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ABSTRACT

We show that Cochran’s invariants 3*(L) of a 2-component link L in the 3-sphere
can be computed as intersection invariants of certain 2-complexes in the 4-ball with
boundary L. These 2-complexes are special types of twisted Whitney towers, which we
call Cochran towers, and which exhibit a new phenomenon: A Cochran tower of order
2k allows the computation of the 3% invariants for all i < k, i.e. simultaneous extraction
of invariants from a Whitney tower at multiple orders. This is in contrast with the order
n Milnor invariants (requiring order n Whitney towers) and consistent with Cochran’s
result that the 3(L) are integer lifts of certain Milnor invariants.

Keywords: Cochran invariants; clasper calculus; link concordance; Milnor invariants;
Whitney towers.

Mathematics Subject Classification 2010: 57M25, 57M27

1. Introduction and Statement of Results

In 1954, John Milnor defined his p-invariants of a link L = (L, ..., L,,) in 3-space
[18] by looking inductively at the terms in the lower central series of the link group
71 (R3\ L), and comparing with the link group of the unlink. For example, the order
0 Milnor invariants are just the linking numbers f1;;(L) between components L; and
L; of the link L. Moreover, Milnor showed that p23 detects the Borromean rings,
a Bing double of the Hopf link, and that his higher-order invariants detect iterated
Bing doublings of the Hopf link.

The Milnor invariants puz(L) of order n > 0 are labeled by a multi-index 7 =
{i182 ... int2} with i € {1,...,m}. They are integers, well-defined only modulo
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the ged of the pz/ (L) for all proper subindices Z' C Z. For example, if L is a two
component link with linking number p12(L) = 1, then all the higher-order Milnor
invariants of L are completely ill-defined. Nevertheless, Milnor invariants turn out
to be a central tool in 3- and 4-dimensional topology, particularly because of their
concordance invariance.

For example, if the topological surgery sequence is exact in dimension 4 for free
fundamental groups, then the Whitehead double of any link L with trivial linking
numbers is topologically slice. However, this last statement is currently only known
to hold for links L with pz(L) = 0 for any multi-index Z = {iyig...ip4+2} in which
at most one index appears more than once (and at most twice) in Z [12].

In 1985, Tim Cochran discovered a beautiful method of lifting certain Milnor
invariants to well-defined integers [2]: Given a 2-component link L = (L, L) with
p12(L) = 0, he first defined its derived link D(L) by forming a knot as the inter-
section of Seifert surfaces for the components (each in the complement of the other
component), and then taking this knot in place of L to yield the new 2-component
link D(L).

Cochran then defined 8*(L) € Z as the Sato—Levine invariant of L [19], which
is the twisting of the intersection knot, inherited from either Seifert surface. What
are today known as higher-order Cochran invariants were defined recursively via
the formula B¢(L) = B~1(D(L)) € Z. Amazingly, these integers are well-defined
for i > 1, and Cochran showed [3, Theorem 6.10] that they are lifts of the following
Milnor invariants:

ﬂl(L) = [412i92 (L) = Hl...gi...122(L) mod ng{,ul2k-22 (L), k< Z}

Only B (L) = p1122(L) was known to be a well-defined integer for linking number
zero links.

In this paper, we re-interpret Cochran’s invariants 3*(L) in terms of intersection
invariants of certain 2-complexes in the 4-ball B*, with boundary L C S®. These
2-complexes are special kinds of twisted Whitney towers [5, 6] and we propose to
call them Cochran towers.

The notions necessary to understand our theorem below will be given in the
remainder of the introduction but first we would like to state the main result:

Theorem 1.1. For any k > 1, a link L = (L1, L2) in S® bounds a Cochran tower
of order 2k in B* if and only if L has trivial linking number and the Arf invariant
of L1 wvanishes. Moreover, given a Cochran tower C' of order 2k with boundary L
then for any i < k, the Cochran invariants can be computed as follows:

BUL) =Y w(Wy),

where the sum is over all Whitney disks Wy in C with J% =t and the twisting
w(Wy) € Z is the relative Euler number of Wy.

Here J9 is a trivalent tree associated to the Whitney disk W in C' and the relevant
tree ¢7” is shown on the right-hand side of Fig. 1.
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Fig. 1. The tree t; on the left has two vertices labeled 2 and i vertices labeled 1. The tree t7° on
the right has 7 vertices labeled 1, one vertex labeled 2, and one vertex labeled by the twist symbol.

Remark 1.2. If the (Z/2-valued) Arf invariant Arf(L;) # 0, one can change L by
tying a small trefoil knot into L;. This does not alter 3!, nor the derived link D(L)
(and hence all 3¢(L) are unchanged) but allows one to build a Cochran tower on
this new link to compute all §¢(L).

A geometric interpretation similar to Theorem 1.1 was given in our earlier work
[6] for the first non-vanishing Milnor invariants uz(L) € Z of a given link L. This
means that pz (L) = 0 for all proper subsets Z' C Z. These interpretations use our
theory of twisted Whitney towers in the 4-ball with boundary L, which is surveyed
in [4] and detailed in [5, 6]. We will sketch next those aspects which are relevant to
the current discussion, and point the reader to the appropriate references for more
information. The smooth category is assumed throughout, except when otherwise
specified.

1.1. Twisted Whitney towers and their intersection forests

Roughly speaking, a twisted Whitney tower (with boundary a link L C S3) is a
finite 2-complex W C B* with W N S% = L, which is the union of a finite number
of transverse disks with carefully chosen boundary conditions. More precisely, W
is formed by taking generic disks W; in the 4-ball with OW; = L; and then adding
Whitney disks for pairs of intersection or self-intersection points among the W (if
possible). One continues to inductively add higher-order Whitney disks for pairs of
(self)-intersection points among previously included disks, to arrive at a Whitney
tower after finitely many steps.

The main use of a Whitney tower VW comes from its intersection forest t(W)
[6, Sec. 2.5] which is a disjoint union of trivalent labeled trees, as we review next. As
mentioned after Definition 1.3, t(W) represents obstructions to successfully carrying
out Whitney moves that would lead to slice disks for the link L.

To define t(W), start by associating a rooted unitrivalent tree J to each Whitney
disk W C W as follows: Take a univalent root vertex of .J sitting in the interior of
W along with an edge to the adjacent trivalent vertex, and take the other edges of
J to be sheet-changing paths bifurcating down through the lower-order Whitney
disks until arriving at the boundary components L;. This yields j-labeled univalent
vertices in J (the root is the only unlabeled univalent vertex).
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Fig. 2. Left: A Whitney disk W(gs, 57y pairing intersections between W;/ and W/ with (part
of) its associated rooted tree J = (J’,J”). Right: Part of the (unrooted) tree associated to an
unpaired intersection p € W ;N Wxk.

The notation W indicates that J is the rooted tree associated to the Whitney
disk W, and we identify rooted labeled trees with non-associative bracketings of the
index set formed by the link-components. So W ;) pairs intersections between
Wy and Wy, and the rooted tree (J', J”) is formed by identifying the roots of J'
and J” to a single vertex and sprouting the rooted edge of (J', J”) from this vertex
(Fig. 2, left). The order of W; is defined to be the order of J, which is the number
of trivialent vertices in J. In particular, for a singleton index j, the order of Wj is
zero and its rooted tree is the edge — j.

