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Milnor’s link-homotopy classification of almost-trivial links in S3.

Theorem:

(1) A link L = L1 ∪ L2 ∪ · · · Lm ⊂ S3 is almost trivial if and only if
L bounds an order m − 2 non-repeating Whitney tower W ⊂ B4.

(2) The Milnor invariant µL ∈ Z[Sm−2] (as in Pete’s talk) is the image
of the non-repeating intersection invariant λm−2(W) ∈ Λm−2(m)
under a specific ‘choice of basis’ isomorphism Λm−2(m)

∼=−→ Z[Sm−2].

Corollary: For almost-trivial links L and L′ the following statements
are equivalent:
(i) L and L′ are link-homotopic.
(ii) µL = µL′ ∈ Z[Sm−2].
(iii) λm−2(W) = λm−2(W ′) ∈ Λm−2(m) for any order m − 2
non-repeating Whitney towers W and W ′ bounded by L and L′,
repspectively. ...definitions/proof sketches later...
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Recall: The intersection forest multiset t(W) of a Whitney tower W

W 7→ t(W) =
∑

εp · tp +
∑

ω(WJ) · J

Ai i i i

‘framed tree’ tp ←p p unpaired intersection with sign εp = ±1,
‘twisted tree’ J := J −− ←p WJ with twisting ω(WJ) 6= 0 ∈ Z.
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Higher-order Whitney disks and intersections

Definition

• The order of a tree is the number of trivalent vertices.

• The order of a Whitney disk or an intersection point is the order
of the corresponding tree.
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Non-repeating order n Whitney towers

W is an order n non-repeating Whitney tower if all tp ∈ t(W) having
distinctly-labeled vertices are of order ≥ n.
Example: The Bing double of the Hopf link bounds an order 2
non-repeating Whitney tower W .
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Exercise: Draw tp ⊂ W and check W is order 2 non-repeating.
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Non-repeating order n Whitney towers

W is an order n non-repeating Whitney tower if all tp ∈ t(W) having
distinctly-labeled vertices are of order ≥ n.

Note: Can ignore both repeating Whitney disks and twisted Whitney
disks in this non-repeating setting.

Non-repeating Whitney towers characterize being able to ‘pull apart’
components:
Theorem (Pulling apart surfaces)

A = ∪m
i=1Ai # X admits an order m − 1 non-repeating W

if and only if

A is homotopic (rel ∂) to A′ = ∪m
i=1A′i with A′i ∩ A′j = ∅ for all i 6= j .
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Non-repeating Whitney towers and link homotopy

Theorem: A = ∪m
i=1Ai # X admits an order m− 1 non-repeatingW

if and only if
A is homotopic (rel ∂) to A′ = ∪m

i=1A′i with A′i ∩ A′j = ∅ for all i 6= j .

Corollary: Two m-component links in S3 are link homotopic
(homotopy preserves disjointness at all times) if and only if they
cobound immersed annuli in S3 × I admitting an order m − 1

non-repeating Whitney tower.

In particular, an m-component link is link-homotopically trivial if it
bounds immersed disks admitting an order m − 1 non-repeating

Whitney tower in B4.

Proof of Corollary: “Singular concordance implies link homotopy”
– Giffen, Goldsmith, (and PT for higher dim co-dimension 2).
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Non-repeating Whitney towers and pulling apart m components

Theorem: A = ∪m
i=1Ai # X admits order m− 1 non-repeating W iff

A is homotopic (rel ∂) to A′ = ∪m
i=1A′i with A′i ∩ A′j = ∅ for all i 6= j .

The “if” direction is true by definition, since disjoint order 0 surfaces
form a non-repeating Whitney tower of any order.

The “only if” direction uses ‘pushing down’ to clean up all Whitney
disks:

WK

push-down

W
W

I

p

(I,J)

WJ
WJ

WK

WI
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Non-repeating Whitney towers and pulling apart m components

Theorem: A = ∪m
i=1Ai # X admits order m− 1 non-repeating W iff

A is homotopic to A′ = ∪m
i=1A′i with A′i ∩ A′j = ∅ for all i 6= j .

