Intro to Whitney towers Part 1B

Rob Schneiderman \& Peter Teichner, (with J. Conant)

Lehman College CUNY \& MPIM (and AGS Labs)
Fall 2022

Intro to Whitney towers continued:

1. Recall definition of Whitney towers
2. Trees and intersection forests
3. Gradings of Whitney towers
4. 4-dimensional Jacobi identity

Recall:

Definition:

A Whitney tower on an immersed surface $A^{2} \leftrightarrow X^{4}$ is defined by:

1. A itself is a Whitney tower.
 intersections in \mathcal{W}, then the union $\mathcal{W} \cup W$ is a Whitney tower.

All singularities in split Whitney towers are near trivalent trees:

Trees 'bifurcate down' from unpaired intersections.
Univalent vertices inherit labels from components of the underlying properly immersed surface $A=A_{1} \cup A_{2} \cup \cdots \cup A_{m}$.

Rooted trees

Identify non-associative bracketings of elements of $\{1,2, \ldots, m\}$ with rooted unitrivalent trees (labeled and vertex-oriented):

$$
(i, j) \longleftrightarrow<_{i}^{j}
$$

and recursively

$$
(I, J) \longleftrightarrow \quad<\frac{J}{I}
$$

Here a singleton is identified with a rooted edge:

$$
(i)=i \quad \longleftrightarrow \quad-i
$$

Un-rooted trees $=$ inner products of rooted trees

Gluing two rooted trees I and J together at their roots yields an un-rooted tree $\langle I, J\rangle:=I-J$.

Example:

$$
\langle(i, k),(j, I)\rangle={ }_{k}^{i}><{ }_{j}^{l}
$$

Example:

$$
\langle(I, J), K\rangle=\quad \jmath>k
$$

Paired intersections \longrightarrow rooted trees

Whitney disk $W_{(i, j)}$ pairing $A_{i} \pitchfork A_{j} \longmapsto$ rooted tree \prec_{i}^{j}

Paired intersections \rightarrow rooted trees

Recursively: $W_{(I, J)}$ pairing $W_{l} \pitchfork W_{J} \longmapsto \ll_{1}^{\prime}$

root edge of (I, J) contained in interior of $W_{(I, J)}$

Un-paired intersections \rightarrow un-rooted trees

$$
p \in W_{(I, J)} \pitchfork W_{K} \quad \longmapsto \quad t_{p}=\langle(I, J), K\rangle={ }_{J}^{\prime}><k
$$

Glue together root vertices of (I, J) and K at $p \in W_{(I, J)} \pitchfork W_{K}$

Why not keep track of edge in t_{p} corresponding to p ?

Because can 'move' un-paired intersection to any edge of its tree!

Close-up view before Whitney move

Close-up view after Whitney move

Towards 'twisted' trees for twisted Whitney disks...

Recall: Whitney move guided by W uses two parallel copies of W :

The twisting $\omega(W) \in \mathbb{Z}$ of W is the relative Euler number of a normal section $\overline{\partial W}$ over ∂W determined by the sheets:

If $\omega(W)=0$, then W is framed.
If $\omega(W) \neq 0$, then W is twisted and a W-Whitney move will create intersections between the parallel copies of $W \ldots$

Twisted Whitney disks \rightarrow twisted trees

Define the ∞-tree

$$
J^{\infty}:=J-\infty
$$

by labeling the root of J with the 'twist' symbol c.

These cs-trees are called 'twisted trees' since they are associated to twisted Whitney disks:

$$
W_{J} \quad \mapsto \quad J^{\infty} \quad \text { if } \omega\left(W_{J}\right) \neq 0
$$

So we sometimes refer to the un-rooted t_{p} as 'framed trees'...

Definition:

The intersection forest $t(\mathcal{W})$ of a Whitney tower \mathcal{W} is the multiset:

$$
t(\mathcal{W}):=\sum \epsilon_{p} \cdot t_{p}+\sum \omega\left(W_{J}\right) \cdot J^{\infty}
$$

where 'formal sum' is over all unpaired p and all twisted W_{J} in \mathcal{W}.
$\epsilon_{p}= \pm$ is usual sign of the unpaired transverse intersection point p (orientation conventions suppressed).
$\omega\left(W_{J}\right) \in \mathbb{Z}$ is twisting of W_{J}.
Think of $t(\mathcal{W}) \subset \mathcal{W}$.