Now each tree in ¢(W) corresponds to one of two kinds of problems in W: A
transverse intersection p € W; h Wi is a problem if p is not paired by a higher-
order Whitney disk. To such a p is associated the labeled tree obtained by identifying
the roots of J and K to a single (interior) point, (Fig. 2, right; and Fig. 3, right).
The other kind of problem that can occur is that a Whitney disk W; in W may
be twisted, i.e. have a nonzero relative Euler number w(W;) € Z with respect to

Fig. 3. Left: An internal band sum L = (L1, L2) C S® of a Bing-double of the Hopf link. Center:
Moving into B%, the bands have “dissolved” into 1-handles, leaving two O-handles for each disk
W; bounding L;, with one 0-handle for W visible as a horizontal disk. The Whitney disk W(1,2)
pairs W1 N Way, and there is a single unpaired intersection p between Wy and the Whitney disk
W((1,2),1) pairing Wy 5y N Wi. Right: The tree associated to p is t2 =%>—<% from Fig. 1.
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Fig. 4. Left: The Whitehead link L = (L1, L2) C S3. Center: Moving into B*, (most of) an
embedded twisted Whitney disk W 2y pairing Wi N W2, and the associated twisted tree. Right:
Continuing into B*, the rest of W(1,2) and W2 are described by capping off this unlink with two
embedded disks (not shown). The twisting w(W(; 2y) = +1 is evident in the right-handed twist
(see e.g. [5, Sec. 6]).

the standard framing of its boundary (e.g. [5, Sec. 2.2]). This integer w(Wy) is
called the twisting of Wy, and if w(WW;) # 0, then a Whitney move guided by W,
will create new self-intersections, even if W; happens to be embedded. This second
problem contributes to t(W) a tree J% defined by labeling the root vertex of J
with the symbol oo standing for “twist”.

A Whitney disk with twisting equal to zero is said to be framed. Since it can
always be arranged (by splitting W if needed [6, Sec. 2.6]) that unpaired intersec-
tions p occur between framed disks, we frequently refer to the tree associated to
such a p as a framed tree, to differentiate from the trees J% associated to twisted
Whitney disks, which we usually call twisted trees, or co-trees.

Definition 1.3. For a twisted Whitney tower W, define the intersection forest
t(W) as the disjoint union of (isomorphism classes of) such trivalent, labeled trees,
one for each problem in W.

Note that if W has no problems, i.e. (W) is empty, then one can do a sequence
of (embedded, framed) Whitney moves to produce slice disks for the link L on the
boundary.

Remark 1.4. Comparing this definition with the definition of ¢(W) given in [6,
Sec. 2.5], the reader will notice that there the framed trees carry a vertex-orientation
and a coefficient +1, coming from orientations induced by the original link com-
ponents (involving antisymmetry relations), and the twisted trees carry the integer
coefficients coming from the twisting of the corresponding Whitney disks (and inde-
pendent of disk orientations). We do not need this extra data to define Cochran
towers, although it is used in the obstruction theory discussed below.

Remark 1.5. As per Definition 1.6 below, twisted Whitney disks are allowed in
twisted Whitney towers (e.g. [5, 6]), while earlier papers defined Whitney towers
with the requirement that Whitney disks be framed. For conversational ease we
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may sometimes let “Whitney tower” refer to either twisted or framed Whitney
towers in a general discussion that applies to both settings, hopefully when no
confusion will result.

1.2. Obstruction theory for twisted Whitney towers
Definition 1.6. Let W be a twisted Whitney tower.

(1) The order of any tree in ¢(W) is the number of trivalent vertices. (This applies
to both framed and twisted trees.)

(2) If all framed trees in (W) are of order > n and all twisted trees in (W) are of
order > % then W is a twisted Whitney tower of order n.

This notion of order for twisted Whitney towers arose in our work on Milnor invari-
ants [6], where we discovered that for any order n twisted ¥/ bounded by L the
order n framed trees and order 7 twisted trees (for n even) in ¢(J) contribute to
Mivis...in o (L) (with the twisted trees corresponding to certain multi-indices with
order 2 symmetry).

More precisely, we showed in [6] how the first non-vanishing p-invariants can
be computed from #()V) modulo certain relations, all of which can be realized via
geometric maneuvers preserving the order of W (without changing its boundary L).
Most prominently, the geometric IHX-relations, or 4-dimensional Jacobi-identities,
can be used to change (W) by replacing a tree containing an /-shaped subtree with
two trees of the same order that only differ locally by H- and X-shaped subtrees,
plus a number of trees of higher order [5]. For instance, at the cost of creating
higher-order trees, the geometric IHX-relations can be used to modify an order n
twisted Whitney tower so that all framed trees in ¢(W) with two 2-labels and n
1-labels are isomorphic to ¢, in Fig. 1, and all twisted trees with one 2-label and %
1-labels are isomorphic to t%’ if n is even.

It follows from [6] that nontrivial order n Milnor invariants of L are obstructions
to L bounding twisted Whitney towers of order greater than n, and it is not clear
how order k Milnor invariants for k& > n might be related to intersection forests of
order n Whitney towers. Since the specific Milnor invariants we are focusing on in
this paper occur in multiple orders and can be lifted to the well-defined Cochran
invariants 3°(L), we arrive at the question of whether we can compute these in terms
of twisted Whitney towers bounded by L. The answer, given by Theorem 1.1, is
that indeed we can, and we simply add the twistings of certain Whitney disks.
However, there is a catch: For a Cochran tower W, the types of trees in ¢()/) must
be restricted in new ways!

1.3. Cochran towers

To define Cochran towers, we start with the following definitions for Whitney towers
bounded by 2-component links, so all trees are labeled by 1, 2 or on».
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Definition 1.7. A trivalent labeled tree is called §-bad if at most one univalent
vertex is not labeled by 1, or if it isomorphic to ¢; in Fig. 1 for some 1.

Definition 1.8. A twisted Whitney tower W is a Cochran tower of order n if all
framed (-bad trees in t(W) are of order > n and all twisted 8-bad trees in t(WV)
are of order > %. Consequently, a twisted Whitney tower W is a Cochran tower of
infinite order if t()V) does not contain any (-bad trees at all.

‘We observe that:

e The framed (-bad trees are the framed trees having no 2-labels, the framed trees
having a single 2-label, and the ¢;.
e The twisted 3-bad trees are the twisted trees having no 2-labels.

Illustrations are given in Examples 1.11, 1.12 and 2.1 showing how the presence
of lower-order f-bad trees in a twisted Whitney tower can create indeterminacies
in the computation of higher-order [-invariants.

The order zero trees 1 ——2 in (W) give the linking number of L, while 1—<%

and 1—<(1D are responsible for Arf(Lq). This explains the easy direction in the first
sentence of Theorem 1.1. The hard direction is proven by applying all the tricks
that we learned over the years, on how to raise the order of a Whitney tower. In
particular, those trees that vanish modulo IHX can be exchanged for intersections
of arbitrarily high order without changing the 3°.

Remark 1.9. Notice that, via Theorem 1.1, a Cochran tower of order 2k allows the
computation of 3¢(L) for all i < k, i.e. simultaneous extraction of invariants from
a Whitney tower at multiple orders, in contrast with the order n Milnor invariants
which require L to bound an order n twisted Whitney tower. To our knowledge
this is the first example of this kind of computation. Moreover, in an infinite order
Cochran tower, the 3° can be computed in all orders, as in the next Example 1.10.

