Intro to Whitney towers Part 1B

Rob Schneiderman & Peter Teichner, (with J. Conant)

Lehman College CUNY & MPIM (and AGS Labs)

Fall 2022

Intro to Whitney towers continued:

- 1. Recall definition of Whitney towers
- 2. Trees and intersection forests

- 3. Gradings of Whitney towers
- 4. 4-dimensional Jacobi identity

Recall:

Definition:

A Whitney tower on an immersed surface $A^2 \hookrightarrow X^4$ is defined by:

- 1. A itself is a Whitney tower.
- 2. If $\mathcal W$ is a Whitney tower and W is a Whitney disk pairing intersections in $\mathcal W$, then the union $\mathcal W \cup W$ is a Whitney tower.

Part of a Whitney tower!

All singularities in split Whitney towers are near trivalent trees:

Trees 'bifurcate down' from unpaired intersections. <u>Univalent vertices</u> inherit <u>labels</u> from components of the underlying properly immersed surface $A = A_1 \cup A_2 \cup \cdots \cup A_m$.

Rooted trees

Identify non-associative bracketings of elements of $\{1, 2, ..., m\}$ with rooted unitrivalent trees (labeled and vertex-oriented):

$$(i,j) \longleftrightarrow -<_i^j$$

and recursively

$$(I,J) \longleftrightarrow -< \frac{J}{I}$$

Here a singleton is identified with a rooted edge:

$$(i) = i \longleftrightarrow ---i$$

Un-rooted trees = *inner products* of rooted trees

Gluing two rooted trees I and J together at their roots yields an un-rooted tree $\langle I,J\rangle:=I$ — J.

Example:

$$\langle (i,k),(j,l)\rangle = {i \atop k} > -- < {i \atop j}$$

Example:

$$\langle (I,J),K\rangle = {}^{I} > \kappa$$

<u>Paired</u> intersections \longrightarrow <u>rooted</u> trees

Whitney disk $W_{(i,j)}$ pairing $A_i \pitchfork A_j \longmapsto \text{rooted tree} = \stackrel{j}{<_i}$

Recursively: $W_{(I,J)}$ pairing $W_I \pitchfork W_J \longmapsto - <_I^J$

root edge of (I, J) contained in interior of $W_{(I, J)}$

<u>Un</u>-paired intersections \rightarrow <u>un</u>-rooted trees

$$p \in W_{(I,J)} \cap W_K \quad \longmapsto \quad t_p = \langle (I,J),K \rangle = \frac{I}{J} > -\kappa$$

Glue together root vertices of (I, J) and K at $p \in W_{(I, J)} \cap W_K$

Why not keep track of edge in t_p corresponding to p?

Because can 'move' un-paired intersection to any edge of its tree!

Close-up view before Whitney move

Close-up view after Whitney move

Towards 'twisted' trees for twisted Whitney disks...

Recall: Whitney move guided by W uses two parallel copies of W:

The *twisting* $\omega(W) \in \mathbb{Z}$ of W is the relative Euler number of a normal section $\overline{\partial W}$ over ∂W determined by the sheets:

If $\omega(W)=0$, then W is framed. If $\omega(W)\neq 0$, then W is twisted and a W-Whitney move will create intersections between the parallel copies of W...

Twisted Whitney disks \rightarrow twisted trees

Define the *∽-tree*

$$J^{\circ} := J - - \infty$$

by labeling the root of J with the 'twist' symbol ∞ .

These ∞ -trees are called 'twisted trees' since they are associated to twisted Whitney disks:

$$W_J \mapsto J^{\infty} \quad \text{if } \omega(W_J) \neq 0.$$

So we sometimes refer to the un-rooted t_p as 'framed trees'...

Definition:

The intersection forest $t(\mathcal{W})$ of a Whitney tower \mathcal{W} is the multiset:

$$t(\mathcal{W}) := \sum \; \epsilon_{
ho} \cdot t_{
ho} \; + \sum \; \omega(W_J) \cdot J^{\infty}$$

where 'formal sum' is over all unpaired p and all twisted W_J in \mathcal{W} .

 $\epsilon_p=\pm$ is usual sign of the unpaired transverse intersection point p (orientation conventions suppressed).

$$\omega(W_J) \in \mathbb{Z}$$
 is twisting of W_J .

Think of $t(\mathcal{W}) \subset \mathcal{W}$.

Moving into B^4 from left to right, starting with $L \subset S^3 = \partial B^4$:

Moving into B^4 from left to right, starting with $L \subset S^3 = \partial B^4$:

Moving into B^4 from left to right, starting with $L \subset S^3 = \partial B^4$:

$$p = W_{(1,2)} \pitchfork D_3 \quad \mapsto \quad t_p = \langle (1,2), 3 \rangle = \frac{1}{2} \rangle - 3 = t(\mathcal{W})$$

Moving into B^4 , D_1 is the track of a null-homotopy of K:

$$K = \partial D_1 \subset S^3$$

Moving into B^4 , D_1 is the track of a null-homotopy of K:

 $K = \partial D_1 \subset S^3$

part of $W_{(1,1)}$

cap off unlink...

Realization

• By iterated Bing-doubling can realize any collection of signed trees as $t(\mathcal{W})$ for \mathcal{W} on 2-disks $\hookrightarrow B^4$ bounded by $L \subset S^3$.

• Exist restrictions on possible t(W) for W on 2-spheres $\hookrightarrow B^4$. (See later...)

If W is a Whitney tower on A such that $t(W) = \emptyset$,

then A is regularly homotopic to an embedding:

 $t(\mathcal{W}) = \emptyset \implies$ no unpaired intersections and no twisted Whitney disks.

Do the clean framed Whitney moves on all the Whitney disks in ${\cal W}$ starting at the 'top level'...