Example: L bounds $\mathcal{W}=D_{1} \cup D_{2} \cup D_{3} \cup W_{(1,2)}$ with $t(\mathcal{W})=\frac{1}{2}>-3$

Moving into B^{4} from left to right, starting with $L \subset S^{3}=\partial B^{4}$:

Example: L bounds $\mathcal{W}=D_{1} \cup D_{2} \cup D_{3} \cup W_{(1,2)}$ with $t(\mathcal{W})=\frac{1}{2}>-3$

Moving into B^{4} from left to right, starting with $L \subset S^{3}=\partial B^{4}$:

Example: L bounds $\mathcal{W}=D_{1} \cup D_{2} \cup D_{3} \cup W_{(1,2)}$ with $t(\mathcal{W})=\frac{1}{2}>-3$

Moving into B^{4} from left to right, starting with $L \subset S^{3}=\partial B^{4}$:

$\left.p=W_{(1,2)} \pitchfork D_{3} \quad \mapsto \quad t_{p}=\langle(1,2), 3\rangle=\frac{1}{2}\right\rangle-3=t(\mathcal{W})$

Example: Fig-8 knot bounds $\mathcal{W}=D_{1} \cup W_{(1,1)}$ with $t(\mathcal{W})=+(1,1)^{\text {cs }}$

Moving into B^{4}, D_{1} is the track of a null-homotopy of K :

$$
K=\partial D_{1} \subset S^{3}
$$

Example: Fig-8 knot bounds $\mathcal{W}=D_{1} \cup W_{(1,1)}$ with $t(\mathcal{W})=+(1,1)^{\infty}$

Moving into B^{4}, D_{1} is the track of a null-homotopy of K :

$K=\partial D_{1} \subset S^{3}$
part of $W_{(1,1)}$
cap off unlink...

Realization

- By iterated Bing-doubling can realize any collection of signed trees as $t(\mathcal{W})$ for \mathcal{W} on 2-disks $\rightarrow B^{4}$ bounded by $L \subset S^{3}$.
- Exist restrictions on possible $t(\mathcal{W})$ for \mathcal{W} on 2-spheres $\rightarrow B^{4}$. (See later...)

No trees $=$ No problems $=$ Embedding!

If \mathcal{W} is a Whitney tower on A such that $t(\mathcal{W})=\emptyset$,
then A is regularly homotopic to an embedding:
$t(\mathcal{W})=\emptyset \Longrightarrow$ no unpaired intersections and no twisted Whitney disks.
Do the clean framed Whitney moves on all the Whitney disks in \mathcal{W} starting at the 'top level'...

Next, will introduce gradings to filter the condition of being homotopic to an embedding.

Higher-order Whitney disks and intersections

Definition:

- The order of a tree is the number of trivalent vertices.
- The order of a Whitney disk or an intersection point is the order of the corresponding tree.

Order n framed Whitney towers

Definition:

\mathcal{W} is an order n framed Whitney tower if

- every framed tree t_{p} in $t(\mathcal{W})$ is of order $\geq n$, and
- there are no cs-trees in $t(\mathcal{W})$.

So in an order n framed \mathcal{W} all unpaired intersections have order $\geq n$, and all Whitney disks are framed.

Order n twisted Whitney towers

Definition:

\mathcal{W} is an order n twisted Whitney tower if

- every framed tree t_{p} in $t(\mathcal{W})$ is of order $\geq n$,
- every twisted \boldsymbol{c}-tree in $t(\mathcal{W})$ is of order $\geq \frac{n}{2}$.

Let \mathcal{W} be an order n twisted Whitney tower on $A \leftrightarrow X$.
Will (eventually) define abelian groups \mathcal{T}_{n}^{∞} such that if the order n twisted intersection invariant $\tau_{n}^{\infty}(\mathcal{W}):=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}$ vanishes, then A is homotopic to A^{\prime} supporting an order $n+1$ twisted Whitney tower.

