Intro to Whitney towers Part 1A

Rob Schneiderman & Peter Teichner, (with J. Conant)

Lehman College CUNY & MPIM (and AGS Labs)

Fall 2022

- Surfaces in 4-space, Whitney towers and their trees, 4-dimensional Jacobi identity
- 2. Higher-order intersection invariants, classification of order n twisted Whitney towers in B^4 , higher-order Arf invariant conjecture
- 3. Whitney towers on disks in 4-manifolds, equivariant Milnor invariants
- 4. Intersection invariants for 2-spheres in 4-manifolds, More details...

Surface sheets A and B in $B^4 = B^3 \times I$ with $p = A \oplus B$

A and B in $B^4 = B^3 \times I$ with $p = A \pitchfork B$ and $A \subset B^3 \times *$

Two views of A and B in $B^4 = B^3 \times I$ with $p = A \oplus B$

Visualize: Hopf link = $\partial A \cup \partial B \subset S^3 = \partial (B^3 \times I)$

Disjoint surface sheets in $B^4 = B^3 \times I$

Guiding arc for Finger Move

Will usually only show the center pictures.

Larger scale view of finger move

Will usually only show center top and/or center bottom pictures.

Intersections $p, q \in A \pitchfork B$ and a Whitney disk W pairing them

Have just seen a model Whitney disk W pairing $p, q \in A \pitchfork B$ in B^4 :

Definition:

A Whitney disk pairing $p, q \in A \oplus B$ in a 4-manifold X^4 has a neighborhood obtained by introducing *plumbings* into the model.

So a Whitney disk may have interior self-intersections and intersections with other surfaces.

'Successful' Whitney move: W is 'clean' and 'framed'

Eliminates $p, q \in A \pitchfork B$ without creating new intersections in A or B:

W is *clean* = embedded & interior disjoint from all surfaces. W is *framed* = W has appropriate parallels.

<u>Fact:</u> 'Up to isotopy, a regular homotopy between surfaces in a 4-manifold is a sequence of finger moves and Whitney moves.'

Want to 'measure' obstructions to successful Whitney moves...

$r \in W \pitchfork C$:

$$r \in W \pitchfork C \quad \rightsquigarrow \quad r', r'' \in A \pitchfork C$$
 after *W*-move on *A*:

Visualize: The Borromean Rings $\partial A \cup \partial B \cup \partial C \subset \partial B^4$

Pair 'higher-order intersections' with 'higher-order Whitney disks'...?

Visualize: The Bing-double of the Hopf link in ∂B^4 .

Definition:

A Whitney tower on an immersed surface $A^2 \hookrightarrow X^4$ is defined by:

- 1. A itself is a Whitney tower.
- 2. If \mathcal{W} is a Whitney tower and W is a Whitney disk pairing intersections in \mathcal{W} , then the union $\mathcal{W} \cup W$ is a Whitney tower.

Part of a Whitney tower!

Goal: Study \mathcal{W} to get info about A...

Towards organizing, understanding, controlling Whitney towers...

Towards organizing, understanding, controlling Whitney towers...

In a *split* Whitney tower each Whitney disk contains only one 'problem' (un-paired intersection or Whitney disk ∂ -arc):

All singularities in split Whitney towers are near trivalent trees:

Trees 'bifurcate down' from unpaired intersections.

All singularities in split Whitney towers are near trivalent trees:

Trees 'bifurcate down' from unpaired intersections.

<u>Univalent vertices</u> inherit <u>labels</u> from components of the underlying properly immersed surface $A = A_1 \cup A_2 \cup \cdots \cup A_m$.

Will use trees to grade complexity of Whitney towers by <u>order</u>...

Theorem: (twisted Whitney towers in B^4)

A link $L \subset S^3$ bounds an order n+1 twisted Whitney tower $\mathcal{W} \subset B^4$ if and only if

L has vanishing Milnor invariants and higher-order Arf invariants through order *n*.

Theorem: (Pulling apart surfaces in 4-manifolds)

 $A=\cup_{i=1}^m A_i$ bounds an order m-1 non-repeating $\mathcal{W}\subset X^4$ if and only if

A is homotopic to $A' = \bigcup_{i=1}^{m} A'_i$ with $A'_i \cap A'_j = \emptyset$ for all $i \neq j$.