INTRODUCTION TO WHITNEY TOWERS

ROB SCHNEIDERMAN

ABSTRACT. These introductory notes on Whitney towers in 4-manifolds, as developed in
collaboration with Jim Conant and Peter Teichner, are an expansion of three expository
lectures given at the Winter Braids X conference February 2020 in Pisa, Italy. Topics
presented include local manipulations of surfaces in 4—space, fundamental definitions related
to Whitney towers and their associated trees, geometric Jacobi identities, the classification of
order n twisted Whitney towers in the 4-ball and higher-order Arf invariants, and low-order
Whitney towers on 2—spheres in 4-manifolds and related invariants.
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These notes are an expansion of three introductory lectures given at the Winter Braids X
conference February 2020 in Pisa, Italy describing a theory of Whitney towers on immersed
surfaces in 4-manifolds, as developed in collaboration with Jim Conant and Peter Teichner. A
Whitney tower is built on an immersed surface by iteratively adding Whitney disks pairing
intersection points among the “higher-order” layers of Whitney disks and the surface (see
section 1.8). The theory’s main goal is to use Whitney towers to gain topological information
about the underlying immersed surface. These notes are focussed on providing a detailed
introduction to the theory while simultaneously describing some open problems.

Section 1 covers local manipulations of surfaces and Whitney disks in 4-space, and fun-
damental definitions related to Whitney towers, including the associated trivalent trees that
organize Whitney towers. This section culminates with the description of a geometric Jacobi
Identity in the setting of Whitney towers.

Section 2 describes the classification of order n twisted Whitney towers on properly im-
mersed disks in the 4-ball, which illustrates the order-raising intersection-obstruction theory
and leads to the formulation of open problems related to certain higher-order Arf invariants

which are invariants of classical link concordance. Here the trees associated to Whitney
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towers are seen to represent invariants in abelian groups related to Milnor’s classical link
invariants.

Section 3 reviews the classical intersection and self-intersection (order 0) homotopy in-
variants of 2-spheres in a 4-manifold X before introducing order 1 generalizations of these
invariants in the setting of Whitney towers. Here new subtleties coming from 7 X and 7o X
enter the picture. The end of this section describes open problems on the realization of the
order 1 invariants when X is closed and m; X is non-trivial.

The appendix section 4 provides additional material related to Section 2 and Section 3 in
the form of outlines and/or details of proofs of results from those sections.

Exercises appear at the end of each section.

Sections 2 and 3 are largely independent of each other, but both depend on Section 1.

Conventions: Manifolds and submanifolds are assumed to be smooth, with generic in-
tersections, unless otherwise specified, and during cut-and-paste constructions corners will
be assumed to be rounded. The discussion throughout will also hold in the flat topolog-
ical category via the notions of 4-dimensional topological tranversality from [13, chap.9].
Orientations will usually be assumed but suppressed unless needed.

Acknowledgments: The author is supported by a Simons Foundation Collaboration
Grant for Mathematicians. Also thanks to the organizers of the Winter Braids X conference,
and of course collaborators Jim Conant and Peter Teichner.
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This section focuses on local manipulations of surfaces in 4-space, and fundamental def-
initions related to Whitney towers, including the associated trivalent trees that organize
Whitney towers. The section culminates with the description of a geometric Jacobi Identity
in the setting of Whitney towers, followed by exercises related to the material covered here.

Throughout, the word “disk” means the 2-disk D?. A sheet of a surface in a 4-manifold is
an embedded disk which is the properly embedded intersection of the surface with a 4-ball.
Here a proper map sends boundary to boundary, and sends interior to interior. Following
the tradition of Knot Theory, we will usually blur the distinction between a map and its
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image up to isotopy. In the case that the boundary 9D of an immersed disk D is contained
in the interior of an immersed surface A, we require and assume that 0D is embedded, and
also that the interior of D is disjoint from A near 0D, i.e. that there exists a collar in D of
0D such that the intersection of this collar with A is equal to dD. Orientations of surfaces
and signs of intersection points will mostly be suppressed from notation.

1.1. Local coordinates. Figure 1 shows two properly embedded disks A and B in the 4-
ball B* = B3 x I which have a single transverse intersection point p = A h B. In this figure
the I-parameter increases from left to right, and each B3-slice B® x t for t € I intersects each
disk in an arc. Thus AU B is the track of a homotopy of arcs in B® which fixes the vertical
black arc tracing out B, and isotopes the horizontal blue arc tracing out A from “front to
back”, realizing a crossing change at p = A M B.

p

B B B
FIGURE 1. Disks A and B in B* = B3 x [ with p = A th B.

In the interest of avoiding visual clutter, we do not attempt to show the boundary of B3
in any slice. So it is understood that the endpoints of the arcs lie in B2 x t for all ¢, since A
and B are each properly embedded. Thus, to correctly interpret each picture in the movie
one can either imagine the existence of the invisible 2-sphere B3 x t containing the visible
endpoints of the arcs, or one can assume that the arcs continue further outside the picture
until eventually reaching B3 x t which is lying outside the picture.

Thinking of the parameter ¢ as “time”, we say that in Figure 1 the transverse intersection
p = A th B is contained in the present slice B3> x 0 C B? x I, and that both disks extend
as arcs into past B3 x —e and future B3 x +e. When describing surface sheets in this way
we usually do not specify the endpoints of the interval I, which can be reparametrized as
desired.

B B B

FIGURE 2. Aand Bin B* = B3> x I withp=AM B and A C B® x 0.

Figure 2 shows a different view of the same 4-ball neighborhood of p = A M B by changing

coordinates and/or isotopy. In this figure the disk A is now contained in the present B3 x0 C
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B3 x I, while B is still described by a fixed vertical arc times I. This view has the advantage
of being completely described by just the present slice.

Again, A and B are each properly embedded in B*. So the rectangular appearance of A is
either understood to extend further out of the picture until reaching the boundary 2-sphere
of B3 x 0, or we can just take each B® x t to be a solid cube (with invisible PL boundary
sphere).

Note that the transverse intersection p appears as a small “puncture” in the sheet A. This
is just a visual device to help place the location of p in A. Also, the A-sheet is shown here
as translucent, with a sub-arc of B visible “behind” A. In general, sheets in the present may
appear translucent or opaque depending on which view provides a better clarification of the
given configuration of sheets.

1.2. Signs of intersections. The sign ¢, € {+, —} of an intersection p between oriented
sheets A and B in an oriented 4-manifold X is defined to be + (respectively, —) if the ori-
entation of X at p agrees (respectively, disagrees) with the concatenation of the orientations
of A and B at p.

1.3. Finger moves. A finger move is a regular homotopy supported near a guiding arc that
creates a pair of oppositely-signed intersections between two sheets. This is illustrated in
Figure 3 which shows a “movie of movies” starting from the disjoint sheets in the bottom and
ending with the intersecting sheets in the top row. Each row shows the same 4-ball, with the
bottom row showing the disjoint sheets before the finger move. Vertically and horizontally
adjacent pictures are understood to be connected by smooth interpolations of the black arcs,
with the vertical parameter corresponding to the homotopy, and the horizontal parameter
corresponding to the I-parameter of B* = B3 x I as in the previous figures. Between the
middle row and the top row a single non-transverse tangential intersection will occur in the
center picture at one moment of the homotopy.
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FIGURE 3. A finger move guided by the red dashed arc.
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Usually only the center top and/or center bottom pictures as in Figure 4 will be shown,
with the other nearby and interpolating pictures shown in Figure 3 understood. Note that
p and g have opposite signs for any choice of orientations on A, B and the ambient 4-ball
(Exercise 1.22.4).

A finger move is supported in a 4-ball neighborhood of its guiding arc, so this picture also
describes a finger move on two sheets in an arbitrary 4-manifold. Since this neighborhood
can be taken to be arbitrarily close to the guiding arc, it may be assumed that the support
of a finger move is disjoint from any other surfaces, and hence only creates the pair of
intersections. Up to isotopy, a finger move is symmetric in the two sheets (Exercise 1.22.3).

/
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FIGURE 4. Before (left) and after (right) a finger move: The center-bottom
and center-top pictures from Figure 3.

1.4. Whitney disks. Let p and ¢ be oppositely-signed transverse intersections between
connected properly immersed surfaces A and B in a 4-manifold X, with p and ¢ joined by
embedded interior arcs a C A and b C B which are disjoint from all other singularities in A
and B. We allow the possibility that A = B, in which case the circle a Ub must be embedded
and change sheets at p and ¢. Any immersed disk W in the interior of X bounded by such
a Whitney circle a U b is a Whitney disk pairing p and q.

For any collection W; of Whitney disks pairing oppositely-signed p;, ¢; € A h B we require
that the union U;0W; of Whitney circles is embedded. This can always be arranged by
controlled isotopies of the W; (Exercise 1.22.14).

il L ar—"/

B| |
FIGURE 5. Two views of a model Whitney disk W pairing p,q = A h B.

Figure 5 shows a model Whitney disk W on sheets A and B in a 4-ball. In general, a
Whitney disk in a 4-manifold has a neighborhood obtained by introducing plumbings |13,
1.2| into the model Whitney disk. So a Whitney disk may have interior self-intersections
and intersections with other surfaces, but has an embedded collar which is disjoint from all
surfaces, except for its boundary arcs a C A and b C B.

An embedded Whitney disk whose interior is disjoint from all surfaces is called a clean
Whitney disk.
6
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FIGURE 6. Left: Near a Whitney disk W pairing p,q € A mh B, with
OW = a Ub, a Whitney section OW is shown in blue. This picture is ac-
curate near JW; in general, the interior of the evident (but not explicitly
indicated) embedded W bounded by a U b may have self-intersections as well
as intersections with other surfaces. The line segments transverse to a in A
indicate the correspondence with the right-hand picture of the normal disk-
bundle vxW|sw. Right: The blue Whitney section W is shown inside an
embedding into 3-space of vxW o = S' x D?, with the sheets A and B
indicated by line segments transverse to OW. The A-sheet cuts the front solid
torus horizontally, while the B-sheet cuts the back of the solid torus vertically.
The line segments transverse to b in B extend into past and future in the
left-hand picture.

1.5. Framed and twisted Whitney disks. Let W be a Whitney disk pairing intersections
p,q € A B, with boundary OW = a U b, for embedded arcs a C A and b C B. Denote by
vxWlow the restriction to OW of the normal disk-bundle vxW of W in X. Since p and ¢
have opposite signs, vxW|sw admits a nowhere-vanishing Whitney section OW defined by
taking vectors tangent to A over a, and extending over b by vectors which are normal to B,
as shown in the left of Figure 6.

The right side of Figure 6 shows W inside an embedding into 3-space of vxWlow =
S' x D?. Although this choice of embedding has OW corresponding to the O-framing of
D? x S' C R3, the section of vxWlsw determined (up to homotopy) by the canonical
framing of vx W will in general differ by full twists relative to W . (If p and ¢ had the same
sign then there would have to be a half-twist in the sheets of A and B, so the (continuous)
Whitney section W could not exist. )

If OW extends to a nowhere-vanishing section W of vxW, then W is said to be framed
(since a disk-bundle over a disk has a canonical framing, and a nowhere-vanishing normal
section over an oriented surface in an oriented 4-manifold determines a framing up to homo-
topy). In general, the obstruction to extending W to a nowhere vanishing section of vxW
is the relative Euler number x(vxW,0W) € Z, called the twisting of W and denoted w(W),
so W is framed if and only if w(W) = 0. The twisting w(W) can be computed by taking

the intersection number of the zero section W with any extension W of W over W, so it
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does not depend on an orientation choice for W (since switching the orientation on W also
switches the orientation of ). And w(W) is also unchanged by switching the roles of a and
b in the construction of W, since interchanging the “tangent to...” and “normal to...” parts
in the construction yields an isotopic section in vxW/|gw (isotopic through non-vanishing

sections).
A Whitney disk W with w(WW) # 0 is called a twisted Whitney disk.

1.6. Parallel Whitney circles and disks. The twisting w(W) of W, which is the element
of m(SO(2)) = Z determined by a Whitney section as described above, can also be computed
using any section OW of vx W | such that OW is in the complement of the tangent spaces
of both A and B, since such 0W will have the same number of rotations as a Whitney section
(relative to the longitude determined by the canonical framing of vy ); see Figure 6.

In these notes a parallel Whitney circle will refer to either these “nowhere tangent” sections,
or the standard sections in section 1.5.

A disk is parallel to a Whitney disk if it is the extension of a parallel Whitney circle over
the Whitney disk.

1.7. Whitney moves. Figure 7 describes a model Whitney mowve: In a 4-ball neighborhood
of a framed embedded Whitney disk W, a pair of oppositely-signed transverse intersections
p and g between surface sheets A and B is eliminated by a regular homotopy which isotopes
one of the sheets across the clean framed W.

Combinatorially, the result of this Whitney move is constructed by deleting a regular
neighborhood (in its sheet) of one arc of 0 and replacing this neighborhood with a Whitney
bubble over that arc. This Whitney bubble is formed from two parallel copies of W connected
by a rectangular strip which is normal to a neighborhood (in its sheet) of the other arc.
Figure 7 shows the result of adding a Whitney bubble to the sheet A. Although both these
descriptions of the Whitney move involve a choice of arc of OW, up to isotopy the result is
independent of this choice (Exercise 1.22.5).

A Whitney move on a clean framed W in a 4-manifold X is described by any embedding
of this model into X which preserves the product structures and transversality of the sheets
and W.

B

FIGURE 7. Left: W pairing p,q = AN B. Right: A Whitney move guided by W.

In general, a Whitney move on an arbitrary Whitney disk W is described using the com-

binatorial description of adding a Whitney bubble to one sheet: The Whitney bubble is still
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formed from two parallel copies of W together with a rectangular strip, and the intersections
paired by W will still be eliminated by the Whitney move, but the following new intersec-
tions will be created. Each intersection » € W th C' between the interior of W and a sheet C'
of another surface will give rise to two new intersections " and ", as shown in Figure 8; each
self-intersection of W will give rise to four new self-intersections; and if W is twisted, then
|w(W)|-many new self-intersections will be created corresponding to intersections between
the two parallel copies of W' in the Whitney bubble (see Exercise 1.22.7).

FIGURE 8

In our settings we will generally be able to arrange that Whitney disks are embedded
and framed at the cost of creating interior intersections with sheets of other surfaces, so the
Whitney move shown in Figure 8 will be the most relevant.

e

|
|

FIGURE 9. Left: Four sheets and two Whitney disks in a 4-ball. Right: With
the tree associated to the unpaired intersection.

1.8. Whitney towers. A “successful” Whitney move eliminates the pair of intersections
paired by the Whitney disk without creating any new intersections. Since this requires a
clean framed Whitney disk, it is natural to try to somehow count interior intersections and
twistings in an attempt to measure the obstructions to the existence of a homotopy of an

immersed surface to an embedding.
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Whenever these “higher-order intersections” can be paired by “higher-order Whitney disks”
there is hope that they might be eliminated by successful “higher-order Whitney moves”, so
one is led to construct a tower of Whitney disks by iteratively pairing up as many intersections
as possible. As new Whitney disks are chosen, new intersections and twistings can appear
which in turn need to be counted. We will see that invariants of the resulting Whitney tower
can yield information about the bottom level immersed surface on which the tower is built.

As a basic example, the left side of Figure 9 shows four sheets in B* supporting a Whitney
tower: The two intersections between red and blue are paired by a Whitney disk which
itself has two interior intersections with green that are paired by another Whitney disk.
This second Whitney disk has a single interior intersection with yellow that appears to be
a “robust” obstruction to successfully homotoping these sheets rel boundary to be disjointly
embedded in this 4-ball. In fact, we will see in Section 2 that this unpaired higher-order
intersection does indeed represent such an obstruction (Exercise 2.13.7).

We can now state the general definition of a Whitney tower:

Definition 1.1. A Whitney tower on A? 9 X* is defined by:

(i) A atself is a Whitney tower.
(i) If W is a Whitney tower and W is a Whitney disk pairing intersections in W, then
the union W UW s a Whitney tower.

In a Whitney tower the Whitney disk boundaries are required to be pairwise disjointly
embedded (section 1.4).

Having constructed a Whitney tower by adding some number of Whitney disks as per the
definition, we call the properly immersed surface A the underlying surface of the Whitney
tower, and say that A supports the Whitney tower. The “boundary of W’ is the boundary
of A. We assume that A comes with a given orientation, and that W is oriented by choosing
(arbitrarily) and fixing orientations of all the Whitney disks in W. Specific orientations and
signs will generally be suppressed from notation and discussion until needed, and at a first
reading can be safely ignored while absorbing the combinatorics of Whitney towers.

Our underlying surfaces A will always be collections of disks or annuli or spheres, with
components A; indexed by i € {1,2,...,m}.

Definition 1.1 describes a very general notion of Whitney tower, and all of the figures
so far give very basic examples that satisfy this definition. Structure will emerge upon the
introduction of the unitrivalent trees that organize Whitney towers (Figure 9 right, and
Figure 10 bottom-right), and we will see that Whitney towers are interesting in their own
right, as well as providing information about their underlying surfaces.

As motivation for introducing formalism to organize Whitney towers, Figure 10 shows
how after “splitting” a Whitney tower by finger moves it can be arranged that all of its
singularities are contained in regular neighborhoods of unitrivalent trees, with each Whitney
disk containing only one “problem” (un-paired intersection or Whitney disk boundary-arc).
In section 4.3 this notion of splitting is described precisely and extended to include splitting
of twisted Whitney disks.

1.9. Trees. A tree will always refer to a finite oriented unitrivalent tree, where the ori-
entation of a tree is given by cyclic orderings of the adjacent edges around each triva-
lent vertex. Univalent vertices will usually be labeled from the index set {1,2,3,...,m},

which will always correspond to the connected components of a properly immersed surface
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FIGURE 10. Zig-zagging down from top-left to bottom-left: Splitting a Whit-
ney tower by finger moves. Bottom-right: The trees (blue) associated to un-
paired intersections.

A=A UAUA3U---UA, + (X,0X) supporting a Whitney tower. Trees are considered
up to isomorphisms which preserve labels and orientations.

We identify formal non-associative iterated bracketings of elements from the index set
{1,2,3,...,m} with rooted trees, which have each univalent vertex labeled by an element
from the index set, except for one root univalent vertex which is left unlabeled. So for
instance the bracket (i,7) denotes the rooted tree ; > for i,j € {1,2,3,...,m}; and
inductively (I,.J) denotes >, where I and J denote bracketings/rooted trees. This is

formalized in the first part of the following definition:

Definition 1.2. Let I and J be two rooted trees.
11



(i) The rooted product (I, J) is the rooted tree gotten by identifying the root vertices of
I and J to a single vertex v and sprouting a new rooted edge at v. This operation
corresponds to the formal bracket (Figure 11 upper right). The orientation of (I,.J)
is inherited from those of I and J, and at v by the (left-to-right) ordering of the
bracket product.

(ii) The inner product (I,J) is the (unrooted) tree gotten by identifying the roots of I
and J to a single non-vertex point. Note that (I,J) inherits an orientation from
I and J, and that all the univalent vertices of (I, J) are labeled. (Figure 11 lower
right.)

]_2 [1 JI [2
I=(1, 1) =—» (1,J) <—
J.? []
J5 J, Ji I
J=(J;,J;) -— \‘/ 1 <I,J> - >—<

Jg II

FIGURE 11. The rooted product (I, J) and inner product (I, J) of I = (I, I5)
and J = (Jy, J2). All trivalent orientations correspond to a counterclockwise
orientation of the plane.

1.10. Trees for Whitney disks and intersection points. Let A = A;,... A, &
(X,0X) be a properly immersed surface supporting a Whitney tower W (oriented), where
the A; are the connected components of A.

To each component A; is associated the rooted tree — ¢ consisting of a single edge with
one vertex labeled by ¢, and to each transverse intersection p € A; M A; is associated the
tree t, := (i, j) =1 — j consisting of an edge with vertices labeled by i and j. Note that
for smgleton brackets (rooted edges) we drop the bracket from notation, writing i for (7).