Classification of order n twisted \mathcal{W} on $\cup_{i} D_{i}^{2} \leftrightarrow B^{4}$

Theorem

A link $L \subset S^{3}$ bounds immersed disks supporting an order $n+1$ twisted Whitney tower $\mathcal{W} \subset B^{4}$ if and only if L has vanishing Milnor invariants and higher-order Arf invariants through order n.

Idea of proof: Identify the order-raising intersection invariants τ_{n}^{∞} with Milnor and higher-order Arf invariants. (Will do this later.)

General classification of order n Whitney towers?

Open Problem:

Find invariants of order $n \mathcal{W}$ on immersed surfaces in 4-manifolds.

Partial results so far. Can formulate similar tree-valued invariants as for links. Need to understand relations in target groups...

Note: An embedded surface is a Whitney tower of order n for all n. So related to the (difficult!) embedding problem.

Other complexity gradings: Non-repeating order n Whitney towers

\mathcal{W} is an order n non-repeating W hitney tower if all $t_{p} \in t(\mathcal{W})$ having distinctly-labeled vertices are of order $\geq n$.

Non-repeating Whitney towers characterize being able to 'pull apart' components:

Theorem:

$A=\cup_{i=1}^{m} A_{i} \rightarrow X$ bounds an order $m-1$ non-repeating \mathcal{W}
if and only if
A is homotopic to $A^{\prime}=\cup_{i=1}^{m} A_{i}^{\prime}$ with $A_{i}^{\prime} \cap A_{j}^{\prime}=\emptyset$ for all $i \neq j$.

Other complexity gradings: Symmetric Whitney towers

A Whitney tower \mathcal{W} is symmetric if the interiors of all Whitney disks in \mathcal{W} only intersect Whitney disks of the same order.

A symmetric Whitney tower of order $2^{n}-1$ has height n.
The Whitney disks in a symmetric Whitney tower correspond to symmetric rooted trees:

The symmetric rooted-trees of height $1,2,3$, and n

Other complexity gradings: Symmetric Whitney towers

A Whitney tower \mathcal{W} is symmetric if the interiors of all Whitney disks in \mathcal{W} only intersect Whitney disks of the same order.

A symmetric Whitney tower of order $2^{n}-1$ has height n.

Theorem: (Cochran-Teichner)

If $L \subset S^{3}$ bounds $\mathcal{W} \subset B^{4}$ of height $n+2$, then L is n-solvable in the sense of Cochran-Orr-Teichner.

Open Problem:

Formulate invariants corresponding to a complete 'height-raising' obstruction theory for symmetric Whitney towers.

Geometric Jacobi Identity in 4-dimensions

There exist four 2-spheres in 4-space supporting \mathcal{W} with intersection forest $t(\mathcal{W})$ equal to:

Conclude: The local 'IHX relation' of finite type theory is needed in the target of any invariant represented by $t(\mathcal{W})$:

Geometric Jacobi Identity in 4-dimensions

Start with disjoint embeddings $A_{i}: S^{2} \rightarrow B^{4}, i=1,2,3,4$.
Then do finger moves of A_{1}, A_{2}, A_{3} into A_{4} :

Whitney disks on the right are inverse to the finger moves.

Geometric Jacobi Identity in 4-dimensions

Will construct new Whitney disks with these boundaries:

First change collar of $W_{(3,4)}$; creating $\{q, r\}=A_{2} \pitchfork W_{(3,4)}$:

Then add $W_{(2,(3,4))}$ pairing $\{q, r\}=A_{2} \pitchfork W_{(3,4)}$:

$W_{(3,4)}$ and $W_{(2,(3,4))}$ are contained in the 'present' slice of $B^{4}=B^{3} \times I$
Creates $p=A_{1} \cap W_{(2,(3,4))}$.

$$
p=A_{1} \cap W_{(2,(3,4))} \mapsto t_{p}={ }_{4}^{3}>\ll_{1}^{2}:
$$

Exercise: Construct other two trees of the IHX relation analogously using past and future...

HINT: Here in 'present' red and blue Whitney disks have clean collars along horizontal A_{4}-sheet.
(See Jacobi identities in Low-dimensional Topology, Compositio Mathematica vol. 143, no. 3 May 2007.)

