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Milnor’s link-homotopy classification of almost-trivial links in S3.

Theorem:

(1) Alink L=LULyU---L,, C S%is almost trivial if and only if
L bounds an order m — 2 non-repeating Whitney tower V) C B*.

(2) The Milnor invariant i, € Z[Sm—»] (as in Pete's talk) is the image
of the non-repeating intersection invariant A,,_2(W) € Ap,_2(m)

under a specific ‘choice of basis’ isomorphism A,,_2(m) = Z|Sm-2].

Corollary: For almost-trivial links L and L’ the following statements
are equivalent:

(i) L and L’ are link-homotopic.

(ii) M = [y € Z[Sm_g].

(i) Am_2(W) = Am_2(W') € App_a(m) for any order m — 2
non-repeating Whitney towers YW and W’ bounded by L and L’,
repspectively. ...definitions /proof sketches later...
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Recall: The intersection forest multiset t())) of a Whitney tower W

Wi tOV) =) ety +> w(W))-J”

L
G
\/QH@Z?/\
A z‘Q i _i

‘framed tree’ t, <~ p unpaired intersection with sign ¢, = £1,
‘twisted tree’ J” := J —o <+ W, with twisting w(W,) # 0 € Z.
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Higher-order Whitney disks and intersections

Definition
e The order of a tree is the number of trivalent vertices.

e The order of a Whitney disk or an intersection point is the order
of the corresponding tree.
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Non-repeating order n Whitney towers

W is an order n non-repeating Whitney tower if all t, € t(W) having
distinctly-labeled vertices are of order > n.

Example: The Bing double of the Hopf link bounds an order 2
non-repeating Whitney tower W.

Exercise: Draw t, C WV and check W is order 2 non-repeating.
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Non-repeating order n Whitney towers

W is an order n non-repeating Whitney tower if all t, € t()V) having
distinctly-labeled vertices are of order > n.

Note: Can ignore both repeating Whitney disks and twisted Whitney
disks in this non-repeating setting.

Non-repeating Whitney towers characterize being able to ‘pull apart’
components:

Theorem (Pulling apart surfaces)

A=U",A & X admits an order m — 1 non-repeating VW
if and only if
A is homotopic (rel 0) to A" = UL, A} with A;N A: = () for all i # j.
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Non-repeating Whitney towers and link homotopy

Theorem: A = U, A; &~ X admits an order m — 1 non-repeating W
if and only if
A is homotopic (rel 0) to A" = UL, A} with A} N A7 = () for all i # j.

Corollary: Two m-component links in S3 are link homotopic
(homotopy preserves disjointness at all times) if and only if they
cobound immersed annuli in S x | admitting an order m — 1
non-repeating Whitney tower.

In particular, an m-component link is link-homotopically trivial if it
bounds immersed disks admitting an order m — 1 non-repeating
Whitney tower in B*.

Proof of Corollary: “Singular concordance implies link homotopy”
— Giffen, Goldsmith, (and PT for higher dim co-dimension 2).
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Non-repeating Whitney towers and pulling apart m components

Theorem: A =UT",A; & X admits order m — 1 non-repeating W iff
A is homotopic (rel 0) to A’ = U, A} with A; N A; = {) for all j # .

The “if" direction is true by definition, since disjoint order O surfaces
form a non-repeating Whitney tower of any order.

The “only if" direction uses ‘pushing down’ to clean up all Whitney

disks:
Wi P

push-down
—
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Non-repeating Whitney towers and pulling apart m components

Theorem: A = U ;A; & X admits order m — 1 non-repeating W iff
A is homotopic to A" = U2, A} with A; N A7 = () for all i # j.

Proof sketch of “only if" direction (see ‘Pulling apart 2-spheres in
4-manifolds’ arXiv:1210.5534 [math.GT]):

If VW contains no Whitney disks, then the A; are pairwise disjoint.
Consider a Whitney disk W, ) in YW of maximal order.

