The stable Cannon Conjecture

Wolfgang Lück
Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de
http://131.220.77.52/lueck/

Bonn, 10. July

Outline

- We state the main conjectures and results
- We briefly recall the notion of a hyperbolic group
- The existence of a normal map
- The total surgery obstruction
- ANR-homology manifolds and Quinn's obstruction

The main conjectures

Definition (Finite Poincaré complex)

A (connected) finite n-dimensional CW-complex X is a finite n-dimensional Poincaré complex if there is $[X] \in H_n(X; \mathbb{Z}^w)$ such that the induced $\mathbb{Z}\pi$ -chain map

$$-\cap [X]\colon \mathit{C}^{n-*}(\widetilde{X}) \to \mathit{C}_*(\widetilde{X})$$

is a $\mathbb{Z}\pi$ -chain homotopy equivalence.

Theorem (Closed manifolds are Poincaré complexes)

A closed n-dimensional manifold M is a finite n-dimensional Poincaré complex with $w = w_1(X)$.

Definition (Poincaré duality group)

A Poincaré duality group *G* of dimension *n* is a finitely presented group satisfying:

- G is of type FP;
- $H^{i}(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$

Theorem (Wall)

If G is a d-dimensional Poincaré duality group for $d \geq 3$ and $\widetilde{K}_0(\mathbb{Z}G) = 0$, then there is a model for BG which is a finite Poincaré complex of dimension d.

Corollary

If M is a closed aspherical manifold of dimension d, then $\pi_1(X)$ is a d-dimensional Poincaré duality group.

Theorem (Hadamard)

If M is a closed smooth Riemannian manifold whose section curvature is negative, then $\pi_1(M)$ is a torsionfree hyperbolic group with $\partial G = S^{n-1}$.

Theorem (Bieri-Eckmann, Linnell)

Every 2-dimensional Poincaré duality group is the fundamental group of a closed surface.

Conjecture (Gromov)

Let G be a torsionfree hyperbolic group whose boundary is a sphere S^{n-1} . Then there is a closed aspherical manifold M with $\pi_1(M) \cong G$.

Theorem (Bartels-Lück-Weinberger)

Gromov's Conjecture is true for $n \ge 6$.

Conjecture (Wall)

Every Poincaré duality group is the fundamental group of an aspherical closed manifold.

Conjecture (Cannon's Conjecture in the torsionfree case)

A torsionfree hyperbolic group G has S^2 as boundary if and only if it is the fundamental group of a closed hyperbolic 3-manifold.

Theorem (Cannon-Cooper, Eskin-Fisher-Whyte, Kapovich-Leeb)

A Poincaré duality group G of dimension 3 is the fundamental group of an aspherical closed 3-manifold if and only if it is quasiisometric to the fundamental group of an aspherical closed 3-manifold.

Theorem (Bowditch)

If a Poincaré duality group of dimension 3 contains an infinite normal cyclic subgroup, then it is the fundamental group of a closed Seifert 3-manifold.

Theorem (Bestvina)

Let G be a hyperbolic 3-dimensional Poincaré duality group. Then its boundary is homeomorphic to S^2 .

Theorem (Bestvina-Mess)

Let G be an infinite torsionfree hyperbolic group which is prime, not infinite cyclic, and the fundamental group of a closed 3-manifold M. Then M is hyperbolic and G satisfies the Cannon Conjecture.

 In order to prove the Cannon Conjecture, it suffices to show for a hyperbolic group G, whose boundary is S², that it is quasiisometric to the fundamental group of some aspherical closed 3-manifold.

Theorem

Let G be the fundamental group of an aspherical oriented closed 3-manifold. Then G satisfies:

- G is residually finite and Hopfian.
- All its L²-Betti numbers b_n⁽²⁾(G) vanish;
- Its deficiency is 0. In particular it possesses a presentation with the same number of generators and relations.
- Suppose that M is hyperbolic. Then G is virtually compact special and linear over \mathbb{Z} . It contains a subgroup of finite index G' which can be written as an extension $1 \to \pi_1(S) \to G \to \mathbb{Z} \to 1$ for some closed orientable surface S.

• Recall that any finitely presented groups occurs as the fundamental group of a closed d-dimensional smooth manifold for every $d \ge 4$.