The rooted Y-tree (i,7) = §>—, with a single trivalent vertex and two univalent labels 7
and j, is associated to any Whitney disk W, ;) pairing intersections between A; and A;. This
rooted tree can be thought of as being embedded in W, with its trivalent vertex and rooted
edge sitting in W/; ), and its two other edges descending into A; and A; as sheet-changing
paths (Figure 12 left). The cyclic orientation at the trivalent vertex corresponds to the
orientation of W(; ;) via orientation conventions that will be described in section 1.19.

Note that Figure 12 shows the j-labeled univalent vertex of the tree (i,7) in the present,
but this j-labeled edge changes sheets into A; so the j-labeled univalent vertex is really in
the past or future.

Associated to any transverse intersection p € W ;) M Ay is the unrooted tree t, =
((1,7), k) :§>— k, as illustrated in Figure 12 right. We take the root vertex of each of
the rooted trees associated to W(; ;) and Ay to be at p, so the inner product t, = ((, j), k)
is realized geometrically as the union ; >— U, —k of these rooted trees in W.

Recursively, the rooted tree (7, J) is associated to any Whitney disk W/(; ;) pairing inter-
sections between W; and W (see left-hand side of Figure 13); with the understanding that

if, say, I is just a singleton 4, then W; = W, denotes the surface component A;. And to
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FIGURE 12. Left: The rooted tree (7,5) C W associated to W(; ;) (oriented
counter-clockwise from the reader’s point of view). Right: The unrooted tree
ty = (((4,7),k)) C W associated to p € W, ;) h Ay.

W, N

Wi

W,/7 %/

W W,

-+

FIGURE 13

any transverse intersection p € W 5y N Wi between W(; ) and any Wy is associated the
unrooted tree ¢, := ((I,J), K) (see right-hand side of Figure 13).

The above description of the trees ¢, C WV can always be arranged to be disjointly embed-
ded in W, for any number of unpaired intersections in W (Exercise 1.22.15).

1.11. Twisted trees for twisted Whitney disks. So far we have associated rooted trees
to Whitney disks, and unrooted trees to unpaired intersection points. Recall from section 1.5
that a Whitney disk W, with non-zero twisting w(W;) # 0 € Z is said to be twisted. To
keep track of twisted Whitney disks, we introduce one more type of tree:

For any rooted tree J, define the e-tree

J? i =J —o»

by labeling the root of J with the “twist” symbol . These «-trees are called twisted trees
since they are associated to twisted Whitney disks:
To each twisted Whitney disk W; C W we associate the twisted tree J.

1.12. ‘Framed tree’ terminology. Since twisted trees are associated to twisted Whitney
disks, for clarity we will sometimes refer to the unrooted trees ¢, associated to intersection
points as “framed” trees. In fact, section 4.3 shows that it can always be arranged that

every unpaired intersection p € W is an intersection between framed Whitney disks or
13



surface components. (Also, “framed” is more succinct than “non-e unrooted” or “not-twisted
unrooted”.)

1.13. Intersection forests of Whitney towers. The above-described associations of trees
capture the essential structure of Whitney towers, and the following key definition will be
useful for both controlling constructions and defining invariants:

Definition 1.3. The intersection forest t(W) of a Whitney tower W is the multiset of
signed trees associated to unpaired intersections p € W and Z-coefficient »-trees associated

to twisted Whitney disks Wy C W:

W)= 6ty + Y wWy)-J”

with €, € {4+, —} the usual sign of the transverse intersection point p, and w(Wy) € Z the
twisting of W .

Here the formal sums are over all unpaired p and all twisted W; in W. In fact, by splitting
twisted Whitney disks (section 4.3) it can be arranged that all w(W;) = %1, just like the
signs of the p.

In some papers (W) is notated as a disjoint union rather than a formal sum. Regardless
of notation choice, it is helpful to think of ¢(W) as being embedded in W as per Figures 12
and 13 (and Exercise 1.22.15), since modifications of Whitney towers are described in terms of
changes to (W), and these modifications correspond to relations in the targets of invariants
represented by ¢(W) that live in abelian groups generated by trees.

Remark 1.4 (Key Question). Given a properly immersed surface A in a 4-manifold, con-
structing a Whitney tower W on A involves many possible choices of Whitney disks, and since
the essential structure of W is contained in t(W), it is natural to ask: “What does t(WW) tell
us about A?”. Various answers to this question have been found, as will be illustrated by
results throughout these notes. More answers are waiting to be discovered...

FIGURE 14



1.14. Examples. It will be shown in Lemma 2.11 that for any multiset of signed trees there
exists a link L C S® bounding immersed disks into B* supporting a Whitney tower W such
that t(WW) is equal to the given multiset of signed trees.

On the other hand, Exercise 2.13.10 will show that there exist restrictions on the possible
t(W) for a Whitney tower W on immersed 2-spheres in B*.

Some basic examples follow:

1.14.1. Moving radially into B?* from left to right, Figure 14 shows the Borromean Rings
L=1L,ULyULs;C S®=0B* bounding properly immersed disks A = D; U Dy U D3 3+ B*
which support W = Dy U Dy U D3 U Wy o) with t(W) = j>— 3.

The disk D, consists of the “horizontal” opaque disk in the lower part of the middle picture
extended by an annular collar back to L; in the left picture. The disks Dy and D3 consist
of the embedded annuli which are the products of Ly and L3 with the radial coordinate into
B* together with embedded disks (not shown) extending further into B* that are bounded
by the unlink in the right picture. The framed embedded Whitney disk W(; 2y which pairs
D1 N Dy is completely contained in the middle picture and has a single interior intersection
point p with D3 such that ¢, = ((1,2),3) = 3>— 3 =t(W).

1.14.2. Moving radially into B* from left to right, Figure 15 shows the Figure-8 knot in
S? bounding a properly immersed disk A = Dy & B* supporting W = Dy U Wy 1) with
tW) = (1,1)” = 1>—o.

The track of the indicated null-homotopy of the Figure-8 knot describes the properly
immersed disk Dy with two self-intersections that are paired by the clean +1-twisted Whitney
disk W(y,1). Part of W(y 1) is visible in the middle picture, and the unlink in the right hand
picture can be capped off by two embedded disks which form the rest of Dy and W(; ;). The
twisting w(W,1y) = 1 of Wy 1y is explained by Figure 16.

—_—

SHE-Y

FIGURE 15

1.14.3. If W is a Whitney tower on A such that (W) = (), then A is regularly homotopic to
an embedding (Exercise 1.22.10).

1.15. Higher-order Whitney disks and intersections. We will be using the following
grading of our trees:

Definition 1.5.
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FIGURE 16. The two right-most pictures from Figure 15, but here with a
Whitney section OW(j 1) shown in blue. Compare Figure 6. The +1-linking
between the purple and blue circles corresponds to the twisting w(W(y,1)) = 1.

The order of a tree, rooted or unrooted, is defined to be the number of trivalent vertices.

Having associated trees to Whitney disks and intersection points in section 1.10, we can
define higher-order Whitney disks and higher-order intersections in Whitney towers:

Definition 1.6.
The order of a Whitney disk or intersection point in a Whitney tower is defined to be the
order of its corresponding tree.

The components A; of the underlying surface are also referred to as order 0 surfaces.

Linking numbers of links in S® can be computed by summing order 0 intersections between
order 0 surfaces in B* bounded by the links. The higher-order intersections and Whitney
disk twistings in a Whitney tower bounded by a link are closely related to “higher-order”
linking numbers (Milnor’s link invariants), as will be explained in Section 2.

1.16. Order n framed Whitney towers.

Definition 1.7. W is an order n framed Whitney tower if

(i) every framed tree t, in t(OWV) is of order > n, and
(ii) there are no «-trees in t(W).

So in an order n framed W all unpaired intersections have order > n, and all Whitney
disks are framed.

1.17. Order n twisted Whitney towers.

Definition 1.8. W is an order n twisted Whitney tower if

(i) every framed tree t, in tOV) is of order > n, and
(ii) every e-tree in t(W) is of order > 3.

So in an order n twisted WV all unpaired intersections have order > n, and all Whitney
disks of order less than n/2 are framed.

The reason that Definition 1.8 allows twisted Whitney disks in orders at least n/2 will
become clear in Section 2, where it will be shown (following [8]) that intersection invari-
ants extracted from the intersection forests of order n twisted Whitney towers, and the

corresponding order-raising obstruction theory, lead to a classification of order n twisted
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Whitney towers on properly immersed disks in the 4-ball in terms of Milnor invariants and
higher-order Arf invariants of the links on the boundary. In [8] an analogous classification
of order n framed Whitney towers is also derived from this twisted classification.

1.18. Other gradings of Whitney towers. We mention here just two of the other varia-
tions on organizing Whitney towers. See also [8, Sec.1.5] for a brief comparison discussion.

1.18.1. Non-repeating order n Whitney towers: If t, is the tree associated to an intersection p
in a Whitney tower such that ¢, has distinct univalent labels, then ¢, is called a non-repeating
tree and p is called a non-repeating intersection.

Definition 1.9. A Whitney tower W is an order n non-repeating Whitney tower if all
non-repeating t, € t(W) are of order > n.

Note that there are no restrictions on «-trees in order n non-repeating Whitney towers,
and no restrictions on any repeating trees which do not have distinctly labeled univalent
vertices.

Non-repeating Whitney towers characterize being able to “pull apart” components:

Theorem 1.10 ([31]). A = U™, A; & X supports an order m — 1 non-repeating W if and
only if A is homotopic rel 0A to A" = UL A} with AN A, =0 for all i # j.

The obstructions to the existence of order n non-repeating Whitney towers are analogous
to Milnor’s non-repeating link homotopy invariants [22], and for immersed disks in the 4-ball
are equivalent to the first non-vanishing non-repeating Milnor invariants [31, Thm.8|.

In Section 3 we will examine the obstructions to non-repeating Whitney towers on 2-
spheres in 4-manifolds in detail for low orders.

1.18.2. Symmetric Whitney towers:

Definition 1.11. A Whitney tower VW is symmetric if all Whitney disks in W are framed
and only have interior intersections with Whitney disks of the same order.

The natural grading of symmetric Whitney towers is by height:

Definition 1.12. A symmetric Whitney tower YW has height n if W has order (2n — 2) as
a framed Whitney tower.

The Whitney disks in a symmetric Whitney tower correspond to symmetric rooted trees
Y™ defined in Figure 17.

Y V Qéy T

FIGURE 17. The symmetric rooted trees Y1, Y? Y3 and Y™ = (Y (=1 'y (n=1))
of height 1, 2, 3, and n.

So an equivalent definition of a symmetric Whitney tower of height n is that ¢(W) only

contains trees which are inner products (Y, Y™) of height n symmetric rooted trees.
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We also have the following variation extending this definition to half-integers: If t(WV)
only contains trees which are inner products (Y, Y1) then W is said to be of height n.5.

Theorem 1.13 ([6]). If a link L C S* bounds immersed disks into B* supporting W of
height n + 2, then L is n-solvable in the sense of Cochran—Orr—Teichner.

A knot bounds a height 2 Whitney tower if and only if it has vanishing Arf invariant; a knot
bounds a height 2.5 Whitney tower if only if it is algebraically slice; and in general signature
invariants are known to provide upper bounds on the possible heights of Whitney towers
bounded by knots [6]. There is an extensive literature related to the n-solvable filtration of
classical concordance.

A complete height-raising obstruction theory for symmetric Whitney towers is not known.
Necessary conditions for raising height can be formulated in terms of the vanishing of sig-
natures, but algebraic invariants whose vanishing suffices for raising height have not been
formulated in general. The order-raising construction given in section 4.6 destroys any Whit-
ney disk symmetry. First open case: Given a knot in S® bounding W C B* of height 2.5,
there are no known obstructions to the knot bounding a Whitney tower of height 3 in B*.

1.19. Tree Orientations. Recall that our Whitney towers are oriented, with the underlying
surface A coming with a given orientation, and with fixed orientations chosen for the Whitney
disks in W. With an eye towards later defining invariants in terms of ¢(W) which will
be independent of Whitney disk orientations, we introduce here two conventions from the
Whitney tower literature which relate Whitney disk and tree orientations. Via either of
these two conventions, the choices of Whitney disk orientations will be seen in section 4.7
to correspond to antisymmetry relations among the trees, and will be quotiented out in the
target of the invariants.

As per section 1.10, the rooted tree associated to a Whitney disk W in W can be mapped
into W, with the trivalent vertex adjacent to the root contained in the interior of W, and
each other trivalent vertex contained in the interior of a lower-order Whitney disk support-
ing W. The two descending edges from each trivalent vertex determine a “corner” of the
corresponding Whitney disk that does not contain the third ascending edge. For instance, in
Figure 13 the corner determined by the descending edges from the indicated trivalent vertex
contains the negative intersection point paired by the corresponding Whitney disk. And in
the right side of Figure 9 the corners of the Whitney disks determined by the descending
edges of the two trivalent vertices of the tree each contain the negative intersection paired
by the Whitney disk.

With this terminology we define the following conventions for aligning the vertex orienta-
tions on trees with the chosen orientations on Whitney disks:

The negative corner convention: The trees associated to all Whitney disks in W are
mapped into W with the requirement that the corner of each Whitney disk determined by
the two descending edges of each trivalent vertex contains the negative intersection point
between the sheets paired by the corresponding Whitney disk. Then the vertex orientations
of each tree are taken to be induced from the Whitney disk orientations.

The positive corner convention: The trees associated to all Whitney disks in W are
mapped into W with the requirement that the corner of each Whitney disk determined by

the two descending edges of each trivalent vertex contains the positive intersection point
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between the sheets paired by the corresponding Whitney disk. Then the vertex orientations
of each tree are taken to be induced from the Whitney disk orientations.

FIGURE 18. Top: A W(; ;-Whitney move on the I-sheet in a split Whitney
tower creates a pair of intersections which can be paired by a ‘meridional’
Whitney disk Wik 1) that intersects the .J-sheet in a single point. Bottom:
Indicating the unpaired intersection by a small circle linking its corresponding
edge, the top construction realizes ((1,J), K) = (K, I), J).

1.20. ‘Moving’ unpaired intersections in their trees. Again with an eye towards ex-
tracting invariants from ¢()V), examination of our notation reveals that the tree t, :=
((I,J),K) associated to p € W 5y M Wg does not keep track of which edge of ¢, con-
tains the unpaired intersection p, since for instance ((/,J), K) = (I, (J,K)) = (K, 1), J).
It seems reasonable ask “Why not also keep track of the edge in ¢, corresponding to p?”,
but it turns out that robust information is carried by the shape of the tree rather than the
intersection point itself. This is illustrated in Figure 18, which shows the geometric realiza-
tion of ((I,J),K) = ((K,I),J) by a controlled local construction that does not create any
new trees. This construction preserves the signed tree of the unpaired intersection point,
using either convention in section 1.19 (Exercise 1.22.11). By iterating this construction an
un-paired intersection can be “moved to any edge of its tree”.

1.21. Geometric Jacobi Identity in four dimensions. We close this section by showing
the neccessity of certain relations in the target of any homotopy invariant of A represented by
t(W) for W supported by A. The proof of the following theorem provides a nice illustration
of the material covered so far:

Theorem 1.14 ([7]). There exist four 2-spheres Ay U Ay U A3 U Ay & S in the 4-sphere
supporting W with intersection forest t(WW) equal to the three signed trees in Figure 19.

This is a “Jacobi Identity” in the sense that taking the 4-labeled univalent vertices as

roots and identifying the resulting rooted trees with Lie brackets yields the three terms
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FIGURE 19

[[1,2],3]—[1, [2,3]]+][[3, 1], 2], and this sum of trees must vanish in the target of any homotopy
invariant represented by t(W) since W is supported by homotopically trivial 2-spheres.

Proof of Theorem 1.14. Start with disjoint embeddings A4; : S — B* C S*, i =1,2,3,4.

Then do a single finger move on each of Ay, Ay, A3 into Ay, yielding the left picture of
Figure 20, in which A4 appears as the horizontal plane of each picture. The Whitney disks
W4y, W) and W) in the center picture of Figure 20 are inverse to the finger moves
(Exercise 1.22.6).

4 — A N\4:
\ \\ 4,
,

A4, 4, g

4.1)

O

FIiGURE 20

We will describe modifications of the order 1 Whitney disks in the center of Figure 20 that
yield new disjointly embedded framed order 1 Whitney disks which will have the boundaries
shown in the right picture of Figure 20. These modifications will create pairs of order 1
intersections that admit disjointly embedded framed order 2 Whitney disks which each have
a single order 2 intersection corresponding to a term of the Jacobi identity. The entire
construction will be supported in the 4-ball described by Figure 20 as the present, and
extending into past and future where the arcs of Ay, A and As extend as products.

First we will construct the left-most term of the Jacobi identity in Figure 19, suppressing
orientations for the moment. Start by changing a collar of W3 4) as indicated in the left of
Figure 21. Still referring to this new Whitney disk as W34y, we have created a new pair of
order 1 intersections {q,7} = Ay th W34, as shown in the figure. Since the collar of W34
containing ¢ and r is parallel to A4, it follows that ¢ and r have opposite signs, since the
intersections A, th A4 created by the finger move of Ay into A4 have opposite signs. Next
add an order 2 Whitney disk W (34)) pairing ¢ and r as on the right of Figure 21, where
OW (2,(3,4)) is shown as green. Part of W(y (34)) is formed from the original order 1 Whitney
disk W(94) with a collar of the arc of 0W 4 on A, removed, and the rest of Wy (34)) is
parallel to A4. This creates a single order 2 intersection p = A; N W2 (34)), as shown in the
figure. This new order 1 W3 4) and the order 2 W, (34)) are each embedded, and completely

contained in the present.
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In the left of Figure 22 the tree ¢, = }>—<} associated to p = A; N W(a,3.4) is included
(but suppressed from view are the continuations of the edges changing sheets into the order 0
2-spheres). If W34y and Wz (34)) are oriented to agree with the orientation of A4 where they
are parallel to A4, then this embedding of ¢, conforms to the positive corner convention of
section 1.19, and the sign €, of p is positive. So ¢, - ¢, is the left-most term in the Jacobi
relator of Figure 19.

3

FIGURE 22

It remains to construct the other two terms in Figure 19. The right side of Figure 22 shows
the just constructed W3 4y and W3 (34)), and the red and blue boundaries of the new order 1
Whitney disks that we want to create. Observe that the parts of the red and blue boundaries
that lie on A4 extend to small embedded collars in the present that are disjoint from W3 4
and Wz (3.4)) as well as the four 2-spheres. So by extending the inner collar boundary of red
into the past, and the inner collar boundary of blue into future, the same construction that
was just done in the present can be carried out in nearby past and future B3-slices to yield
the other two desired trees. See Exercise 1.22.16.

Note that the construction necessarily extends into both past and future because it yields
new disjointly embedded order 1 Whitney disks with boundaries as in the right of Figure 20,
and this configuration forms the Borromean Rings which is not a slice link. U
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Corollary 1.15. For any Whitney tower W on a properly immersed surface A in a 4-
manifold, the local ‘IHX relation’ of finite type theory (Figure 23) is needed in the target of
any invariant of A represented by t(W).

J 1 J I J 1

* B + N 0
K L K L K L
FIGURE 23. The IHX relation.

In this more general local relation the univalent vertices of the three trees represent ar-
bitrary (fixed) subtrees. To see that this corollary follows from Theorem 1.14, observe that
clean Whitney disks W;, W, Wx and W corresponding to any given rooted trees I, J, K
and L can be created by finger moves (Exercise 1.22.12). Then, after a connected sum with
S* along a 4-ball in the complement of W, tubing the 2-spheres from the theorem into the
interiors of these Whitney disks creates exactly the IHX relator in the corollary, since the
tubes are supported near arcs which can be taken to be disjoint from the 2-complex W.

1.22. Section 1 Exercises.

1.22.1. Ezercise: Visualize the 2-component unlink in S® bounding the disjoint disks in B*

shown in Figure 24.

FIGURE 24. Disjoint disks in B* = B3 x I

1.22.2. Erercise: Visualize the Hopf link = AU 9B C S® = 9(B? x I) in each of Figure 1
and Figure 2.

1.22.3. FExercise: Starting with the bottom row of Figure 3, draw the finger move that pushes
the horizontal blue sheet down into the black sheet. Observe that the results of the two finger
moves are isotopic.

