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GOALS

• Motivate Whitney towers and their order.

• Understand those m-component links in the 3-sphere 
that bound Whitney towers of order n in the 4-ball.

• Compute Wn(m) = the associated graded groups. 



MAIN PROBLEM IN DIM. 4

In 4-ball = neighborhood of Whitney disk W = 3-ball x time: 
red and blue arcs become disks!
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 UGLY LINK ON THE 
BOUNDARY

A neighborhood of the Whitney 
disk  W is a 4-ball (3-ball x time) 
and its boundary is a 3-sphere. 

The three disks in 4-ball have 
their boundary in this 3-sphere,
the (ugly) Borromean rings.

What if they were slice ??
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Our four disks in the 4-ball can be seen in this movie.

NICE LINK ON THE BOUNDARY



FIRST APPEARANCE OF THIS PROBLEM

Subtlety in Freedman’s Theorem (1982):
Any odd unimodular form λ is realized as the intersection form of 
exactly two closed simply-connected topological 4–manifolds.

These manifolds are homotopy equivalent and are distinguished by 
the following equivalent criteria:  Exactly one of the 4-manifolds....
... is smoothable after crossing with the real line,
... has vanishing Kirby-Siebenmann invariant,
... exhibits the following formula for its quadratic function τ:

τ(c) =  (λ(c, c) − signature λ)/8   mod 2  ∀ characteristic c.
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Sister projective plane: 
Attach a 1-framed 2-
handle along trefoil and 
close off by the unique 
contractible 4-manifold.

The contractible manifold replaces a 4-handle and can be 
obtained by a topological plus construction from the 
homology sphere = 1-framed Dehn surgery on trefoil.
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A TWISTED WHITNEY DISK

Twist link on the boundary is not slice unless twist = 0.
We work with framed Whitney disks for now.
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HIGHER ORDER 
INTERSECTIONS

generic) immersed sphere S : S2 ⇧ M . This means that S looks locally like R2 ⇥ 0 ⌅ R4,
except for finitely many double points around which S looks like R2⇥ 0� 0⇥R2 ⌅ R4. One
can add more local self-intersection points to S until their algebraic sum is zero. This implies
that one can choose Whitney disks Wi, pairing all these self-intersection points. These are
(topologically generic) immersed disks Wi : D2 ⇧ M whose boundary consists of two arcs,
each going between the two intersection points but on di�erent sheets, see Figure 1.
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Figure 1. A (framed) Whitney disk and a Whitney move.

We will explain in Lemma 4 why ⇤(c) equals an intersection invariant ⇤1(S,Wi), computed
by summing the (topologically generic) intersections between an immersed sphere S, repre-
senting the characteristic c ⌃ H2(M) = Zm, and (the interiors of) framed Whitney disks Wi

for S:
⇤(c) = ⇤1(S,Wi) :=

�

i

#{S � Wi} mod 2

In [7], this invariant was called the Kervaire-Milnor invariant because these authors first
proved Rohlin’s formula below [9] for the case where M is smooth and c is represented by
an embedded sphere, implying the properties ⇤(c) = 0 = KS(M).

Remark 3. The figure above shows a framed Whitney disk Wi in the sense that there are
two disjoint parallel copies of Wi, as needed for the Whitney move on the right hand side.
In general, a Whitney disk comes with a framing of its boundary and hence admits a well
defined Euler number in Z, its twist. The operation of boundary twisting [7] allows to assume
that all Whitney disks are framed, i.e. have twist zero. Moreover, one can also assume that
the Wi are (disjointly) embedded disks, by pushing all (self)-intersections o� the boundary.

A generalization of Rohlin’s theorem [6] says that this geometric invariant determines the
Kirby-Siebenmann invariant of a closed oriented 4–manifold M by the formula

KS(M) ⇤ ⇤M(c) +
�M(c, c)� ⇥(�M)

8
mod 2

explaining the equivalence of criteria (iv) and (v) above. In Section 2 we’ll recall a definition
of ⇤M which makes the above formula hold for all closed oriented 4–manifolds M (without
assuming that c is spherical).

The 2-complex W := S � Wi in M is referred to as a Whitney tower of order 1 with
body S and order 1 Whitney disks Wi. The invariant ⇤1(W) = ⇤1(S,Wi) used above is the
first intersection invariant of such Whitney towers. It has again order 1, the order zero

2

S is a 2-sphere, immersed in the 
4-manifold and representing the 
characteristic element c.

S has algebraically vanishing 
number of self-intersections, 
paired by Whitney disks Wi.
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THE SIMPLEST TREE

Combinatorics is described by labelled trivalent tree. 
Freedman counts the number of such trees modulo 2. 
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SOLVE FIRST PROBLEM, GET A 
SECOND PROBLEM:



USE HIGHER ORDER TREES
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Theorem [C-S-T]: One can read off the lowest order 
Milnor invariants of a link from a Whitney tower in the 4-
ball that bounds it, in fact, just from its intersection trees.



CORRESPONDING TO 
HIGHER ORDER  

WHITNEY DISKS ...



... WHICH MAKE A 
WHITNEY TOWER



FINGER MOVES ….



… SPLIT WHITNEY TOWERS



TREES ORGANIZE 
WHITNEY TOWERS



KEY FIGURE: TREE IS PRESERVED 
BY WHITNEY MOVE
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OUR 4-DIMENSIONAL
JACOBI IDENTITY 
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Proof is an exercise in visualization:

= 0
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START WITH
FOUR SMALL SPHERES
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PICK THREE WHITNEY DISKS
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MOVE WHITNEY ARCS
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GET A WHITNEY TOWER 
OF ORDER 2
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REMOVE INTERSECTIONS



DEFINITION OF TREE GROUPS
Tn = Tn(m) is the abelian group on oriented unitrivalent 
trees, with n trivalent vertices and univalent vertices 
labelled by {1, 2, ...., m}, modulo the two local relations:

IHX:

AS:Anti-symmetry:

Jacobi Identity:



BING(HOPF)
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REALIZATION THEOREM
Consider the set of (framed, m-component) links in 
the 3-sphere bounding Whitney towers of order n in 
the 4-ball. Let Wn = Wn(m) be the associated graded.