If W) is clean, then do the W, j-Whitney move on Wj or W,.
If W ) is not clean, then for any p € W, 5y N Wk, at least one of
(I,K) or (J, K) is a repeating bracket, so can push p down off of
W(1,sy at cost of only creating repeating intersections.

Repeating this procedure on all maximal order Whitney disks
eventually yields the desired order m — 1 non-repeating Whitney
tower with no Whitney disks (ie. disjoint order 0 surfaces A?).
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Non-repeating obstruction theory

A,(m) := free abelian group on order n framed trees, each having
univalent vertices labeled by distinct indices from {1,2,..., m},
modulo local antisymmetry (AS) and Jacobi (IHX) reIatlons

Y Y co- T o)A X

Definition: If VW is an order n non-repeating Whitney tower, the
order n non—repeating intersection invariant A,(W) is defined by

=[> sign(p) - t,] € A,
where the sum is over aII order n non-repeating intersections p € W.

Theorem (non-repeating order-raising)

A % X admits a non-repeating Whitney tower VW of order n with
An(W) =0 € A, if and only if
A admits an order (n + 1) non-repeating Whitney tower. O
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Non-repeating obstruction theory

Proof of order-raising uses geometric realizations of IHX relations and
‘transfer moves' to convert algebraically canceling trees into
geometric canceling trees (intersections paired by Whitney disks)”,
modulo creating higher-order trees.
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Transfer move

New higher-order Whitney disks are uncontrolled (they can only
contribute higher-order intersections). Construction is supported near
Whitney disks union an arc in original Whitney tower.
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For details on the order-raising intersection /obstruction theory proof,
including general order n Whitney towers (‘repeating’ labels allowed),
see:

Section 4 of ‘Whitney tower concordance of classical links'’
arXiv:1202.3463 [math.GT]
(includes twisted Whitney towers)

Section 4 of ‘Whitney towers and the Kontsevich integral’
arXiv:math /0401441 [math.GT]
(uses some slightly different notation)
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The order n non-repeating tree groups A,(m)

A,(m) := free abelian group on order n framed trees, each having
univalent vertices labeled by distinct indices from {1,2, ..., m},
modulo local antisymmetry (AS) and Jacobi (IHX) relations:

YT e X

The relations are homogeneous in labels, and order n trees have n+ 2
univalent vertices, so choosing (n + 2)-element subsets of distinct
indices decomposes A,(m) into the direct sum of (n12>—many
isomorphic ‘copies’ of A,(n+ 2).

So suffices to understand the groups A,(n+2), for 1 < n < m-—2.
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Example: Ag(4)

Have (012) = 6 two-element subsets of {1,2,3,4}:

No(4) = No(1,2) ® No(1,3) B Ao(1,4) D No(2,3) D No(2,4) D No(3,4)

where Ag(/, ) denotes the non-repeating tree group on order 0 trees
labeled distinctly from {/,}.

So Ag(4) =2 Z° is the Z-span of the six order 0 trees i — j for
distinct labels i # j from {1,2,3,4}.

In the setting of link homotopy A\g(L) := Ag(W) € Ao(4) measures
the pairwise linking of components of a 4-component link L, where
W is any order 0 non-repeating Whitney tower bounded by L
(immersed disks bounded by components).
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Example: A1(4)

Have (112) = 4 three-element subsets of {1,2,3,4}:

/\1(4) — /\1(1, 2, 3) EB /\1(1, 2,4) @ /\1(1, 3, 4) @ /\1(2, 3, 4)

So A1(4) = Z* is the Z-span of the four order 1 trees i —< with
distinct labels i, j, k from {1,2,3,4}.

We may take these generating trees to be canonically oriented (at the
trivalent vertex) using the ordering of the labels.