Example 1.10 (The Whitehead link). Figure 4 describes a twisted Whitney
tower W bounded by a (positive) Whitehead Link L, with t(W) = 1—<2, = {%.
Since t(W) contains no (-bad trees, W is a Cochran tower of infinite order, and
it follows from Theorem 1.1 that (L) = 1, and (L) = 0 for all i > 1. In fact,
if one creates Seifert surfaces by adding tubes to the obvious disks bounded by
the components of L (in order to make the Seifert surfaces disjoint from the other
component), then the derived link D(L) is the same unlink as in the right-hand
side of Fig. 4.

Example 1.11 (Infinitely many nontrivial Cochran invariants, and why
the linear framed trees with a single 2-label at one end (Fig. 6, lower
right) are $-bad). Let L be the link where the first component is a trefoil knot
considered as the boundary of a genus one Seifert surface with a +1 twist in each
band. The second component is a meridian to one of the two bands. See Fig. 5,

1740012-7
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Fig. 5. One stage in the construction of a Cochran tower for the link in Example 1.11.

and [2, Example 4.6]. The derived link D(L) is actually the same link but with the
second component linking the other band, and this is isotopic to the original link.
So D(L) = L. Similarly to the Whitehead link, the Seifert surfaces for L intersect
in a knot with twisting +1, so 3*(L) = 1 for all i.

Now we build a Cochran tower of arbitrarily high order for the link. First tie
the mirror image of the trefoil (denoted K* in Fig. 5) inside a small ball in the
first component. This will not alter the Cochran invariants. Pulling the second
component off the first component we get two intersections which are paired by a
+1-twisted Whitney “annulus”. The free boundary of this annulus is a meridian
to the second band and hence the resulting link is isotopic to the original. This is
schematically pictured at the bottom of Fig. 5.

One can then iterate this construction arbitrarily, concatenating this basic
homotopy repeatedly, and creating a single +1-twisted Whitney disk whose associ-
ated tree is ¢¥° at each ith iteration. To get a twisted Whitney tower one eventually
needs to not pair the two intersection points, see Fig. 6 for the case of three iter-
ations. The first component can then be capped off with a ribbon disk (because
we added the inverse K*). After k iterations the resulting intersection forest ¢(W)
will contain single co-trees ¢ associated to the +1-twisted Whitney disks for each
1 < k, plus two order k framed trees associated to the final two unpaired points at
the top of the tower. These framed trees are 3-bad, since they have a single 2-label
and (k+1) 1-labels, so we can only compute Cochran invariants up to a finite order

1740012-8
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Fig. 6. Iterating the construction to get a Cochran tower of arbitrary order.

using this tower. Iterating the construction 2k + 1 times would yield an order 2k
Cochran tower C, with the t$> trees in C' demonstrating that 5*(L) = 1, for i < k.

This also illustrates why the linear framed trees at the last step (Fig. 6, lower
right) must be considered [-bad.

Example 1.12 (The twisted trees (1,1,...,1)? are 8-bad). We start with

two illustrations of why (1,1)% = 1{; is B-bad. The disjoint union of a trefoil
knot and an unknot bounds a twisted Whitney tower with the single intersection
tree 1—<Clo, and the Cochran invariants of this link are trivial. On the other hand,
we claim that there is a link with a Whitney tower that has this same single inter-
section tree, but which has infinitely many nontrivial Cochran invariants. Thus the
presence of a tree of this form contributes indeterminacies to the tower which affect
the Cochran invariants, and therefore 1—<(1/) must be considered §-bad. The link
L is depicted in Fig. 7.

The intersection knot (shown in green in Fig. 7) is untwisted, so (L) = 0; but
BY(L) = 1for alli > 2, since D(L) is similar to the link with infinitely many Cochran
invariants from Example 1.11: The only difference is that the second component of
D(L) is a meridian to the Seifert surface of a figure 8 knot instead of a trefoil, but
the discussion of Example 1.11 applies to this case, too.

A twisted Whitney tower W bounded by L with ¢()V) consisting of a single

(-bad tree 1{(1)0 can be constructed as the trace of the null-homotopy of L into
B* which pulls apart the clasps of Li, creating a pair of self-intersections in W;

1740012-9



J. Conant, R. Schneiderman € P. Teichner

L,

Fig. 7. A link L = (L1, L2) with 8%(L) # 0 for all i > 2. L bounds a twisted Whitney tower W
with ¢(W) consisting of a single 3-bad tree 1_<OO'

W J L J|

Fig. 8. Left: A twisted Whitney disk Wy 1), and a clean Whitney disk Wy j (which can be
created for any J by finger moves). Right: Pushing a collar of W(1,7) over Wy 1) gives rise to a
new twisted Whitney disk W(y (1, 7)) which could create twisted trees t7° for appropriate J. For
instance, t5° could be created in the case J = 2, and t5° could be created in the case J = (1,2).

which admit an embedded 1-twisted Whitney disk W(; ;). The interior of W(y ),
and the interior of W5 bounded by Lo are both free of intersections.

Figure 8 gives a general illustration how the presence of a twisted W, ;) con-
tributing 1—<(1D to t(W) allows the creation of an arbitrary number of t&°-trees
by manipulating W.

The same construction as in Fig. 8, but with a twisted W(; ;1 . 1) in the place
of W11y (and with J = 2), shows how the presence of (1,1,...,1)% € (W) also
allows the creation of an arbitrary number of t7°-trees.
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2. Computing Cochran’s 3* via Work of Kojima and Kirk

After describing the relationship between the Cochran invariants and an invariant
of Kojima, this section applies related computational techniques used by Kirk to
give a family of examples which further illustrate how the presence of -bad trees
in t(W) can lead to indeterminacies in the computation of the 3* from W. This
section is not used in the proofs of our main results, which are given in Sec. 3.

Cochran shows in [2] that his 3" invariants are related to an invariant due
to Kojima, called the n-invariant [16]. Consider the infinite cyclic cover of the
complement of a knot L, denoted Y, and let A(t) be the symmetrized Alexander
polynomial of L;. For a link L = (Ly, Ly) with linking number zero, let z be a lift
of Ly to Y, zp a nearby lift of an untwisted parallel of Ly and ¢, a generator of the
covering transformation group.

Then A(t,) kills z € H1(Y), so A(t.)(z) = 0d for some 2-chain d in Y and
Kojima’s 1 function can be defined as

1
n(L)= Y (20 - t"d)t" € Z[t, t7Y).
Cochran proves that under the change of variables z = (1 —t)(1 — ¢~ 1), one has

Zﬁl ' € Zf|x|].

An important consequence of this formula (with the Alexander polynomial in the
denominator) is the existence of many links L (with A(t) # 1) for which 3%(L) # 0
for infinitely many 1.

In certain cases this can be related to Wall’s self-intersection invariant via a
procedure for constructing disjointly immersed surfaces from links used by Kirk
to study link maps in the 4-sphere [15]: Consider the special case where L; is
unknotted, and think of the link L as lying in the upper boundary of S x I.
Because the linking number is zero, there is a homotopy of second component L,
in the complement of Ly, that ends with the trivial link. Thinking of the track of this
homotopy as an immersed annulus A in the complement of L x I, one can consider
the equivariant intersection number of A with a parallel copy, A(A, A) € Z[t,t71].
Both copies of A are immersed annuli in the 4-manifold (S3\L1) x I ~ S with
fundamental group Z, generated by t.