1.22.4. FExercise: Check that the two intersections created by a finger move have opposite
signs.

1.22.5. FExercise: Check that Figure 25 shows the result of a model Whitney move which
adds the Whitney bubble to the black sheet instead of the blue sheet in Figure 7. (The two
copies of the Whitney disk in the Whitney bubble are in grey). Convince yourself that a
model Whitney move is symmetric up to isotopy by finding an isotopy between Figure 25

and the right side of Figure 7.
22



R R=a Nl

FIGURE 25

1.22.6. Exercise: The oppositely-signed pair of intersections created by a finger move (Fig-
ure 4) are contained in a local 4-ball and admit a model Whitney disk (Figure 5). Check
that the result of doing a Whitney move on such a Whitney disk (Figure 7) is isotopic to
not doing the finger move in the first place. We sometimes say that such a Whitney disk is
“inverse” to the finger move.

1.22.7. Exercise: Describe the new intersections created by a W-Whitney move in terms of
the interior intersections W has with surfaces, the self-intersections of W, and the twisting

w(W).

1.22.8. Ezercise: Visualize the Borromean Rings 9A UOBUIC C S? = 9(B? x I) in (both
sides of) Figure 8. HINT: See the Bing-double of one component of Exercise 1.22.2.

1.22.9. FEzxercise: Visualize the Bing-double of the Hopf link as the boundaries of the red,
blue, green and yellow sheets in S* = 9(B? x I) in the left side of Figure 9.

1.22.10. Exercise: Show that if W is a Whitney tower on A such that ¢(WW) = (), then A is
regularly homotopic to an embedding.

1.22.11. Ezercise: Check that the construction of Figure 18 preserves the sign of the unpaired
intersection point using either the positive or negative convention in section 1.19. You may
assume that the embedded trees in the figure satisfy the orientation convention, and check
that this implies that the sign of the unpaired intersections are the same on the left and
right.

1.22.12. FEzercise: Let W be a Whitney tower on a surface A, and let I be any rooted tree.
Show that, without changing ¢(W), a clean framed Whitney disk W; with associated tree [
can be created by performing finger moves. (HINT: A finger move is supported near an arc,
hence can be arranged to miss any other surface.)

1.22.13. Ezercise: Figure 26 shows how an intersection between a green sheet and the interior
of a Whitney disk W can be eliminated by a finger move, at the cost of creating an oppositely-
signed pair of intersections between the green sheet and one of the sheets paired by W. This
is called “pushing down” an intersection in W. Use pushing down to show that if A supports
an order 1 framed Whitney tower W, then A supports an order 1 framed Whitney tower W’

whose Whitney disks are disjointly embedded.
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FIGURE 26. ‘Pushing down’ an intersection.

1.22.14. FEzxercise: The green-blue intersections created by the finger move in Figure 26 admit
a local Whitney disk V' which is inverse to the finger move (Exercise 1.22.6), such that 0V
intersects OW transversely in the blue sheet. Draw V into the right side of Figure 26
(hanging down “underneath” the blue sheet). Observe that V' and W can be made disjoint
by extending to a collar of V' an isotopy of OV in the blue sheet that pushes OV m oW
away across either blue-black intersection paired by W. This isotopy of V' creates an interior
intersection between (the new) V and the black sheet. Draw this new V', including its interior
intersection with the black sheet, and check that this intersection between V' and black has
the same order as the original intersection between W and the green sheet.

1.22.15. Ezercise: Check that the trees ¢, C W of section 1.10 can always be arranged to be
disjointly embedded in W, for any number of unpaired intersections in Y. (Do not assume
that W is split (Figure 10), and don’t forget the possibility of self-intersections in a Whitney
disk.)

1.22.16. Ezercise: Complete the proof of Theorem 1.14 by constructing the other two trees
of Figure 19 analogously using past and future (see [7] for the solution), and check that all
the Whitney disks are framed.

2. ORDER n TWISTED WHITNEY TOWERS IN THE 4-BALL

Recall from Definition 1.8 that a Whitney tower W is twisted of order n if every unpaired
intersection p in W is of order > n and every twisted Whitney disk W; in W is of order > 5
or equivalently, if every framed tree ¢, in the intersection forest ¢(W) is of order > n and
every twisted tree J* in ¢(W) is of order > .

We say that a link L C S = 9B* bounds an order n twisted Whitney tower W if W C B*
is an order n twisted Whitney tower whose order zero surfaces are immersed disks bounded
by the components of L.

Following |8, 11|, using algebraic results from [9], this section describes a classification of
links in S® bounding order n twisted Whitney towers:

Section 2.1 defines abelian groups 7 generated by trees, with relations corresponding
to controlled modifications of twisted Whitney towers. These groups are the targets for
intersection invariants 7°(W) = [t(W)] € T,” defined in section 2.3 which have the property
that L bounds an order n twisted W with 72(W) = 0 if and only if L bounds an order

n + 1 twisted Whitney tower. The identification of these order-raising obstruction-theoretic
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invariants with Milnor invariants and higher-order Arf invariants of the link on the boundary
leads to a classification of order n twisted Whitney towers in B* (Corollary 2.18).

The higher-order Arf invariants appear for each n = 2 mod 4, and take values in specific
finite Z/2Z-vector spaces (Definition 2.17). In this setting the main open problem is to
determine precisely the image of these higher-order Arf invariants, which the Higher-order
Arf invariant Conjecture states is maximal (Conjecture 2.19).

For links bounding order n framed Whitney towers (Definition 1.7) there is an analogous
classification that is more complicated to describe because, in addition to Milnor invariants
and higher-order Arf invariants, it also involves higher-order Sato-Levine invariants which
represent obstructions to framing odd order twisted Whitney towers and correspond to cer-
tain projections of Milnor invariants. In [8] the framed classification is derived from the
twisted one described here.

We also remark that Jae Choon Cha has shown that the higher-order Arf invariants
measure the potential difference between the existence of twisted W in B?* versus rational
homology B%s. Namely, L C S? has vanishing Milnor invariants through order n if and only
if L bounds an order n + 1 twisted W in a rational homology B* (see [3, Thm.C]).

Throughout this section the fixed index set {1,2,,...,m} is usually suppressed from no-
tation.

2.1. The order n twisted tree groups. Recall our terminology and conventions for trees
(sections 1.9-1.13, and 1.15), including that order is the number of trivalent vertices.
First we define framed tree groups:

Definition 2.1. Denote by 7T, the free abelian group on order n framed trees modulo the
local antisymmetry (AS) and Jacobi identity (IHX) relations in Figure 27.

Yo e I A X

FIGURE 27. The AS (left) and IHX (right) local relations. Here univalent
vertices represent arbltrary fixed subtrees.

The target twisted tree groups 7, for the intersection invariants 7(W) for order n twisted
Whitney towers W C B* bounded by L C S® will be defined separately for odd and even n.
After giving the definitions in terms of generating trees and relations, the geometric meaning
of the relations will be discussed.

Definition 2.2. For each j > 1, the order 2j — 1 twisted tree group 757, is the quotient of
T2j—1 by boundary-twist relations:

i —<7=0
where J ranges over all order j — 1 subtrees.

Definition 2.3. For each j > 0, the order 2j twisted tree group 7,7 is the quotient of the
free abelian group on framed trees of order 25 and «-trees of order 7 by the following relations:

(i) AS and IHX relations on order 2j framed trees
(i) symmetry relations: (—J)® = J®
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(iii) twisted IHX relations: I? = H” + X — (H, X)
(iv) interior-twist relations: 2 - J” = (J, J)

In item (iii) the three twisted trees differ locally as in the right of Figure 27.
See [10, Sec.4.8| for an interpretation of J — J* as a quadratic refinement of the 7,-valued
intersection form on rooted trees (or on Whitney disks).

2.2. Geometric meaning of the relations. Both the odd and even order twisted tree
groups contain the AS and IHX relations which apply to framed tree generators. We have
already seen in Corollary 1.15 the necessity of including the THX relations in defining an
invariant from ¢(W) since IHX trees can be created locally. Upon fixing the positive or
negative corner convention (section 1.19), the signs €, = &+ of the framed trees ¢, - t, in (W)
only depend on the orientation of the underlying order 0 surface modulo the antisymmetry
relations (section 4.7).

In the odd order groups 757 ;, which contain the obstructions to the existence of an order
2j twisted Whitney tower, the boundary-twist relations correspond geometrically to the fact
that performing a boundary twist (Figure 28) on an order j Whitney disk W, ;) creates an
order 2j — 1 intersection point p € W(; yy N W; with associated tree t, = ¢ —< 4 and changes
w(W, ) by £1. By Exercise 1.22.12, any number of clean framed W(; ;) can be created
in any Whitney tower, so any number of ¢, = i —< can be created by this construction.
It follows from the obstruction theory (section 4.6) that after arranging such trees into
“algebraically canceling” pairs, the corresponding unpaired intersections can be exchanged
for “geometrically canceling” intersections admitting Whitney disks. Since this can be done
at the cost of only creating order j twisted Whitney disks, which are allowed in an order 2j
Whitney tower, the trees i —< 9 do not represent obstructions.

Wi

boundary l w;

twist of W, ,,
E S R G

O

with blue

parallel of W, ,, | | \DS' Q\ Lk\% | |

that intersects W, ,, D

FIGURE 28. Top two rows: ‘Side view’ near a point in W C W; of
the boundary-twist operation on W(; ;) into W; which creates a transverse
intersection p € W(; sy N W;. Bottom row: This operation changes w(W(; 1))
by +1, as represented by the intersection in the middle frame between the
boundary-twisted W(; ) and its blue parallel copy.

In the even order target groups 7,7: The symmetry relation corresponds to the fact that

the twisting w(W') (section 1.5) is independent of the orientation of the Whitney disk W,
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with the minus sign denoting that the cyclic orderings at the trivalent vertices of —J differ
from those of J at an odd number of vertices. The twisted IHX relation corresponds to the
effect of performing a Whitney move in the presence of a twisted Whitney disk, as described
in Lemma 4.5 and [8, Lem.4.1|. The interior-twist relation corresponds to the fact that
creating a +1 self-intersection in a W by a local cusp-homotopy [13, Sec.1.6] changes the
twisting by F2 (Figure 29). The result of such a cusp-homotopy is the same as the local
cut-and-paste operation described in [13, Sec.1.3]. For any J, a clean W can be created by
finger moves (Exercise 1.22.12), then a +-interior twist W will change ¢(W) by:

() F 2-J°

Thus, all the relations in 7 can be realized by controlled modifications of Whitney towers
altering their intersection forests, without changing the homotopy class of the underlying
order 0 surface.

PO ]
[ eotolol H

FIGURE 29. After a x-interior twist on W;, shown near an arc in W that
runs between the two sheets paired by W;. Top row: A new transverse self-
intersection p € W, th W, has been created. Bottom row: w(W);) has been
changed by F2, as represented by the pair of blue-black intersections between
this new W and a parallel copy which are visible in the third-from-right frame.
Note that the pair of blue-black intersections in the fourth-from-left frame are
just an artifact of the immersion of the normal bundle of W; and do not
contribute to the twisting w(Wj).

2.3. Intersection/obstruction theory for order n twisted Whitney towers.

Definition 2.4 (Def.2.9 of [8]). For an order n twisted Whitney tower W, let t,(WW) denote
the sub-multiset t,(W) C t(W) consisting of all order n framed trees and order n/2 twisted
trees in t(W). Define the order n twisted intersection invariant:

T W) = [t (W)] € T,

If W is an order n twisted Whitney tower, then the intersection forest ¢(¥/) may apriori
contain framed trees of order > n and «-trees of order > n /2, but in fact any such Whitney

disks in W can be deleted and/or modified yielding t,,(W) = t(W) (see Exercise 2.13.1).
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Theorem 2.5 (Thm.1.9 of [8]). A link L C S® bounds an order n twisted W C B* with
T2°(W) =0 € T.” if and only if L bounds an order n + 1 twisted Whitney tower.

n

Idea of proof: For the “only if” direction, first realize relations by geometric constructions,
as discussed in section 2.2, to arrange that all trees in ¢,(W) occur in oppositely-signed
isomorphic pairs. Then use controlled maneuvers to arrange that all order n intersections
admit Whitney disks and all Whitney disks of order < n/2 are framed. See section 4.6 for
an outline of this proof, and [8, Sec.4| for details. For the “if” direction see Exercise 2.13.2.

2.4. Quick review of first non-vanishing Milnor invariants. Let L C S% be an m-
component link with fundamental group G = 7 (S®\ L). By [23, Thm.4], if the longitudes of
L lie in the (n + 1)-th term G,,;; of the lower central series of G, then a choice of meridians
induces an isomorphism g:—:; = ?:—E, where F' = F'(m) is the free group on {x1, 2o, ..., 2n},
with z; corresponding to the ¢th meridian.

Let L = L(m) denote the free Lie algebra (over Z) on generators {X;, Xo,..., X} It
is N-graded, L = &,,L,,, where the degree n part L,, is the additive abelian group of length
n brackets, modulo Jacobi identities and self-annihilation relations [X, X] = 0. The mul-
tiplicative abelian group ?:E of length n + 1 commutators is isomorphic to L,,;, with z;
mapping to X; and commutators mapping to Lie brackets.

In this setting, denote by [; the image in L, of any ¢-th longitude of L under the above
isomorphisms ([; is well-defined since choices of longitudes differ only by conjugation), and

define the order n Milnor invariant u,(L) by

pn (L) = ZXi ®l; € L1 @ Ly
i=1

This definition of p, (L) is the first non-vanishing “total” Milnor invariant of order n, and
corresponds to all Milnor invariants of length n + 2 in the original formulation of [22, 23|.
The original ji-invariants are computed from the longitudes via the Magnus expansion as
integers modulo indeterminacies coming from invariants of shorter length. Since we will only
be concerned with first non-vanishing p-invariants, we do not use the “bar” notation f.

It turns out that p, (L) lies in the kernel D,, of the bracket map Ly ® L,,;1 — L, 12 (e.g. by
“cyclic symmetry” [14]).

2.5. The summation maps 7,. The connection between 72°(W) and p,(L) is via a homo-
morphism 7,, : 7> — D,, which is most easily described by regarding rooted trees of order
n as elements of L, ; in the usual way: For v a univalent vertex of an order n framed tree
t, denote by B,(t) € L,+1 the Lie bracket of generators Xi, X, ..., X,, determined by the
formal bracketing of indices which is gotten by considering v to be a root of t.

Definition 2.6. Denoting the label of a univalent vertex v by ¢(v) € {1,2,...,m}, the map
N T,7 — L1 @ Lyt is defined on generators by

o 1
m(t) =Y Koy ® B(t)  and  u(J7) = 5 ({4, 7))
vet
The first sum is over all univalent vertices v of t, and the second expression lies in Ly @ L, 14
because the coefficients of n,({J, J)) are even. Here J is a rooted tree of order j for n = 2j.

(Recall that J® is obtained from J by labeling the root vertex of J with the » symbol.)
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Examples of n, forn =1,2:

mih—<3) = X190 <3 + Xx01—<3 + X301—<,
= X;® [Xo, X3+ Xo® [ X5, X1] + X3 ® [ X1, Xa].

And,

M2 —<7) Z%ﬁ2(§>—<%)

=X ®><? + X ><?
=X; ® [Xo, [X1, Xo]] + X0 ® [[ X1, X3, Xi].

The image of 7, is equal to the bracket kernel D,, < Ly ® L,, 41, by [11, Lem.32|.

Theorem 2.7 ([8]). If L bounds a twisted Whitney tower W of order n, then the order q
Milnor invariants pi,(L) vanish for ¢ <n, and

Mn(L) =1Tn © TTC:(W) €D,

Idea of proof: The existence of the order n twisted W implies, via Dwyer’s Theorem,
that the inclusion S\ L — B*\ W induces an isomorphism on the (n + 1)th lower central
quotients of 7y, so the longitudes of L can be computed in B*\ W. It turns out that the
corresponding iterated commutators are displayed exactly according to 1, o772 (W), with the
key observation being that a meridian to a Whitney disk is a commutator of meridians to
the sheets paired by the Whitney disk. See [11, Sec.4| or |3, Thm.3.1].

2.6. The order n twisted Whitney tower filtration on links. Recall that a link L C
S3 = 0B* bounds an order n twisted Whitney tower W if W C B* is an order n twisted
Whitney tower whose order 0 surfaces are immersed disks bounded by the components of L.

We say that links Ly and L; in S? are twisted Whitney tower concordant of order n if
Lo C §% x {0} and L; C S? x {1} cobound a collection A & S x [0, 1] of immersed annuli
such that A supports an order n twisted Whitney tower (with A inducing the reversed
orientation on Ly).

Denote by W? the set of links in S bounding order n twisted Whitney towers in B*
modulo the equivalence relation of order n 4 1 twisted Whitney tower concordance.

The twisted “order-raising” Theorem 2.5 implies the following essential criterion for links
to represent equal elements in W

Corollary 2.8 (|8, Cor.3.3|). Links Lo and Ly represent the same element of W if and
only if there exist order n twisted Whitney towers Wy in B* with OW; = L; and 72(W,) =
T;(Wﬂ c 7:;0.

Proof. If Ly and L, are equal in W;; then they cobound A supporting an order n+ 1 twisted
Whitney tower V in S® x I, and any order n twisted Whitney tower W, in B* bounded by
L, can be extended by V to form an order n twisted Whitney tower W, in B* bounded by
Ly, with 77(Wy) = 72(Wh) € T, since 7,7(V) vanishes.

Conversely, suppose that Ly and L; bound order n twisted Whitney towers W, and W,
in 4-balls By and B}, with 72(W,) = 72(W,). Then constructing S® x I as the connected
sum Bg#Bj (along balls in the complements of W, and W), and tubing together the
corresponding order zero disks of W, and W, and taking the union of the Whitney disks

in W, and W, yields a collection A of properly immersed annuli connecting Ly and L; and
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supporting an order n twisted Whitney tower V. Since the orientation of the ambient 4—
manifold has been reversed for one of the original Whitney towers, say W, which results in a
global sign change for 77°(W)), it follows that V has vanishing order n intersection invariant:

Ta (V) =17 Wo) — 7, (Wh) =7, (Wo) — 7, (Wo) =0 € T,”

n

So by Theorem 2.5, A is homotopic (rel 0) to A’ supporting an order n + 1 twisted Whitney
tower, and hence Ly and L; are equal in W,. O

The band sum L#gL' C S* of oriented m-component links L and L’ along bands 3 is
defined as follows: Form S® as the connected sum of 3-spheres containing L and L’ along
balls in the link complements. Let 8 be a collection of disjointly embedded oriented bands
joining like-indexed link components such that the band orientations are compatible with
the link orientations. Take the usual connected sum of each pair of components along the
corresponding band. Although it is well-known that the concordance class of L#3L" depends
in general on 3, it turns out that the image of L#3L" in W;> does not depend on /3:

Lemma 2.9 ([8|). For links L and L' representing elements of W2, any band sum L#gL’'
represents an element of W2 which only depends on the equivalence classes of L and L' in

W,
See Lemma 3.6 of [8] or Exercise 2.13.4 for a proof of Lemma 2.9 using the following:

Lemma 2.10 ([8]). If L and L' bound order n twisted Whitney towers W and W' in B,
then for any bands B there exists an order n twisted Whitney tower W# C B* bounded by
L#sL’, such that tOW#) =t(W) +t(W').

See Lemma 3.7 of [§8], or Exercise 2.13.3, for a proof.

2.7. Definition of the realization maps. We define “realization” maps R, : 7> — W,
for all n as follows: Given any group element g € 7, by Lemma 2.11 just below there exists
an m-component link L C S bounding an order n twisted Whitney tower W C B* such that
T2°(W) = g € T,”. Define R?(g) to be the class determined by L in W¢. This is well-defined

(does not depend on the choice of such L) by Corollary 2.8.