In the setting of link homotopy A;(W) € A1(4) corresponds to
Milnor's ‘triple linking numbers' 11;x(L) for 3-component sublinks of a
4-component link L, where W is any order 1 non-repeating Whitney
tower bounded by L (which exists iff A\o(L) = 0).
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Example: Ay (4)

N>(4) is the highest order (non-trivial) non-repeating group for four

components, with a single (212) four-element subset of {1,2,3,4}.
Since the order is > 2 the IHX relations come into play:

Mo(4) = (i>=<3, 3 ><1) =727
since by the IHX relation we have
i ><p=i1><3+3><]
Subsequent slides will find a basis for A,,_»(m) = Z(m=2)!
Will also describe relationship between Milnor invariants and

An(L) == Xa(W) € A,y(m) for W any order n non-repeating Whitney
tower bounded by an m-component link L.
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‘Maximal’ order n = m — 2 non-repeating tree groups

Will see that A,,_2(m) = Z[Sm-2],
where S,,_» is the symmetric group on {1,2,...,m— 2},
with a basis given by the ‘simple’ trees t(o) for o€ S,

(m-1)

T

o(1) o(2) o(3) cecee o(m-2)
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Simple trees span A,,_»(m)

If the geodesic between the m-vertex and the (m — 1)-vertex has

length less than m — 1, apply an IHX relation: | = H — X:
m /k (m-1)
J K
m (m-1) m (m-1)
| — <
J K J K

Eventually get length m — 1 geodesics between the m-vertex
and the (m — 1)-vertex in each tree.
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Rank of Ap,_2(m)

Placing a root at the m-vertex of each tree gives an isomorphism from
Am—2(m) to the degree m — 1 reduced free Lie algebra RL,,_1(m — 1)
which is the subgroup of non-repeating length m — 1 brackets in the
free Lie algebra (over Z) on m — 1 generators, with AS and IHX
relations going to skew-symmetry relations and Jacobi identities.

The rank of RL,,—1(m — 1) is (m — 2)!, by Theorem 5.11 of Magnus,
Karass and Solitar's book ‘Combinatorial group theory’ Dover
Publications, Inc. (1976). See also Sections 4-5 of Milnor’s ‘Link
Groups' Annals of Math. 59 (1954), and/or Pete's posted notes.

So the rank of A,,_2(m) is (m — 2)!, and the simple trees t(o) are
linearly independent.
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Milnor’s link homotopy

Recall:

A link-homotopy of an m-component link L=L; UL, U---UL, in
the 3—sphere is a homotopy of L which preserves disjointness of the
link components, i.e. during the homotopy only self-intersections of
the L; are allowed.
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Milnor group of L (invariant under link homotopy)

The Milnor group M(L) of L = U], L; C S* has a presentation
M(L) = <X1,X2, ey Xm | [fiaxi], [vaxjh]>

where each x; is represented by a meridian (one for each component),
and the ¢; are words in the x; determined by the link longitudes.

The free Milnor group M(m) is given by setting all ; = 1 in this
presentation.
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Reduced (‘non-repeating’) free Lie algebra

The reduced free Lie algebra RL(m) = &7 RL,(m) is
the subgroup of the free Z-Lie algebra on generators Xi, X5, ..., X,
spanned by iterated Lie brackets on distinct generators.

xit > £X; induces M(m)(ny/ M(m)(ni1) = RLA(m)

This isomorphism takes a product of length n commutators in
distinct x; to a sum of length n Lie brackets in distinct X;.

In particular, RL,(m) = 0 for n > m.
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first-non-vanishing ‘total’ Milnor invariants

Define M/(L) := M(L)/{x; =1}

If longitudes [¢;] € M'(L)(n+1) for all i, then we have isomorphisms:
M(L)(n1y/ ML) (ny2) = M(m)(ny1)/ M(M)(n12) = RL(ny1)(m).

Definition

The elements pi(L) € RLénH)(m) determined by the longitudes ¢
are the non-repeating Milnor-invariants of order n. Here RL'(m) is
the reduced free Lie algebra on the m — 1 generators Xj, for j # i.