Note that setting ¢t = 1 gives zero because one gets the intersection number of an
annulus (rel. boundary) in a manifold with no relative second homology. Moreover,
the right-hand side comes from a Hermitian form and is hence invariant under the
involution a + @ on the group ring Z[t,t~!] determined by # := ¢ ~!. It follows that
A(A, A) is a polynomial in z = (1 —#)(1 —¢~1) and in fact Kirk showed in [15] that
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Kojima’s n function is given by
n(L) = \(A, A) € Z[t,t1].

This is the usual relation, in the equivariant setting, between the intersection form
of a 4-manifold and its linking form on the boundary.

To compute A(A, A), recall Wall’s formula for the relation of the self-intersection
invariant p(A) with the intersection with a parallel copy. If the parallel copy has
linking numbers zero on the boundaries then we get

A(A, A) = p(A) + u(A).

As a consequence, the easiest way to compute the invariants 3°(L) for a link L
with linking number zero and unknotted component L, is as follows: Do crossing
changes on Lq to separate it from L;, and for each such crossing change record £t™,
where the sign is determined by the right-hand rule for the crossing. Moreover, n
is the linking number with L; of the accessory circle of the crossing (which leaves
on one sheet of Ly and returns on the other).

Note that there are two choices for this accessory circle that differ by Lo itself.
Since it links Ly trivially, this choice is irrelevant. However, the integer n is only
defined up to sign since we do not know in which direction we should run the
accessory circle. This is the usual indeterminacy of Wall’s self-intersection invariant
1, and it disappears when computing the above average over the involution: One has
to record +(t" +¢~™) for each crossing change and sum over all necessary crossing
changes.

This leads to a simple computation of

> B(L)a' = MA, A) = p(A) + u(A)  where x=(1—t)(1—t").
i=1

Note that in this case, only finitely many of the invariants 3?(L) can be nontrivial!

We also note that the exact same computation is valid if Lq is allowed to be
knotted but has trivial Alexander polynomial. By Freedman’s Theorem [11], L
allows a topological concordance in S® x I to the unknot, with complementary fun-
damental group Z. Therefore, Lo bounds an immersed annulus A in the complement
of the concordance (leading to the trivial link) and we can again compute p(A).

The formulas above extend to this setting because 0-surgery on L; is the bound-
ary of the complement of (an open neighborhood of) the slice disk in D*. Moreover,
Kojima’s function is the boundary value of the Z-equivariant linking form associ-
ated to the intersection form on this 4-manifold.

Example 2.1 (The tree t; is B-bad). This example uses clasper-surgery to
illustrate in detail how the presence of the framed tree ¢ty € (W) leads to indeter-
minacies in the computation of higher-order Cochran invariants in several orders
at once. As described in Theorem 3.1 (Section 3 and [8]), the tree-types of clasper
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surgeries on an unlink correspond to trees in the intersection forest of a Whitney
tower bounded by the resulting link.
Consider the clasper (see Sec. 3.2) of type t2 pictured below on the left:

1® tk+1
PR R
tk+2 tk+1
<D
2

Let L* be the link obtained from this surgery, pictured on the right. We calculate
n(L*) via the Wall self-intersection invariant using the procedure just outlined.
There are four crossing changes of component 2, pictured in the small box, which
will turn L* into an unlink. The accessory arc for one of these crossings is colored
pink, and one can see that it links with component one k times, and so is assigned
—t*, the negative coefficient coming from the fact that the crossing is a negative
crossing. One similarly calculates the accessory circles for the other three crossings
getting —tF+2 th+L k41 Thus n(L*) = —(#F + %) + 2(¢F+E 4 ¢7k1) — (¢h+2
t~#=2). Converting this to a power series in z = (1—t)(1—¢~') we have the following
table of polynomials in x:

k| S B(Eh
-1 | 2z
0| 20— 22
1| 2z — 422 4 23
2 | 2z — 922 + 623 — 2*
3 | 22 — 1622 4 202 — 8z* + 2P
4 | 22 — 2522 + 5023 — 352% + 1025 — 2

The fact that 3'(LF) = 2 for all these examples comes from the fact that the link
bounds a Whitney tower with the single 5-bad tree to, and this contributes 2 to the
Sato—Levine invariant z11122. On the other hand, the higher ﬂi(L’C ) are not constant
on this class of links, so surgery on a to-clasper will not have a predictable effect
on the Cochran invariants.

3. Proof of Theorem 1.1

After fixing some terminology and notation, this section will prove Theorem 1.1
by combining Habiro’s clasper surgery techniques [14] with the Whitney tower
obstruction theory [5] and the following decomposition theorem from [8]:
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Theorem 3.1. If a link L bounds a (twisted) Whitney tower W then there is a finite
sequence of concordances and simple (twisted) clasper surgeries from the unlink to
L such that the tree-types of the clasper surgeries correspond to the trees in t(W),
with the twistings on twisted claspers corresponding to the twistings on the twisted
Whitney disks of WW. O

A more precise description of the relationship between clasper concordance and
Whitney towers is given in [8].

See Sec. 3.2 below for clasper terminology and conventions, including tree-types
and twisted claspers.

3.1. Outline of proof of Theorem 1.1

The proof of the second statement of Theorem 1.1, that Cochran invariants up
to order k can be calculated from the intersection forest of a Cochran tower of
order 2k, will proceed as follows: By Theorem 3.1, the Cochran tower implies the
existence of a sequence of clasper surgeries and concordances from the unlink U to
the link L, where the tree-types and twistings of the claspers are the same as those
in the intersection forest of the Cochran tower. Since the Cochran invariants are
concordance invariants, we then observe how they change under clasper surgeries:
On the one hand, a t?*-surgery will be shown to leave 3/ unchanged for j # i, and
to change 3* by the twisting w(T') of the twisted t?°-clasper I' in Corollary 3.15. On
the other hand, clasper surgeries corresponding to all other trees allowed in an order
2k Cochran tower will be shown to preserve the 3¢ for all i < k in Corollary 3.10
and Propositions 3.17, 3.16, and 3.18. So 3¥(L) — 3*(U) will be the weighted count
of t& trees as claimed.

The proof of the first statement of Theorem 1.1, that a link L bounds a Cochran
tower of order 2k in B* if and only if L has vanishing linking number and the
Arf invariant of L, vanishes, will follow from the fact that the 8-bad trees in the
intersection forest of a Whitney tower bounded by L can all be eliminated by
twisting constructions or geometric IHX-constructions, at the cost of only creating
higher-order trees [5]. See Sec. 3.5.

3.2. Clasper conventions

We will be using Habiro’s clasper surgery techniques, for details see [9, 14]. We
adopt the following terminology from [9], and essentially the same notion of twisted
claspers from [7]. Although claspers are surfaces, we follow the customary identi-
fication of a clasper with its 1-dimensional spine, which is a framed unitrivalent
graph.

All of our claspers will be tree claspers. A clasper I' C S® is capped if all the
leaves of I bound disjointly embedded disks (the caps) into S®\I' (so the leaves of
a capped clasper are unknotted). A cap for a clasper on a link is called a simple cap
if it is O-framed and intersects the link in a single point. A simple tree clasper is a
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capped tree clasper on a link such that each cap is simple. A twisted tree clasper is a
capped tree clasper on a link such that all caps are simple except for one k-framed
cap, for some integer k # 0, whose interior is disjoint from the link. If T" is a twisted
tree clasper, this twisting number k of T" will be denoted w(T").