Lemma 2.11 ([8]). For any multiset 3, €, -t, + > ; w(Wy) - J” there exists a link L
bounding a Whitney tower VW with intersection forest ttW) = 3" €,-t, +>_; w(Wy)-J”.

The proof of Lemma 2.11 follows Tim Cochran’s technique of “Bing-doubling along a tree”
to realize individual trees, and then uses band sums of links via Lemma 2.10 to realize sums
(multiset unions) of trees (see Lemma 3.8 of [8] or Exercise 2.13.5).

For instance, to compute the image of the framed tree t = {((1,2),(3,1)) = 1 ><1
under R3, one Bing-doubles each component of the Hopf link and then bands together two
components as in Figure 30 to get a link L bounding a Whitney tower W with 75°(W) = t.
Any framed tree can be realized analogously by applying iterated Bing-doubling to the Hopf
link to get the desired tree shape, and then banding components to get the desired univalent
labels.

To compute the image of the twisted tree (2,1)” = 3 >— o under Ry, one applies a
twisted Bing-double to the unknot as in Figure 31 to get L bounding a Whitney tower
W with 7 (W) = (2,1)®. Any twisted tree J with twisting coefficient w € Z can be

realized similarly by starting with a single w-twisted Bing-doubling of the unknot and then
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1 3 L,
R;n /Q into B’
(=
L, AN
1 2 L,

FIGURE 30

applying iterated (untwisted) Bing-doublings to get the desired tree shape, and then banding

components to get the desired univalent labels.

A= =l

FIiGURE 31

In combination with Theorem 2.7, the following result will play a key role in classifying
order n twisted Whitney towers in the 4-ball:

Theorem 2.12 ([8|). The realization maps are epimorphisms Ry : T — W,

Proof. From Lemma 2.9 the band sum of links gives a well-defined operation in W which is
clearly associative and commutative, with the m-component unlink representing an identity
element. The realization maps are homomorphisms by Lemma 2.10 and surjectivity is proven
as follows: Given any link L representing an element of W;?, choose a twisted Whitney tower
W of order n with boundary L and compute 7 := 77°(W). Then take L' := R?(7), a link
that’s in the image of RZ and for which we know a Whitney tower W with boundary L'
and 7°(W') = 7. By Corollary 2.8 it follows that L and L’ represent the same element in
W, O

2.8. Computing the order n twisted Whitney tower filtration. From Theorem 2.7
and Theorem 2.12 we have the following commutative triangle diagram 57 of epimorphisms:

(V) T s Wer

Nl

D,
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The following algebraic result is a consequence of the proof [9] of a combinatorial conjecture
of J. Levine:

Theorem 2.13 (|8|). The maps n, : T,> — D,, are isomorphisms for n =0,1,3 mod 4.
From this theorem we immediately get:

Corollary 2.14. For n = 0,1,3 mod 4, the Milnor invariants p,: W;, — D,, and the
twisted realization maps R, : T.” — W are isomorphisms.

By [24], D, is a free abelian group of known rank for all n, so we have a complete compu-
tation of Wy = D,, = 7. in three quarters of the cases.

Remark 2.15. It also follows that in these orders the order n twisted intersection invariant
(W) € T2 only depends on the concordance class of L = OW. In particular, 72(W) € T,
is independent of the choice of Whitney tower W on the (unique) homotopy class rel O of
the order O immersed disks bounded by L.

Towards understanding the remaining cases n = 2 mod 4, we have another consequence
of [9] which was derived as Corollary 6.6 of [§]:

Proposition 2.16 ([8]). For rooted trees J of order j—1, the map 10 J — o —<7 € Tg7_,
mduces an isomorphism:

Zy®L; = Ker{nyj2: T 5 — Dyj 2o}

So Zy ® L; is also an upper bound on Kg;_, := Ker{ ;2 : W, — D4j_2}. Denoting by
af 1 Zy®L; — K7, _, the epimorphism induced by R}, ,, we have the following extension of
the above triangle diagram 57 in these orders:

\ J Ty l
(0 —<g)r——T5_ o — WP,
\ l#4j2
N4j—2
Dyj—2

By inverting the induced isomorphism af on (Z; ® L;)/ Kera?, we get the following
definition:

Definition 2.17. The higher-order Arf invariants Arf; are defined by
Arf] = (05_3{3>71 . Kjfj*? — <22 X LJ)/KGI' Oé;n

As a corollary we get the computation of W;? for all n, and a characterization of links
bounding order n twisted Whitney towers:

Corollary 2.18 ([8]). The abelian groups W are classified by Milnor invariants p, and, in
addition, higher-order Arf invariants Arf; for n =45 — 2.
In particular, a link bounds an order n + 1 twisted W if and only if its Milnor invariants
and higher-order Arf invariants vanish up to order n.
32



2.9. The higher-order Arf invariant Conjecture. In the case j = 1 of Definition 2.17,

Ker af is trivial and we have Arf; : K$ = (Zo® L) 2 (Z5)™, given by classical Arf invariants
of the link components [11, Lem.10].
The higher-order Arf invariant conjecture states that Ker a7 is trivial for all j:

Conjecture 2.19. Arf; : K3, 5, — Zy ® L; are isomorphisms for all j.

Assuming this conjecture the classification in these orders would be described by the
following diagram:

\ lﬂ4j2
Naj—2

Dyj—2

Conjecture 2.19 would imply W? Iy 7> is an isomorphism for all n. That is, the in-
tersection invariants 77 taking values in 7, are independent of Whitney tower choices and
characterize links bounding order n twisted Whitney towers.

I/I/;(LZ).(I,Z))

FIGURE 32. The (untwisted) Bing double of the Figure-8 knot (L; U Ly C
S3 on left) bounds an order 6 twisted Whitney tower D; U Dy U Wiy U
Wia2),a.2) C B* with w(W(a2),1,2)) = 1. Here the order zero disks D;
bounded by the L; are contained near S* in a collar (not shown) which cor-
responds to the left arrow, and the intersection pair D; N Dy which is paired
by W1 2) corresponds to two “unclasping” crossing changes in a null-homotopy
of Ly U Ly supported in this collar. Thus, 0W(, s is a parallel of the Figure-8
knot core of the band used to create the Bing double.
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2.10. Problems, Questions and re-formulations. As just mentioned in section 2.9, Con-
jecture 2.19 is true for £ = 1, with Arf; given by the classical Arf invariants of the link com-
ponents [11], but it remains an open problem whether Arfy, is non-trivial for any & > 1. The
links Ry, ,(e—<7 ) realizing the image of Arfy can all be constructed as internal band sums
of iterated Bing doubles of knots having non-trivial classical Arf invariant (|11, Lem.13]), see
Figure 32. Such links are known not to be slice by work of J.C. Cha 2|, providing evidence
in support of Conjecture 2.19.
So the fundamental open problem in this setting is:

Open Problem 2.20. Determine the precise image of Arf; < Zo @ L; for j > 2.

The following specific lowest order open question is already interesting:
Question 2.21. Does the Bing double of the Figure-8 knot Rg (e —<8§; ) € Wg, shown in
Figure 32, bound an order 7 twisted Whitney tower?

This importance of this lowest order open question is magnified by the following fact [11,
Prop.14]:
Proposition 2.22 ([11]). If the Bing double of the Figure-8 knot does bound an order 7
twisted Whitney tower, then Arf; are trivial for all j > 2.

Conjecture 2.19 predicts a negative answer to Question 2.21, which can be can be phrased
as the following restriction on the possible twisted Whitney towers on 2—spheres in the 4—ball:

Conjecture 2.23. There does not exist A : S? U S? 9 B* supporting W with
tW) = —<8;§ (possibly + higher-order trees).

2.11. Higher-order Arf invariant Conjecture and Finite Type invariants. Habeg-
ger and Masbaum [16] have shown that Milnor invariants are the only rational finite type
concordance invariants of (string) links. The classical Arf invariant of a knot is known to be
determined by the first non-trivial finite type isotopy invariant, and as stated above, Arf;
corresponds to the classical Arf invariants of the link components. So it is natural to ask:

Question 2.24. Are the Arf; for j > 1 also determined by finite type isotopy invariants?

For the first interesting case in this setting, a negative answer to Question 2.21 can be
formulated as:

Conjecture 2.25. The sum of trees in Figure 33 represents a non-trivial finite type concor-

dance invariant of 2-component string links (first-non-vanishing, Z /2Z-coefficients).
|2 1 |2 1 2 1 2 1 2
NN

| | |

1 1 2

1

2
FIGURE 33

The invariant of Conjecture 2.25 would be finite type degree 6, and all finite type concor-

dance invariants of string links in degrees < 5 have been characterized by J-B. Meilhan and
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A. Yasuhara in [21]. So this conjecture appears to lie at the frontier of current understanding
in this setting.

Degree 6 finite type invariants are related to order 5 intersection invariants in the setting
of framed Whitney towers [7, 30|, and the sum of trees in Figure 33 (modulo higher-order
trees) can be gotten by applying twisted IHX moves and boundary twists to a Whitney tower

W with t(W) = o —< 83; bounded by any link R (e —< 83% ) € Wg, see Exercise 2.13.12.
This illustrates how the higher-order Arf invariants shift down one order in the framed order

n Whitney tower filtration [8]. Conjecture 2.25 corresponds in this setting to:

Conjecture 2.26. The Bing double of any knot with non-trivial classical Arf invariant does
not bound an order 6 framed Whitney tower.

By Exercise 2.13.15, Conjecture 2.26 can also be phrased as a restriction on Whitney
towers supported by 2-spheres in 4-space:

Conjecture 2.27. There does not exist A : S? US? & B* supporting W with t(W) equal to
the trees in Figure 33, possibly plus higher-order trees.

We remark that each of the two trees in Figure 33 individually represents a non-trivial
higher-order Sato—Levine invariant which is determined by a non-trivial order 6 p-invariant
[8], so neither of these trees can appear by itself (plus higher-order trees) as t(W) for W on
2-spheres in B* (compare Exercise 2.13.10).

Recent work of Danica Kosanovi¢ [19] includes progress towards showing that the em-
bedding calculus of Goodwillie-Weiss [15, 34| determines universal finite type invariants for
knots over the integers, as conjectured in [1]. Kosanovi¢ works with certain 2-complexes
called capped gropes which are very closely related to Whitney towers [8, 26|, and one could
hope that, via a generalization of [19] to links, the homotopy-theoretic techniques of the
embedding calculus might be able to detect the higher-order Arf invariants:

Question 2.28. Can the Arf; be detected by the embedding calculus?

2.12. Higher-order Arf invariant conjecture and transfinite Milnor invariants. In
[4] Jae Choon Cha and Kent Orr defined certain transfinite invariants of 3—manifolds which
can be interpreted as providing a generalization of Milnor invariants. Their invariants include
certain finite-length 6 -invariants which can take values in finite abelian groups, and in [4,
Sec.14(9)| they ask:

Question 2.29. Are the higher-order Arf invariants related to the Oy-invariants?

2.13. Section 2 Exercises.

2.13.1. Ezercise. If W is an order n twisted Whitney tower, then the intersection forest
t(W) may contain framed trees of order > n and e-trees of order > n/2 in addition to those
representing 7°(W) := [t,(W)] € T,2. Show that by deleting Whitney disks of order > n,
boundary-twisting, and pushing-down intersections (Figure 26), these higher-order trees in
t(W) can be eliminated without changing 7,7(W) while preserving the twisted order n of the
resulting Whitney tower. (See discussion in [8, Sec.4.1,‘Notation and Conventions’.)

2.13.2. Ezercise. If W is an order n + 1 twisted Whitney tower, observe that by definition

W is also an order n twisted Whitney tower, and check that 7°(W) =0 € T,7.
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2.13.3. Exercise. Show that if L and L’ bound order n twisted Whitney towers WW and W'
in B*, then for any 3 there exists an order n twisted Whitney tower W# C B* bounded by
L#sL’, such that t(W#) = t(W) + t(W'). (Lemma 3.7 of [8].)

2.13.4. Exercise. Use the previous exercise to show that for links L and L’ representing
elements of W, any band sum L#gL’ represents an element of W;, which only depends on
the equivalence classes of L and L' in W;?. (Lemma 3.6 of [8].)

2.13.5. Ezercise. Given any framed tree (I, J), construct a link L C S® bounding W C B*
with t(W) = (I, J). HINT: Apply Bing-doubling as needed to the Hopf link, as in Figure 30.
(See Lemma 3.8 of [8].)

2.13.6. Ezercise. Given any integer n and any rooted tree J of positive order, construct a
link L C S% bounding W C B* with t(W) = n - J”. HINT: Start with the n-twisted Bing
double of the unknot (see Figure 31 for the case n = 1), then apply untwisted iterated
Bing-doubling as needed. (See Lemma 3.8 of [8].)

2.13.7. Ezercise. From Exercise 1.22.9, the Bing-double of the Hopf link bounds an order 2
twisted Whitney tower W as in Figure 9. Show that the Bing-double of the Hopf link does
not bound an order 3 twisted Whitney tower by checking that the order 2 Milnor invariant
fo = n9 0 75°(W) € L1 ® Ly is non-zero. Conclude that the Bing-double of the Hopf link
also does not bound an order 3 framed Whitney tower (since for any n an order n framed
Whitney tower is also an order n twisted Whitney tower by definition).

2.13.8. Exercise. Compute the order 2 Milnor invariants gy = 79 o 75°(W) for the links in
Figures 30 and 31.

2.13.9. Ezercise. Order 0 twisted tree groups and Milnor invariants:

Check from the definitions in section 2.4 that for ¢ # j the coefficient of X; ® X, in po(L) is
the linking number of L; and L;, which, via the well-known computation of linking numbers
as the count of signed intersections between the properly immersed disks D; and D; bounded
by L; and L;, is also equal to the coefficient of X; ® X; in no(77(W)).

Although Milnor invariants are not usually defined for knots, for framed links it is natural
to consider the framing f; of L; as an order 0 (length 2) integer Milnor invariant, and the
coefficient of X; ® X in uo(L) is exactly f; when this framing is used to determine the ith
longitude. To see that the coefficient in no(75(W)) of X; ® X; is also equal to f;, let d;
denote the number of positive self intersections of D; minus the number of negative self-
intersections of D;. Then the relative Euler number of D; with respect to the framing f;
on L; = 0D; is equal to f; — 2d; (see e.g. Figure 19 of [8] and accompanying discussion),
and the terms of 75°(W) which contribute via 7y to the coefficient of X; ® X; are exactly
(d;) - i — i+ (fi —2d;) - — i, which get sent by 1y to (fi) - X; ® X;.

2.13.10. Ezercise. Show that if g € 7,7 is such that 7,(g9) # 0 € D,,, then there does not
exist any twisted Whitney tower tower W on 2-spheres in B* such that ¢(J) represents
g € T,2. (HINT: Otherwise tubing the spheres into disks bounded by an unlink would

“create” non-trivial u-invariants.)
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2.13.11. Ezercise. Check that 76((((1,2),1),2)") # 0 € L; ® Lg. Conclude from Exer-
cise 2.13.10 that there does not exist A : S? U S? 9+ B* supporting a Whitney tower W
with t(W) = (((1,2),1),2)”, perhaps plus trees of order > 6.

2.13.12. Exercise. Use the Whitney move twisted IHX relation of Lemma 4.5 and boundary-
twisting to get the two trees in Figure 33 (plus higher-order trees) from the single tree

((1,2), (1,2)).
2.13.13. Ezercise. Check that ny o 75°(W) vanishes for the Bing double of Figure-8 knot.

2.13.14. Ezercise. If a knot K bounds a Whitney tower W with t(WW) = (1,1)*, show that
the Bing-double of K bounds a Whitney tower V with (V) = ((1,2), (1,2))".

2.13.15. FEzxercise. Check that Conjecture 2.26 and Conjecture 2.27 are equivalent.

2.13.16. Ezercise. Show that if there exists a pair of 2-spheres in S* supporting a Whitney
tower W such that t(WV) = ((1,2), (1,2))”, then all higher order Arf invariants Arf; for j > 2
vanish on all links. (See [11, Prop.14].)

3. WHITNEY TOWERS ON 2-SPHERES IN 4-MANIFOLDS

In this section we consider Whitney towers on A = Ay, As, ..., A,, & X, where each A;
is a 2-sphere, and X is a 4-manifold. All manifolds are oriented and based. Fach A; is
equipped with a whisker, i.e. an arc running between the basepoint of A; and the basepoint
of X.

We will assume that A is generically immersed, and each sphere A; has the same number
of positive self-intersections as negative self-intersections. This can always be arranged by
performing cusp homotopies (|13, Chap.1]|, same as the interior twist operation of Figure 29),
and is a natural assumption in the setting of Whitney towers since it is satisfied as soon as A
supports a (framed or twisted) Whitney tower of positive order. Regular homotopy classes
of such immersions are in one-to-one correspondence with homotopy classes, see e.g. 25,
Thm.1.2]. Up to isotopy, a regular homotopy is a sequence of finger moves and Whitney
moves, so homotopy invariance of invariants defined from the intersection forests of Whitney
towers can be checked combinatorially (e.g. section 4.1.9).

The classical intersection invariant A(A;, A;) and self-intersection invariant p(A;) are re-
called in section 3.1, and we formulate these invariants in the language of Whitney towers as
order 0 invariants which give the complete obstruction to A supporting an order 1 framed
Whitney tower in section 3.2. After explaining how the order 0 intersection pairing gives
the complete obstruction to “pulling apart” a pair of spheres, i.e. making them disjoint by
a homotopy (section 3.3), edge decorations in m X for order 1 trees are introduced in sec-
tion 3.4 and the order 1 non-repeating invariant generalizing the classical intersection pairing
is defined in the setting of pulling apart triples of components of A (section 3.5 and Theo-
rem 3.2). In section 3.6 we briefly touch on possible higher-order non-repeating invariants
and a general obstruction theory for pulling apart multiple components.

The order 1 generalization of the classical self-intersection invariant is defined in sec-
tion 3.7. Here twistings on Whitney disks are relevant, and the vanishing of the invariant is
equivalent to the existence of an order 2 framed Whitney tower on A (Theorem 3.4).

Throughout this section, relevant open questions, problems and conjectures are included

in the discussions. Proofs of the main Theorems 3.2 and 3.4 are given in Section 4.
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3.1. Classical intersection form. The first obstructions to making the components of
A pairwise disjointly embedded by a homotopy are the intersection invariants A(A;, A;),
which take values in the integral fundamental group ring Z[m X], and the self-intersection
invariants p(A;), which take values in a quotient of Z[m; X]. These invariants are defined as
follows. Associate to each transverse intersection point p € A; h A; the element g, € mX
determined by a loop through A; and A; which changes sheets at p. More precisely, such
a sheet-changing loop runs along the whisker for A;, then along any choice of path in A; to
p, then along any choice of path in A; to the whisker of A;, then along the whisker for A;.
Sheet-changing loops are required to avoid all singularities of A; and A; other than p, so g,
does not depend on the choices of paths in A; and A; between p and their whiskers because
the domains of A; and A; are simply connected. See Figure 34.

A |

FIGURE 34. ¢, € m X for p € A; M A; with i # j (left), and for ¢ = j (right).

Summing over all such intersection points, with the usual notion of the sign €, € {4+, —},
defines:
/\(1417 AJ> = Z €p - Gp € Z[’ﬂ'lX]
pEA;MA;
and

Z[?TlX]
w(A;) = € Gp € ————~.
( ) pEAZirhAi n {g—g_l}

The relations in Z[r; X] induced by g = g7* € m X account for choices of orientations on
the sheet-changing loops through the self-intersections of A;.

Up to isotopy, a regular homotopy of A is a sequence of finger moves and Whitney moves,
each of which either introduces or eliminates oppositely-signed intersections having the same
group element. So A and p are invariant under regular homotopy, e.g. [25, Sec.4].

3.2. Order 0 invariants. Here we slightly reformulate the classical invariants A and p in
the language of Whitney towers, with an eye towards higher-order generalizations.