Proof sketch of “only if” direction (see ‘Pulling apart 2-spheres in
4-manifolds’ arXiv:1210.5534 [math.GT]):
If W contains no Whitney disks, then the Ai are pairwise disjoint.
Consider a Whitney disk W(I,J) in W of maximal order.
If W(I,J) is clean, then do the W(I,J)-Whitney move on WI or WJ .
If W(I,J) is not clean, then for any p ∈ W(I,J) ∩WK , at least one of
(I ,K ) or (J ,K ) is a repeating bracket, so can push p down off of
W(I,J) at cost of only creating repeating intersections.
Repeating this procedure on all maximal order Whitney disks
eventually yields the desired order m − 1 non-repeating Whitney
tower with no Whitney disks (ie. disjoint order 0 surfaces A′i).
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Non-repeating obstruction theory

Λn(m) := free abelian group on order n framed trees, each having
univalent vertices labeled by distinct indices from {1, 2, . . . ,m},
modulo local antisymmetry (AS) and Jacobi (IHX) relations:

Definition: If W is an order n non-repeating Whitney tower, the
order n non-repeating intersection invariant λn(W) is defined by

λn(W) := [
∑

sign(p) · tp] ∈ Λn

where the sum is over all order n non-repeating intersections p ∈ W .
Theorem (non-repeating order-raising)
A# X admits a non-repeating Whitney tower W of order n with
λn(W) = 0 ∈ Λn if and only if
A admits an order (n + 1) non-repeating Whitney tower. �
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Non-repeating obstruction theory

Proof of order-raising uses geometric realizations of IHX relations and
‘transfer moves’ to convert algebraically canceling trees into
geometric canceling trees (intersections paired by Whitney disks)”,
modulo creating higher-order trees.
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Transfer move
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Transfer move
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Transfer move
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Transfer move

New higher-order Whitney disks are uncontrolled (they can only
contribute higher-order intersections). Construction is supported near
Whitney disks union an arc in original Whitney tower.
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For details on the order-raising intersection/obstruction theory proof,
including general order n Whitney towers (‘repeating’ labels allowed),
see:

Section 4 of ‘Whitney tower concordance of classical links’
arXiv:1202.3463 [math.GT]
(includes twisted Whitney towers)

Section 4 of ‘Whitney towers and the Kontsevich integral’
arXiv:math/0401441 [math.GT]
(uses some slightly different notation)
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The order n non-repeating tree groups Λn(m)

Λn(m) := free abelian group on order n framed trees, each having
univalent vertices labeled by distinct indices from {1, 2, . . . ,m},
modulo local antisymmetry (AS) and Jacobi (IHX) relations:

The relations are homogeneous in labels, and order n trees have n + 2
univalent vertices, so choosing (n + 2)-element subsets of distinct
indices decomposes Λn(m) into the direct sum of

(
m

n+2

)
-many

isomorphic ‘copies’ of Λn(n + 2).

So suffices to understand the groups Λn(n + 2), for 1 ≤ n ≤ m − 2.
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Example: Λ0(4)

Have
(

4
0+2

)
= 6 two-element subsets of {1, 2, 3, 4}:

Λ0(4) = Λ0(1, 2)⊕ Λ0(1, 3)⊕ Λ0(1, 4)⊕ Λ0(2, 3)⊕ Λ0(2, 4)⊕ Λ0(3, 4)

where Λ0(i , j) denotes the non-repeating tree group on order 0 trees
labeled distinctly from {i , j}.

So Λ0(4) ∼= Z6 is the Z-span of the six order 0 trees i −−− j for
distinct labels i 6= j from {1, 2, 3, 4}.

In the setting of link homotopy λ0(L) := λ0(W) ∈ Λ0(4) measures
the pairwise linking of components of a 4-component link L, where
W is any order 0 non-repeating Whitney tower bounded by L
(immersed disks bounded by components).
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Example: Λ1(4)

Have
(

4
1+2

)
= 4 three-element subsets of {1, 2, 3, 4}:

Λ1(4) = Λ1(1, 2, 3)⊕ Λ1(1, 2, 4)⊕ Λ1(1, 3, 4)⊕ Λ1(2, 3, 4)

So Λ1(4) ∼= Z4 is the Z-span of the four order 1 trees i −−<k
j with

distinct labels i , j , k from {1, 2, 3, 4}.

We may take these generating trees to be canonically oriented (at the
trivalent vertex) using the ordering of the labels.

In the setting of link homotopy λ1(W) ∈ Λ1(4) corresponds to
Milnor’s ‘triple linking numbers’ µijk(L) for 3-component sublinks of a
4-component link L, where W is any order 1 non-repeating Whitney
tower bounded by L (which exists iff λ0(L) = 0).
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Example: Λ2(4)

Λ2(4) is the highest order (non-trivial) non-repeating group for four
components, with a single

(
4

2+2

)
four-element subset of {1, 2, 3, 4}.

