to show that $S^3 \\ \\ \partial D^i \\ \rightarrow B^4 \\ \\ W^i$ induces an isomorphism on the Milnor groups modulo the (n + 2)th terms of the lower central series, so $\mu_n^i(L)$ can be computed in $\pi_1(B^4 \\ W^i)$.

Step 1 of proof that $\eta_n^i(\lambda_n(\mathcal{W})) = \mu_n^i(L) \in \mathsf{RL}^i_{(n+1)}(m)$

1. Arrange (using splitting, pushing down, and deleting repeating Whitney disks) that the only repeating intersections in W are self-intersections in the order 0 disks D_i .

Figure: 'Pushing down' an intersection.

Suppose that \mathcal{W} is an order *n* non-repeating <u>split</u> Whitney tower on $A = A_1 \cup A_2 \cup \cdots \cup A_m \hookrightarrow X^4$.

For any $i \in \{1, 2, ..., m\}$ denote by W^i the Whitney tower which is the result of deleting from W the order 0 surface component A_i and each Whitney disk whose tree contains an *i*-labeled vertex.

Exercise: Check that W^i is an order *n* non-repeating Whitney tower on the (m-1)-component order 0 surface $A \setminus A_i$.

HINT: Recall that the interior of any Whitney disk in a *split* Whitney tower W either contains a single un-paired intersection, or a single boundary arc of a higher-order Whitney disk, or does not contain any singularities (is embedded and disjoint from the rest of W).

Step 2 of proof: Gropes (dyadic, capped, with trees)

36/48

Example of case i = 1:

37/48

Example of case i = 1:

The 'tree-preserving' surgery step at a trivalent vertex.

See 'Whitney towers and gropes in 4-manifolds' arXiv:math/0310303 [math.GT]

Want to show that $S^3 \setminus \partial D^i \to B^4 \setminus W^i$ induces an isomorphism on Milnor groups modulo the (n+2)th terms of the lower central series, so that $\mu_n^i(L)$ can be computed in $\pi_1(B^4 \setminus W^i)$.

Will use the following consequence of **Dwyer–Freedman–Teichner's theorem** ('4-manifold topology II: Dwyer's filtration and surgery kernels' Inventiones 122 (1995)):

Thm: If the inclusion $Y \subset X$ induces an isomorphism $H_1Y \cong H_1X$, and $H_2(X)$ is generated by class n + 2 gropes, then $Y \subset X$ induces $\pi_1 Y / (\pi_1 Y)_{n+2} \cong \pi_1 X / (\pi_1 X)_{n+2}$.

40/48

Proposition

If \mathcal{V} is a split Whitney tower on $A : \bigcup A_j \hookrightarrow X^4$, where each order 0 surface A_j is a sphere $S^2 \to X$ or a disk $(D^2, \partial D^2) \to (X, \partial X)$, then there exist dyadic gropes $G_k \subset X \setminus \mathcal{V}$ such that the G_k are geometrically dual to a generating set for the relative first homology group $H_1(\mathcal{V}, \partial A)$. Furthermore, the tree $t(G_k)$ associated to each G_k is obtained by attaching a rooted edge to the interior of an edge of a tree t_p associated to an unpaired intersection p of \mathcal{V} .

Here geometrically dual means that the bottom stage surface of each G_k bounds a 3-manifold which intersects exactly one generating curve of $H_1(\mathcal{V}, \partial A)$ transversely in a single point, and is disjoint from the other generators. In particular, there are as many gropes G_k as free generators of $H_1(\mathcal{V}, \partial A)$. Note that it follows from the last sentence of the proposition that if \mathcal{V} is order n, then each G_k is class n + 2.

Whitney tower-grope duality

Lemma

Any meridian to a Whitney disk $W_{(l_1,l_2)}$ in a Whitney tower $\mathcal{V} \subset X$ bounds a grope $G_{(l_1,l_2)} \subset X \setminus \mathcal{V}$ such that $t(G_{(l_1,l_2)}) = (l_1, l_2)$.

Lemma

Let $W_{(I,J)}$ be a Whitney disk in a split Whitney tower \mathcal{V} such that $W_{(I,J)}$ contains a trivalent vertex of a tree $t_p = \langle (I,J), K \rangle$ associated to an unpaired intersection point $p \in \mathcal{V}$. If $\gamma \subset W_I$ is the boundary of a regular neighborhood in W_I of $\partial W_{(I,J)} \subset W_{(I,J)} \subset \mathcal{V}$; then the normal circle bundle T to W_I over γ is the bottom stage of a dyadic grope $G \subset (X \setminus \mathcal{V})$, such that t(G) = (I, (J, K)).

Theorem:

(1) A link $L = L_1 \cup L_2 \cup \cdots \cup L_m \subset S^3$ is almost trivial if and only if L bounds an order m - 2 non-repeating Whitney tower $W \subset B^4$.