The union A = AU Ay U---UA,, C X is by Definition 1.7 a framed Whitney tower of
order 0. To each order 0 intersection p € A; h A; is associated the order 0 tree t, = (i, j),
as in section 1.10, and we think of ¢, C A; U A; as an embedded sheet-changing edge near
p with one univalent vertex in A; and the other univalent vertex in A;. For each such ¢,
choose a path in A; from the basepoint of A; to the i-labeled univalent vertex of ¢,, and a
path in A; from the j-labeled univalent vertex of ¢, to the basepoint of A;. The union of

t, (oriented from i to j) together with these paths and the whiskers on A; and A;, defines
38



a sheet-changing loop representing g, € m X, just as in section 3.1. We call the tree ¢,
together with the label g, on its edge and an orientation of the edge from 7 to j, a decorated
tree for p.

Let Ty denote the quotient of the free abelian group on order 0 decorated trees by the
following OR orientation relation:

OR: i ——j=i—%—j

Now the classical invariants Ao := A and g := p can be expressed as a single order 0
invariant 75(A) represented by the intersection forest ¢(A):

9
T0(A) := Z ) ——jEeT
pEA;MA;

In the language of Whitney towers we have:
Theorem 3.1. 75(A) = 0 if and only if A supports an order 1 framed Whitney tower.

Recall from Definition 1.7 that A supporting an order 1 framed Whitney tower ¥V means
that all intersections of A are paired by framed order 1 Whitney disks in WW. The idea of the
“only if” direction of the proof is that all intersections can be arranged in oppositely-signed
pairs having the same group element, after orienting sheet-changing loops appropriately.
Then null-homotopic Whitney circles can be constructed from the pairs of sheet-changing
loops. These Whitney circles bound immersed Whitney disks which can be made framed by
boundary-twisting (Figure 28). See Exercise 3.9.5. For the “if” direction see Exercise 3.9.4.
See also [25, Lem.4.3].

It can always be arranged that the Whitney disks in an order 1 framed Whitney tower are
disjointly embedded (Exercise 1.22.13), but they will in general have interior intersections
with A which obstruct using them to guide Whitney moves homotoping A to an embedding.

We remark that for half-dimensional spheres A : S¢, 5%, ..., 5% 9 X??in a 2d-dimensional
manifold with d > 2 the invariants analogous to A and p give the complete obstruction to
embedding A in X?¢, because the interiors of Whitney disks on A will have interiors disjoint
from A by general position.

Notice that 79(A) splits into a direct sum of non-repeating and repeating invariants 7o(A) =
> izj Mo(Ai Aj) @37, T0(Ai). Before generalizing the full order 0 invariant 7o(A) to an order 1
invariant 71(A), we will first consider the intermediate problem of generalizing the non-
repeating summands Ao(A) := >_,; Ao(A;, A;) to order 1 invariants A1 (A;, Aj, Ag) for triples
with distinct ¢, 7, k, and discuss the relationship to “pulling apart” triples of components
(making them pairwise disjoint by a homotopy).

3.3. Pulling apart pairs of spheres. The vanishing of \g(A;, A2) = 0 € Z[m; X] implies
the existence of Whitney disks pairing A; M Ay (Exercise 3.9.1), and the union of A; U A,
together with a collection of such Whitney disks forms an order 1 non-repeating Whitney
tower W, cf. Definition 1.9. As an illustration of the proof of Theorem 1.10 in this easiest
case, Figure 35 shows how the existence of such a W leads to a homotopy that makes A; and
Ay disjoint: Finger moves as in the top of Figure 35 make A, disjoint from the interiors of
all the Whitney disks, at the cost of only creating self-intersections in A,. Now doing all the

Whitney moves on A; makes A; N Ay = () at the cost of only creating self-intersections in A;
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FIGURE 35

as in the bottom of Figure 35. Any self-intersections and intersections among the Whitney
disks will only lead to the creation of more self-intersections in A; upon doing the Whitney
moves, hence such intersections have been suppressed from view in Figure 35.

The procedure of Figure 35 appears to fail in the presence of a third sphere Ajs, as it is
not clear how to eliminate any W(; 2y N Az without creating more intersections between Aj;
and A; or As. In order to generalize A\og(A;, A2) to an order 1 invariant A\ (A, As, A3) which
“counts” such order 1 intersections W(; jy N Ay and gives the complete obstruction to pulling
apart triples of 2-spheres, we next introduce edge decorations for order 1 trees.

3.4. Decorated trees for order 1 intersections. Let I, ;) be a Whitney disk for a pair of
intersections in A; th A;. To each intersection p € W; ;) th Ay we associate a decorated order 1
tree t, which is gotten by labeling each edge of the usual tree ((4, ), k) from section 1.10
by an element of m; X as in Figure 36. This requires a choice of whisker running from the
trivalent vertex of each tree to the basepoint of X, and the group elements are determined
by loops formed using sheet-changing edges oriented towards the Whitney disk followed by
the chosen whisker emanating from the trivalent vertex. More precisely, taking ¢, to be
embedded in A; U A; U A, UW,, ;) as in Figure 36, each edge is a sheet-changing embedded
arc which can be oriented to change sheets into the Whitney disk, and each univalent vertex
can be connected by a path in its order 0 surface to the surface basepoint. Together with
the whiskers on A;, A;, Ay and the trivalent vertex we get three oriented loops determining
the corresponding edge decorations a,b,c € m X.

3.5. The order 1 non-repeating intersection invariant \;. Consider a triple of im-

mersed spheres A = Ay, Ay, A3 & X supporting an order 1 non-repeating Whitney tower

W, i.e. all intersections A; th A; for distinct ¢,j € {1,2,3} are paired by Whitney disks in

W. The existence of such an order 1 non-repeating Whitney tower W is equivalent to A
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FIGURE 36. Edge decorations a,b,c € m X.

having pairwise vanishing \o(A;, A;) = 0 € Z|m X] for i # j (Exercise 3.9.2), which we can
succinctly express as A\g(A) = 0.

Recall from section 1.18.1 that if ¢, associated to p € W has univalent vertices labeled
distinctly by 1, 2 and 3, then ¢, is called a non-repeating tree and p is called a non-repeating
ntersection.

Denote by Ay := A;(mX) the quotient of the free abelian group on order 1 decorated
non-repeating trees by the AS antisymmetry and HOL holonomy relations of Figure 37.

AS: HOL.:
k k k
C C

k
c — cg
ST RTINS A
g i i o
FI1GURE 37. The Antisymmetry and Holonomy relations; a,b,c,g € m X.

For A & X supporting an order 1 non-repeating Whitney tower W, we define the order 1
non-repeating intersection invariant A\ (A) in the quotient of A; by the INT intersection
relations shown in Figure 38:

M(A) = -1, € Ay/INT

where the sum is over all order 1 non-repeating intersections p in W.

We next discuss how the AS antisymmetry, HOL holonomy and INT intersection relations
in the target of A; account for indeterminacies due to choices in the construction of the (based,
oriented) order 1 non-repeating Whitney tower W:

The AS relations (Figure 37 left) account for the choice of orientations on the Whitney
disks via a fixed convention choice for the induced vertex orientation of the trees (section 1.19)
so that signs of the order 1 intersections are well-defined (section 4.7). (In this non-repeating
order 1 setting, AS relations could in fact be avoided by using the cyclic ordering of the
distinct labels to prescribe orientations on all the Whitney disks in W, cf. Exercise 3.9.8.)

The HOL relations (Figure 37 right) account for the choices of whiskers on the trivalent

vertices, since changing such a whisker corresponds to simultaneous right multiplication on
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FIGURE 38. The INT intersection relations in the target of \;, with S : S? ¢
X varying over generators for mo(X) as a m; X-module.

the three group elements decorating the edges of the tree. We remark that by the splitting
operation (section 4.3) it can be arranged that each Whitney disk contains exactly one tree,
so that in a split Whitney tower choosing a whisker for each trivalent vertex is the same as
choosing a whisker for each Whitney disk.

The INT relations (Figure 38 left) account for choices of the interiors of Whitney disks in
W, and depend on A and m X via the order 0 intersection pairing Ag. To clarify notation:
The terms of \g(Ay, S) decorating the edge of the tree in the left of Figure 38 denote a
linear combination of signed trees (section 4.1.2). Here S is a 2-sphere that has been tubed
into the Whitney disk W, j), and \g(Ayg, S) is computed using a whisker for S given by the
tube together with a whisker for the trivalent vertex of the tree (i, j) in W(; ;. Note that
the illustration of S on the right side of Figure 38 is schematic, as suggested by the dotted
subarc.

The following characterization of A; (A, As, A3) shows in particular that it does not depend
on the choice of order 1 non-repeating Whitney tower:

Theorem 3.2. \ (A, Ay, A3) only depends on the homotopy classes of the A;, and the
following three statements are equivalent:

(1) Ai1(Aq, As, A3) vanishes.
(i) A1 U Ay U As admits an order 2 non-repeating Whitney tower.
(iii) Ay, Ag, A3 can be made pairwise disjoint by a homotopy.

Theorem 3.2 can be proved using arguments detailed in Section 4 (see Exercise 4.8.17),
with the equivalence of statements (i) and (iii) being a special case of Theorem 1.10 (see
Exercise 3.9.6 for a proof in this case).

In the case that X is simply connected A;(A;, A, A3) reduces to the Matsumoto triple
[20] and the implication (i) = (iii) was shown by Yamasaki [35].

For more than three components one similarly defines the order 1 non-repeating inter-
section invariant \;(A) of A = Ay, As, ..., A, by counting, modulo the AS, HOL and INT
relations, the distinctly-labeled decorated order 1 trees in the intersection forest of any or-
der 1 non-repeating Whitney tower on A. Then A\;(A) is a homotopy invariant of A which
vanishes if and only if A supports an order 2 non-repeating Whitney tower.

Note that the OR relations of section 3.2 are not needed in the order 1 setting because we
are counting order 1 trees so edges can always be taken to be oriented towards the trivalent

vertex.
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3.6. Pulling apart m-tuples of spheres. As described in detail in [31], the above discus-
sion gives the framework for a complete obstruction theory for pulling apart m 2-spheres,
i.e. making the spheres pairwise disjoint by a homotopy: Theorem 1.10 says that the ex-
istence of an order m — 1 non-repeating Whitney tower on A; U A U --- U A,, suffices to
pull the A; apart. And given an order n non-repeating Whitney tower W supported by
A= Ay, As, ..., Ay, the intersection forest ¢(W) represents an obstruction to the existence
of an order (n+ 1) non-repeating Whitney tower. Denoting by A,,(m) the abelian group gen-
erated by order n trees with distinctly labeled univalent vertices from {1,2,...,m} and edges
decorated by elements of 7 X, modulo OR, AS, HOL and IHX relations, where for n > 2
the IHX relation is as in 1.15 but with distinct univalent labels and with edge decorations,
this obstruction lives in a quotient of A,,(m) by order n intersection relations INT,,(A) which
correspond to changes in t(W/) coming from tubing Whitney disk interiors into 2-spheres.
Since all the relations correspond to geometric manipulations of VW, the vanishing of the
obstruction implies the existence of an order (n + 1) non-repeating Whitney tower via the
same order-raising maneuvers as in Section 4.6, which are all homogeneous in the univalent
labels.

There are two main challenges here: One is concisely formulating the INT,,(A) intersection
relations, which for n > 2 can be non-linear. And the other is showing that no additional
relations other than OR, AS, HOL, THX and INT, (A) are needed to ensure that \,(A)
does not depend on the choice of W. This second issue essentially amounts to showing that
An(A) does not depend on the choices of Whitney disk boundaries. Evidence that the AS,
HOL and [HX relations suffice to give independence of Whitney disk boundaries comes from
Theorem 8 of [31] which states that A,(A) € A,(m) does not depend on the choice of W
in the setting that the components A; are properly immersed disks into the 4-ball, where
INT,,(A) relations are trivial (and OR is not relevant).

By [31, Lem.19], A,(m) is isomorphic to the direct sum of (

m )n!—many copies of the

n+2
integral group ring Z[m X V] of the (n + 1)-fold cartesian product 7, X"+ = 71, X x
mX X -+ x mX. Note that A, (m) is trivial for n > m — 1 since an order n unitrivalent

tree has n + 2 univalent vertices. The absence of torsion in A,(m) is in alighment with the
fact that the torsion subgroup (which is only 2-torsion) of the tree group 7, of Definition 2.1
(repeating labels allowed) corresponds to the obstructions to converting twisted Whitney
towers to framed Whitney towers in the 4-ball [9]. Such obstructions are not relevant in
the non-repeating setting since the boundary-twisting operation (Figure 28) can be used to
eliminate twisted Whitney disks at the cost of only creating intersections whose trees do not
have distinctly-labeled univalent vertices.

See [31] for further discussion of pulling apart m components, including examples where
An(A) is well-defined.

The case of pulling apart 4-tuples of spheres in a simply connected 4-manifold is already
interesting, and only partially understood. In [31, Sec.8| the order 2 invariant A\y(A) for
A= Ay, Ay, A3, Ay supporting an order 2 non-repeating tower WV in a simply connected X is
examined in detail, including a precise formulation of the INT,(A) relations which account
for choices of Whitney disk interiors.

The following is Conjecture 29 of [31]:
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Conjecture 3.3. For any A = Ay, Ay, A3, Ay supporting an order 2 non-repeating tower VW
in X, the components of A can be pulled apart if and only if Aa(A) € Ay/ INTy(A) as defined
in [31, Sec.8| vanishes.

As explained in [31, Sec.8.3.6], the computation of the image of the INTy(A) relations in
Ao(4) = Z @ Z leads to some interesting number theory [18].

3.7. The order 1 self-intersection invariant 7. Having considered non-repeating order 1
invariants which generalize the classical order 0 intersection pairing and fit into an obstruction
theory for pulling apart m-tuples of spheres, we next describe the order 1 generalization of
the classical self-intersection invariant which fits into an obstruction theory for the existence
of order n framed Whitney towers.

For simplicity we restrict attention to the case of a single immersed 2-sphere A : S? 95 X*
with 79(A) = 0 (or in classical notation po(A) = 0). The vanishing of 75(A) means that A
admits an order 1 framed Whitney tower W, and we want to “count” the decorated trees t,
associated (as in section 3.4) to the order 1 intersections p in W to define an order 1 invariant
71(A) which does not depend on the choice of W and gives the complete obstruction to A
bounding an order 2 framed Whitney tower.

Denote by 77 := Ti(mX) the quotient of the free abelian group on decorated order 1
trees by the above AS, HOL relations (Figure 37) and also the new FR framing relations
shown in Figure 39. The necessity of these FR relations is illustrated (schematically) on the
right of Figure 39, which shows how performing opposite boundary-twists (Figure 28) on a
framed Whitney disk W along different arcs of OW yields a new framed Whitney disk that
has two interior intersections with A whose corresponding trees equal to the terms of an FR
relation. Univalent labels are dropped from our trees since we are now working with just a
single component. So the previously defined AS and HOL relations are now expressed in 7
by the same equations but without univalent labels.

FR:

FIGURE 39. The FR framing relations; a,b € m X

We also need to refine the INT relations to account for the effect that tubing into a sphere
can have on Whitney disk twistings. For instance, if a framed Whitney disk is tubed into
a sphere S whose normal bundle has non-trivial 2nd Stiefel-Whitney number ws(S5), then a
framed Whitney disk can be recovered by boundary-twisting. Figure 40 shows these refined
INT relations in the target of 71, with the edge decoration wy(S) identified with 0 or 1 in

Z|m X| depending on whether it is trivial or not. This is explained in complete detail in
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section 4.1, where the full definition of the INT relations is given, which also allows for S to
be an immersed RP? in certain cases depending on the elements a, b.

Ao(4S) ,(S)
INT: Y + Y = 0

FIGURE 40. The INT intersection relations in the target of 7; with a,b €
mX, and S : S? & X varying over generators for m(X) as a m X-module.

So for A with vanishing 79(A), choose an order 1 framed Whitney tower W on A and
define the order 1 framed intersection invariant:

71(A) = -1, € T/INT

where the sum is over all order 1 intersections p in W.
The following result of [29] shows that 71(A) is an obstruction to homotoping A to an
embedding, and in particular that it does not depend on the choice of W:

Theorem 3.4. 71(A) only depends on the homotopy class of A, and the following four
statements are equivalent:
(i) 71(A) vanishes.
(ii) A admits an order 2 framed Whitney tower (cf. Definition 1.7).
(i) A admits a height 1 Whitney tower (cf. Definition 1.12).
(iv) A is stably homotopic to an embedding.

Here A being stably homotopic to an embedding means that A is homotopic to an embed-
ding in the connected sum X#"S? x S? of X with some number n of copies of 5% x S2.

See section 4.1 for proof that 7 (A) is a well-defined homotopy invariant. The equivalence
of statements (i) and (ii) is shown in section 4.2.

See [29, Thm.2| for the equivalence of statements (i) and (iii); and [28, Cor.1] for the
equivalence of statements (i) and (iv).

3.8. Examples and questions. If X is simply-connected then the target 77 /INT of 71 (A) is
Z/2Z or 0, depending on whether A is spherically characteristic or not. Here A is spherically
characteristic if A\g(A, S) = Ao(S,5) mod 2 for all S € mX. In this simply-connected case
71 is generated by the order 1 tree with all trivial edge decorations, which is 2-torsion by the
AS relations, and is equal to zero by the INT relations if A is not spherically characteristic.

For example, 3CP' 9» CP? is spherically characteristic, and Figure 41 shows the com-
putation of 7(3CPY) = 1 # 0 € 7;/INT(3CP') = Z/2Z, so 3CP! is not homotopic to an
embedding (compare [17]).

For X not necessarily simply-connected, taking the quotient of 77 by mX — 1 yields
11(A) € Z/2Z or 0 depending on whether A is spherically characteristic or not, and in this
quotient target 71 reduces to the spherical Kervaire—Milnor invariant km of [13, 33|.

Even after trivializing all 7w X-decorations 7; = km sees global information in closed 4-

manifolds:
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FIGURE 41. Left: The boundary circle in S of the sum of three parallel
copies of the +1-framed 2-handle in a standard handle-body description of
CP?. Moving to the right: The track into the 0-handle B* of a null-homotopy
of this circle describes the rest of 3CP*, with two self-intersections admitting
the 1framed Whitney disk W that has a single transverse intersection with
3CP-.

Theorem 3.5 (Freedman—Kirby, Kervaire-Milnor, Stong). Suppose X is a smooth closed
4-manifold, and Ho(X;Z/2Z) is spherical. If A : S* & X is characteristic and jo(A) = 0,
then

A - A — signature(X)

(mX —1): nA) 3 mod 2

See the end of [33] for a proof.

On the other hand, for 7 X non-trivial the cardinality |7; (X )| can be large. For example,
if 7 X is left-orderable and the INT relations are trivial then 7;(m X) is isomorphic to
Z° @ (Z/2Z)> (see |28, Prop.2.3.1]).

Let ' be a finitely presented group, and let g be any element of 7:1(11) Then one can
find a 4-manifold X with non-empty boundary such that mX =T, and A : S? & X with
INT(A) trivial and 7 (A) = ¢ (Exercise 3.9.9).

But finding examples of non-trivial 71 (A) in closed 4-manifolds that depend on non-trivial
edge decorations appears to be difficult, and no such examples are currently known. Let
(1,1,1) denote the order 1 tree with all three edges decorated by the trivial element 1 € 7 X.
Then (1,1,1) is 2-torsion by AS (or FR) relations, and generates an order 2 subgroup of
7:1(71'1X ), for any m; X. We have the following open “realization problem” for closed X:

Open Problem 3.6. Find an example of A & X such that the following three statements
all hold:

(i) X is closed, and
(ii) |71 (mX)/INT(A)| > 3, and )
(iii) 7(A) is not contained in the subgroup generated by [(1,1,1)] € T1(m X)/INT(A).

Poincare duality contributes to the difficulty of Problem 3.6 since if Ao(A, S) = 1 for some
S € mX, then |T;(m X)/INT(A)| < 2 by the INT relations and 7; reduces to km.

An easier to state, but possibly more difficult, open realization problem is: Find an ex-
ample of A & X such that km(A) = 0 but 7,(A) # 0.