Theorem (Bestvina-Mess)

A torsionfree hyperbolic G is a Poincaré duality group of dimension n if and only if its boundary ∂G and S^{n-1} have the same Čech cohomology.

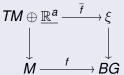
Theorem

If the boundary of a hyperbolic group contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to \mathbb{S}^n .

The main results

Theorem (Ferry-Lück-Weinberger, (preprint, 2018), Vanishing of the surgery obstruction)

Let G be a hyperbolic 3-dimensional Poincaré duality group. Then there is a normal map of degree one (in the sense of surgery theory)



satisfying

- The space BG is a finite 3-dimensional CW-complex;
- ② The map $H_n(f,\mathbb{Z})\colon H_n(M;\mathbb{Z})\stackrel{\cong}{\to} H_n(BG;\mathbb{Z})$ is bijective for all $n\geq 0$;
- **3** The simple algebraic surgery obstruction $\sigma(f, \overline{f}) \in L_3^s(\mathbb{Z}G)$ vanishes.

Theorem (Ferry-Lück-Weinberger, (preprint, 2018), Stable Cannon Conjecture)

Let G be a hyperbolic 3-dimensional Poincaré duality group. Let N be any smooth, PL or topological manifold respectively which is closed and whose dimension is ≥ 2 .

Then there is a closed smooth, PL or topological manifold M and a normal map of degree one

$$TM \oplus \underline{\mathbb{R}^{a}} \xrightarrow{\underline{f}} \xi \times TN$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \xrightarrow{f} BG \times N$$

such that the map f is a simple homotopy equivalence.

- Obviously the last two theorems follow from the Cannon Conjecture.
- By the product formula for surgery theory the second last theorem implies the last theorem.
- The manifold M appearing in the last theorem is unique up to homeomorphism by the Borel Conjecture, provided that $\pi_1(N)$ satisfies the Farrell-Jones Conjecture.
- If we take $N = T^k$ for some $k \ge 2$, then the Cannon Conjecture is equivalent to the statement that this M is homeomorphic to $M' \times T^k$ for some closed 3-manifold M'.

Hyperbolic spaces and hyperbolic groups

Definition (Hyperbolic space)

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

A geodesic space is called hyperbolic if it is δ -hyperbolic for some $\delta > 0$.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with $sec(M) \le \kappa$ for some $\kappa < 0$ is hyperbolic as a metric space.
- \mathbb{R}^n is hyperbolic if and only if $n \leq 1$.

Definition (Boundary of a hyperbolic space)

Let X be a hyperbolic space. Define its boundary ∂X to be the set of equivalence classes of geodesic rays. Put

$$\overline{X} := X \coprod \partial X$$
.

• Two geodesic rays $c_1, c_2 \colon [0, \infty) \to X$ are called equivalent if there exists C > 0 satisfying $d_X(c_1(t), c_2(t)) \le C$ for $t \in [0, \infty)$.

Lemma

There is a topology on \overline{X} with the properties:

- \overline{X} is compact and metrizable;
- The subspace topology $X \subseteq \overline{X}$ is the given one;
- X is open and dense in \overline{X} .

• Let M be a simply connected complete Riemannian manifold M with $\sec(M) \le \kappa$ for some $\kappa < 0$. Then M is hyperbolic as a metric space and $\partial M = S^{\dim(M)-1}$.

Definition (Quasi-isometry)

A map $f: X \to Y$ of metric spaces is called a quasi-isometry if there exist real numbers $\lambda, C > 0$ satisfying:

The inequality

$$\lambda^{-1} \cdot d_X(x_1, x_2) - C \le d_Y(f(x_1), f(x_2)) \le \lambda \cdot d_X(x_1, x_2) + C$$

holds for all $x_1, x_2 \in X$;

• For every y in Y there exists $x \in X$ with $d_Y(f(x), y) < C$.

Lemma (Švarc-Milnor Lemma)

Let X be a geodesic space. Suppose that the finitely generated group G acts properly, cocompactly and isometrically on X. Choose a base point $x \in X$. Then the map

$$f\colon G\to X,\quad g\mapsto gx$$

is a quasi-isometry.