Since the order is ≥ 2 the IHX relations come into play:

Λ2(4) = 〈 3
1>−−< 4

2 ,
3
2 >−−< 4

1〉 ∼= Z2

since by the IHX relation we have
3
4 >−−< 1

2 = 3
1>−−< 4

2 + 3
2>−−< 4

1

Subsequent slides will find a basis for Λm−2(m) ∼= Z(m−2)!

Will also describe relationship between Milnor invariants and
λn(L) := λn(W) ∈ Λn(m) for W any order n non-repeating Whitney
tower bounded by an m-component link L.
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‘Maximal’ order n = m − 2 non-repeating tree groups

Will see that Λm−2(m) ∼= Z[Sm−2],
where Sm−2 is the symmetric group on {1, 2, . . . ,m − 2},
with a basis given by the ‘simple’ trees t(σ) for σ ∈ Sm−2:

σ(1) . . . . .σ(2) σ(3) σ(m-2)

(m-1)m
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Simple trees span Λm−2(m)

If the geodesic between the m-vertex and the (m − 1)-vertex has
length less than m − 1, apply an IHX relation: I = H − X:

(m-1)m

(m-1)m

J K

J K

(m-1)m

J K

Eventually get length m − 1 geodesics between the m-vertex
and the (m − 1)-vertex in each tree.
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Rank of Λm−2(m)

Placing a root at the m-vertex of each tree gives an isomorphism from
Λm−2(m) to the degree m− 1 reduced free Lie algebra RLm−1(m− 1)
which is the subgroup of non-repeating length m − 1 brackets in the
free Lie algebra (over Z) on m − 1 generators, with AS and IHX
relations going to skew-symmetry relations and Jacobi identities.

The rank of RLm−1(m − 1) is (m − 2)!, by Theorem 5.11 of Magnus,
Karass and Solitar’s book ‘Combinatorial group theory’ Dover
Publications, Inc. (1976). See also Sections 4–5 of Milnor’s ‘Link
Groups’ Annals of Math. 59 (1954), and/or Pete’s posted notes.

So the rank of Λm−2(m) is (m − 2)!, and the simple trees t(σ) are
linearly independent.
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Milnor’s link homotopy

Recall:

A link-homotopy of an m-component link L = L1 ∪ L2 ∪ · · · ∪ Lm in
the 3–sphere is a homotopy of L which preserves disjointness of the
link components, i.e. during the homotopy only self-intersections of
the Li are allowed.
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Milnor group of L (invariant under link homotopy)

The Milnor groupM(L) of L = ∪m
i=1 Li ⊂ S3 has a presentation

M(L) = 〈x1, x2, . . . , xm | [`i , xi ], [xj , xh
j ]〉

where each xi is represented by a meridian (one for each component),
and the `i are words in the xi determined by the link longitudes.

The free Milnor groupM(m) is given by setting all `i = 1 in this
presentation.
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Reduced (‘non-repeating’) free Lie algebra

The reduced free Lie algebra RL(m) = ⊕m
n=1RLn(m) is

the subgroup of the free Z-Lie algebra on generators X1,X2, . . . ,Xm
spanned by iterated Lie brackets on distinct generators.

x±1
i 7→ ±Xi inducesM(m)(n)/M(m)(n+1) ∼= RLn(m)

This isomorphism takes a product of length n commutators in
distinct xi to a sum of length n Lie brackets in distinct Xi .

In particular, RLn(m) = 0 for n > m.
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first-non-vanishing ‘total’ Milnor invariants

DefineMi(L) :=M(L)/{xi = 1}

If longitudes [`i ] ∈Mi(L)(n+1) for all i , then we have isomorphisms:
M(L)(n+1)/M(L)(n+2) ∼=M(m)(n+1)/M(m)(n+2) ∼= RL(n+1)(m).

Definition
The elements µi

n(L) ∈ RLi
(n+1)(m) determined by the longitudes `i

are the non-repeating Milnor-invariants of order n. Here RLi(m) is
the reduced free Lie algebra on the m − 1 generators Xj , for j 6= i .