In light of Theorem 3.5 and Problem 3.6 one is led to the question:

Question 3.7. What global information is carried by non-trivial m-decorations in T in

closed 4-manifolds?
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In comparison with the classifications of order n framed and twisted Whitney towers on 2-
disks in the 4-ball ([11] and Section 2), the higher-order invariants invariants for 2-spheres in
4-manifolds have barely begun to be defined, even in simply connected 4-manifolds. Defining
an order 2 framed invariant is already an interesting challenge:

Open Problem 3.8. For A : S? & X with vanishing 7(A), formulate and prove invariance
of an order 2 framed invariant To(A) whose vanishing is equivalent to A admitting a framed
order 3 Whitney tower.

In addition to the issues that arise as in Conjecture 3.3, here one has to also keep track of
Whitney disk twistings.

3.9. Section 3 Exercises.

3.9.1. Ezercise: Suppose A; and A; are oriented immersed 2-spheres in an oriented 4-manifold
X, and p and ¢ are oppositely signed intersections in A; th A; with equal associated group
elements g, = g, € mX. Check that the union of a path in A; from p to ¢ with a path in
A; from ¢ to p is a null-homotopic loop in X. Conclude that p and ¢ admit an immersed
Whitney disk.

3.9.2. Ezxercise: For a collection of immersed 2-spheres A = Ay, As, ..., A,, & X*, the van-
ishing of A\g(A) (section 3.2) is equivalent to the pairwise vanishing of the classical intersection
pairing A\o(A;, A;) € Z[m X] for i # j (section 3.1). Show that \g(A) vanishes if and only if
A supports an order 1 non-repeating Whitney tower.

3.9.3. Exercise: Show that any twisted Whitney disk can be converted to a framed Whitney
disk having the same boundary by applying the boundary-twisting operation of section 2.2.

3.9.4. Exercise: Show that 79(A) vanishes if A supports an order 1 framed Whitney tower.
3.9.5. Ezercise: Show that A supports an order 1 framed Whitney tower if 79(A) vanishes.

3.9.6. FExercise: If Ay, Ay, A3 support an order 2 non-repeating Whitney tower, show that
Ay, Ay, A3 can be made pairwise disjoint by a homotopy.

3.9.7. Ezercise: If order 1 intersections p,q € W(; ;) th Ay are paired by an order 2 Whitney
disk Wi ).k, then p and ¢ have opposite signs by the definition of Whitney disks. Check
that the order 1 decorated trees ¢, and ¢, associated to such p and g are equal for appropriate
choices of trivalent whiskers.

3.9.8. Exercise: Show that in the target of A;(Aj, Aa, Az) of section 3.5 the AS relations
could be avoided by using the cyclic ordering of the distinct labels to prescribe orientations
on all the Whitney disks in W (via a choice of positive or negative corner convention cf.
section 1.19).

3.9.9. Ezercise: Let T' be a finitely presented group, and let ¢ be any order 1 decorated tree
representing an element [t] € 7;(I"). Find a 4-manifold X with non-empty boundary such
that mX =T, and A : S? & X with INT(A) trivial and 7 (A) = [¢].

3.9.10. Ezercise: Generalizing the previous exercise, let I' be a finitely presented group, and
let g be any element of 7;(I'). Find a 4-manifold X with non-empty boundary such that
mX =T, and A: 5% % X with INT(A) trivial and 71 (A4) = g.
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3.9.11. Ezercise: Generalizing the previous exercise, let I' be a finitely presented group, let
g be any element of ’7~E(F), and let {21, 29,...,2,} be any collection z; € Z[I'|. Find a 4-
manifold X with non-empty boundary such that m X =T, and A : S? & X with INT(A)
determined by A\o(A4, S;) = z; for S; generating m X, and 71(A) = g.

4. APPENDIX

Section 4.1 gives a detailed proof of the homotopy invariance of the order 1 invariant
71(A) from section 3.7, and section 4.2 proves that 7(A) is the complete obstruction to
A supporting an order 2 framed Whitney tower. This proves the first two statements of
Theorem 3.4, and simpler versions of the analogous arguments prove the first two statements
of Theorem 3.2 (Exercise 4.8.17).

The splitting of Whitney towers illustrated in Figure 10 is extended to twisted Whitney
towers in section 4.3.

Whitney move versions of the IHX and twisted IHX relations are described in detail in sec-
tion 4.5. These constructions are essential to the framed, twisted, and non-repeating order-
raising obstruction theories. A proof of the twisted order-raising Theorem 2.5 is sketched in
section 4.6.

4.1. Homotopy invariance of 7,(A). Here we show that for A : S & X* the order 1
framed intersection invariant 7(A) of Theorem 3.4 in section 3.7 only depends on the ho-
motopy class of A.

The definition of 71(A) requires that A supports an order 1 framed Whitney tower W,
the existence of which is equivalent to A having vanishing order 0 self-intersection invariant
70(A) = 0 by Theorem 3.1. As recalled and clarified below, 7(A) is determined by the
intersection forest (), which in this setting is a multiset of signed decorated order 1 trees,
one for each transverse intersection between A and a Whitney disk in YW. The main challenge
is to show that the element represented by ¢(W) in the target of 71(A) does not depend on
the choices of oriented Whitney disks in W. Then invariance under homotopies of A will be
shown in section 4.1.9.

4.1.1. Order 1 tree notation. We introduce the following streamlined notation for the order 1
decorated trees of section 3.4 in our current 1-component setting: Since now the univalent
labels are not relevant, a tree is determined by a cyclic ordering of the elements of 7w X
decorating the edges. By appropriately choosing the whisker on the trivalent vertex, one
edge decoration on each tree can be normalized to the trivial element 1 € m X. So for
a,b € m X we will use the notation (a,b) to denote the decorated order 1 tree with one edge
decorated by 1 and the other two edges decorated by a and b respectively, with the vertex
orientation given by the cyclic ordering 1 — a — b.

As before, any edge decorations in Z[r X| are understood to be linear combinations of
trees.

4.1.2. Relations in target of 7. Recall from section 3.7 that ’7~] = 7~](7T1X) denotes the
abelian group on decorated order 1 trees modulo the AS antisymmetry, HOL holonomy and
FR framing relations (see just below), and that 7y(A) takes values in 7; modulo the INT
intersection relations. Since these last relations depend on A we sometimes denote them by

INT(A) for emphasis.
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The relations in the target of 7(A) expressed in Z[m X| x Z[m; X] via the streamlined
notation are:

AS: (a,b) = —(b,a)

HOL: (a,b) = (ba t,a ') = (b1 ab™)
FR: (1,a) + (a,a) =0

INT: (a, Ao(A,S) +wa(S)-1)=0

Here a,b € m X, and S ranges over generators for mX (as a module over 7 X).

The AS and HOL relations imply that the decorated trees (a,1) and (a,a) are 2-torsion
elements, which by FR are equal. This will be used in several places below.

Terms are expanded linearly in the INT relations, so

(a, Ao(A, S) +wa(S) - 1) = (a, Ao(A,9)) + (a,w2(5) - 1),

and
(av )‘O(A7 S)) - (a’ ZGP ) gp) = Zep ) (CL, gp)

for Mo(A,S) =2 cans € 9p-

For the case a> = 1 € mX in the INT relations, we allow S to be an immersed RP?
representing a, i.e. @ € m X is the image of 7;RP%. When S is an RP? the order 0 intersection
pairing Ag(A, S) is only well-defined up to right multiplication by a and change of sign, but
the AS and HOL relations make (a, A\o(4, S)) well-defined in 7;. This will be discussed in
detail in section 4.1.7 where this form of the INT relation is used in the proof that 7;(A) is
well defined.

4.1.3. Definition of T1(A). For A satisfying 79(A) = 0, choose any order 1 framed Whitney
tower YW on A and define:

11(A) = Zep -t, € T /INT(A)

where the sum is over all transverse intersections p between A and the Whitney disks in W.
We use the positive corner convention from section 1.19 for inducing cyclic orientations at
the trivalent vertices from the Whitney disk orientations.

We remark that by eliminating all order 2 intersections using the pushing-down operation
(Exercise 1.22.13) it may be arranged that the intersection forest t(W) (section 1.13) is equal
to the sum defining 7 (A), i.e. 7(4) = [t(W)] € T;/INT(A). In the following this will be
assumed for clarity, although it is not necessary.

4.1.4. Independence of Whitney disk interiors: Let W be a Whitney disk in W. If V is
another framed Whitney disk with same boundary v as W, then the union of W and V'
is a map of a 2-sphere, which might not be smooth along v. We want to use this sphere
to express, via an INT relation, the change in 71(A) due to replacing W by V. It is not
obvious what intersections with A might be created by perturbing the sphere to be smooth
and transverse to A, so we will proceed carefully.

Denote by a and [ the two closed subarcs of a U 8 =~ := W = JV that run between

the self-intersections p and ¢ of A that are paired by W and V.
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A small collar of o in W determines a 1-dimensional subbundle w, of vx A|,, the normal
D?-bundle to A restricted to . Similarly, a small collar of o in V' determines a 1-dimensional
subbundle v, of vy A|,. Note that at each of the endpoints p and ¢ of « there is a canonical
1-dimensional subspace of vx A|, given by a short subarc of 5. We may assume that w, = v,
near p and ¢ by a small isotopy, so there is a relative rotation number m € Z of v, with
respect to w,. A boundary-twist (Figure 28) on V' changes m by +1, so by performing m-
many boundary-twists on V' we can get a new Whitney disk V' such that the corresponding
1-dimensional subbundle ¢/, of vx A|, has zero relative rotation number with respect to w,,
and hence it can be arranged by a small isotopy of V' near « that v/, = w, everywhere along
Q.

Applying the same discussion and boundary-twisting n times along 3, we can assume that
we have also arranged that a small collar v of 8 in V' satisfies v} = wg C vx A|p everywhere
along [.

Now the unions w := w, Uwg and v := v, Uvj are collars of v in W and V' which are
equal w = v'.

Removing these collars and gluing we get a map of a 2-sphere S := (W \ w) U (V" \ v')
which is smooth except along the gluing circle v := (W \w) = 9(V'\v'). Since 7' is disjoint
from A, perturbing S to be smoothly immersed will not create any new intersections with A.
(Note that we do not need to control self-intersections of S because they do not correspond
to contributions to 71.) The intersections between S and A are transverse and consist of
Am W and A m V', where A th V' consists of A h V' together with the (m + n)-many
intersections of A M V'’ which were created by the boundary-twists on V. These boundary-
twist intersections correspond to the trees m(1, a) +n(a, a), where m twists were done along
the arc o« C v whose corresponding edge decoration has been normalized to 1, and n twists
were done along the other arc 5 C v whose corresponding edge decoration is a (Figure 39,
with b = 1). Taking the orientation of S to be induced by the orientation of V' and the
opposite orientation of W, we have that the difference in 7(A) due to replacing W by V is
(a, Xo(A,S))+m(1,a)+n(a,a). It just remains to check that we(S) = m +n mod 2, so that
this difference is an INT relation.

To compute wy(S) as a mod 2 self-intersection number, observe that S is homotopic to
S’ = W UV’ by a homotopy supported near the common collars w = v’ that were deleted
to form S (Exercise 4.8.1). Now we can assume that S’ has been perturbed to be smooth
along v without worrying about creating intersections with A since we will only be counting
the mod 2 intersections between S’ and a normal push-off S”. Form S” by taking any
Whitney parallel push-off of v and extending over W and V' by Whitney sections to get the
two hemispheres of S”, and count the number of intersections in S’ M S”: The number of
intersections between W and its push-off must be even, since W is framed. The number of
intersections between V' and its push-off must equal m + n mod 2, since V' was created by
m + n boundary-twists on the framed V. Each transverse intersection between W and V'
will contribute two intersections between their push-offs.

So we have wy(S) = m +n mod 2, and it follows that the change in 7 (W) resulting from
replacing W by V' is exactly described by the INT(A) relation:

(a, (A, 5)) +m(l,a) +n(a,a) = (a, \g(A,S) + w2(S) - 1)

4.1.5. Independence of Whitney disk boundaries: To show that 71(WW) does not depend on

the choices of boundaries of the Whitney disks, for fixed pairings of the self-intersections
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in A, it is convenient to temporarily weaken the definition of an order 1 framed Whitney
tower by allowing transverse intersections among the boundaries of the Whitney disks in W
(following [13, Sec.10.8] and [29]). The definition of 7; is extended to such Whitney towers
by assigning trees to the boundary intersections between Whitney disks in the following way.

The Whitney disk orientations induce orientations on their boundaries via the usual con-
vention that OW together with a second inward pointing vector give the orientation of W.
We will use the notation 0, W to indicate the boundary arc of W that is oriented towards
the positive self-intersection of A paired by W, and 0_W for the boundary arc of W that is
oriented towards the negative self-intersection paired by W.

Let p € OW N 95V, for €,6 € {+,—}, be a point such that the ordered pair of tangent

vectors (0. W, 05V'), is equal to the orientation of A at p. Choose whiskers on the trivalent
vertices of the rooted trees associated to W and V' so that the edges dual to 0. W and 05V are
each decorated by the trivial element 1 € 7 X. This determines elements a and b decorating
the other edges of the two respective trees. See Figure 42. Define the signed tree ¢, - t,
associated to such a p by:

(1) €1, = —ed - (a,b°)

where €,,¢,0 € {+,—}={+1,—1}. The reason for the minus sign in Equation (1) will be
made clear in Figure 44 below.

FIGURE 42. The case € = + = § in Equation (1): The illustrated intersection
point p € 9. W N 05V between Whitney disk boundaries is assigned the signed
tree €, - t, = —€d(a%, b°) = —(a,b).

One can check that this definition of ¢, does not depend on the choices made (Exer-
cise 4.8.2). The extended version of 71(A) is defined by including all such ¢, in the sum.
Since all boundary intersections can be eliminated by finger moves which create interior in-
tersections having the exact same trees (Figure 43), this extended definition can always be
reduced to the original one.

Properly interpreted, the formula assigning ¢, to p € OW N OV also works when W = V.

P S
For instance, for p € 0_W N 04W such that the orientation of A is equal to (O_-W,0,W),,
then €, - t, = —(a,a™'), where the rooted tree associated to W has decorations 1 and a on

the edges dual to the 0, W and 0_W boundary arcs respectively. (Exercise 4.8.2.)
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FIGURE 43. Eliminating p € 0, W N0,V from Figure 42 by pushing across the
positive self-intersection paired by W creates a positive intersection p’ € AV
with signed tree €, -ty = +(b,a) = —(a,b) =€, - t,.

The proof of independence of Whitney disk boundaries now goes as follows. For a fixed
choice of pairings of self-intersections induced by a given collection of Whitney disks, any
other configuration of Whitney disk boundaries can be achieved by a regular homotopy
of (collars of) the given Whitney disk boundaries, fixing the self-intersection points of A
(Clarification: we mean here that this regular homotopy is induced by a regular homotopy
of the preimages of the Whitney disk boundaries in the domain of A, and extends to a
regular homotopy of collars of the Whitney disks in X'). During such a homotopy, 71 does
not change since boundary intersections come and go in canceling pairs, or accompanied by a
canceling interior intersection when pushing over a self-intersection point of A, see Figure 44
for one case and Exercise 4.8.3 for the others. (This step uses the fact that the domain of A
is simply connected.)

FIGURE 44. Pushing 0. W into 0,V across the positive self-intersection of
A paired by V creates p € 0, W N,V and ¢ € A m W with algebraically
canceling signed trees €, - t, = —(a,b) = —¢, - t,.

4.1.6. Independence of pairings of self-intersections: Let W be a Whitney disk in W pairing

self-intersections p and ¢, and let W’ be another Whitney disk in W pairing self-intersections
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p’ and ¢, such that all these self-intersections determine the same element of 7 X. Then
there exists a framed Whitney disk V' pairing p’ and ¢ such that 0V’ is disjoint from all
singularities in W (including Whitney disk boundaries, cf. Figure 43). Now a framed Whitney
disk V' pairing p and ¢’ can be constructed from W and W’ (minus small corners) and a
parallel of V" (with the orientation reversed) as illustrated in Figure 45.

Replacing W and W’ with V' and V' in W does not change 71(A) since the order 1
decorated trees corresponding to the intersections A M V' cancel with those corresponding
to the oppositely-signed parallel copy of V' in V' (Exercise 4.8.4). Any choice of pairings can
be achieved by iterating this construction.
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FIGURE 45. Transverse intersections between Whitney disks and A are not
shown. This picture is otherwise accurate up to diffeomorphism since W, W’
and V' can be assumed to be framed and embedded. The dotted sub-arc of
the doublepoint loop for p is understood to extend outside the 4-ball of the
figure.

4.1.7. The INT relation for RP%s. For use in the next step of the proof, we clarify here the
INT relation (a, \o(A, R) +ws(R) -1) = 0 € T; for the case where > =1 and R : RP? ¢ X

The pairing \g(A, R) sums the signed group elements ¢, - g, associated to each p € Ah R
as in section 3.1, except that because RP? is neither simply connected nor orientable now
both €, and g, depend on the choice of sheet-changing loop through p. Let d be a sheet-
changing loop through p, and let dg be the path d N R. Then g, = [d] € m X is the group
element associated to p using d, and by definition the sign ¢, is gotten by transporting a
local orientation of R from the basepoint of R back along dg to p, where it is paired with
the orientation of A at p for comparison with the orientation of X. Any different choice
of dr changes g, by right multiplication by a" and changes €, by multiplication by (—1)"
(Exercise 4.8.5), so A\o(4, R) € Z[m X] is only well-defined up to the relations g = —ga, for
all g € mX.

In the setting of the INT relations, the local orientation of R comes from the orientation
of the Whitney disk that R has been tubed into, and we have (a,g) = —(a, ga) by the HOL
and AS relations. So (a, A\o(4, R)) is well-defined in T5.

As for 2-spheres, the second Stiefel-Whitney number wy(R) € Z5 is computed as |R h R/|
mod 2, where R’ is a parallel copy of R. (Recall that (a,ws(R) - 1) is 2-torsion in 77.)

4.1.8. Independence of sheet choices: For A : S? &= X, let p and ¢ be a positive and a negative
transverse self-intersection of A, and denote the preimages by A7'(p) = {z,2'} C S?, and
A q) = {y,y'} C 5~

If p and ¢ have common group element a, then any Whitney disk W pairing p and ¢
induces a pairing of {z, 2’} with {y,4'} since each arc of OW runs between a sheet of A

around p and a sheet of A around q.
53



Framed Whitney disks exist for both of the two pairing choices x + y, 2’ < ¢’ and
r <y, 2" + yif and only if a®> = 1 € m X (Exercise 4.8.6). So we need to show that for
any a such that a®> = 1, 71(A) does not depend on these choices of preimage pairings, also
called choices of sheets (|32, Sec.4]).

! c_ !
X y
d, D d
Yy . X

c

+

FIGURE 46. In S?: The quadrilateral » = ¢, Ud_ Uc_ Ud, bounds the 2-cell D.

Let W and V be framed Whitney disks corresponding to the two ways of pairing the
preimages of such a pair p and ¢ having group element a with a®> = 1. The union of the
preimages of the Whitney disk boundary arcs A~1(0W) U A71(dV) is a quadrilateral r in
S? which is the union of the two pairs of arcs cx := A71(0.W) and dy := A7 (0+LV) (see
Figure 46). Since 71(A) does not depend on the choices of boundaries of W and V, we
may arrange that r is embedded and bounds a 2-cell D in S? such that A restricts to an
embedding on D. (For later use we have chosen OV to coincide with OW near p and ¢, as
indicated in Figure 46.)

The union A(D) U W UV defines the image of a map R : RP? — X representing a
(Exercise 4.8.7). This R contains the transverse intersections A h W and A iV, but R is
not transverse to A along A(D), and R is not smooth along p := A(r). We will describe
a perturbation of R to a smoothly immersed R’ : RP? - X transverse to A such that the
perturbation creates exactly new intersections R’ th A which correspond to wq(R'). Then the
change in 71(A) due to replacing W by V will be given by (a, \g(A, R') + wa(R') - 1).

The perturbation of R to R’ uses the following lemma, which will be proved below:

Lemma 4.1. There exists a push-off p’ of p such that p' is normal to A and p' restricts to
Whitney parallels of OW and OV .