A leaf is simple if it bounds a simple cap and twisted (k-twisted) if it bounds a
twisted cap. If a clasper leaf bounds a 0-framed cap which is disjoint from all link
components, then the leaf and the cap are said to be clean.

By the interior of a clasper, we will mean the complement of the leaves (and
caps), which in our case is a unitrivalent tree. For simple and twisted tree claspers
this tree is labeled exactly like the intersection trees in ¢(W): Univalent vertices
are labeled by the components that the corresponding caps intersect, or by the oo
symbol if that leaf is twisted.

A clasper with tree type T will be called a T'-clasper. In particular, if T" is a
twisted tree, then a T-clasper is a twisted clasper.

Surgery with a specified root: For I' a T-clasper in the complement of a
link L, we denote by Lr the link obtained by surgery on I'. This surgery is really a
diffeomorphism of S? which can change the link’s isotopy class. The diffeomorphism
and concomitant modification of L can be realized in many different ways. For
example, if one designates a univalent vertex of 7" as the root, one can realize Lp
as a modification of L which takes place in a neighborhood of I" and the root cap;
the other caps are not involved. More precisely, only strands of L which intersect
the root cap will be modified, and this modification will be supported near I". A
surgery on a T-clasper will be called a T'-surgery.

The Zip construction: Suppose a leaf of a clasper I" bounds a cap A which
may intersect the link L. The zip construction [9, 14] cuts the cap A into two
pieces, such that surgery on I' is equivalent to surgery on the union of two daughter
claspers, both of the same tree type as I', each of which inherits one piece of A as
a cap, while the other leaves are parallel copies of the originals. The two daughter
claspers are embedded in a neighborhood of I'; their edges are disjoint from any
caps that each may have.

3.3. The Cochran (3-invariants

We focus on the setting of classical 2-component links modulo concordance, and
refer the reader to [2, 3] for details on the full generality of the Cochran ‘-
invariants.

Definition 3.2 ([2]). Let L = (Ly, L) be a 2-component link with zero linking
number, and let X1 and Yo be Seifert surfaces for Ly and Lo such that X1 NYy =y
is connected (and nonempty). Then the derived link D(L) is defined to be the 2-
component link (L1, x) obtained by replacing Lo with x. The knot x is called the
characteristic curve of L (and X1 and X).
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It is easy to see that a derived link D(L) also has zero linking number, giving
rise to the following infinite sequence of invariants, which Cochran showed to be
concordance invariants of L:

Definition 3.3 (Cochran invariants [2]). The first Cochran invariant 8*(L) €
Z is defined to be the classical Sato-Levine invariant of L. Inductively, 5¢(L) is
defined to be =1 (D(L)) for i > 1.

The classical Sato—Levine invariant [19] is equal to the twisting w(x) € Z of the
framing of the characteristic curve y = 31 N 3o induced by the normal framing of
either surface X; relative to the O-framing of x C S3.

Remark 3.4. As shown by Cochran [2], for any L = (L1, L) with trivial link-
ing number, there exist Seifert surfaces ¥; and Yo that intersect in a connected
closed curve. In the sequel, it will often happen that modification of such a link will
temporarily create new components of intersection between the modified Seifert sur-
faces, and we will use the following procedure for making the intersection connected
in a well-controlled way: The modification of L will lead to ¥; being extended by
boundary-summing into some new genus one surfaces, and the corresponding new
intersection curves with the second Seifert surface will be at most a single non-
separating circle on each of these new genus one subsurfaces. Choose arcs in the
new X; connecting each new intersection circle to the original characteristic curve
X = 21 N X,. Surgering the second Seifert surface along these arcs has the effect of
band-summing the new intersection curves with y, making the intersection between
the new Seifert surfaces connected. Since each of the new circles was non-separating,
these arcs can be chosen in such a way that the surgered surface is still orientable.
(For example, see Figs. 10-12, where new genus is added to 3; along with new
intersection components supported in the new genus.)

3.4. Claspers and Cochran invariants

It turns out that the Cochran invariants are finite type in a certain sense, ultimately
deriving from the fact that the twisting w(K) of a framed knot K is a type 1 framed
knot invariant, a notion we now define.

Recall that a nowhere-vanishing normal vector field of a smooth knot K C S3 is
referred to as a framing of K. Identifying the image of the vector field with a knot
parallel to K, the twisting w(K) is the linking number of K with its parallel copy.
Here the notation K is abused to describe the framed knot.

Definition 3.5 ([1]). A singular framed knot (in S3) is a framed knot, modified
to allow finitely many double points or non-tangential zeros of the framing. Any
framed knot invariant v can be extended to singular framed knots, by the usual
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Vassiliev skein relation for double points and by

oy =y

for the non-tangential zeros. A framed knot invariant is said to be type k if it
vanishes on singular framed knots with k£ 4+ 1 double points and non-tangential
Zeroes.

In other words, for any collection S of k+1 disjointly supported crossing changes
and local framing changes, a type k framed knot invariant v will satisfy

S () lu(Ks) =0

s'cS
where Kg/ the result of changing K by exactly the elements in S’; |S’| is the
cardinality of S’, and the sum is over all subsets of S. Crossing changes and local
framing changes are both examples of homotopies of K supported in balls (where we
consider the local framing change to be a crossing change between K and the parallel
knot corresponding to the framing), and all homotopies and framing changes can
be represented as a sequence of these two basic moves (together with isotopy.) As
observed by Goussarov [13], an alternating sum over a collection S of groups of
crossing and framing changes (all disjointly supported) can be written as a linear
combination over alternating sums of crossing and framing changes. Thus, we have
that an invariant is of type k if and only if it vanishes on alternating sums of k£ + 1
disjointly supported homotopies.

It is not difficult to show that the twisting w(K) is a framed knot invariant
of type 1. This has implications for the Cochran invariants since we ultimately
compute them using the twisting of the characteristic curve. However, the 3° are
not quite type 1 invariants, but rather are only type 1 invariants if one only allows
crossing changes on component 2. This leads to the following definition:

Definition 3.6. A link invariant f is type k with respect to a given component if,
when given any set S of any k + 1 disjointly supported crossing changes of this
component with itself, we have

S 0¥ s =0,
scs
where Lg: denotes the result of changing L by exactly the homotopies in S’, |S’| is

the cardinality of S, and the sum is over all subsets of S.

Remark 3.7. As above, we can replace crossing changes with arbitrary homotopies
of the given component supported in disjoint balls that avoid the other components.

Remark 3.8. In the above paragraphs, we introduced two distinct notions of finite
type invariants, one for framed knots and one for links with a specified component.
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There is an obvious way to combine those notions, namely for links with a specified
framed component. Cochran’s derived link is exactly of that type and Proposi-
tion 3.9 below holds for all i > 0 if we define 8°(L) := w(Ls) for 2-component
links with a framing on the specified component Ls. Then the proof below is an
induction that naturally extends all the way down to ¢ = 0.

Convention: For the rest of the paper we assume that L designates a link for
which the B*-invariants are defined, and that L comes equipped with Seifert surfaces
which intersect in a single circle.

