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Abstract. There are many models for the K-theory spectrum known today, each one hav-
ing its own history and applications. The purpose of this note is to give an elementary
description of eight such models (and certain completions of them) and to relate all of
them by canonical maps, some of which are homeomorphisms (rather than just homotopy
equivalences). Our survey begins with Raoul Bott’s iterated spaces of minimal geodesics
in orthogonal groups, which he used to prove his famous periodicity theorem, and includes
Milnor’s spaces of Clifford module structures as well as the Atyiah-Singer spaces of Fred-
holm operators. From these classical descriptions we move via spaces of unbounded opera-
tors and super semigroups of operators to our most recent model, which is given by certain
spaces of super symmetric (1|1)-dimensional field theories. These spaces were introduced
by the second two authors for the purpose of generalizing them to spaces of certain super
symmetric (2|1)-dimensional Euclidean field theories that are conjectured to be related to
the Hopkins-Miller spectrum TMF of topological modular forms.
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Introduction

At the first Arbeitstagung 1957 in Bonn, Alexander Grothendieck presented his ver-
sion of the Riemann-Roch theorem in terms of a group (now known as Grothendieck group)
constructed from (isomorphism classes of) algebraic vector bundles over algebraic mani-
folds. Some people say that he used the letter K to abbreviate ‘Klassen’, the German word
for (isomorphism) classes. Michael Atiyah and Friedrich Hirzebruch instantly realized that
the same construction can be applied to all complex vector bundles over a topological space
X, yielding a commutative ring K(X), where addition and multiplication come from direct
sum respectively tensor product of vector bundles. For example, every complex vector
bundle over the circle is trivial and hence K(S 1) = Z. Moreover,

K(S 2) = Z[L]/(L − 1)2,

is generated by Hopf’s line bundle L over the 2-sphere.
At the second Arbeitstagung in 1958, Raoul Bott explained his celebrated periodicity

theorem which can be expressed as the computations for all n:

K(S 2n−1) � K(S 1) � Z and K(S 2n) � K(S 2) � Z2

Bott also proved a real periodicity theorem involving the Grothendieck group of (isomor-
phisms classes of) real vector bundles over X. After dividing by the subgroup generated by
trivial bundles (the quotient is denoted by a tilde over the K-groups) one obtains

K̃O(S n) �


Z for n ≡ 0 mod 4
Z/2 for n ≡ 1, 2 mod 8
0 else

It was again Atiyah and Hirzebruch who realized that Bott’s periodicity theorem could be
used to define generalized cohomology theories Kn(X) and KOn(X) that are 2- respectively
8-periodic and satisfy K0 = K,KO0 = KO. They satisfy the same Eilenberg-Steenrod
axioms (functoriality, homotopy invariance and Mayer-Vietoris principle) as the ordinary
cohomology groups Hn(X) but if one takes X to be a point one obtains non-trivial groups
for some n , 0. In fact, the above computation yields by the suspension isomorphism

K−n(pt) � K̃−n(S 0) � K̃0(S n) �

Z for n even
0 for n odd

and similarly for real K-theory. Several classical problems in topology were solved using
this new cohomology theory. For example, the maximal number of independent vector
fields on the n-sphere was determined explicitly. A modern way to express any generalized
cohomology theory is to write down a spectrum, i.e. a sequence of pointed CW-complexes
En with structure maps ΣEn → En+1.

For ordinary cohomology, these En would be the Eilenberg-MacLane spaces K(Z, n).
The purpose of this note is to give an elementary description of eight models (and their
completions) of the spaces En in the K-theory spectrum and relate all of them by canonical
maps, most of which are homeomorphisms (rather then just homotopy equivalences). We
will exclusively work with real K-theory KO but all statements and proofs carry over to
the complex case, and, with a little more care, also to Atiyah’s Real K-theory.

Before we start a more precise discussion, we’ll give a list of the models that will
be described in this paper. Recall that a pointed CW-complex En is said to represent the
functor KOn if there are natural isomorphisms of pointed sets

[X, En] � KOn(X)
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for all CW-complexes X. By Brown’s representation theorem, such En exist and are unique
up to homotopy equivalence. The suspension isomorphism K̃On(En) � K̃On+1(ΣEn) in real
K-theory then takes the identity map on En to a map ΣEn → En+1 whose adjoint must be a
homotopy equivalence

εn : En
'
−→ ΩEn+1.

The sequence {En, εn}n∈Z of spaces and structure maps is a special type of spectrum, namely
an Ω-spectrum, that represents the cohomology theory KO. The homotopy groups of the
Ω-spectrum are then given by the following connected components:

πnKO := KOn(pt) = KO−n(pt) � π0E−n

which explains partially why we describe these negatively indexed spaces below. Note that
for n ≥ 0, we also have π0E−n � π0ΩnE0 � πnE0 but since we are considering periodic
KO-theory, the spectrum has non-trivial negative homotopy groups.