Note that degree n + 1 ↔ order n:
Via non-associative bracketings ↔ binary trees, have
RL(n+1)(m) ↔ the abelian group on order n rooted non-repeating
trees modulo IHX and antisymmetry relations.
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Eta-maps connecting Λn(m) and RLi
(n+1)(m)

For each i , define a map

ηi
n : Λn(m)→ RLi

(n+1)(m)

by sending a tree t which has an i-labeled univalent vertex vi to the
iterated bracketing determined by t with a root at vi . Trees without
an i-labeled vertex are sent to zero.

Examples:
η1

1

(
1−−< 3

2

)
= −−< 3

2 = [X2,X3]

η1
2

(
1
2>−−< 4

3

)
= 2 >−−< 4

3 = [X2, [X3,X4]]

η4
2

(
1
2>−−< 4

3

)
= 1

2 >−−< 3 = [[X1,X2],X3]
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Lemma: ∑m
i=1 η

i
n : Λn(m) −→ ⊕m

i=1RLi
(n+1)(m) is a monomorphism.

Proof sketch:

Putting an i-label in place of the root in a tree corresponding to a Lie
bracket in RLi

(n+1)(m) gives a left inverse to ηi
n.

For the top degree n + 2 = m, this is an inverse because every index i
appears exactly once in a tree t of order n = m − 2.

For arbitrary n, composing the sum of these left inverse maps with∑m
i=1 η

i
n is multiplication by n + 2 on Λn(m).

Since Λn(m) is torsion-free, it follows that ∑m
i=1 η

i
n is injective.
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Non-repeating Whitney towers and total Milnor invariants

Theorem (“λ(W) = µ(L)”)
If an m-component link L ⊂ S3 bounds a non-repeating Whitney
tower W of order n on immersed disks D = ∪m

i=1D2
i # B4,

then for each i the longitude `i lies inMi(L)(n+1), and

ηi
n(λn(W)) = µi

n(L) ∈ RLi
(n+1)(m)

Since the sum of the ηi
n is injective, the intersection invariant

λn(W) ∈ Λn(m) does not depend on the Whitney tower W and is a
link homotopy invariant of L, denoted by λn(L).

Corollary: L is link homotopically trivial, if and only if
λn(L) = 0 for 1 ≤ n ≤ m − 2, if and only if
L has all vanishing Milnor invariants.
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Example: Bing double of Hopf link
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Example: Bing double of Hopf link

λ2(L) = 1
2>−−< 4

3  µ1
2(L) = η1

2( 1
2>−−< 4

3) = 2>−−< 4
3 = [X2, [X3,X4]]

1 1

2
2

3 3

4 4

To read ith longitude Li = ∂Di , convert Di to a grope Gi ⊂ B4 \W i ,
where W i is formed from W by deleting every Whitney disk whose
tree contains an i-labeled vertex.
Then Gi displays Li = ∂Gi as iterated commutator (bracket).
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Outline of proof that ηi
n(λn(W)) = µi

n(L) ∈ RLi
(n+1)(m)

1. Arrange (using splitting, pushing down, and deleting repeating
Whitney disks) that the only repeating intersections in W are
self-intersections in the order 0 disks Dj .

2. Convert the order 0 disk Di to a grope Gi of class n + 1 bounded
by Li , such that Gi is in the complement B4 rW i , where W i is
the result of deleting from W the disk Di and each Whitney disk
whose tree contain an i-labeled vertex. Then Gi will display the
longitude `i in π1(B4 rW i) as a product of (n + 1)-fold
commutators of meridians to the order 0 surfaces D i := ∪j 6=iDj
of W i by the same formula as in the definition of the map ηi

n.
3. Use Whitney tower-grope duality and

Dwyer–Freedman–Teichner’s theorem to show that
S3 r ∂D i → B4 rW i induces an isomorphism on the Milnor
groups modulo the (n + 2)th terms of the lower central series,
so µi

n(L) can be computed in π1(B4 rW i).
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Step 1 of proof that ηi
n(λn(W)) = µi

n(L) ∈ RLi
(n+1)(m)

1. Arrange (using splitting, pushing down, and deleting repeating
Whitney disks) that the only repeating intersections in W are
self-intersections in the order 0 disks Dj .

W W

Figure: ‘Pushing down’ an intersection.
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Warm-up exercise for Step 2

Suppose that W is an order n non-repeating split Whitney tower on
A = A1 ∪ A2 ∪ · · · ∪ Am # X 4.