Proposition 3.9. For all i > 1, the Cochran (' -invariants of L = (L1, L2) are
type 1 with respect to Lo.

Proof. We start by showing that the first Cochran invariant 8! vanishes on an
alternating sum over a pair of disjointly supported crossing changes on Ls. These
crossing changes can be realized as a pair of edge-clasper surgeries I';, 7 = 1,2,
where I'; has two leaves, each of which is a meridian to Ly and bounds a cap that
intersects Y5 in a clasp singularity. We may further assume these caps are disjoint
from ;.

Now the single edge of each I'; will crash through sheets of both Seifert surfaces
(Fig. 9, left). Pushing these sheets off the edge of T'; will create ribbon singularities
with Y. When 35 is pushed off, these new singularities can be resolved using the
standard ribbon singularity resolution, increasing the genus of 35 (Fig. 9, second
from left, blue).

Fig. 9. (Color online) Left: An edge-clasper I'; on L2 which has two interior intersections with
Y1 and one interior intersection with Xo. Second from left: Pushing the surface sheets off the edge
creates more genus and intersections among the surfaces. Third from left: Zooming in near the
leaf, nested tubes from X containing arcs of the characteristic curve x (L) (red) of L also link this
leaf. Right: A local picture of the characteristic curve x(Lr;) (red) for L, near the clasp created
by I'j-surgery.
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When 3, is pushed off, pairs of algebraically cancelling intersections between
31 and Ly will be created. Resolve these by adding tubes in a neighborhood of
Ly (Fig. 9, second from left, green). This will create new circles of intersections
between 3 and ¥, that travel through one leaf of each I';. Apply the procedure
of Remark 3.4 (as needed) to modify the surfaces in a neighborhood of ¥; U ¥ so
that ¥; N X5 becomes connected. At this point we have modified the surfaces so
that they are disjoint from the interior of the claspers, but one leaf of each clasper
may link the characteristic curve x(L) of L. Note that we have pushed the surface
sheets across the same leaf in each clasper so the other leaf can be used as a root
for surgery.

Now we consider the new characteristic curves x (Lt j) for the Lt .- BEach L, has
an added clasp, and s can be locally modified into a Seifert surface for component
2 of Lr;, which locally looks like a disk with a twisted band attached, as in the far
right-hand side of Fig. 9. The tubes from >; consist of meridians to Ly which now
travel over this band. So the characteristic curve for Lr; is formed by a homotopy
H; of x(L) in a neighborhood of I'; which will introduce the local twisting and
crossing changes illustrated in the right-most picture of Fig. 9. Specifically, for each
tube of 3 passing through the leaf of I'; the homotopy H; will create one twist in
the characteristic curve framing, and crossing changes with the other arcs in tubes
through the same leaf.

Since the twisting w is a type 1 framed knot invariant, this shows that 3'(L) is
type 1 with respect to Lo:

ﬂl(L) - 61(LF1) - 61(LF2) + ﬂl (LF1UF2)
= w(x(L)) = w(x(Lr,)) —w(x(Lry)) + w(x(Lr,ur,))

=w(x(L)) —wx(L)m)) —wx(L)m,)) + wx(L)mum,)) = 0.

Now to see that 8°(L) is typel with respect to Ly for all i > 1, observe that by
the above constructions the H; are disjointly supported homotopies of the second
component of D(L). So D(Lr;) = D(L)g;, and by induction

ﬂz(L) - 6i(LF1) - 6i(LF2) + ﬂi(LF1UF2)
=3 HD(L) — #HD(L)my) = B HDL) ) + B H(D(L) iyum,) = 0. B

Corollary 3.10. If T is any framed tree having at least three 2-labels, or any
twisted tree having at least two 2-labels, and T is any T-clasper on L, then 3*(Lr) =
BYL) for all i > 1.

Proof. We realize L by doing surgery, using one of the 2-labeled leaves of I" as
the root. Now Ly has strands of component 2 (but not component 1) going through
a neighborhood of T'.

Given a non-root simple leaf ¢ of I" whose cap A intersected Lo, in Ly there are
now multiple parallel strands of component 2 running through where ¢ used to be.
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Let Hy; be a homotopy that pushes the strand of component 2 that intersected A
across the parallel strands. Then (Lr)p, is actually surgery of L along a clasper
that has a clean cap. This implies that (Lr)y, = L.

Given a non-root twisted leaf /%* of T, let H,c, be a homotopy that straightens
the strands of component 2 traveling through where ¢° used to be. By similar
reasoning as in the previous paragraph (L) g o =1L

Moreover, given several of these two types of homotopies supported near dif-
ferent leaves of the clasper, modifying L by any nonempty subset will yield L, as
it is equivalent to making more than one leaf bound a clean cap in the comple-
ment of both components. The hypotheses of the corollary imply that we may find
two disjointly supported homotopies of this form. Thus, by the Proposition 3.9:

B(Lr)— BY(L) — (L) + (L) = 0. O

Recall that ¢7” is the order k twisted tree having k 1-labels, one 2-label and one
on-label as in Fig. 1.

Proposition 3.11. IfT is a t{°-clasper on L, then Lt = By,r#sL, where By, is
the w-twisted Bing double of the unknot, and #, denotes a component-wise band-
sum.

Here the bands guiding the band-sum run along the two edges of I' whose caps
intersect L.

Proof. Here is a picture of surgery on a t{°-clasper with twisting w.

To-1

/TN

This is exactly a band sum with B, as claimed. O

Corollary 3.12. Let T be a t$°-clasper on L. If i > 2, then 3*(L) = B*(Lr), and
BH(Lr) = w(T) + BH(L).

Proof. The invariants 3 are additive under arbitrary band sum [2, Theorem 5.6],
and their value on B, are 0 for i > 2 and w for 7 = 1. O

Lemma 3.13. Let T be a twisted tree with only one 2-label. Then for any T -clasper
I' on L, there exists a T-clasper I on L satisfying the following:

(1) BY(Lr) = B (Ly) for all i > 1.
(2) w(I') =w(D).
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(3) The interior of I is disjoint from possibly new Seifert surfaces for L, and taking
the derived link D(L) with respect to the new Seifert surfaces is the same as
the derived link taken with respect to the original Seifert surfaces.

Proof. Starting with the original Seifert surfaces 31, 35 for L, we may assume that
each j-labeled cap of I' meets ¥ in a clasp singularity, but is otherwise disjoint from
both Seifert surfaces. First, we find a new T-clasper I such that the interior of T”
is disjoint from X5, and Lp/ has the same Cochran invariants as Lyp. If the interior
of I is not already disjoint from X, then do surgery on I', using the 2-labeled leaf
as the root. Then we can create the following two disjointly supported homotopies
of the second component of L. The homotopy H; untwists the twisted strands
of component 2 near what was the twisted leaf of I'. The homotopy Hy pushes I'
across the boundary of X9, removing all intersections with Xo. (Here Hj is really
pushing strands of component 2 that are contained in a neighborhood of where I'
was before the surgery.) Now 3*(Lr)—8"((Lr)#, ) =B ((Lr) ,)+8'((Lr) g, 08, ) = 0.
But (LF)H1 =L= (LF)H1UH27 SO we get that ﬂz(LF) = ﬂz((LF)Ib) Now (LF)Hz =
Ly, where TV is a T-clasper (the result of applying Hs to I') that has no interior
intersections with Y.