To fix notation, let Cn be the Clifford algebra associated to the positive definite inner
product on Rn. It has generators e1, ...., en satisfying the relations

e2
i = −11, eie j + e jei = 0 for i , j

and it turns into a C∗-algebra via e∗i = −ei. For n ≥ 0, we define C−n to be the Clifford
C∗-algebra for the negative definite inner product, so the operators ei are self-adjoint and
e2

i = 11. We also fix a separable real Hilbert space Hn with a ∗-representation of Cn−1 such
that all (i.e. one or two) irreducible Cn−1-modules appear infinitely often. Note that Cn is
a Z/2-graded algebra such that the even part Cev

n is isomorphic to Cn−1. Thus we get a
Z/2-graded Cn-module Hn := Hn ⊗Cev

n Cn. We denote the grading involution by α. All
gradings in this paper are Z/2-gradings.

Main Theorem. The following spaces are all homotopy equivalent and represent the
(−n)-th space in the periodic real KO-theory Ω-spectrum. The spaces in (2) to (5) are
homeomorphic and so are their “completed” partners (written in paranthesis).

(1) The Bott space Bn. Here B1 is the union of all orthogonal groups O(k) where
k ∈ N. For n > 1, the space Bn is the space of minimal geodesics in Bn−1.

(2) The Milnor space Mfin
n (respectively Mn) of “Cn−1-module structures” on Hn.

More precisely, for n > 1 these are unitary structures J on Hn, such that J − en−1
has finite rank (is compact) and Jei = −eiJ for 1 ≤ i ≤ n − 2.

(3) The space Inffin
n (respectively Infn) of ”infinitesimal generators”, i.e. odd, self-

adjoint unbounded Cn-linear operators on Hn with finite rank (compact) resol-
vent.

(4) The configuration space Conffin
n (respectively Confn) of finite dimensional un-

graded mutually perpendicular Cn-submodules Vλ of Hn, labelled by finitely
(discretely) many λ ∈ R satisfying V−λ = α(Vλ).

(5) The space SGOfin
n (respectively SGOn) of super semigroups of self-adjoint Cn-

linear finite rank (compact) operators onHn.
(6) The classifying space of the internal groupoid 1|1-PEFT−n of super symmetric,

positive Euclidean Field Theories of dimension (1|1) and degree (−n).
(7) The classifying space Qn of a category that arises from a Cn-module category by

a topological version of Quillen’s S −1S -construction.
(8) The Atiyah-Singer space Fn of certain skew-adjoint Fredholm operators on Hn,

anti-commuting with the Cn−1-action.
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The above theorem only gives very rough descriptions of the spaces involved. Detailed
definitions for each item (k), k = 1, . . . , 8, can be found in Section k below. Section k
also contains the proof that the spaces in (k) are homeomorphic (respectively homotopy
equivalent) to spaces appearing previously.

To the best of our knowledge, the homeomorphisms between the spaces in (2), (4),
(5) are new, even though it was well known that the spaces are homotopy equivalent for
abstract reasons (since they represent the same Ω-spectrum and have the homotopy type
of a CW complex; in fact, our results imply that this is the case for all the spaces in our
Main Theorem). Moreover, our maps relating the spaces in (4) and (7) respectively (3) and
(8) seem to be new and slightly easier than the original ones. Another new aspect is the
precise treatment of super semigroups and the spaces SGOn.

Finally, the main new result is the equivalence of the older descriptions of K-theory
with the one in (6). This paper does not contain the definitive treatment of this equivalence,
we only outline the case for n = 0, see [ST2], [HST] for more details. Studying super
symmetric Euclidean field theories is a long term project of the last two authors, attempting
to give a geometric description of the Hopkins-Miller theory of topological modular forms,
the “universal” elliptic cohomology theory, by raising the dimension of the worldsheet
from (1|1) to (2|1).

Remark 0.1. The spaces in (3) to (7) are defined for all n ∈ Z and the theorem
holds for all integers n. The Bott and Milnor spaces only make sense for n ≥ 1 and the
same seems to be true for the spaces in (8). This comes from the fact that the Atiyah-
Singer spaces Fn are defined in terms of the ungraded Hilbert space Hn and for n ≤ 0
our translation to Hn doesn’t work well. However, this can be circumvented by never
mentioning the Clifford algebra Cn−1 in the definitions and working with the ungraded
algebra Cev

n instead. Then the spaces Fn are defined for all n ∈ Z and our theorem holds.
We chose the formulation above to better connect with the reference [AS].

We should also mention some other descriptions of the spaces in the KO-theory spec-
trum, we apologize in advance for any omissions. In [Se2], Graeme Segal introduces the
technology of Γ-spaces to construct a connective spectrum from a symmetric monoidal cat-
egory. The 0-th space E0 in the resulting Ω-spectrum is the group completion of the com-
mutative H-space resulting from the classifying space of the symmetric monoidal category.
If one applies his machine to finite dimensional vector spaces (with direct sum operation),
one obtains connective ko-theory. This means that for n ≥ 0 the spaces E−n = ΩnE0 are
homotopy equivalent to the ones in our theorem but En is (n − 1)-connected and hence the
negative homotopy groups of the spectrum vanish.

In his book on K-theory [Ka, Thm.III.4.27], Max Karoubi describes the n-th space for
KO as the space of gradings of Hn. These are orthogonal involutions that anti-commute
with the ei (and have no relation with the given grading α).