Proof sketch of the 'if' direction: If *L* bounds an order m - 2 non-repeating Whitney tower $\mathcal{W} \subset B^4$, then for each *i* the (m-1)-component link $L^i := L \setminus L_i$ bounds the order m - 2 non-repeating Whitney tower \mathcal{W}^i formed by deleting from \mathcal{W} the order 0 disk D_i bounded by L_i and every Whitney disk whose tree contains a *i*-vertex. Hence L^i is link-homotopically trivial by the corollary to the 'Pulling apart surfaces' theorem.

Theorem:

(1) A link $L = L_1 \cup L_2 \cup \cdots \cup L_m \subset S^3$ is almost trivial if and only if L bounds an order m - 2 non-repeating Whitney tower $W \subset B^4$.

Proof sketch of the 'only if' direction: Starting with an order 0 non-repeating Whitney tower (immersed disks) bounded by *L*, raise the order inductively to m - 2 via the non-repeating intersection/obstruction theory, using that proper sublinks of *L* are homotopically trivial and that the non-repeating intersection invariant target $\Lambda_n(m)$ decomposes as a direct sum for each n < m - 2. (Details on next slides.)

45/48

Proof: *L* almost-trivial \implies *L* bounds order m - 2 non-rep W

Assume $L = L_1 \cup L_2 \cup \cdots \cup L_m \subset S^3$ is almost-trivial. Will consider fixed $m \ge 3$. (Case m = 2 follows from next observation.)

Observe that L bounds an order 0 non-repeating Whitney tower (link components bound immersed disks into B^4).

Proceed by induction on order: Assume that *L* bounds an order *n* non-repeating Whitney tower W_n for $0 \le n \le m - 2$.

If n = m - 2 then we're done.

For n < m - 2, it will suffice to show that $\lambda_n(\mathcal{W}_n) = 0 \in \Lambda_n(m)$ to get an order n + 1 non-repeating Whitney tower bounded by L (by Theorem 'non-repeating order-raising'). See next slide.

For any n + 2-element subset $s \subset \{1, 2, ..., m\}$ of distinct elements denote by $L(s) \subset L$ the sublink of components with labels in s. Let $\mathcal{W}_n^{s^*}$ denote the Whitney tower formed by deleting from \mathcal{W}_n the order 0 disks labeled by elements of $s^* := \{1, 2, ..., m\} \setminus s$, and deleting any Whitney disk in \mathcal{W}_n whose tree has at least one vertex labeled by an element of s^* . Then $\mathcal{W}_n^{s^*}$ is an order n non-repeating Whitney tower bounded by L(s). Denote by $\Lambda_n(s)$ the order n non-repeating tree group on trees with distinct labels in s.

Since *L* is almost trivial, each *L^s* is homotopically trivial, so for each *s* we have $\lambda_n(\mathcal{W}_n^s) = 0 \in \Lambda_n(s^*)$ (by Thm/Cor " $\lambda(\mathcal{W}) = \mu(L)$ "). Since $\Lambda_n(m)$ is the direct sum of the $\Lambda_n(s^*)$, and $\lambda_n(\mathcal{W}_n)$ is the sum of the $\lambda_n(\mathcal{W}_n^s)$ it follows that $\lambda_n(\mathcal{W}_n) = 0 \in \Lambda_n(m)$.

47/48

Theorem:

(2) The Milnor invariant μ_L (as in Pete's talk) is the image of the non-repeating intersection invariant $\lambda_{m-2}(\mathcal{W}) \in \Lambda_{m-2}(m)$ under projection to a direct summand of $\Lambda_{m-2}(m)$ isomorphic to $\mathbb{Z}[\mathcal{S}_{m-2}]$.

Proof sketch: Simple trees form a basis, and compute longitudes. Can use "Whitney move IHX" construction to arrange all trees in an order m-2 non-repeating \mathcal{W} to have a *m*-labeled vertex at one end.

NOTE: The Whitney move IHX construction changes a Whitney tower by locally replacing a Whitney disk W_I with Whitney disks $W_H - W_X$, where the rooted trees I, H and X form an IHX relation. See Section 4.4 of 'Introduction to Whitney towers' arXiv:2012.01475 [math.GT] **Corollary:** For almost-trivial links L and L' the following statements are equivalent:

(i) *L* and *L'* are link-homotopic. (ii) $\mu_L = \mu_{L'} \in \mathbb{Z}[S_{m-2}]$. (iii) $\lambda_{m-2}(\mathcal{W}) = \lambda_{m-2}(\mathcal{W}') \in \Lambda_{m-2}(m)$ for any order m-2non-repeating Whitney towers \mathcal{W} and \mathcal{W}' bounded by *L* and *L'*, respectively.

Proof sketch:

(i) implies (ii), since μ_L is invariant under link homotopy. (ii) implies (iii), by above Theorem " $\lambda(\mathcal{W}) = \mu(L)$ " identifying Milnor invariants $\in \mathbb{Z}[S_{m-2}]$ with $\lambda_{m-2}(\mathcal{W}) \in \Lambda_{m-2}(m)$. (iii) implies (i), since can tube together \mathcal{W} and \mathcal{W}' to get immersed annuli in $S^3 \times I$ admitting an order m-2 non-repeating Whitney tower with vanishing λ_{m-2} , hence can be pulled apart.