Lemma (Quasi-isometry invariance of the Cayley graph)

The quasi-isometry type of the Cayley graph of a finitely generated group is independent of the choice of a finite set of generators.

Lemma (Quasi-isometry invariance of being hyperbolic)

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f\colon X_1\to X_2$ of hyperbolic spaces induces a homeomorphism

$$\partial X_1 \xrightarrow{\cong} \partial X_2.$$

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Definition (Boundary of a hyperbolic group)

Define the boundary ∂G of a hyperbolic group to be the boundary of its Cayley graph.

Basic properties of hyperbolic groups

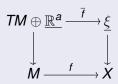
- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0. Then $\pi_1(M)$ is hyperbolic with $S^{\dim(M)-1}$ as boundary.
- If G is virtually torsionfree and hyperbolic, then vcd(G) = dim(∂G) + 1.
- If the boundary of a hyperbolic group contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z}*\mathbb{Z}$ as subgroup. In particular \mathbb{Z}^2 is not a subgroup of a hyperbolic group.

- A free product of two hyperbolic groups is again hyperbolic.
- A direct product of two finitely generated groups is hyperbolic if and only if one of the two groups is finite and the other is hyperbolic.
- The Rips complex of a hyperbolic group G is a cocompact model for its classifying space <u>E</u>G for proper actions. This implies that there is a model of finite type for BG and hence that G is finitely presented and that there are only finitely many conjugacy classes of finite subgroups.
- A finitely generated torsion group is hyperbolic if and only if it is finite.
- A random finitely presented group is hyperbolic.

The existence of a normal map

Theorem (Existence of a normal map)

Let X be a connected oriented finite 3-dimensional Poincaré complex. Then there are an integer $a \ge 0$ and a vector bundle ξ over BG and a normal map of degree one



Proof.

- Stable vector bundles over X are classified by the first and second Stiefel-Whitney class $w_1(\xi)$ and $w_2(\xi)$ in $H^*(X; \mathbb{Z}/2)$, since $\dim(X) = 3$.
- The analogous statement holds for M.
- Let ξ be a k-dimensional vector bundle over X such that $w_1(\xi) = w_1(X)$ and $w_2(\xi) = w_1(X) \cup w_1(X)$ holds.

Proof (continued).

- A spectral sequence argument applied to $\Omega_3(X, w_1(X))$ shows that there is a closed 3-manifold M together with a map $f: M \to X$ of degree one such that $f^*w_1(X) = w_1(M)$.
- Then

$$w_1(f^*\xi) = f^*w_1(X) = w_1(M) = w_1(TM).$$

The Wu formula implies

$$w_2(f^*\xi) = f^*w_2(\xi) = f^*(w_1(X) \cup w_1(X)) = f^*w_1(X) \cup f^*w_1(X))$$

= $w_1(M) \cup w_1(M) = w_2(M) = w_2(TM)$.

• Hence $f^*\xi$ is stably isomorphic to the stable tangent bundle of M.

The total surgery obstruction

- Consider an aspherical finite n-dimensional Poincaré complex X such that $G = \pi_1(X)$ is a Farrell-Jones group, i.e., satisfies both the K-theoretic and the L-theoretic Farrell-Jones Conjecture with coefficients in additive categories, and $\mathcal{N}(X)$ is non-empty. (For simplicity we assume $w_1(X) = 0$ in the sequel.)
- We have to find one normal map of degree one

$$TM \oplus \underline{\mathbb{R}^a} \xrightarrow{\overline{f}} \underbrace{\xi} \\ \downarrow \\ M \xrightarrow{f} X$$

whose simple surgery obstruction $\sigma^s(f, \overline{f}) \in L_3^s(\mathbb{Z}G)$ vanishes.

Recall that the simple surgery obstruction defines a map

$$\sigma^s \colon \mathcal{N}(X) \to L_n^s(\mathbb{Z}G).$$

- Fix a normal map $(f_0, \overline{f_0})$.
- Then there is a commutative diagram

whose vertical arrows are bijections thanks to the Farrell-Jones Conjecture and the upper arrow sends the class of (f, \overline{f}) to the difference $\sigma^s(f, \overline{f}) - \sigma^s(f, \overline{f_0})$ of simple surgery obstructions.