In [GH], Guentner and Higson use for the (−n)-th space for KO all Z/2-graded C∗-
algebra homomorphisms from C0(R) to the Cn-linear compact operators on Hn. Here the
C∗-algebra of continuous functions on R that vanish at∞ is graded via the map x 7→ −x for
x ∈ R. We showed in [ST, Lem.3.15] that this space is actually homeomorphic to SGOn in
(5) above. This follows from the fact that C0(R) is the graded C∗-algebra generated by the
super semigroup R1|1

>0 used in the definition of SGOn.
In Pokman Cheung’s thesis [C], another version of the (−n)-th space in the real K-

theory spectrum was introduced. The author starts with Confn as a discrete set of objects,
introduces a space of morphisms which gives a topological category and shows that its
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classifying space is homotopy equivalent to the Atiyah-Singer space Fn. We shall compare
his results with ours in Remark 7.3.

Survey of the spaces in our Main Theorem. We now give a rough outline of where
the spaces come from and how they are related. The spaces Bn were defined by Raoul Bott
in his classic paper [B] on ”the stable homotopy of the classical groups” whose periodicity
theorem is the heart and soul of K-theory. This model actually predates the invention of K-
theory as a generalized cohomology theory, but was used by Bott to completely calculate
the coefficients of this theory.

Atiyah, Bott and Shapiro [ABS] showed the significance of Clifford algebras in K-
theory and they suggested to look for a proof of the periodicity theorem using Clifford
algebras. A proof along these lines was then found by Wood in [W] and also by Milnor in
his beautiful book [Mi] on Morse theory. We will recall in Section 1 how one can easily
compute (iterated) spaces of minimal geodesics in the orthogonal group in terms of Clifford
module structures on Hn. In Section 2 we’ll define the Milnor spacesMn to be a certain
completion of these spaces of Clifford module structures. These new spaces do not any
more depend on a basis of Hn but they have the same homotopy type as Bn by a theorem
of Palais [P].

The configuration spaces Conffin
n are the easiest to work with because one can geomet-

rically picture its points very well as a finite collection of real numbers λ, labelled by (finite
dimensional and pairwise orthogonal) Cn-submodules Vλ ⊂ Hn such that V−λ = α(Vλ). In
[Se1], Segal had introduced such configuration spaces F(X) in the case n = 0 (and un-
graded) for any compact space X (with basepoint x0) instead of the real line, one-point
compactified to S 1 (with∞ as basepoint). The topology on F(X) is such that if two points
of X collide then the corresponding labels (aka subspaces of H = H0) add and moreover,
a point can move to x0 and is then discarded. Segal proved that if X is connected then one
has isomorphisms

kon(X, x0) � πnF(X, x0) � πn+1F(ΣX, x0)

In particular, it follows that for n > 0 the space F(S n) is the n-th space of the connective
ko-theory Ω-spectrum. However, for n = 0 this is clearly not the case since F(S 0) is the
Graßmannian of finite dimensional subspaces of H and hence has the homotopy type of
qkBO(k). As a consequence, one needs to group complete this space (with respect to direct
sum) to obtain the correct homotopy type BO × Z. Our graded version Conffin

0 of Segal’s
configuration space F(S 0) already has this homotopy type and hence it should be thought
of as a “group completion of configurations”. We believe that more generally, if X is
connected then F(X) = F(X; H) is homotopy equivalent to Conf(X × S 1, (x0,∞);H). This
is written in the notation of Section 4, whereH = H⊕H and the involution on X× (R∪∞)
is given by (x, λ) 7→ (x,−λ).

It came as a surprise to us that (equipped with the correct topology) the configuration
space Conffin

n is actually the classifying space Qn of a certain (internal) Quillen category
appearing as (7) in our main theorem. In the light of the above considerations regarding
group completion, this was expected only for the homotopy type of the classifying space
for n = 0 and we shall outline in Section 7 how one can use Quillen’s results to prove from
this point of view that Conffin

0 represents KO0.
Given a configuration {Vλ} in Conffin

n , one can interpret it as the eigenspaces and eigen-
values of an odd, self-adjoint, Cn-linear operator D ∈ Inffin

n with domain
⊕

λ Vλ that is
given by

D(v) := λ · v ∀ v ∈ Vλ.
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We note that the domain of D is finite dimensional; in particular, D is not densely de-
fined, a common requirement for self-adjoint operators in text books. We expand the usual
definition of a self-adjoint (unbounded) operator by just requiring that the operator is self-
adjoint on the closure of its domain. As a consequence, it is very natural to study com-
pletions Confn of the spaces Conffin

n where there is a discrete set of labels and hence the
corresponding operator D ∈ Infn may have dense domain (and it has compact resolvent).
The resulting spaces Infn are equipped with the generalized norm topology and the fact
that one can retract the completed spaces back to their finite rank subspaces goes back to
(at least) Segal [Se1] but we reprove this fact here.

The operatorD can be used as the infinitesimal generator of the super semigroup

(t, θ) 7→ e−tD2+θD

of finite rank (respectively compact) operators on Hn. These are the elements of SGOfin
n

(respectively SGOn). Here (t, θ) ∈ R1|1
>0 parametrize a certain super semigroup whose super

Lie algebra is free on one odd generator. Such super semigroups of operators should be
considered the ‘fermionic’ or ‘odd’ analogue of usual semigroups of operators.

The homeomorphism from Conffin
n toMn is basically given by applying the inverse of

the Cayley transform to the operator D. If one applies this transformation to elements in
Confn one obtains interesting completions of the Milnor and Bott spaces.