So far we have produced a T-clasper I on L satisfying Vi 3'(Lr) = B¢(Lr)
which does not have interior intersections with s. If the interior of I is also
disjoint from ¥; we are done.

Otherwise, suppose that the interior of I is not disjoint from X;. Since only
one leaf of I links Lo, we can push all of these interior intersections away from the
2-labeled leaf and toward the 1-labeled leaves and twisted leaf, eventually pushing
sheets of X1 off of these leaves and resolving the new self-intersections of ¥; via
the standard ribbon singularity resolution, as in the proof of Proposition 3.9. This
modification of ¥; does not affect the original characteristic curve y. Moreover,
L and I are unchanged by this procedure. So Vi 3°(Lr) = 3(Lr), and we have
removed all intersections between the interior of IV and both Seifert surfaces. O

Proposition 3.14. Let ' be a t?-clasper on L for k > 2. Then there exists a
t%-clasper I on L such that 3*(Lr) = B*(Lyr+), for alli > 1, and a t ;-clasper T
on D(L) such that D(Lr/) = D(L)r» and w(T') = w(T").

Proof. Take I'” to be the clasper guaranteed by Lemma 3.13, with the interior of
IV disjoint from both Seifert surfaces for L, as in the upper left of Fig. 10. The
clasper calculus and constructions illustrated in Fig. 10 show how splitting off a
Y-clasper from I' yields the desired tJ ;-clasper I on D(L). O

We get the following corollary of Proposition 3.14 and Corollary 3.12 by
induction:

Corollary 3.15. If I is a t$-clasper on L, then B*(Lr) = w(I') + B*(L), and if
i # k, then 3'(L) = 3'(Lr).
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Fig. 10. (Color online) The case k = 3 from the proof of Proposition 3.14: Upper left: The interior
of the t5°-clasper I'V on L is disjoint from both Seifert surfaces (which are suppressed from view).
Green arcs are from Lj and the blue arc is from Ls. Upper right: Splitting off a Y-subtree by
inserting a Hopf-pair of leaves into an edge of IV and then doing the Y-surgery on L yields Ly,
which is isotopic to L, and a further surgery on the clasper I'" would also yield L. The red curve
shows the intersection between extensions of the Seifert surfaces for L to Seifert surfaces for Ly
(which has been band-summed to the original characteristic curve, as per Remark 3.4). Lower:
The clasper I'” is a t3°-clasper on D(L), with w(I'") = w(I'"). Removing I'"/, the new characteristic
curve is isotopic to the old one since it contracts along the band. Hence D(Lys) = D(L)rs.

Proposition 3.16. If T is a twisted tree which has exactly one 2-label, such that
T #tP for any k, and T is any T-clasper on L, then 3*(L) = 3*(Lr) for all i > 1.

Proof. By Lemma 3.13, we may assume that the interior of I' is disjoint from the
surfaces 31 and X5. The proof will proceed by covering the three possible cases:

A pair of vertices is said to be dual if they are connected by edges to a common
trivalent vertex.

Case 1: The 2-labeled vertex of T is not dual to any univalent vertex. Insert
Hopf-pairs of leaves into two edges of I' to split I" into three claspers, one of which
is a Y-clasper having a leaf linking Lo. (Surgery on all three of these claspers is
equivalent to surgery on I'.) The top pictures in Fig. 11 show the result of performing
the Y-surgery using the leaf linking Lo as a root. As can be seen in the upper right
picture of Fig. 11, the original Seifert surfaces for L can be extended to Seifert
surfaces on Ly without changing the characteristic curve: The indicated (blue)
genus one piece is added to Y5 in the complement of the other two claspers. And
after performing the other two clasper surgeries, ¥; (green) can be extended to a
Seifert surface for the first component of L inside a neighborhood of these claspers,
s0 no new intersections are created. Thus D(Lp) = D(L) and so I'-surgery preserves
all §°.
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Fig. 11. From the proof of Proposition 3.16.

Case 2: The 2-labeled vertex of T' is dual to the on-labeled vertex. First note that
in this case the 2-labeled vertex cannot also be dual to a 1-labeled vertex, by the
assumption 7' # ¢°. Split T' into two claspers, one of which is a Y-clasper with
one twisted leaf and one leaf linking Lo. The middle pictures in Fig. 11 show the
result of performing the Y-surgery using the leaf linking Lo as a root. As can be
seen in the middle right picture of Fig. 11, the original Seifert surfaces for L can
be extended to Seifert surfaces on Lr without changing the characteristic curve:
The indicated (blue) genus one piece with the w(T')-twisted band is added to X
in the complement of the other clasper. And after performing the other clasper
surgery, 31 (green) can be extended to a Seifert surface for the first component of
Ly inside a neighborhood of this clasper, so no new intersections are created. Thus
D(Lr) = D(L) and so I'-surgery preserves all 3.

Case 3: The 2-labeled vertex of T is dual to a 1-labeled vertex. Note that in this case
the 2-labeled vertex cannot also be dual to the on-labeled vertex, by the assumption
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T # 2. Split T into two claspers, I and a Y-clasper with one leaf linking Lo, as in
the bottom pictures of Fig. 11. The bottom right picture in Fig. 11 shows the result
of performing the Y-surgery using the leaf linking Lo as a root. A Seifert surface 3,
for the new second component can be constructed by adding the indicated (blue)
genus one piece to the original Y. Now X is in the complement of TV, but 3,
has a ribbon intersection with the original 3. After surgery on I (yielding Lr), a
Seifert surface 3} for component 1 of Lt can be constructed by resolving the ribbon
intersection by adding a tube that runs along a subarc of component 2 of Lr, and
extending X7 in a neighborhood of I”. Now the characteristic curve x' = X} N 3}
for Lr has a new loop which runs over one band of ¥} and links I". This new loop
is connected to the original x for L by a band. This new ' has no additional twists
in it, and moreover the derived link D(L) is given by surgery on the clasper T on
(L1, x") whose tree is of order one less than the order of T. Now the assumption
T # t means that we can proceed inductively, since iterating this reduction will
eventually lead to Case 1 or Case 2. O

Recall that t,, is the order n framed tree having two 2-labels and n 1-labels as
in Fig. 1.

Proposition 3.17. IfT is a framed tree which has two 2-labels and n 1-labels, for
n > 2, such that T # t,, and T is any T-clasper on L, then 3°(L) = 3*(Lr) for all
1> 1.

Proof. Consider such a T-clasper on L. Split I" by inserting Hopf-pairs of leaves
into some edges in such a way that yields a union of five claspers I'g,I'1, T2, '3, 'y
with the following properties: I'g has four leaves. A dual pair of leaves of 'y each
link leaves of I'y and I's, while the other dual pair of leaves of I'g each link I's and
[y. (A pair of leaves is said to be dual if they are connected by edges to a common
trivalent vertex.) Moreover, the other leaves of 'y and 'y are meridians to Ly, while
there is a single leaf of each of I's and I'y which is a meridian to Ly. Such a splitting
of T" is possible because T # t,,.

Now do surgery on I'y UT's UT's Uy, where we take the roots of I's and I'y to be
the leaves linking Lo. This surgery does not change L because each of these claspers
has a leaf which bounds a clean cap (although these leaves do link the leaves of T'y).
Looking at 'y on this link, we see that parallel strands of L; go through one dual
pair of leaves of I'g whereas parallel strands of Ly go through the other dual pair.