See Remark 1.6 for an explanation of “Whitney parallel”.

Given p’ as in Lemma 4.1, we define R’ : RP? &+ X as follows. Extend p’ across W and V
to get Whitney parallels W’ and V’. Extend p’ generically across A(D) to get A(D)" which
is transverse to A(D).

This defines the image W’ U V' U A(D)’ of a map RP? — X. Now smooth the corners of
W' UV'UA(D) near p' by a perturbation supported away from A to get R’ : RP? 9= X.

We have AWM R = (A W)U AN V)U(AMAD)).

By construction, the intersections A M W' are all parallel to the intersections A h W,
and the intersections A th V' are all parallel to the intersections A h V. Also A A(D) =
A(D) h A(D)', since A restricts to an embedding on D.

We claim that |A(D) m A(D)| = we(R') mod 2. To check this claim, we can use a

smooth perturbation of the topological R : RP? — X above as a parallel of R, and compute
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wa(R') = |R M R'| mod 2, as in section 4.1.7. Recall that R = A(D)UW UV, and since we now
are not concerned with controlling intersections with A we can take any small perturbation
near p to make R smooth.

Since W and V are framed, and R’ restricts to Whitney parallels of 9W and 0V, we have
WhW =0=V V' mod 2. So the only possible contributions to |R M R'| mod 2 come
from A(D) i A(D)" as claimed.

The group element associated to any point in A(D) h A(D) = At A(D) C A R is
1 or a, so the change in 74 (A) due to replacing W by V' is (a, A\o(A4, R') + w2(R') - 1), since
(a,1) = (a,a) is 2-torsion.

To show independence of sheet choice it just remains to prove Lemma 4.1.

Proof of Lemma 4.1. We want to define a push-off p’ of p =9, WUO_VU—-0_-WU—-0,V
which is normal to A and restricts to Whitney parallels of 0W and 9V'.

Consider the normal disk-bundle vx W gy, which is the restriction to W of the normal
disk-bundle vxW of W. Denote by Ar C vxW/|sw the sheets corresponding to A with
O_W C A_and 9, W C A,. Figure 47 shows an embedding of vxW sy = S' x D? into
3-space, as in Figure 6.

At p and at ¢, the two sheets Ay split each of vxWsw(q) and vxW|sw(p) into four
quadrants. We define a preferred quadrant at p and at ¢ as follows. The orientation of A
induces orientations of the Ay, which in turn induce orientations of 0A_ and 0A, via the
usual convention. At the positive self-intersection p the preferred quadrant is bounded by

——
the vectors 0A, and 0A_, and at the negative self-intersection ¢ the preferred quadrant is

bounded by the vectors —(‘Ei and —an .

Define p'(p) and p'(q) by choosing a vector in each of these preferred quadrants (see left
of Figure 47).

Extend p'(p) and p'(¢q) to a section p'(OW) of vxWow over OW such that p/'(OW) is
normal to both sheets of A along OW, as in the right of Figure 47. Note that this section
exists by our choices of preferred quadrants.

FIGURE 47. In vxW/|sw: On the left, p'(¢) and p/(p) in the preferred quad-
rants, and on the right, extended to a red Whitney section p'(0W') which is
normal to A. The blue ‘standard’ Whitney section W is shown as a reference
with Figure 6.

55



To define p’ over V', note that we may assume that V' = W near both p and ¢ (Exer-
cise 4.8.8), so vx Vg coincides with vxW sy near p and ¢q. This means that the preferred
quadrants also coincide, and the previously defined p'(p) and p'(¢) can be extended along
JV to a section p/(0V) which is normal to the sheets of A.

So along p = 0, W UOI_VU—-0_-W U -0,V we have the push-off p/ assembled from the
push-offs along the given oriented subintervals starting at p(q): The section p'(0; W) ending
at p/(p) which is the restriction to ;W of p'(0W), followed by the section p'(0_V) which
is the restriction to _V of p/(0V') running from p'(p) back to p'(¢), followed by the section
p'(—0_W) which is the restriction to d_W of p/(OW') but running from p’(¢q) back to p'(p),
followed by the section p/(—0, V') which is the restriction to 9, V' of p’(0V') but running from
p'(p) back to p(q). O

We have so far shown that 7(A) € 7;/INT(A) is independent of the choice of order 1
framed Whitney tower for a fixed immersion A.

4.1.9. Invariance of 11(A) under homotopies of A. Tt suffices to check invariance under reg-
ular homopy by [25, Thm.1.2]. Suppose that 75(A) vanishes, and A is regularly homotopic
to A’. By the homotopy invariance of 7y it follows that A’ also supports an order 1 framed
Whitney tower. Recall that up to isotopy, any generic regular homotopy from A to A’ can
be realized as a sequence of finitely many finger moves followed by finitely many Whitney
moves.

An isotopy from A to A’ extends to any Whitney tower W on A to yield a Whitney tower
W' on A’ with identical intersection forests ¢(W) = t(W’), so 7 is invariant under isotopy.

Since any Whitney move has a finger move as an “inverse”, there exists A” which differs
from each of A and A’ by only finger moves (up to isotopy). Since a finger move is supported
near an arc, it can be made disjoint from the Whitney disks in any pre-existing Whitney
tower by a small isotopy, and the pair of intersections created by a finger move admit a
local clean Whitney disk disjoint from any other Whitney disks. So any Whitney tower
on A or A’ gives rise to a Whitney tower on A” yielding 7 (A) = 1 (A”) = 7 (A4’), since
71 does not depend on the choice of Whitney tower on A”. Here we are also using that
INT(A) = INT(A’) = INT(A”), since A, A" and A” are all homotopic.

4.2. 71(A) vanishes if and only if A supports an order 2 framed Whitney tower.
Here we show the equivalence of statements (i) and (ii) in Theorem 3.4.

If A supports an order 2 framed Whitney tower V, then 71(A) vanishes since V is also an
order 1 framed Whitney tower, and ) contains no unpaired order 1 intersections.

So assume that 7 (A) vanishes, and let YW be an order 1 framed Whitney tower on A. The
vanishing of 71(A) = [t(W)] € T1/INT means that the intersection forest t(W) = > ¢, - ¢,
lies in the span of the AS, HOL, FR and INT relators. Here we are considering ¢t(W) as a
word in the span of decorated order 1 trees.

The construction of an order 2 framed Whitney tower on A will involve two main steps:
First, geometric realizations of the relators will be used to modify W so that ¢(W) consists of
pairs £t, of oppositely-signed isomorphic trees corresponding to algebraically canceling pairs
of intersections. Then, further controlled modifications of WW will convert these algebraically
canceling pairs into geometrically canceling pairs of intersections admitting Whitney disks.

The issue here is that an algebraically canceling pair of intersections may lie in different
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Whitney disks (Figure 48), so achieving geometric cancellation will require “transferring”
intersections from one Whitney disk to another.
In the following W will not be renamed as controlled modifications are made.

4.2.1. Towards algebraic cancellation: Perform a finger move on A guided by a circle
representing any a € m X, and then tube the resulting clean local framed Whitney disk into a
2-sphere S. The resulting Whitney disk W has twisting w(W) = wy(S) mod 2. If wy(S) =0,
then after performing some interior twists on W it can be arranged that w(W) = 0 € Z.
If wy(S) = 1, then after performing one boundary-twist and some interior twists on W it
can be arranged that w(WW) = 0 € Z. So after recovering the framing on W it follows that
[t(W)] € T is changed exactly by adding the INT relator (a, A\o(A, S) + wa(S) - 1).

In the case where a* = 1, a similar but more complicated procedure changes [t(W)] € T;
exactly by adding (a, \o(4, R) + wa(R) - 1), where R : RP? & X represents a. This will be
shown below in Lemma 4.2.

By realizing INT relations in these ways we can arrange that ¢()V) lies in the span of AS,
HOL and FR relators. To realize any FR relator (1,a)+ (a, a) perform a finger move guided
by a circle representing a to get a clean local framed Whitney disk W. Then performing
two opposite boundary twists around each boundary arc of W changes (W) exactly by
(1,a) + (a,a).

So by realizing INT and FR relators we can arrange that ¢(W) lies in the span of AS
and HOL relators. By re-choosing whiskers on the trivalent vertices of trees to realize HOL
relations we can further arrange that ¢() lies in the span of AS relators.

At this point it is convenient to split VW so that each Whitney disk in W contains exactly
one interior intersection with A. This splitting is accomplished by finger moves guided by
arcs in the Whitney disks running from one boundary arc to the other, and is the easiest
case of Lemma 4.3 (see also Figure 10). Now any tree (a,b) € t()V) can be changed to
—(a,b) € t(W) simply by re-choosing the orientation of the corresponding Whitney disk.

As a result of these constructions we can assume that now the un-paired intersections in
W consist of algebraically canceling pairs.

FIGURE 48

4.2.2. Towards geometric cancellation: Consider an algebraically canceling pair of in-
tersections p = A W and ¢ = A M W', with €-t, = (a,b) and €-t, = —(a,b), where
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the b-decorated edge changes sheets at p and g respectively. See Figure 48, where the short
dashed sub-arcs indicate where sheets extend outside the 4-ball shown in the figure.

We will describe a controlled modification of W that “transfers” p over to W’ so that p and ¢
admit a framed order 2 Whitney disk. This “transfer move” will not create any new unpaired
order 1 intersections, and can be iteratively applied to convert all algebraically canceling pairs
into geometrically canceling pairs, yielding the desired order 2 framed Whitney tower on A.
Description of this modification will be accompanied by Figures 48 through Figure 52, with
some details left to the exercises.

FIGURE 49

The transfer move starts by pushing p off of W by a finger move into A as shown in
Figure 49. This finger move is guided by an arc in W along the b-labeled and 1-labeled edges
of t, from p to O, W.

FIGURE 50

The next step in the transfer move is to push one of the self-intersections of A created by
the first finger move across 0, W’ by a finger move as in Figure 50. This finger move is guided
by an arc in A from 0, W to 0,W’, and creates a new order 1 intersection p’ € A th W'.
(The 4-ball shown in Figures 4852 is a neighborhood of the union of this guiding arc with
W and W’.) We may ensure that p’ has the same sign as p did by choosing this guiding

arc to approach from the correct side of 0, W’ in A (Exercise 4.8.9), and in fact ¢t = ¢, by
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FIGURE 52

Exercise 4.8.10. As illustrated by the blue Whitney circle in Figure 51, p’ and ¢ admit an
order 2 framed Whitney disk by Exercise 4.8.11.

The construction has also created order 1 intersections r, s € A th A which admit a framed
embedded Whitney disk V', appearing “underneath” the horizontal sheet in Figure 52. This
V' has a pair of oppositely-signed intersections with A that admit a framed order 2 Whitney
disk whose boundary is indicated in blue in the figure (Exercise 4.8.12).

To see that this transfer move can be iterated to convert all algebraically canceling pairs
of intersections into geometrically canceling pairs, observe that disjointly embedded guiding
arcs in A can be found for all pairs of Whitney disks, and the new order 1 V-Whitney
disks are supported near these arcs and the original Whitney disks’ boundaries. The order 2
Whitney disks created in the construction do not need to be controlled since they can only
create new intersections of order > 2.

To complete the proof that the vanishing of 7(A) implies that A supports an order 2
framed Whitney tower it just remains to prove the following lemma describing the realization
of INT relations for RP?s, which was used to achieve all algebraically canceling pairs:
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Lemma 4.2. Let W be an order 1 framed Whitney tower on A, and let R : RP? & X

represent a € m X with a®> = 1. Then, after one finger move, A supports an order 1 framed
Whitney tower W' such that [t(W')] = [t(WV) + (a, \o(A, R) + wa(R))] € Ti.

Proof. Perform a finger move on A guided by a circle which is isotopic to R(RP') representing
a. We may assume that this circle is disjoint from all Whitney disks in YW. The new pair
of self-intersections created by this finger move admit a clean local framed Whitney disk W

whose boundary is indicated in green in Figure 53.

FIGURE 53. After the finger move: A neighborhood of the circle representing

a. The thick arrow indicates where the circle extends outside the illustrated
local coordinates.

Figure 54 shows the preimages in red of a different choice of Whitney arcs that induce the
opposite sheet choice as W. (Compare with Figure 46, but note that here preimages of the
same point are aligned vertically, as opposed to diagonally in Figure 46.)

FIGURE 54

Decomposing RP? as the union Mb Ugy_op2 D? of a Mdbius band neighborhood Mb
around RP! and a disk D?, we want to use R(D?*) as a Whitney disk 7’ whose boundary
is the image of the red arcs (see Figure 55). To do this first observe that we can assume
that R restricts to an embedding on Mb. Now extend an isotopy between R(RPl) and the

finger move circle to a homotopy of R(RP?) which restricts to an isotopy of R(Mb). To use
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the R(D?) as W’ we just need the image of the red arcs to align with 9R(Mb). This can be
accomplished by appropriately choosing the twisting of A in S* x B? along the finger move
circle, which is the core of R(Mb).

By general position we may assume that AN R(RP?) C R(D?),so Ath W' = A h R(RP?).
After arranging that w(W’) = 0 by boundary-twists, if needed, it follows that changing W
to W' by replacing W by W’ yields the change [t(WV')] = [t(W)+ (a, \o(4, R) +w2(R))] € T.
Here the (a,ws(R)) term comes from boundary-twisting (and interior-twisting) as needed to
make W' framed (as in section 4.2.1, any interior twists contribute trivially in 77). O

FIGURE 55. The image under A of the red arcs in Figure 54. Solid arcs are
in the present, dotted arcs are in the future, and dashed arcs are in the past.

4.3. Splitting twisted Whitney towers. A framed Whitney tower is split if the set of
singularities in the interior of any Whitney disk consists of either a single point, or a single
boundary arc of a Whitney disk, or is empty. This can always be arranged, as observed
in Lemma 13 of [30] (Lemma 3.5 of [26]), by performing finger moves along Whitney disks
guided by arcs connecting the Whitney disk boundary arcs (see Figure 10). Implicit in this
construction is that the finger moves preserve the Whitney disk twistings (by not twisting
relative to the Whitney disk that is being split — see Figure 56). A Whitney disk W' is clean
if the interior of W is embedded and disjoint from the rest of the Whitney tower. In the
setting of twisted Whitney towers, it simplifies the combinatorics of controlled manipulations
to use “twisted” finger moves to similarly split twisted Whitney disks into +1-twisted clean
Whitney disks.

We call a twisted Whitney tower split if all of its non-trivially twisted Whitney disks are
clean and have twisting 41, and all of its framed Whitney disks are split in the usual sense
(as for framed Whitney towers).

Recall from section 1.10 our convention of embedding into a Whitney tower the trees
associated to unpaired intersections and Whitney disks.

Lemma 4.3 ([8, 30|). If A supports an order n twisted Whitney tower W, then A is homo-

topic (rel 0) to A" which supports a split order n twisted Whitney tower W', such that:
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FIGURE 56. A neighborhood of a twisted finger move which splits a Whitney
disk into two Whitney disks. The vertical black arcs are slices of the new Whit-
ney disks, and the grey arcs are slices of extensions of the Whitney sections.
The finger-move is supported in a neighborhood of an arc in the original Whit-
ney disk running from a point in the Whitney disk boundary on the “upper”
surface sheet to a point in the Whitney disk boundary on the “lower” surface
sheet. (Before the finger-move this guiding arc would have been visible in the
middle picture as a vertical black arc-slice of the original Whitney disk.)

(i) The sub-multiset of signed framed trees ., €, -t, C t(W) is isomorphic to the
sub-multiset of signed framed trees ) , €y -ty Ct(W').

(ii) Fach w(Wy)-J® in t(W) gives rise to exactly |w(W,)|-many £1-J% in t(W'), where
each twisting coefficient 1 of the J® in t(W') has the same sign as the twisting
w(Wy) of the original W; C W.

Proof. NMustrated in Figure 56 is a local picture of a twisted finger move, which splits one
Whitney disk into two, while also changing twistings. If the original Whitney disk in Fig-
ure 56 was framed, then the two new Whitney disks will have twistings +1 and —1, re-
spectively. In general, if the arc guiding the finger move splits the twisting of the original
Whitney disk into wy and ws zeros of the extended Whitney section, then the two new Whit-
ney disks will have twistings w; + 1 and wy — 1, respectively. Thus, by repeatedly splitting
off framed corners into +1-twisted Whitney disks, any w-twisted Whitney disk (w € Z) can
be split into |w|-many +1-twisted or —1-twisted clean Whitney disks, together with split
framed Whitney disks containing any interior intersections in the original twisted Whitney
disk. Combining this with the untwisted splitting [30, Lem.13] of the framed Whitney disks
illustrated in Figure 10 gives the result. 0

4.4. The Whitney move ITHX relation. Suppose that W is a split Whitney tower on A.
Let p be an unpaired intersection with ¢, C W. Define the split subtower W, C W to be
the union of the Whitney disks containing the trivalent vertices of ¢, together with sheets
of A around the boundary arcs of each of these Whitney disks whose boundary lies in a
sheet of A. These sheets inherit the indices of the order 0 surfaces containing them, so the

univalent labels of ¢, are unchanged. By construction each Whitney disk in W, is framed
and embedded.

Lemma 4.4 (Whitney move IHX relation). Let W, be a split subtower in a split Whitney

tower W, and let W, 1),x) be a Whitney disk in W, so that t, looks locally like the leftmost
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FI1GURE 57. The framed Whitney move IHX relation replaces a split subtower
whose signed tree looks locally like the one on the left with a pair of nearby
disjoint split subtowers whose signed trees look locally like the trees on the
right.

tree in Figure 57 near W yy.xy. Then W can be modified in a reqular neighborhood v(W,)
of W, yielding a split Whitney tower on the same order 0 surface sheets, with W, replaced
by disjoint split subtowers W,y and Wy contained in v(W,) such that the signed trees t,
and t, are as pictured on the right hand side of Figure 57.

Wk
o \/ I/Z(I,J),K)
| .
/U
W,
" \

FIGURE 58. The Whitney move IHX construction starts with a W(; 5 Whit-
ney move on W;. Note that the intersection p = W 5),x) h Wy, is not shown
in this figure (and is suppressed in subsequent figures as well).

Proof. As a preliminary step, observe that the labelling of the trivalent vertices in the left-
hand tree in Figure 57 indicates that the unpaired intersection p € W, corresponds to an
edge in the L-subtree. By applying the move of Figure 18 in section 1.20 we may assume
that in fact p = W s),x) M Wy, so that the edge corresponding to p is the L-labeled edge
in the lefthand tree. This will simplify later steps in the construction. For visual clarity p
will be suppressed from view in the figures.

Now do the W(; ;; Whitney move on W; (see Figure 58). This eliminates the canceling

pair of intersections between W; and W, at the cost of creating two canceling pairs of
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FIGURE 59. The intersection point W; N W(’ 1K) 18 ‘transferred’ via a finger
move (top) to create a canceling pair W; N W(; k) paired by W k) at the
cost of also creating W; N Wy paired by W k) and W; N W k) paired by
W(L((LK)) (bottom).

intersections between W; and Wiy which we pair by Whitney disks W ; k) and W(’ 1K) which
are meridional disks to W as illustrated in Figure 58.

The new Whitney disks W k) and W(’ 1K) each have a single interior intersection with
W; and the next step is to “transfer” (as illustrated in the upper part of Figure 59) the
intersection point W; N W(/ 1K) to create a canceling pair Wy MW ; k) paired by W, 1 k) at
the cost of also creating W; N Wi paired by W k) and Wy MW k) paired by W(; (k) (as
illustrated in the lower part of Figure 59). Note that Figure 59 differs from Figure 58 by a
change of coordinates which brings the sheet of Wi into the “present” slice of 3—space.

This transfer move is combinatorially the same as in section 4.2.2 but here applied to
higher-order sheets. The important thing to note here is that the finger move is guided by
an arc a (see Figure 60) from 8W(’LK) to OW(1 k) in Wg and we can take this arc to run along
what used to be the part of OW((, ;) k) lying in Wg. This is illustrated in the lower part of

Figure 60 which gives a better picture of the situation before the finger move is applied. The
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FIGURE 60. The transferring finger move is guided by an arc a (shown in
green) which can be taken to run along what used to be the part of the bound-
ary arc of W s k) lying in Wx. The bottom picture is the same as the top
picture but indicating where W ;) k) used to be.