The spaces SGOn were introduced by two of us in [ST] as super semigroups of self-
adjoint operators and at the time we thought of them as Euclidean field theories, without
having a precise definition for the latter. In the meantime, we have developed a precise
notion of super symmetric Euclidean field theories of dimension d|δ, see [ST2]. These
are certain fibred functors from a Euclidean bordism category to a category of topological
vector spaces, both fibred over the site of complex super manifolds, see Section 6. Using
invertible natural transformations between such functors leads to a groupoid of Euclidean
field theories. Using the inner Hom in fibred categories, one naturally gets a groupoid
internal in topological spaces and hence have a classifying space. In Section 6 we will also
assume that the Euclidean field theories are unitary and strongly positive and for d|δ = 1|1
we denote the resulting classifying space by 1|1-PEFT−n. Here the superscript refers to a
degree −n twist that will not be explained in this paper but see [HKST].

If one starts with a closed n-dimensional spin manifold M then the Cn-linear Dirac
operator DM (called Atiyah-Singer operator in [LM, p.140]) is an example of a (non-finite)
element in Infn, whereHn are the L2-sections of the Cn-linear spinor bundle on M. One can
think of this operator as the infinitesimal generator of a super symmetric (1|1)-dimensional
quantum field theory, with Euclidean (rather than Minkowski) signature. This is the reason
why we use the terminology Euclidean field theory. Actually, physicists would call it super
symmetric quantum mechanics on M, not a field theory, since space is 0-dimensional.

The spaces Fn first appeared in the article [AS] by Atiyah-Singer and are probably
the most common model for K-theory. They make all the wonderful applications to anal-
ysis possible. From our point of view, the connection is easiest to make with the space
Infn: Starting with a skew-adjoint Fredholm operator T0 on Hn that anti-commutes with
e1, . . . , en−1, we can turn it into an odd, self-adjoint, Cn-linear Fredholm operator

T = T0 ⊗ en or equivalently T =

(
0 T ∗0
T0 0

)
on Hn � Hn ⊕ Hn. It is easy to see that the map T0 7→ T is a homeomorphism and it is
important to note that the skew-symmetry of T0 is equivalent to the relation Ten = enT .
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This correspondence actually extends to the well known case n = 0 where one starts with
all Fredholm operators on H0 and gets all odd, self-adjoint Fredholm operators on H0⊕H0.

The essential spectrum of a Fredholm operator has a gap around zero and hence one
can push the essential spectrum outside zero all the way into ±∞ by a homotopy. This
turns a bounded operator into an unbounded one and is the basic step in the homotopy
equivalence that takes a Fredholm operator T to an infinitesimal generator D. In the ana-
lytic literature, one can sometimes find concrete formulas in terms of functional calculus
(which just describes the movement of the spectrum of T ) like

T =
D

1 +D2 .

Such precise formulas are not important from our point of view but the following subtlety
arises in the operator D: its eigenspace at ∞, by definition the orthogonal complement of
the domain ofD, is decomposed into the parts at +∞ respectively −∞. Such a datum is not
present in general elements of Infn and it reflects the fact that we started with a bounded
operator. Roughly speaking, this represents no problem up to homotopy if both these parts
at ±∞ are infinite dimensional. This uses Kuiper’s theorem and is the only non-elementary
aspect of this paper.

Taking into account the Cn-action, this is related to the following well-known subtlety
in the Atiyah-Singer spaces of Fredholm operators. If n . 3 mod 4, the spaces Fn are
given by operators T0 (or equivalently T ) as above. However, Atiyah-Singer showed that
for n ≡ 3 mod 4 the space of Cn−1-antilinear skew-adjoint Fredholm operators on Hn has
two boring, contractible components F̂ ±n consisting of operators T0 such that

e1 · e2 · · · en−1 · T0

is essentially positive (respectively negative). Recall that an operator is essentially positive
if it is positive on a closed invariant subspace of finite codimension. So in the precise
version for Fn in [AS], the two components F̂ ±n are disregarded. It turns out that the above
functional calculus leads to a map of all Cn−1-antilinear skew-adjoint Fredholm operators
to our spaces Infn but this map is a quasifibration (with contractible fibres) only on the
component Fn. Hence our spaces automatically remove the need for thinking about the
above subtleties that arise from bounded operators and are interestingly only visible in the
presence of special Clifford actions.

A symmetric ring spectrum for K-theory. We end this introduction by explaining
the easiest description (that we know) of a symmetric ring spectrum that represents K-
theory. Let H−1 be a C−1-module as in the paragraph preceeding our Main Theorem, in
particular it contains a submodule V that is isomorphic to C−1 as a C−1-module. Then
H−n := H⊗n

−1 has the properties required in our Main Theorem and hence there are corre-
sponding spaces En := Inffin

−n(H−n) of infinitesimal generators as in (3) of that Theorem.
One can also use the completed version Inf−n instead. We point out that En contains a
canonical base point, namely the operator whose domain is zero (and thus all eigenvalues
are at∞).

Theorem 0.2. For n ≥ 0, the spaces En form a symmetric ring spectrum representing
real K-theory. The relevant structures are given as follows.