For any i ∈ {1, 2, . . . ,m} denote by W i the Whitney tower which is
the result of deleting from W the order 0 surface component Ai and
each Whitney disk whose tree contains an i-labeled vertex.

Exercise: Check that W i is an order n non-repeating Whitney tower
on the (m − 1)-component order 0 surface A \ Ai .

HINT: Recall that the interior of any Whitney disk in a split Whitney
tower W either contains a single un-paired intersection, or a single
boundary arc of a higher-order Whitney disk, or does not contain any
singularities (is embedded and disjoint from the rest of W).
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Step 2 of proof: Gropes (dyadic, capped, with trees)
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Whitney tower-to-grope construction: Di 7→ Gi (Step 2 of proof)

Example of case i = 1:

1

2

p

3

4

D
W

W

1

(1,2)

((1,2),3)
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Whitney tower-to-grope construction: Di 7→ Gi (Step 2 of proof)

Example of case i = 1:

1 1

2
2

3 3

4 4
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Converting a Whitney tower to a grope

The ‘tree-preserving’ surgery step at a trivalent vertex.

See ‘Whitney towers and gropes in 4-manifolds’
arXiv:math/0310303 [math.GT]
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Step 3 of proof that ηi
n(λn(W)) = µi

n(L) ∈ RLi
(n+1)(m)

Want to show that S3 r ∂D i → B4 rW i induces an isomorphism on
Milnor groups modulo the (n + 2)th terms of the lower central series,
so that µi

n(L) can be computed in π1(B4 rW i).

Will use the following consequence of
Dwyer–Freedman–Teichner’s theorem (‘4-manifold topology II:
Dwyer’s filtration and surgery kernels’ Inventiones 122 (1995)):

Thm: If the inclusion Y ⊂ X induces an isomorphism H1Y ∼= H1X ,
and H2(X ) is generated by class n + 2 gropes,
then Y ⊂ X induces π1Y /(π1Y )n+2 ∼= π1X/(π1X )n+2.
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Whitney tower-grope duality (Step 3 of proof)

Proposition
If V is a split Whitney tower on A : ∪Aj # X 4, where each order 0
surface Aj is a sphere S2 → X or a disk (D2, ∂D2)→ (X , ∂X ), then
there exist dyadic gropes Gk ⊂ X r V such that the Gk are
geometrically dual to a generating set for the relative first homology
group H1(V , ∂A). Furthermore, the tree t(Gk) associated to each Gk
is obtained by attaching a rooted edge to the interior of an edge of a
tree tp associated to an unpaired intersection p of V .
Here geometrically dual means that the bottom stage surface of each
Gk bounds a 3–manifold which intersects exactly one generating curve
of H1(V , ∂A) transversely in a single point, and is disjoint from the
other generators. In particular, there are as many gropes Gk as free
generators of H1(V , ∂A). Note that it follows from the last sentence
of the proposition that if V is order n, then each Gk is class n + 2.
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Whitney tower-grope duality

W(I1,I2 )

I1

I2 I2

Lemma
Any meridian to a Whitney disk W(I1,I2) in a Whitney tower V ⊂ X
bounds a grope G(I1,I2) ⊂ X r V such that t(G(I1,I2)) = (I1, I2).
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I

J

K1

K2 K2

K1

J

W(I,J)

γ γ

Lemma
Let W(I,J) be a Whitney disk in a split Whitney tower V such that
W(I,J) contains a trivalent vertex of a tree tp = 〈(I , J),K 〉 associated
to an unpaired intersection point p ∈ V . If γ ⊂ WI is the boundary
of a regular neighborhood in WI of ∂W(I,J) ⊂ W(I,J) ⊂ V ; then the
normal circle bundle T to WI over γ is the bottom stage of a dyadic
grope G ⊂ (X r V), such that t(G) = (I , (J ,K )).
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Milnor’s link-homotopy classification of almost-trivial links in S3.

Theorem:

(1) A link L = L1 ∪ L2 ∪ · · · Lm ⊂ S3 is almost trivial if and only if
L bounds an order m − 2 non-repeating Whitney tower W ⊂ B4.

Proof sketch of the ‘if’ direction: If L bounds an order m − 2
non-repeating Whitney tower W ⊂ B4, then for each i the
(m − 1)-component link Li := L \ Li bounds the order m − 2
non-repeating Whitney tower W i formed by deleting from W the
order 0 disk Di bounded by Li and every Whitney disk whose tree
contains a i-vertex. Hence Li is link-homotopically trivial by the
corollary to the ‘Pulling apart surfaces’ theorem.
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Milnor’s link-homotopy classification of almost-trivial links in S3.