Now using the zip construction multiple times to reduce the number of strands
through the leaves to 1 each, surgery on I'y becomes equivalent to a sequence of
surgeries on simple t-claspers, with t = } >—< 3. So it suffices to show that such
t-surgeries do not affect Cochran invariants.

Consider a t-clasper I', with t = 1 >—<2. We may assume that the caps of I'
only meet the Seifert surfaces in four clasp singularities, and we may assume that
the interior of I' is disjoint from Y5 by the following argument: Let L denote the
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result of t-surgery using one of the 2-labeled leaves as the root. Denote by Hj the
homotopy of Lr which pushes the strand of component 2 that ran through the non-
root leaf across the strands of component 2 that now run along where the non-root
leaf used to be. And denote by Hs the homotopy of component 2 of L induced
by pushing I' off of 35 (so Hy moves strands that run along where I' used to be).
Now, applying Proposition 3.9 and noting that (Lr)g, = L = (Lr)m,um, (since
the results of Hy and H; U Hs are the same as clasper surgeries on L by claspers
that each have a clean leaf) gives:

0=p"(Lr) = B ((Lr)n,) = B ((Lr)m,) + B ((Lr)myus,) = B (Lr) — B*((Lr) &, )-
So pushing I off of 35 by Hs gets the interior of I" disjoint from 3o without affecting
the B¢(L).

Furthermore, any intersections between ¥; and the interior of I" can all be
pushed onto an edge adjacent to a single 2-labeled leaf: Any intersections between
31 and the 1-labeled edges of I' can be pushed into ¥, and the resulting ribbon
singularities resolved without affecting the characteristic curve.

One can now draw an explicit picture of the derived link (Fig. 12). The new
intersections of 37 and Yo come from the intersections of ¥; with the 2-labeled
edge of I', and are connected by bands to the rest of the characteristic curve. These
new curves are all trivial, implying that D(Lr) = D(L). Furthermore, the twisting
of these additions to the characteristic curve are all 0, so that 8*(L) = B*(Lr).
These last two facts are sufficient to show that 3°(L) = 3%(Lr) for all i > 1. 0

Proposition 3.18. If T is a framed tree of order > 2k + 1, or a twisted tree of
order >k, and T is any T-clasper on L, then 3'(L) = 3*(Lr) for all i > 1.

Proof. First note that for some choice of bands b, the band-sum L#,L is a slice
link, which therefore has vanishing p-invariants in all orders. In particular all 3*

Fig. 12. (Color online) A t-surgery on L, for t = % >< g, with sheets of X1 (green) intersecting
the clasper (the blue sheets are from X3). The picture on the right shows D(Ly) = D(L), with
the characteristic curve in red.
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vanish [3, Theorem 6.10]. Now consider (L#,L)r = Lr#,L. Since T' preserves
vanishing of g-invariants up to order 2k [14], we have that 0 = ['(Lr#,L) =
BY(Lr) — B4(L) for i < k. O

3.5. Proof of Theorem 1.1

Finally, we put all the ingredients together to prove Theorem 1.1:

Proof. First, we show that any L = (L1, Lo) with trivial linking number and
Arf(L;) = 0 bounds a Cochran tower of arbitrarily high order.

Start by taking any pair of properly immersed disks bounding the components
of L. Since the linking number is zero, all intersections between the two disks
will algebraically cancel, and so can be paired by Whitney disks (which will in
general intersect each other and the two immersed disks). By performing local cusp
homotopies, it can also be arranged that the disks’ self-intersections are all paired
by Whitney disks. This yields a twisted Whitney tower W of order one. If there
are no [-bad trees in (W) then we have a Cochran tower (of infinite order) and
we are done. Otherwise, there exist §-bad trees.

Throughout the following arguments for exchanging (3-bad trees for higher-order
trees, we use the “order-raising” obstruction theory described in [5]. We refer the
reader to that paper for details, including orientation and sign conventions giving
rise to coefficients for the trees in t(W), as well as descriptions of the various twisting
and THX modifications of W. In particular, whenever a pair of intersections points
or twisted Whitney disks contribute isomorphic but oppositely-signed trees to t(W),
then that pair can be eliminated at the cost of only creating new higher-order trees
in t(W). Discussion of signs will be suppressed in the following constructions.

Any (-bad tree is one of the following four types:

The trees 1—<% and 1—<c10: The trees 1—<c10 can all be exchanged for
more of the trees 1{% by the boundary-twisting operation [5, p. 1455]. And since

Arf(Ly) = 0, the trees 1—<% in t(W) have to appear an even number of times
[10, 17]. Such trees represent 2-torsion (by antisymmetry), so all these trees can be
eliminated from ¢(W) at the cost of creating only higher-order trees.

The trees tor_1: Applying the boundary twist operation to a clean framed order
k Whitney disk W(...((2,1),1),1),....1) created by finger moves creates an intersection
corresponding to the tree to5_1 at the cost of also creating a twisted Whitney disk
whose associated tree is ti”. So, for any k, all ta;_1-trees can be eliminated from
t(W), at the cost of only creating new t7°-trees and higher-order trees.

The trees tar: Applying the interior twist operation [5, p. 1456] to a clean
order k framed Whitney disk W...(((2,1),1),1),...,1) created by finger moves creates an
intersection corresponding to the tree tor at the cost of only creating a 2-twisted
Whitney disk whose associated tree is t7°. So, for any k, all to;-trees can be elimi-
nated from ¢(W), at the cost of only creating new ¢7°-trees and higher-order trees.

1740012-26



Cochran invariants and Whitney towers

Trees which are zero modulo THX: As described in [5], using the (twisted)
THX construction, any tree which represents zero modulo IHX relations can be
eliminated from ¢(W) at the cost of creating only higher-order trees.

Thus we can always remove 3-bad trees at the cost of creating only higher-order
trees, which is sufficient to establish the desired result inductively.

Secondly, we show that the 3'(L) are the signed count of ¢ trees. Decompose
the order 2k Cochran tower into concordances and simple (twisted) clasper surg-
eries from the unlink to L, by Theorem 3.1. As shown by Cochran, concordances
leave ' invariant. If a tree is not (3-bad, then a corresponding clasper surgery
can only change 3! if it is a t?°-surgery, by Corollary 3.10, Proposition 3.17 and
Proposition 3.16. And by Corollary 3.15, the effect of a t7-surgery is to change
B'(L) exactly by w(I'). Finally, clasper surgeries whose trees have order > 2k and
twisted clasper surgeries whose trees have order > k do not affect 5 for i < k, by
Proposition 3.18. O

Remark 3.19. The construction of a Cochran tower of arbitrary height in the
proof of Theorem 1.1 follows from the fact that the Whitney tower obstruction
theory allows for §-bad trees to be exchanged for t&° trees and higher-order trees.
Although we have given examples of how certain §-bad trees can create indeter-
minacies in the computation of Cochran invariants as the count of twistings on
Whitney disks associated to t7° trees (Examples 1.11, 1.12 and 2.1), it is possible
that some of the trees we have defined to be $-bad might not create indetermina-
cies in this computation. Eliminating some trees from the (3-bad list would a priori
enlarge the set of links that bound Cochran towers of infinite order, a particularly
nice case where all the Cochran invariants can be computed from a single Cochran
tower.
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