• The symmetric group Σn acts by permuting the n tensor factors ofH−n.
• The multiplication maps En ∧ Em −→ En+m are given by the formula

(Dn,Dm) 7→ Dn ⊗ 11 + 11 ⊗ Dm



8 HENNING HOHNHOLD, STEPHAN STOLZ, AND PETER TEICHNER

• The Σn-equivariant structure maps Rn −→ En are given by sending v ∈ Rn to its
Clifford action on the C−n-module V⊗n (and∞ on the orthogonal complement in
H−n). As v → ∞, Clifford multiplication also goes to ∞ and hence the structure
maps can be extended to S n, sending the point at∞ to the base point in En. These
operators are odd and self-adjoint which explains the negative sign of −n.

This result is a reformulation of a theorem of Michael Joachim [Jo], so we shall not
give a proof. By using complex Hilbert spaces and Clifford algebras, all our results trans-
late to complex K-theory. In fact, keeping track of the involution of complex conjugation,
one also gets Atiyah’s Real K-theory which contains both, real K-theory (via taking fixed
points) and complex K-theory (by forgetting the conjugation map).

1. Bott spaces of minimal geodesics

The origin of topological K-theory is Raoul Bott’s classical paper [B] on ”The stable
homotopy of the classical groups”. For a Riemannian manifold M, let v = (P,Q, h) denote
a ‘base point in M’ which is actually a pair of points P,Q ∈ M, together with a fixed
homotopy class h of paths connecting P and Q. If P = Q then h is just an element in
π1(M, P).

Bott considers the space Mv of minimal geodesics from P to Q in the homotopy class
h, a subspace of Ωv, the space of all such paths. Let |v| be the first positive integer which
occurs as the index of some geodesic with base point v. Then Bott proved the following
theorem in [B]:

Theorem 1.1 (Bott). If M is a symmetric space, so is Mv. Moreover, the based loop
space Ωv can be built, up to homotopy, by starting with Mv and attaching cells of dimension
≥ |v|:

Ωv ' Mv ∪ e|v| ∪ (higher dimensional cells) written as Mv |v|
−→ M

For example, if M = S n, n > 1, with the round metric and P,Q are not antipodal, then
there is a unique minimal geodesic from P to Q. The second shortest geodesic from P to Q
reaches the point −Q that has an (n−1)-dimensional variation of geodesics to Q and hence
|v| = n − 1. In the notation above, one gets

pt = Mv (n−1)
−→ M = S n

which implies that ΩS n is (n − 2)-connected, or equivalently, that S n is (n − 1)-connected,
not such a great result. However, if one considers all geodesics, one can say much more.
In fact, the indices of geodesics from P to Q are k(n − 1) for k = 0, 1, 2, . . . . This is a case
of Morse’s original application of his theory to infinite dimensional manifolds: the energy
functional

E : ΩvM −→ R, E(γ) :=
∫ 1

0
|γ′(t)|2dt

is a Morse function with critical points the geodesics and indices given by the number of
conjugate points (counted with multiplicity) along the given geodesic. Morse shows that
infinite dimensionality is not an issue, because the space of paths with bounded energy has
the homotopy type of a finite dimensional space, namely the piecewise geodesics (where
the number of corners is related to the energy bound and the injectivity radius of M). As a
consequence of our example above,

ΩvS n ' S n−1 ∪ e2(n−1) ∪ e3(n−1) ∪ . . .
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If P and Q are antipodal points on S n, then the energy is not a Morse function. For example,
the minimal geodesics form an (n−1)-sphere, parametrized by the equator in S n. However,
Bott developed a theory for such cases, now known as Morse-Bott theory, where the critical
points form a submanifold whose tangent space equals the null space of the Hessian of the
given function, the Morse-Bott condition. Applied to the case at hand, we can derive the
same cell decomposition of ΩvS n as above but this time the bottom cell consists of the
minimal geodesics:

S n−1 = Mv 2(n−1)
−→ M = S n

So Freudenthal’s suspension theorem is a direct consequence of this result, using only the
index of the first non-minimal geodesics (not the first two, as in the generic case studied
by Morse). More generally, for any symmetric space, this is Bott’s proof of Theorem 1.1
above.

His approach to study the homotopy types of the classical groups was to apply this
method to compact Lie groups which are symmetric spaces in their bi-invariant metric.
For example, consider M = O(2m) and P = 11,Q = −11. Then every geodesic γ from P to
Q is of the form

γ(t) = exp(πt · A), t ∈ [0, 1]

where A is skew-adjoint. Thus we can ‘diagonalize’ A by an orthogonal matrix T , i.e. T AT−1

is a block sum B of matrices (
0 ai

−ai 0

)
with a1, . . . , am ≥ 0 after normalization. Since γ(1) = −11, we see that the ai are odd
integers. It is not hard to see that the energy of γ is given by the formula

E(γ) = 2(a2
1 + · · · + a2

m)

so that minimal energy (or equivalently, minimal length) means that all ai = 1. We note
that for m > 1, the energy determines the homotopy class h of such a path so that we don’t
need to mention it for minimal energy (or length) paths (this stays true in all considerations
below as well). We conclude that

A2 = T−1B2T = T−1(−11)T = −11 and A∗ = −A = A−1

so that A is a complex structure on R2m. Just like for the standard complex structure we
have

A = exp((π/2) · A) = γ(1/2)

and we obtain the following result.