Theorem:

(1) A link L = L1 ∪ L2 ∪ · · · Lm ⊂ S3 is almost trivial if and only if
L bounds an order m − 2 non-repeating Whitney tower W ⊂ B4.

Proof sketch of the ‘only if’ direction: Starting with an order 0
non-repeating Whitney tower (immersed disks) bounded by L, raise
the order inductively to m − 2 via the non-repeating
intersection/obstruction theory, using that proper sublinks of L are
homotopically trivial and that the non-repeating intersection invariant
target Λn(m) decomposes as a direct sum for each n < m − 2.
(Details on next slides.)
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Proof: L almost-trivial =⇒ L bounds order m − 2 non-rep W

Assume L = L1 ∪ L2 ∪ · · · ∪ Lm ⊂ S3 is almost-trivial.
Will consider fixed m ≥ 3.
(Case m = 2 follows from next observation.)

Observe that L bounds an order 0 non-repeating Whitney tower
(link components bound immersed disks into B4).

Proceed by induction on order: Assume that L bounds an order n
non-repeating Whitney tower Wn for 0 ≤ n ≤ m − 2.

If n = m − 2 then we’re done.

For n < m − 2, it will suffice to show that λn(Wn) = 0 ∈ Λn(m) to
get an order n + 1 non-repeating Whitney tower bounded by L (by
Theorem ‘non-repeating order-raising’). See next slide.
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Proof: L almost-trivial =⇒ L bounds order m − 2 non-rep W

For any n + 2-element subset s ⊂ {1, 2, . . . ,m} of distinct elements
denote by L(s) ⊂ L the sublink of components with labels in s. Let
W s∗

n denote the Whitney tower formed by deleting from Wn the order
0 disks labeled by elements of s∗ := {1, 2, . . . ,m} \ s, and deleting
any Whitney disk in Wn whose tree has at least one vertex labeled by
an element of s∗. Then W s∗

n is an order n non-repeating Whitney
tower bounded by L(s). Denote by Λn(s) the order n non-repeating
tree group on trees with distinct labels in s.
Since L is almost trivial, each Ls is homotopically trivial, so for each s
we have λn(W s

n) = 0 ∈ Λn(s∗) (by Thm/Cor “λ(W) = µ(L)”).
Since Λn(m) is the direct sum of the Λn(s∗), and λn(Wn) is the sum
of the λn(W s

n) it follows that λn(Wn) = 0 ∈ Λn(m).
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Milnor’s link-homotopy classification of almost-trivial links in S3.

Theorem:
(2) The Milnor invariant µL (as in Pete’s talk) is the image of the
non-repeating intersection invariant λm−2(W) ∈ Λm−2(m) under
projection to a direct summand of Λm−2(m) isomorphic to Z[Sm−2].

Proof sketch: Simple trees form a basis, and compute longitudes.
Can use “Whitney move IHX” construction to arrange all trees in an
order m − 2 non-repeating W to have a m-labeled vertex at one end.

NOTE: The Whitney move IHX construction changes a Whitney
tower by locally replacing a Whitney disk WI with Whitney disks
WH −WX , where the rooted trees I, H and X form an IHX relation.
See Section 4.4 of ‘Introduction to Whitney towers’
arXiv:2012.01475 [math.GT]
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Milnor’s link-homotopy classification of almost-trivial links in S3.

Corollary: For almost-trivial links L and L′ the following statements
are equivalent:
(i) L and L′ are link-homotopic.
(ii) µL = µL′ ∈ Z[Sm−2].
(iii) λm−2(W) = λm−2(W ′) ∈ Λm−2(m) for any order m − 2
non-repeating Whitney towers W and W ′ bounded by L and L′,
respectively.
Proof sketch:
(i) implies (ii), since µL is invariant under link homotopy.
(ii) implies (iii), by above Theorem “λ(W) = µ(L)” identifying
Milnor invariants ∈ Z[Sm−2] with λm−2(W) ∈ Λm−2(m).
(iii) implies (i), since can tube together W and W ′ to get immersed
annuli in S3 × I admitting an order m − 2 non-repeating Whitney
tower with vanishing λm−2, hence can be pulled apart.
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