Note that degree n+ 1 <+ order n:

Via non-associative bracketings <+ binary trees, have

RL(s+1)(m) <> the abelian group on order n rooted non-repeating
trees modulo IHX and antisymmetry relations.
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Eta-maps connecting A,(m) and RLEHH)(m)

For each i, define a map

M+ An(m) = RL{, 1)(m)

by sending a tree t which has an j-labeled univalent vertex v; to the
iterated bracketing determined by t with a root at v;. Trees without

an i-labeled vertex are sent to zero.

Examples:
3 3
771(1—<2>: 2
1(1 4 4
772(2>_<3): 2 >7<3
4(1 4 1
772<2>_<3): 2 <3

= [X,X]
= [X27 [X37 X4]]

= [[X1, X2], X3]
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Lemma: 37, nf : A, (m) — &7 1RL’,,Jrl (m) is a monomorphism.
Proof sketch:

Putting an i-label in place of the root in a tree corresponding to a Lie
bracket in RL,1)(m) gives a left inverse to .

For the top degree n+ 2 = m, this is an inverse because every index i
appears exactly once in a tree t of order n = m — 2.

For arbitrary n, composing the sum of these left inverse maps with
™, mk is multiplication by n+ 2 on A,(m).

Since A,(m) is torsion-free, it follows that Y7, n/ is injective.
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Non-repeating Whitney towers and total Milnor invariants

Theorem (“N(W) = u(L)”)

If an m-component link L C §* bounds a non-repeating Whitney
tower W of order n on immersed disks D = U™, D? & B*,

then for each i the longitude (; lies in M'(L) 41y, and

M(An(W)) = 11,(L) € RL{,1)(m)

Since the sum of the 7’ is injective, the intersection invariant
An(W) € A,(m) does not depend on the Whitney tower W and is a
link homotopy invariant of L, denoted by \,(L).

Corollary: L is link homotopically trivial, if and only if
An(L) =0for 1 < n<m-—2,if and only if
L has all vanishing Milnor invariants.
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Example: Bing double of Hopf link

N

AT TN
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Example: Bing double of Hopf link

Ao(L) =5>=<§ ~ py(L) = 3 (5><3) = 2>< 3= [ X2, [ X3, Xa]]

To read ith longitude L; = OD;, convert D; to a grope G; C B*\ W',
where W' is formed from W by deleting every Whitney disk whose
tree contains an i-labeled vertex.

Then G; displays L; = OG; as iterated commutator (bracket).
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Outline of proof that 7},(\,(W)) = pj(L) € RL{, 1)(m)

1. Arrange (using splitting, pushing down, and deleting repeating
Whitney disks) that the only repeating intersections in W are
self-intersections in the order 0 disks D;.

2. Convert the order 0 disk D; to a grope G; of class n+ 1 bounded
by L;, such that G; is in the complement B* ~ W', where W' is
the result of deleting from W the disk D; and each Whitney disk
whose tree contain an i-labeled vertex. Then G; will display the
longitude ¢; in 71(B* . W') as a product of (n + 1)-fold
commutators of meridians to the order 0 surfaces D' := U, ;D;
of W' by the same formula as in the definition of the map 7/

3. Use Whitney tower-grope duality and
Dwyer—Freedman—Teichner’'s theorem to show that
S$30D" — B* < W' induces an isomorphism on the Milnor
groups modulo the (n + 2)th terms of the lower central series,
so 4! (L) can be computed in 71 (B* ~ W).
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Step 1 of proof that n},(A\,(W)) = p},(L) € RL{, 1y(m)

1. Arrange (using splitting, pushing down, and deleting repeating
Whitney disks) that the only repeating intersections in W are
self-intersections in the order 0 disks D;.

Figure: 'Pushing down' an intersection.
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Warm-up exercise for Step 2

Suppose that W is an order n non-repeating split Whitney tower on
A=A UAU---UA, 3+ X%

For any i € {1,2,..., m} denote by W' the Whitney tower which is
the result of deleting from WV the order 0 surface component A; and
each Whitney disk whose tree contains an i-labeled vertex.