Proposition 1.2 (Bott). The space B2(2m) of minimal geodesics in O(2m) with base-
point v as above is isometric to the spaceM2(2m) of unitary structures on R2m (consisting
of J ∈ O(2m) with J2 = −11). Moreover, this is a totally geodesic submanifold of O(2m)
and the homeomorphism is given by sending a geodesic γ to its midpoint γ(1/2).

We are introducing a notation that is consistent with

B1(m) = O(m) =M1(m)

and will lead to the Bott and Milnor spaces in the limit when m 7→ ∞. Now recall that
B2(2m) is again a symmetric space by Bott’s theorem so that we can iterate the construc-
tion: Pick a complex structure J1 and study the space B3(4m) of minimal geodesics in
B2(4m) from J1 to −J1 (they automatically lie in a fixed homotopy class).
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By a very similar discussion as above, it turns out that the midpoint map gives an
isometry

B3(4m) �M3(4m) := {J ∈ O(4m) | J2 = −11, JJ1 = −J1J}.
Note that the right hand side is the space of (orthogonal) quaternion structures on R4m that
are compatible with the given unitary (or orthogonal complex) structure J1. The set of
such structures form a totally geodesic submanifold of O(4m). More generally, we make
the following

Definition 1.3. Assume that Rm is a Cn−2-module for some n > 1. More precisely,
there is a ∗-homomorphism Cn−2 → End(Rm) sending ei to Ji for i = 1, . . . , n. Note that
the compatibility with ∗ implies that Ji ∈ O(m). Then we define Milnor spaces

Mn(m) := {J ∈ O(m) | J2 = −11, JJi = −JiJ ∀i = 1, . . . , n − 2}

to be “the space of all Cn−1-structures on Rm”, compatible with the given Cn−2-structure.
Note that these spaces can be empty.

Proposition 1.4 (Bott). All Mn(m) are totally geodesic submanifolds of O(m). The
space of minimal geodesics inMn(m) from Jn−1 to −Jn−1 is isometric toMn+1(m) via the
midpoint map.

Proof. Let’s assume the first sentence and show the second assertion. Any geodesic γ
from Jn−1 to −Jn−1 is of the form

γ(t) = Jn−1 · exp(πt · A), t ∈ [0, 1]

for some skew-adjoint matrix A. One checks that γ(1/2) = Jn−1 · A has square −11 and
anticommutes with J1, . . . Jn−2 if and only if γ lies in the submanifoldMn(m). �

Definition 1.5. Inductively, let the Bott spaces Bn+1(m) be the space of minimal
geodesics in Bn(m) from Jn−1 to −Jn−1 (for those m where such a path exists). Then the
previous discussion shows that the midpoint map gives an isometry

Bn+1(m) �Mn+1(m)

1.1. Bott Periodicity. This leads to Bott’s original proof of the celebrated periodicity
theorems as follows.

Theorem 1.6 (Bott). Let dn be the minimal dimension of a Cn-module. Recall Bott’s
notation for the cell decomposition of the space of loops. Then

Bn+1(m)
m
dn
−1
−→ Bn(m)

This implies in particular that for m → ∞, the smallest dimension of a cell needed to
get the loop space from the space of minimal geodesics also goes to infinity. Thus in the
limit, one gets a homotopy equivalence

ΩvBn ' Bn+1.

To make this precise, we define the spacesMn(∞), which were studied by Milnor in [Mi],
as the union of all Mn(m) inside O(∞) (which is the union of all O(m)). In fact, we
only take the union over those m that are divisible by dn. With a similar definition of
Bn = Bn(∞), the midpoint maps give homeomorphisms

Bn(m) ≈ Mn(m) ∀ m = 1, 2, . . . (including m = ∞).

between these Bott and Milnor spaces. Now by Morita equivalence Mn(∞) ≈ Mn+8(∞)
because Cn+8 is a real matrix ring over Cn. As a consequence,
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Corollary 1.7 (Bott). There are homeomorphisms and homotopy equivalences

Bn ≈ Bn+8 ' Ω8Bn

and the homotopy groups of O(∞) are 8-periodic.

These groups are known as the ‘stable’ homotopy groups of the orthogonal group
because

πiO(m) � πiO(∞) ∀i < m − 1.

2. Milnor spaces of Clifford module structures

For each n ≥ 1, let Hn be a separable Hilbert space that is a Cn−1-module such that
each irreducible representation of Cn−1 appears with infinite multiplicity.

Definition 2.1. For n = 1 we define

Mfin
1 = { A ∈ O(H1) | A ≡ 1 modulo finite rank operators }.

For n ≥ 2 the (finite rank) Milnor spaceMfin
n is the space of orthogonal operators J on Hn

satisfying

• J2 = −11, or, equivalently, J is skew-adjoint,
• J anti-commutes with e1, . . . , en−2,
• J − en−1 has finite rank.

If we replace finite rank operators by compact operators in the above definition, we get the
Milnor spacesMn for n ≥ 1.

The main result from the previous section is that the Bott spacesBn are homeomorphic
to the filtered union (with the direct limit topology)

Mn(∞) =

∞⋃
k=1

Mn(k · dn)

i.e. they can be calculated in terms of spaces of Clifford algebra structures on R∞, see
Definition 1.3. Let M be the unique irreducible Cn−1-module if n is not divisible by 4,
respectively the sum of the two irreducible Cn−1-modules if n is divisible by 4. We may
choose embeddings

Hn(m) :=
m⊕

k=1

M ⊂ Hn ∀ m = 1, 2, . . . (including m = ∞).