Next, will introduce gradings to filter the condition of being homotopic to an embedding.

Higher-order Whitney disks and intersections

Definition:

- The *order* of a <u>tree</u> is the number of trivalent vertices.
- The order of a Whitney disk or an intersection point is the order of the corresponding tree.

Order *n* framed Whitney towers

Definition:

 ${\mathcal W}$ is an order n framed Whitney tower if

- every framed tree t_p in t(W) is of order $\geq n$, and
- there are no ∞ -trees in $t(\mathcal{W})$.

So in an order n framed \mathcal{W} all unpaired intersections have order $\geq n$, and all Whitney disks are framed.

Order *n* twisted Whitney towers

Definition:

 ${\mathcal W}$ is an order n twisted Whitney tower if

- every framed tree t_p in t(W) is of order $\geq n$,
- every twisted ∞ -tree in $t(\mathcal{W})$ is of order $\geq \frac{n}{2}$.

Intersection invariants from $t(\mathcal{W})$ and order-raising obstruction theory

Let W be an order n twisted Whitney tower on $A \hookrightarrow X$.

Will (eventually) define abelian groups \mathcal{T}_n^{∞} such that if the order n twisted intersection invariant $\tau_n^{\infty}(\mathcal{W}) := [t(\mathcal{W})] \in \mathcal{T}_n^{\infty}$ vanishes, then A is homotopic to A' supporting an order n+1 twisted Whitney tower.

Classification of order *n* twisted W on $\bigcup_i D_i^2 \hookrightarrow B^4$

Theorem

A link $L \subset S^3$ bounds immersed disks supporting an order n+1 twisted Whitney tower $\mathcal{W} \subset B^4$ if and only if L has vanishing Milnor invariants and higher-order Arf invariants through order n.

Idea of proof: Identify the order-raising intersection invariants τ_n^{∞} with Milnor and higher-order Arf invariants. (Will do this later.)

General classification of order *n* Whitney towers?

Open Problem:

Find invariants of order n $\mathcal W$ on immersed surfaces in 4-manifolds.

Partial results so far. Can formulate similar tree-valued invariants as for links. Need to understand relations in target groups...

Note: An embedded surface is a Whitney tower of order n for all n. So related to the (difficult!) embedding problem.

 \mathcal{W} is an order n <u>non-repeating</u> Whitney tower if all $t_p \in t(\mathcal{W})$ having distinctly-labeled vertices are of order $\geq n$.

Non-repeating Whitney towers characterize being able to 'pull apart' components:

Theorem:

 $A=\cup_{i=1}^m A_i \hookrightarrow X$ bounds an order m-1 non-repeating ${\mathcal W}$ if and only if

A is homotopic to $A' = \bigcup_{i=1}^m A'_i$ with $A'_i \cap A'_i = \emptyset$ for all $i \neq j$.

Other complexity gradings: Symmetric Whitney towers

A Whitney tower $\mathcal W$ is symmetric if the interiors of all Whitney disks in $\mathcal W$ only intersect Whitney disks of the same order.

A symmetric Whitney tower of order $2^n - 1$ has height n.

The Whitney disks in a symmetric Whitney tower correspond to symmetric rooted trees:

The symmetric rooted-trees of height 1, 2, 3, and n

Other complexity gradings: Symmetric Whitney towers

A Whitney tower $\mathcal W$ is $\mathit{symmetric}$ if the interiors of all Whitney disks in $\mathcal W$ only intersect Whitney disks of the same order.

A symmetric Whitney tower of order $2^n - 1$ has height n.

Theorem: (Cochran–Teichner)

If $L \subset S^3$ bounds $W \subset B^4$ of height n+2, then L is n-solvable in the sense of Cochran–Orr–Teichner.

Open Problem:

Formulate invariants corresponding to a <u>complete</u> 'height-raising' obstruction theory for symmetric Whitney towers.

Geometric Jacobi Identity in 4-dimensions

There exist four 2-spheres in 4-space supporting $\mathcal W$ with intersection forest $t(\mathcal W)$ equal to:

Conclude: The local 'IHX relation' of finite type theory is needed in the target of any invariant represented by $t(\mathcal{W})$:

$$+ \underbrace{\begin{array}{c} I \\ - \\ L \end{array}}_{L} \underbrace{\begin{array}{c} I \\ - \\ L \end{array}}_{K} \underbrace{\begin{array}{c} I \\ - \\ L \end{array}}_{K} = \underbrace{\begin{array}{c} I \\ - \\ L \end{array}}_{K}$$

Geometric Jacobi Identity in 4-dimensions

Start with disjoint embeddings $A_i: S^2 \to B^4$, i = 1, 2, 3, 4. Then do finger moves of A_1, A_2, A_3 into A_4 :

Whitney disks on the right are inverse to the finger moves.

Geometric Jacobi Identity in 4-dimensions

Will construct new Whitney disks with these boundaries:

First change collar of $W_{(3,4)}$; creating $\{q,r\} = A_2 \cap W_{(3,4)}$:

Then add $W_{(2,(3,4))}$ pairing $\{q,r\} = A_2 \cap W_{(3,4)}$:

 $W_{(3,4)}$ and $W_{(2,(3,4))}$ are contained in the 'present' slice of $B^4=B^3 imes I$

Creates $p = A_1 \cap W_{(2,(3,4))}$.

 $p = A_1 \cap W_{(2,(3,4))} \mapsto t_p = \frac{3}{4} > <_1^2$:

HINT: Here in 'present' red and blue Whitney disks have clean collars along horizontal A_4 -sheet.

(See *Jacobi identities in Low-dimensional Topology*, Compositio Mathematica vol. 143, no. 3 May 2007.)