Theorem 1:  There are surjective realization maps 
Rn :  Tn           Wn

whose kernel consists of torsion.

Theorem 2:  Tn (and hence Wn) are finitely generated 
abelian groups with at most 2-torsion. 



MASTER DIAGRAM
order n Whitney towers 
in the 4-ball, up to isotopy and 
Whitney moves

Tn = abelian group generated 
by trees of order n, up to the 
AS- and IHX-relations

Wn = links that bound order n 
Whitney towers, up to those 
bounding order n+1.

links in the 3-sphere 
that are boundaries of 
order n Whitney towers

intersection tree    τn

∂n

Rn

associated    graded

geometric
obstruction theory:

If a Whitney tower W of order n has vanishing intersection invariant, 
τn (W)=0, then it extends to order n+1 (up to Whitney moves). 



SURJECTIVITY OF  
INTERSECTION TREE

Take the Whitney towers W
 in our standard pictures:

Then t = τn (W) runs through 
trees that generate Tn and the
link on the boundary is Rn(t).



LINK ON THE BOUNDARY
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EXTENDED MASTER DIAGRAM
Tn = abelian group generated 
by trees of order n, up to the 
AS- and IHX-relations

Dn = free abelian group of 
known rank, target of order n 
Milnor invariants μn

D’n = subgroup of abelian 
group generated by rooted 
trees of order n, up to the AS- 
and IHX-relations

Wn = links that bound order n 
Whitney towers, up to those 
bounding order n+1.

ηn = sum over roots μn

Rn

discrete
Morse theory: ≅

pn

free 
Lie algebra: 

[x,x]=0

free quasi 
Lie algebra: 
[x,y]=-[y,x]

for odd n, kernel is
2-torsion: [x,x]



CLASSIFICATION RESULTS
Theorem 3:   For even n, pn and Rn are isomorphisms, 
Tn ≅Wn ≅Dn are free abelian of known rank, 
detected by Milnor invariants μn. 
Moreover, the μn detect the free part of Wn for all n. 

Theorem 4:   For odd n, Rn factor through the quotient 
Tn /fr by our framing relations:
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4-PERIODIC BEHAVIOUR

Theorem 5:      R4k-1  induces   T4k-1/fr ≅  W4k-1

The 2-torsion of  W4k-1 is known, it is detected by 
higher order Sato-Levine invariants.

Theorem 6:      There is an upper bound on W4k-3 .
Its 2-torsion is detected by Sato-Levine and 
higher order Arf invariants Arfk :  k=1,2,3,.....



TREFOIL IS DETECTED

W
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Arf1 gives classical Arf invariants of link components.



Whitney tower concordance of classical links 13

constructions (section 4.3). These geometric constructions will explain the origin of
the framing relations introduced above in Definition 1.6.

Setting �T2k := T2k in even orders, Theorem 5.9 will show that the reduced realization
maps �Rn : �Tn ⌅ Wn are isomorphisms in three quarters of the cases, in close analogy
with Theorem 1.13 above. Then the higher-order Arf invariants will again appear in the
other quarter of cases, and Conjecture 1.17 will have an analogous expression in terms
of the framed Whitney tower filtration classification as the statement: “the realization
maps �Rn : �Tn ⌅Wn are isomorphisms for all n” (section 5.3).

However, the analogy with Theorem 1.13 does not hold for the Milnor invariants µn

in the framed filtration, leading to the appearance of the higher-order Sato-Levine
invariants in the classification of the framed filtration described in Corollary 5.11. This
subtle interaction between Milnor invariants and framing obstructions is the reason
why the framed classification is trickier to describe.

A table of the framed filtration groups Wn(m) for low values of n, m is given in Figure 9,
where the higher-order Arf invariant Arf2 appears in order 5. The higher-order Sato-
Levine invariants correspond to 2-torsion in all odd orders (for m > 1), and the ranges
of possible ranks of the 2-torsion subgroups of the groups W5(m) correspond to the
possible ranks of Arf2 (as in Figure 8).

1 2 3 4 5
0 3 6 10 15

1 2
3
2 ⇥ 6

2
4 ⇥ 10

2
10 ⇥ 15

2
2 0 6 20 50

3 0 2
2

6 ⇥ 8
2

36 ⇥ 20
2

126 ⇥ 40
2

4 0 3 28 146 540

5 0 e2
2

36 ⇥ e3
2

340 ⇥ e4
2

1740 ⇥ e5
2

6 0 6 126 1200 7050

Figure 9: A table of the groups Wn(m), where m runs horizontally and n runs vertically. The
possible ranges of the torsion exponents in order 5 depend on the currently unknown ranks of
Arf2 : 3 ⇤ e2 ⇤ 4, 18 ⇤ e3 ⇤ 21, 60 ⇤ e4 ⇤ 66, 150 ⇤ e5 ⇤ 160.

For n = 0, the groups come from trees i�� j, and are detected by linking numbers for
i ⇧= j and framings for i = j. For order n = 1, the generators come (via R1 ) from trees
i�<j

k . If all indices are distinct then they are detected by Milnor’s triple invariants
µ(ijk). However, in �T1 repeating indices also give nontrivial elements of order 2. If
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order n

number m of components

COMPUTATIONS

Wn(m) =


