Intro to Whitney towers Part 1A

Rob Schneiderman \& Peter Teichner, (with J. Conant)

Lehman College CUNY \& MPIM (and AGS Labs)
Fall 2022

Possible outline of Whitney towers presentations

1. Surfaces in 4-space, Whitney towers and their trees, 4-dimensional Jacobi identity
2. Higher-order intersection invariants, classification of order n twisted Whitney towers in B^{4}, higher-order Arf invariant conjecture
3. Whitney towers on disks in 4-manifolds, equivariant Milnor invariants
4. Intersection invariants for 2-spheres in 4-manifolds, More details...

Surface sheets A and B in $B^{4}=B^{3} \times I$ with $p=A \pitchfork B$

A and B in $B^{4}=B^{3} \times 1$ with $p=A \pitchfork B$ and $A \subset B^{3} \times *$

Two views of A and B in $B^{4}=B^{3} \times I$ with $p=A \pitchfork B$

Visualize: Hopf link $=\partial A \cup \partial B \subset S^{3}=\partial\left(B^{3} \times I\right)$

Disjoint surface sheets in $B^{4}=B^{3} \times I$

Guiding arc for Finger Move

After Finger Move

Finger move: Before and after

Will usually only show the center pictures.

Larger scale view of finger move

Will usually only show center top and/or center bottom pictures.

Intersections $p, q \in A \pitchfork B$ and a Whitney disk W pairing them

Whitney move: Before and after

Whitney disks in 4-manifolds

Have just seen a model Whitney disk W pairing $p, q \in A \pitchfork B$ in B^{4} :

Definition:

A Whitney disk pairing $p, q \in A \pitchfork B$ in a 4-manifold X^{4} has a neighborhood obtained by introducing plumbings into the model.

So a Whitney disk may have interior self-intersections and intersections with other surfaces.

'Successful' Whitney move: W is 'clean' and 'framed'

Eliminates $p, q \in A \pitchfork B$ without creating new intersections in A or B :

W is clean $=$ embedded $\&$ interior disjoint from all surfaces.
W is framed $=W$ has appropriate parallels.
Fact: 'Up to isotopy, a regular homotopy between surfaces in a 4-manifold is a sequence of finger moves and Whitney moves.'

Want to 'measure' obstructions to successful Whitney moves...
W not clean \rightsquigarrow Whitney move creates new intersections:

$$
r \in W \pitchfork C:
$$

W not clean \rightsquigarrow Whitney move creates new intersections:

$$
r \in W \pitchfork C \quad \rightsquigarrow \quad r^{\prime}, r^{\prime \prime} \in A \pitchfork C \text { after } W \text {-move on } A \text { : }
$$

Visualize: The Borromean Rings $\partial A \cup \partial B \cup \partial C \subset \partial B^{4}$

Pair 'higher-order intersections' with 'higher-order Whitney disks'...?

Visualize: The Bing-double of the Hopf link in ∂B^{4}.

Definition:

A Whitney tower on an immersed surface $A^{2} \leftrightarrow X^{4}$ is defined by:

1. A itself is a Whitney tower.
2. If \mathcal{W} is a Whitney tower and W is a Whitney disk pairing intersections in \mathcal{W}, then the union $\mathcal{W} \cup W$ is a Whitney tower.

Goal: Study \mathcal{W} to get info about $A \ldots$

Towards organizing, understanding, controlling Whitney towers...

Splitting Whitney towers by finger-moves:

Towards organizing, understanding, controlling Whitney towers...

Splitting Whitney towers by finger-moves:

Splitting Whitney towers by finger-moves:

Splitting Whitney towers by finger-moves:

In a split Whitney tower each Whitney disk contains only one 'problem' (un-paired intersection or Whitney disk ∂-arc):

All singularities in split Whitney towers are near trivalent trees:

Trees 'bifurcate down' from unpaired intersections.

All singularities in split Whitney towers are near trivalent trees:

Trees 'bifurcate down' from unpaired intersections.
Univalent vertices inherit labels from components of the underlying properly immersed surface $A=A_{1} \cup A_{2} \cup \cdots \cup A_{m}$.

Preview: Sample Theorems

Will use trees to grade complexity of Whitney towers by order...
Theorem: (twisted Whitney towers in B^{4})
A link $L \subset S^{3}$ bounds an order $n+1$ twisted Whitney tower $\mathcal{W} \subset B^{4}$ if and only if
L has vanishing Milnor invariants and higher-order Arf invariants through order n.

Theorem: (Pulling apart surfaces in 4-manifolds)
$A=\cup_{i=1}^{m} A_{i}$ bounds an order $m-1$ non-repeating $\mathcal{W} \subset X^{4}$ if and only if
A is homotopic to $A^{\prime}=\cup_{i=1}^{m} A_{i}^{\prime}$ with $A_{i}^{\prime} \cap A_{j}^{\prime}=\emptyset$ for all $i \neq j$.