Exercise: Check that W' is an order n non-repeating Whitney tower
on the (m — 1)-component order 0 surface A\ A;.

HINT: Recall that the interior of any Whitney disk in a split Whitney
tower )V either contains a single un-paired intersection, or a single
boundary arc of a higher-order Whitney disk, or does not contain any
singularities (is embedded and disjoint from the rest of W).
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Step 2 of proof: Gropes (dyadic, capped, with trees)

36,48



Whitney tower-to-grope construction: D; — G; (Step 2 of proof)

Example of case i = 1:
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Whitney tower-to-grope construction: D; — G; (Step 2 of proof)

Example of case i = 1:
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Converting a Whitney tower to a grope

The ‘tree-preserving’ surgery step at a trivalent vertex.

‘0
—
+ r !==

G \_ LS N—

|
g | ¥y

See ‘Whitney towers and gropes in 4-manifolds’
arXiv:math /0310303 [math.GT]
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Step 3 of proof that n},(A\,(W)) = p},(L) € RL{, 1y(m)

Want to show that S3\. 9D’ — B* ~. W' induces an isomorphism on
Milnor groups modulo the (n+ 2)th terms of the lower central series,
so that y/ (L) can be computed in 71 (B* ~ W').

Will use the following consequence of
Dwyer—Freedman—Teichner’s theorem (‘4-manifold topology II:
Dwyer's filtration and surgery kernels' Inventiones 122 (1995)):

Thm: If the inclusion Y C X induces an isomorphism H;Y = H; X,
and H,(X) is generated by class n + 2 gropes,
then Y C X induces m1 Y /(m1Y)ni2 = m X/ (m1.X)ns2-
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Whitney tower-grope duality (Step 3 of proof)

Proposition

IfV is a split Whitney tower on A : UA; & X*, where each order 0
surface A; is a sphere S> — X or a disk (D?,0D?) — (X, 9X), then
there exist dyadic gropes Gy C X \. V such that the Gy are
geometrically dual to a generating set for the relative first homology
group Hi(V,0A). Furthermore, the tree t(Gy) associated to each Gy
is obtained by attaching a rooted edge to the interior of an edge of a
tree t, associated to an unpaired intersection p of V.

Here geometrically dual means that the bottom stage surface of each
Gk bounds a 3—manifold which intersects exactly one generating curve
of Hy(V,0A) transversely in a single point, and is disjoint from the
other generators. In particular, there are as many gropes Gy as free
generators of H;(V,0A). Note that it follows from the last sentence
of the proposition that if V is order n, then each Gy is class n + 2.
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Whitney tower-grope duality

Lemma
Any meridian to a Whitney disk Wy, 1,y in a Whitney tower V C X
bounds a grope G, 1,y C X NV such that t(G, 1)) = (h, k).
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Lemma
Let W, sy be a Whitney disk in a split Whitney tower V such that
W\, contains a trivalent vertex of a tree t, = ((/,J), K) associated
to an unpaired intersection point p € V. If v C W, is the boundary
of a regular neighborhood in W, of OW,; 5y C W(; 45 C V, then the
normal circle bundle T to W, over vy is the bottom stage of a dyadic
grope G C (X \'V), such that t(G) = (/,(J, K)).
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Milnor’s link-homotopy classification of almost-trivial links in S3.

Theorem:

(1) Alink L=L;ULyU---L,, C S*is almost trivial if and only if
L bounds an order m — 2 non-repeating Whitney tower V) C B*.

Proof sketch of the ‘if’ direction: If L bounds an order m — 2
non-repeating Whitney tower YW C B*, then for each i the

(m — 1)-component link L' := L\ L; bounds the order m — 2
non-repeating Whitney tower YW’ formed by deleting from )V the
order 0 disk D; bounded by L; and every Whitney disk whose tree
contains a i-vertex. Hence L' is link-homotopically trivial by the
corollary to the ‘Pulling apart surfaces’ theorem.
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Milnor’s link-homotopy classification of almost-trivial links in S3.