This is just the choice of an orthonormal basis in the case n = 1. We get an embedding of
Hn(∞) (= R∞ for n = 1) into Hn and an induced inclusion ofMn(∞) intoMn.

Theorem 2.2. For all n ≥ 1, this inclusion is a homotopy equivalence

Mn(∞)
'
↪→Mn.

It will follow from Proposition 4.6 that the inclusions Mfin
n ↪→ Mn are homotopy

equivalences (and hence so are the inclusionsMn(∞)↪→Mfin
n ). In fact, in the definition of

the Milnor spaces, one can use any space of operators in between finite rank and compact
operators (with the norm topology) to make this result true.
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Proof. We shall use Palais’ Theorem (A) from [P] which states the following. Let
E be a Banach space and π(m) continuous projection operators onto finite dimensional
subspaces E(m) ⊂ E(m + 1) which tend strongly to the identity as m → ∞. Then for any
open subspace O of E, the inclusion map

O(∞) ↪→ O

is a homotopy equivalence. Here O(∞) is the direct limit of all O(m) := O ∩ E(m). In our
setting, we have an extra parameter n ≥ 2, where we leave the easiest case n = 1 to the
reader. We define

En := {A ∈ K(Hn) | A∗ = −A, Aei = −eiA for i = 1, . . . , n − 2}

where K(Hn) is the Banach space of compact operators on Hn with the norm topology.
Consider the Cn−1-linear orthogonal projections Hn � Hn(m) which by pre- and post
composition induce projections

π(m) : En � En(m) := En ∩ K(Hn(m)).

We may assume that Hn is the closure of Hn(∞) and hence that the π(m) tend strongly to
the identity. For the open subset in Palais’ theorem we choose

On := { A ∈ En | A + en−1 is invertible }

and On(m) := On ∩ En(m). Then the map A 7→ A + en−1 gives homeomorphisms of On,
respectively On(m), with

Gn := { B ∈ GL(Hn) | B − en−1 ∈ En }

respectively Gn(m) := Gn ∩GL(Hn(m)). Palais’ theorem says that the inclusion induces a
homotopy equivalence

Gn(∞)
'
↪→ Gn.

To prove our Theorem 2.2, we need to replace the general linear groups by the orthogonal
groups in all of the above. This can be done by the polar decomposition of the invertible
skew-adjoint operators B above. We may write

B = U · P = P · U

where P :=
√

B∗B =
√

BB∗ is positive and U is an orthogonal operator. Note that U is
actually also skew-adjoint:

U∗ = (BP−1)∗ = P−1B∗ = P−1(−B) = −U

Moreover, B anticommutes with ei for i = 1, . . . , n−2 and therefore P commutes with these
ei and hence U anticommutes with them again. Finally, it is easy to check that U −en−1 is a
compact operator and hence U has the same properties as B and therefore lies inMn ⊂ Gn.
This implies that here is a commutative diagram

Gn(∞) Gn

Mn(∞) Mn

//'

�� ' �� '
//

where the vertical maps are given by polar decomposition B 7→ U. Since these are well
known to be the homotopy inverse to the inclusion maps, the proof of Theorem 2.2 is
completed. �
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3. Infinitesimal Generators

In this section we will review some basic facts about self-adjoint (unbounded) opera-
tors, reminding the reader of a nice topology on this space. Let H be a separable complex
Hilbert space. Denote by Inf the set of all self-adjoint operators on H with compact re-
solvent. Note that we do not require an element D ∈ Inf to be densely defined. By
‘self-adjoint’ we mean that D defines a self-adjoint operator on the closure of its domain.
The compact resolvent condition means that the spectrum of D consists of eigenvalues of
finite multiplicity that do not have an accumulation point in R. Hence, if the domain of D
is infinite dimensional, the operator D on dom(D) is necessarily unbounded. Because of
this, we will think of dom(D)⊥ as the eigenspace ofD associated with the ‘eigenvalue’∞.

Functional calculus gives a bijection, see e. g. [GH],

Inf ←→ Hom(C0(R),K)

where the right hand side is the space of all C∗-homomorphisms from (complex valued)
continuous functions on R that vanish at ∞ to the compact operators K on H. Note that
both of these C∗-algebras do not have a unit. Below, we will also deal with C∗-algebras that
do have a unit and in this case Hom will denote those C∗-homomorphisms that preserve
the unit.

We define the space Ĩnf to be just as above, except that we do not require the spectrum
to be discrete (and the eigenspaces can be infinite dimensional). The “Cayley transform”
is defined for such operators by functional calculus using the Möbius transformation

c(x) :=
x + i
x − i

which takes R ∪ {∞} to the unit circle S 1. It defines the mapping from the very left to the
very right in the following theorem.

Theorem 3.1. There are bijections

Ĩnf
a
←→ Hom(C0(R),B)

c
� Hom(C(S 1),B)

b
←→U

where B andU are the bounded respectively unitary operators on H. Moreover, the bijec-
tion b on the right, given by functional calculus, is a homeomorphism from the pointwise
norm topology on Hom(C(S 1),B) to the operator norm topology onU.