Whitney disks W(; (s x)) and W k) are taken to be parallel copies of the old Wi r k) as
follows: The boundary of W(; (s.x)) (resp. W (1,k))) consists of arcs o’ and b’ (resp. a” and
b"), where a’ and a” are tangential push-offs of a in Wy and &' and " are normal push-offs
of what was the boundary arc b of W s)x) in W(; ). This is shown in both Figure 61
and Figure 62, where again it is easier to picture things before the transferring finger move.
Since W1 s),x) was framed and embedded, W(; 5 x)) and W k) can be formed from two
disjoint parallel copies of W(; s) k) which each intersect Wy, in a single point as W, ) k)

Thus exactly two new unpaired intersection points p’ and p” have been created (near where
p was) with corresponding trees t(p') and t(p”) as shown locally in the right hand side of
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FIGURE 61. Before the transfer move: New Whitney disks W k) and
Ws.1,K)), whose boundaries are the unions of arcs a’ Ut and a” U b" (see
also Figure 62), will be created from parallel copies of the old W, 1) k).

|
', |

FIGURE 62. Applying the transfer move to the right-hand side will create
new Whitney disks W; s k) and W k)), whose boundaries are the unions
of arcs ' Ub and a” U’ (see also Figure 61), from parallel copies of the old
W(,1),x) shown on the left.

Figure 57. After the transferring finger move, the W(' 1K) Whitney move can be done (on
either sheet) without affecting anything else. Finally, W;, W; and Wy will need to be split
since they now each contain two boundary arcs of Whitney disks. Splitting W;, W; and Wi
down into the lower order Whitney disks (as in Figure 10 and Lemma 4.3(i)) yields the two

split subtowers W, and W, .
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4.5. The Whitney move twisted IHX relation. Recall the twisted IHX/Jacobi relation
in the even order twisted tree groups (section 2.1):

I° = H” + X* — (H, X)

where I, H and X denote rooted trees which correspond to the three terms of a Jacobi
identity, i.e. they differ locally as in Figure 57, where we now are interpreting the trees in the
figure as being rooted trees with each of the L-subtrees containing a root univalent vertex.
Here we are using Roman font in the twisted IHX relation rather than the italic font used
in section 2.1 to clarify the distinction between the lefthand term “I” of the Jacobi identity
and the subtree “I” in each of the three terms in Figure 57.

We will modify the proof of the above Whitney move ITHX relation (Lemma 4.4) to show
how to locally replace a twisted Whitney disk whose associated signed e-tree is I” by two
twisted Whitney disks whose associated signed «-trees are H” and X, respectively, together
with a single unpaired intersection p having signed tree —(H, X).

Suppose that W is a split Whitney tower on A. Let W be a Whitney disk in W with
rooted tree J C W. Then the split subtower Wy, C W is defined to be the union of the
Whitney disks containing the trivalent vertices of J together with sheets of A around the
boundary arcs of each of these Whitney disks whose boundary lies in a sheet of A. Note
that W C Wy,. If W is twisted, then by construction all the other Whitney disks in Wy,
are framed and the twisting of W is +1 by the definition of a split Whitney tower, and W
contains the e«-labeled root vertex of J* C Wyy.

Lemma 4.5. Let Wy be a split subtower for an e-twisted Whitney disk W in a split Whitney
tower W, with the »-tree 1” associated to W looking locally like the leftmost tree in Figure 57
(with the L-subtree containing a root univalent vertez), and denote by H” and X the o»-trees
which only differ locally from 1” as in the first two trees in the right side of the equation in
Figure 57.

Then W can be modified in a reqular neighborhood v(Wy) of Wy yielding a split Whitney
tower on the same order 0 surfaces, with Wy, replaced by disjoint split subtowers Wy, Wy
and W, contained in v(Wy ) such that:

(i) W' is an e-twisted Whitney disk with associated e-tree H”, and
(il) W" is an e-twisted Whitney disk with associated o-tree X*, and
(iii) the unpaired intersection p has sign —e and associated tree (H,X).

Proof. We first consider the case where the L-labeled subtree is order zero, which means that
L is just the »-label, and the upper trivalent vertex of the I”-tree in Figure 57 corresponds
to the clean e-twisted Wz, 1) k), with e-tree I = ((Z, J), K)”. Then the construction in the
proof of Lemma 4.4, which starts by performing a Whitney move on the framed Whitney
disk W(r,s) corresponding to the lower trivalent vertex of the I-tree, exchanges W j) k)
for two Whitney-parallel Whitney disks Wy, s x)) and W 1 k) (Figures 61 and 62). In our
current setting these two new Whitney disks W’ and W inherit the e-twisting of W, and have
associated twisted trees H” and X”. And because of the twisting e = +1, there is now a single
new intersection p = W' NW”. In the construction of Lemma 4.4 W’ inherits the orientation
of W, and W” inherits the opposite orientation, but in our current setting the signs of the
twisted trees associated to W and W are given by their twisting € = w(W') = w(W") which

does not depend on orientations. So we are free to choose orientations on W’ and W” so
67



that the sign of p is —e. Finally, splitting yields the desired split subtowers Wy, Wy and
Wp.

Now we consider the case where the L-labeled subtree has positive order. This means
that the Whitney disk W, ) k) is framed and contains a boundary arc of some higher-
order Whitney disk V' corresponding to a trivalent vertex of L which is adjacent to the
trivalent vertex for W j) k) in the I” tree. As above, the construction of Lemma 4.4
exchanges W ),k for two parallel Whitney disks W(; (s k) and W1 k)), but now these
three Whitney disks are all framed. The pair of intersections between W ) k) and some
sheet W, that was paired by V gives rise to two pairs of intersections Wr, th W; (s x)) and
Wi, Wi ,x))- To continue with the construction we need to find Whitney disks for these
new intersection pairs. This will be accomplished using parallels of V', and we state this as
a lemma for future reference:

Lemma 4.6. Let V' be an embedded Whitney disk for a pair of intersections between embedded
sheets A and B, and let A" and A" be pairwise disjoint parallel copies of A.

(1) If V is framed, then there exist pairwise disjointly embedded framed Whitney disks
V' pairing A" th B, and V" pairing A” h B, which are parallel to V.

(i) If V is e-twisted (e = +1), then there exist embedded e-twisted Whitney disks V'
pairing A’ B, and V" pairing A” th B, which are parallel to V', such that V' th V"

1S a single point.

T M ]

FIGURE 63. A neighborhood of the framed embedded Whitney disk V' pairing
sheets A and B contains (in nearby time-slices) parallel Whitney disks V'’ and
V" pairing the intersections between B and parallels A" and A” of A. Each
of V' and V" has one boundary arc which is tangent to a boundary arc of V|
and the other boundary arc normal to the boundary arc of V in A. Only B
extends into all time-slices; the three Whitney disks and other three sheets are
each contained in single time slices.

Proof. Figure 63 shows the construction of V’ and V" which are Whitney-parallel to V' in
the case that V is framed. If V is (£1)-twisted, then Figure 63 is only accurate near the
Whitney disk boundaries, but since V’ and V" are Whitney parallel it follows that V' and
V" intersect in a single point since they inherit the (41)-twisting of V. O

Returning to the twisted IHX construction, and simplifying notation by writing A =
Wi,0),x), and B = Wp,, and A" = Wiy (5 k), and A” = Wi (1 k)), Lemma 4.6 gives us V'
pairing A’ h B, and V" pairing A” M B.

If V' was the e-twisted W, then we take W/ =V’ W” = V" and p = W’ h W”. Splitting

then yields the desired split subtowers Wy, Wyy» and W,
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If V was not the e-twisted W, then V intersected some sheet Wy, in a pair of intersections
paired by some Whitney disk V5, and hence the parallels V' and V" also each intersect Wi,
in a pair of intersections. Again applying Lemma 4.6 (but now with A := V5 and B := Wp,),
yields Vj and V3’ pairing V' h Wy, and V" h Wp,, with V; and V3’ inheriting the twisting
or the intersections that V5 had.

We continue to apply Lemma 4.6 in this way as needed until reaching the e-twisted W =V,,,
which gives rise to W/ =V W"” = V" and p = W’ th W". Splitting then yields the desired
split subtowers Wy, Wyy» and W,,. O

4.6. Outline of twisted order-raising obstruction theory proof. Recall from sec-
tions 2.1, 2.2 and 2.3 the statement of Theorem 2.5: A link L C S% bounds an order n
twisted W C B* with 72(W) = 0 € T if and only if L bounds an order n + 1 twisted
Whitney tower.

Theorem 2.5 is essential to the classification of order n twisted Whitney towers in the
4-ball discussed in Section 2, and this section gives a brief outline of the proof, as given in
[8, Thm.1.9]. This proof, which depends on the above Whitney move IHX Lemmas 4.4 and
4.5, generalizes part of the construction of an order 2 framed Whitney tower in section 4.2.

The “if” direction of the theorem holds since by definition any order n+ 1 twisted Whitney
tower is also an order n twisted Whitney tower with no unpaired order n intersections or or-
der n/2 twisted Whitney disks. For the “only if” direction, we will sketch how the realization
of the relations in 7> by geometric constructions can be used to arrange that all unpaired
intersections and twisted Whitney disks occur in “algebraically canceling” pairs (representing
inverse elements in 7,°), which can then be exchanged for “geometrically canceling” intersec-
tion pairs (admitting Whitney disks) and framed Whitney disks of order n/2. The strategy
is analogous to the order 2 construction in section 4.2, but now we are dealing with twisted
Whitney disks and higher-order intersections, and hence more complicated trees (although
here in B* we do not have to keep track of edge decorations and INT relations).

We can assume that W is split (Lemma 4.3), and that ¢(WW) contains no framed trees of
order > n, and no twisted trees of order > n/2 (Exercise 2.13.1).

The condition 7,”(W) = 0 € 7,” means that in the free abelian group on order n framed
trees and order n/2 twisted trees t(WW) lies in the span of the relators in section 2.1 which
define 7,”. As usual we consider the trees ¢(W) to be embedded in W.

As described in [8, Sec.4.1], using also [30, Sec.4] and [7], there are three main steps to
constructing an order n + 1 twisted Whitney tower from W:

First, controlled modifications of W realizing the relators, as discussed in section 2.2, are
used to arrange that the order n trees and order n/2 e-trees in t(W) all occur in isomorphic
oppositely-signed algebraically canceling pairs (see the start of section 4 of [8]).

Secondly, using the above Whitney move IHX Lemmas 4.4 and 4.5, all these paired trees
are converted into pairs of “simple” (right- or left-normed) trees by IHX constructions. These
simple trees are characterized by the property that every trivalent vertex is adjacent to a
univalent vertex. This corresponds to every Whitney disk having a boundary arc on an order
zero disk. (The reason for this step will be explained momentarily in the description of the
third step.) After this step all the trees still occur in algebraically canceling pairs.

The final third step uses an iterated higher-order variation of the “transfer move” used in
section 4.2.2 to achieve geometric cancellation for algebraically canceling order 1 pairs. This

step is described in detail for algebraically canceling pairs of framed trees in [30, Lem.15], and
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for twisted order n/2 Whitney disks in [8, Sec.4.1], and requires that all pairs are simple, as
arranged in the second step. The reason for this requirement has to do with the connectivity
of sheets that is needed for the transfer move. This can be seen by observing that the
construction of the two order 2 Whitney disks in Figure 52 depends on all three sheets of A
being connected. In higher orders it turns out that having just two of these sheets connected
suffices to iterate the move finitely many times until eventually terminating with the desired
result, provided one starts at an “end” of a simple tree.

After this third step the new layer of order n + 1 Whitney disks have uncontrolled in-
tersections, but all of these new intersections are of order > n + 1. And the construction
combining the twisted Whitney disk pairs into framed Whitney disks (Figures 21-22 in (8,
Sec.4.1]) creates only new twisted Whitney disks of order > n/2, which are supported near
the original twisted Whitney disk pairs, along with intersections of order > n among these
new twisted Whitney disks. Hence an order n + 1 twisted Whitney tower has been created.

Analogous order-raising intersection-obstruction theories are described in [8, Sec.4.4] for
order n framed Whitney towers, in [30, Thm.6] for non-repeating Whitney towers, and in
[12, Thm.6.17| for “k-repeating” Whitney towers.

4.7. Whitney disk orientations and the AS relation. This section explains why the
signs associated to trees for unpaired intersections in a Whitney tower only depend on the
orientations of the underlying order 0 surface and the ambient 4-manifold modulo the AS
antisymmetry relations.

Let W be a Whitney tower in an oriented 4-manifold X. The order 0 surface supporting
W comes with a fixed orientation, and arbitrary orientations on the Whitney disks in W are
chosen and fixed. Fix a choice of either the positive or negative corner convention described
in section 1.19. Here we will refer to this fixed convention choice as “our corner convention”.

For p € Wi th W; an unpaired intersection between Whitney disks W; and W; in W, the
corresponding tree t, = (I, J) from section 1.10 is embedded in W in a way that satisfies our
corner convention, and the orientations of the trivalent vertices of ¢, are taken to be induced
by the Whitney disk orientations.

We will consider here the effect on the signed oriented tree ¢, - t, of switching the fixed
orientation choice on any of the Whitney disks corresponding to the trivalent vertices of
tp. The conclusion will be that any such orientation switch corresponds to an AS relation
(Figure 27), so that modulo AS relations ¢, - t, only depends on the orientation of the
underlying order 0 surface.

First of all, the sign €, = %1 is determined by comparing the concatenated orientations of
W and W; with the orientation of X at p. So in the case that W; # W, then switching the
orientation of one of either W; or W; will switch the trivalent orientation of the corresponding
trivalent vertex of ¢,, and will switch the sign €,, meaning that €, - ¢, is changed by an AS
relation.

In the case that W; = W}, then switching the orientation of W; = W, will switch the
trivalent orientation of ¢, at both of the trivalent vertices adjacent to the edge passing through
p, and will not change the sign ¢,, meaning that ¢, - ¢, is changed by two AS relations.

Now consider the effect of switching the orientation on a Whitney disk Wy, other than W;
or Wy, so that Wi, contains a boundary arc of a higher-order Whitney disk W(g, k,) which

pairs intersections ¢ and r between Wy, and some Wk,, as in the left side of Figure 64.
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The orientation switch on Wy, changes the cyclic orientation at the trivalent vertex in
Wik,, and it also switches the signs of ¢ and r. This switching of the signs of ¢ and r means
that the embedding of ¢, needs to changed near the trivalent vertex v of Wk, k,) in order
to preserve our corner convention. The effect of this convention-preserving change in the
embedding of ¢, near v is to switch the cyclic orientation of ¢, at v as shown in the right side
of Figure 64. Note that the orientation of the Whitney disk Wk, k,) does not change.

A

2

FIGURE 64. Before (left) and after (right) the orientation switch on Wiy,
using the positive corner convention. Any interior intersection(s) in Wik, k)
are not shown.

Since the orientation of Wk, k,) is not changed, the sign €, of p € W h Wi is unchanged.
(It is possible that Wik, k,y = Wi or Wik, i,y = Wy.) So the result of switching the
orientation of any one Wy, (with Wx, # Wy, and Wy, # W) while preserving our corner
convention is the same as applying two AS relations to ¢,, one at the trivalent vertex in W, ,
and one at v € Wik, k,).

4.8. Section 4 Exercises.

4.8.1. Ezercise. In the proof of independence of 7(A) on Whitney disk interiors given in
section 4.1.4 show that the sphere S = (W \ w) U (V' \ v’) is homotopic to S" = W UV’ by
a homotopy supported near . HINT: Consider a homotopy from S’ to S which pulls the
common collars w = v’ slightly apart while perturbing S’ to be smooth, and then shrinks
the union of the collars away from ~.

4.8.2. Ezercise. Check that the signed tree t, associated to p € 9.W N sV in Equation (1)
near Figure 42 is well-defined, including the case that W = V.

4.8.3. Ezercise. Check that in each of the other cases of Figure 44 pushing d;W into 0.V
across the £ self-intersection of A paired by V creates an algebraically canceling pair of
signed trees.

4.8.4. Ezercise. In the setting of section 4.1.6 and Figure 45, check that the order 1 decorated
trees corresponding to the intersections A M V' cancel with those corresponding to the

oppositely-signed parallel copy of V' in V.
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4.8.5. Exercise. In the discussion in section 4.1.7 of the pairing A\o(A, R) for A : S & X
and R : RP? - X with the generator of mRP? mapping to a € 7 X, show that changing
the choice of sheet-changing path through p € A h R changes g, by right multiplication by
a” and changes €, by multiplication by (—1)" for some integer n.

4.8.6. FEzercise. From section 4.1.8: For A : S? &= X, let p and ¢ be a positive and a negative
transverse self-intersection of A, and denote the preimages by A~!(p) = {x,2'} C S?, and
A q) = {y,y'} C S*

If p and ¢ have common group element g, = a = g,, then any Whitney disk W pairing p
and ¢ induces a pairing of {z,2'} with {y,y'} since each arc of OW runs between a sheet of
A around p and a sheet of A around gq.

Check that Whitney disks exist for both of the two pairing choices x <> y, 2’ <> ¢’ and
x <y, 2" <> yif and only if a®> = 1 € m X.

4.8.7. Ezercise. From section 4.1.8 and Figure 46: Check that the union A(D)UW UV
defines the image of a map R : RP? — X which sends the generator of 7 RP? to a € m X.

4.8.8. Exercise. Let W and V be Whitney disks pairing the same intersections p and ¢
between surfaces in a 4-manifold, and suppose that OW = 0V near p and near q. Convince
yourself that by an isotopy it can be arranged that W = V near p and near ¢ without
creating any new intersections.

4.8.9. FExercise. Check that in the setting of Figures 48, 49 and 50 it can be arranged that
p’ has the same sign as p.

4.8.10. Ezercise. Check that in the setting of Figures 48, 49 and 50 it can be arranged that
p’ has the same decorated tree as p.

4.8.11. Exercise. Use the previous two exercises to check that p’ and ¢ in Figure 51 admit
an order 2 Whitney disk.

4.8.12. FEzxercise. Continuing the previous three exercises, the construction of subsection 4.2.2
has also created order 1 intersections r,s € A M A which admit a framed embedded Whit-
ney disk V', shown “underneath” the horizontal sheet in Figure 52. Check that the pair of
transverse intersections between A and the embedded order 1 Whitney disk V' in Figure 52
admits a framed order 2 Whitney disk (whose boundary is indicated in blue in the figure).

4.8.13. Ezercise. In the paragraph before the proof of Lemma 4.1, check that the group
element associated to any point in A(D) M A(D) is 1 or a.

4.8.14. FExercise. Check that the operation of splitting a Whitney tower preserves edge dec-
orations on trees. Do this first for decorated order 1 trees (as in section 3.4), then generalize
to higher-order trees.

4.8.15. FExercise. Check that the signs of the trees created by the IHX construction in the
proof of Lemma 4.4 have the correct signs, as shown in the right side of Figure 57.

4.8.16. Exercise. Check that the IHX construction in the proof of Lemma 4.4 also works for

decorated trees.
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4.8.17. Ezercise. Prove that A\j(A;, Ay, A3) from Theorem 3.2 is a well-defined homotopy
invariant which vanishes if and only if A; UA;U A3 admits an order 2 non-repeating Whitney
tower by adapting to this easier non-repeating setting the proof given in sections 4.1 and 4.2
of the analogous statements for 7 (A).

HINT: First show that \;(A;, As, A3) is independent of the choice of order 1 non-repeating
Whitney tower, following sections 4.1.4, 4.1.5 and 4.1.6 (but without worrying about Whit-
ney disk twistings in section 4.1.4). Then one gets homotopy invariance exactly as in sec-
tion 4.1.9. To get an order 2 non-repeating Whitney tower proceed as in section 4.2 to first
achieve algebraic cancellation and then geometric cancellation of all order 1 non-repeating
intersections.
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