 An easy spectral sequence argument yields a short exact sequence

$$0 \to H_n(X; \mathbf{L}_{\mathbb{Z}}^s \langle 1 \rangle) \xrightarrow{H_n(\mathrm{id}_X; \mathbf{i})} H_n(X; \mathbf{L}_{\mathbb{Z}}^s) \xrightarrow{\lambda_n^s(X)} L_0(\mathbb{Z}).$$

Consider the composite

$$\mu_n^s(X) \colon \mathcal{N}(X) \xrightarrow{\sigma^s} L_n^s(\mathbb{Z}G, w) \xrightarrow{\operatorname{asmb}_n^s(X)^{-1}} H_n(X; \mathbf{L}_\mathbb{Z}^s) \xrightarrow{\lambda_n^s(X)} L_0(\mathbb{Z}).$$

 We conclude that there is precisely one element, called the total surgery obstruction,

$$s(X) \in L_0(\mathbb{Z}) \cong \mathbb{Z}$$

such that for any element $[(f, \overline{f})]$ in $\mathcal{N}(X)$ its image under $\mu_n^s(X)$ is s(X).

Theorem (Total surgery obstruction)

- There exists a normal map of degree one (f, \overline{f}) with target X and vanishing simple surgery obstruction $\sigma^s(f, \overline{f}) \in L_n^s(\mathbb{Z}G)$ if and only if $s(X) \in L_0(\mathbb{Z}) \cong \mathbb{Z}$ vanishes.
- The total surgery obstruction is a homotopy invariant of X and hence depends only on G.

ANR-homology manifolds

Definition (Homology ANR-manifold)

A homology ANR-manifold X is an ANR satisfying:

- X has a countable basis for its topology;
- The topological dimension of *X* is finite;
- X is locally compact;
- for every $x \in X$ we have for the singular homology

$$H_i(X, X - \{x\}; \mathbb{Z}) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$$

If *X* is additionally compact, it is called a closed ANR-homology manifold.

- Every closed topological manifold is a closed ANR-homology manifold.
- Let M be homology sphere with non-trivial fundamental group. Then its suspension ΣM is a closed ANR-homology manifold but not a topological manifold.

Quinn's resolution obstruction

Theorem (Quinn (1987))

There is an invariant $\iota(M) \in 1 + 8\mathbb{Z}$ for homology ANR-manifolds with the following properties:

- if $U \subset M$ is an open subset, then $\iota(U) = \iota(M)$;
- $i(M \times N) = i(M) \cdot i(N)$;
- Let M be a homology ANR-manifold of dimension \geq 5. Then M is a topological manifold if and only if $\iota(M) = 1$.
- The Quinn obstruction and the total surgery obstruction are related for an aspherical closed ANR-homology manifold M of dimension ≥ 5 by

$$\iota(M) = 8 \cdot s(X) + 1.$$

Proof of the Theorem about the vanishing of the surgery obstruction

Proof.

- We have to show for the aspherical finite 3-dimensional Poincaré complex *X* that its total surgery obstruction vanishes.
- The total surgery obstruction satisfies a product formula

$$s(X \times Y) = s(X) + s(Y).$$

This implies

$$s(X \times T^3) = s(X).$$

• Hence it suffices to show that $s(X \times T^3)$ vanishes.

Proof (continued).

- There exists an aspherical closed ANR-homology manifold M and a homotopy equivalence to $f: M \to X \times T^3$.
- There is a Z-compactification $\overline{\widetilde{X}}$ of \widetilde{X} by the boundary $\partial G = S^2$.
- One then constructs an appropriate Z-compactification \widetilde{M} of \widetilde{M} so that we get a ANR-homology manifold $\overline{\widetilde{M}}$ whose boundary is a topological manifold and whose interior is \widetilde{M} .
- By adding a collar to \widetilde{M} one obtains a ANR-homology manifold Y which contains \widetilde{M} as an open subset and contains an open subset U which is homeomorphic to \mathbb{R}^6 .

Proof (continued).

Hence we get

$$8s(X \times T^3) + 1 = 8s(M) + 1 = i(M) = i(\widetilde{M})$$

= $i(Y) = i(U) = i(\mathbb{R}^6) = 1$.

• This implies $s(X \times T^3) = 0$ and hence s(X) = 0.