Theorem:

(1) Alink L=L,ULyU---L,, C S*is almost trivial if and only if
L bounds an order m — 2 non-repeating Whitney tower YW C B*.

Proof sketch of the ‘only if’ direction: Starting with an order 0
non-repeating Whitney tower (immersed disks) bounded by L, raise
the order inductively to m — 2 via the non-repeating

intersection /obstruction theory, using that proper sublinks of L are
homotopically trivial and that the non-repeating intersection invariant
target A,(m) decomposes as a direct sum for each n < m — 2.
(Details on next slides.)
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Proof: L almost-trivial — L bounds order m — 2 non-rep W

Assume L = L; UL, U---UL, C S is almost-trivial.
Will consider fixed m > 3.
(Case m = 2 follows from next observation.)

Observe that L bounds an order 0 non-repeating Whitney tower
(link components bound immersed disks into B*).

Proceed by induction on order: Assume that L bounds an order n
non-repeating Whitney tower W, for 0 < n < m — 2.

If n = m — 2 then we're done.

For n < m — 2, it will suffice to show that \,(W,) =0 € A,(m) to
get an order n + 1 non-repeating Whitney tower bounded by L (by
Theorem ‘non-repeating order-raising’). See next slide.
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Proof: L almost-trivial — L bounds order m — 2 non-rep W

For any n + 2-element subset s C {1,2,..., m} of distinct elements
denote by L(s) C L the sublink of components with labels in s. Let
W™ denote the Whitney tower formed by deleting from W, the order
0 disks labeled by elements of s* := {1,2,..., m} \ s, and deleting
any Whitney disk in VW, whose tree has at least one vertex labeled by
an element of s*. Then W$" is an order n non-repeating Whitney
tower bounded by L(s). Denote by A,(s) the order n non-repeating
tree group on trees with distinct labels in s.

Since L is almost trivial, each L® is homotopically trivial, so for each s
we have \,(W:) =0 € A,(s*) (by Thm/Cor “"A(W) = u(L)").

Since A,(m) is the direct sum of the A,(s*), and A\,(W,) is the sum
of the A,(W3) it follows that A,(W,) =0 € A,(m).
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Milnor’s link-homotopy classification of almost-trivial links in S3.

Theorem:

(2) The Milnor invariant z; (as in Pete’s talk) is the image of the
non-repeating intersection invariant Ap,_2(W) € A,—2(m) under
projection to a direct summand of A,,_»(m) isomorphic to Z[S—2].

Proof sketch: Simple trees form a basis, and compute longitudes.
Can use “Whitney move IHX" construction to arrange all trees in an
order m — 2 non-repeating W to have a m-labeled vertex at one end.

NOTE: The Whitney move IHX construction changes a Whitney
tower by locally replacing a Whitney disk W, with Whitney disks
Wy — Wy, where the rooted trees |, H and X form an IHX relation.
See Section 4.4 of ‘Introduction to Whitney towers'’
arXiv:2012.01475 [math.GT]
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Milnor’s link-homotopy classification of almost-trivial links in S3.

Corollary: For almost-trivial links L and L’ the following statements
are equivalent:

(i) L and L’ are link-homotopic.

(i) po = pr € Z[Sm—a].

(i) Am—2(W) = Am_—2(W') € App_a(m) for any order m — 2
non-repeating Whitney towers W and W’ bounded by L and L',
respectively.

Proof sketch:

(i) implies (ii), since g is invariant under link homotopy.

(ii) implies (iii), by above Theorem “A(W) = p(L)" identifying
Milnor invariants € Z[Sp_2] with Ay,_2(W) € Ap_a(m).

(iii) implies (i), since can tube together ¥V and W' to get immersed
annuli in $3 x | admitting an order m — 2 non-repeating Whitney
tower with vanishing \,,_», hence can be pulled apart.
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