Definition 3.2. We give Ĩnf the topology coming from the above bijections. This is
sometimes referred to as generalized norm topology because of Lemma 3.4 below.

Remark 3.3. Just like Inf has an interpretation in terms of configuration spaces, by
using the pattern of eigenvalues and their eigenspaces, the space Ĩnf can be interpreted as
the space of all projection valued measures on R, see [RS, Thm.VIII.6]. The fact that the
operators must not be densely defined is reflected in the fact that the projection correspond-
ing to all of R is not necessarily the identity but projects onto the domain. Thus the result
becomes cleaner than in [RS] where the map b is not onto.

Theorem 3.1 is well known, we just need to collect various bits and pieces of the
argument, for example from Rudin [R] or Reed-Simon [RS]. These authors only define the
adjoint of a densely defined operator D because otherwise the adjoint is not determined by
the formula

〈Dv,w〉 = 〈v,D∗w〉
In particular, self-adjoint operators are assumed to be have dense domain. As a conse-
quence, [R, Thm.13.19] proves that the Cayley transform gives an inclusion of all densely
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defined self-adjoint operators onto the space of unitary operators without eigenvalue 1. If
one allows non-dense domains, i.e. eigenvalue∞ (defining the adjoint also to be∞ on that
subspace), then the Cayley transform takes the eigenspace of∞ to the eigenspace of 1 and
therefore becomes onto all unitary operators, i.e. gives the desired bijection Ĩnf ↔U.

Proof of Theorem 3.1. The map a is given by functional calculus which is well de-
fined on self-adjoint operators that are densely defined. Since the functions f vanish at ∞
one can extend this for all D ∈ Ĩnf by defining f (D) to be zero on the orthogonal comple-
ment of the domain of D. For the second map, note that C(S 1) is obtained from C0(R) by
adding a unit 11 (and using the above Möbius transformation c). We get an isomorphism
between the two spaces of C∗-homomorphisms since we require that 11 maps to 11 (if the
algebras have units). Finally, the map b is given by evaluating a homomorphism at the
identity map z : S 1 → S 1. It is clear that the composition from left to right is therefore the
Cayley transform and hence a bijection. Recall that by Fourier decomposition, there is an
isomorphism of complex C∗-algebras

C(S 1) � C∗(Z)

where Z is the infinite cyclic group, freely generated by an element z (which corresponds
to the above identity z on S 1). It follows that C∗(Z) is free as a C∗-algebra on one unitary
element z and hence C∗-homomorphisms out of it are just unitary elements in the target.
Moreover, the bijection is given by evaluating functions on this unitary z which is our map
b above.

To show that b is a homeomorphism, we need to show that a sequence ϕn of C∗-
homomorphisms converges if and only if ϕn(z) converges (in norm). By definition, the
ϕn converge if ϕn( f ) converges (in norm) for all f , so one direction is obvious. For the
other, assume that un := ϕn(z) converges to u ∈ U and note that ϕn( f ) = f (ϕn(z)) = f (un).
We want to show that f (un) converges to f (u) and we claim that this is easy to check in
the case when f is a Laurent polynomial. For the general case, pick ε > 0 and choose
a Laurent polynomial p = p(z) such that || f − p||sup < ε/3 and an N >> 0 such that
||p(un) − p(u)|| < ε/3 for n > N. Then for n > N we have

|| f (un) − f (u)|| = ||( f (un) − p(un)) + (p(un) − p(u)) + (p(u) − f (u))|| < ε

and hence f (un) converges to f (u). This argument is very similar to the one in [RS,
Thm.VIII.20(a)]. �

Lemma 3.4. The Cayley transform on bounded operators

Bsa ⊂ Ĩnf ←→U

is an open embedding, i.e. the generalized norm topology on Ĩnf extends the operator norm
topology on Bsa, the bounded self-adjoint operators on H.

Again this result is well known, see for example [RS, Thm.VIII.18]. Reed and Si-
mon use the resolvent instead of the Cayley transform but this is just a different choice of
Möbius transformation, using x 7→ (x + i)−1 instead of c. This has the effect that the image
of R is not the unit circle but a circle of radius 1/2 inside the unit circle. Therefore, one
does not get unitary operators but there is certainly no difference for the induced topol-
ogy. Unfortunately, in the above Theorem VIII.18, Reed and Simon assume an additional
property on the sequence considered, namely that it is uniformly bounded. It turns out,
however, that this assumption is unnecessary which is an easy consequence of Theorem
VIII.23(b) in [RS].
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Remark 3.5. It is interesting to recall from [R, Thm.13.19] that the Cayley transform
can also be applied to symmetric operators, i.e. those that are formally self-adjoint and with
Dom(D) ⊆ Dom(D∗). The result is an isometry U with

Dom(U) = Range(D + i · 11) and Range(U) = Range(D − i · 11)

D is closed if and only if U is closed and D is self-adjoint if and only if U is unitary. Using
the Cayley transform and its inverse one sees that the self-adjoint extensions of D are in
1-1 correspondence with unitary isomorphisms between the orthogonal complements of
Dom(U) and Range(U). In particular, self-adjoint extensions exist if and only if these
complements have the same dimensions, usually referred to as the deficiency indices.

An example to keep in mind is the infamous right shift which is an isometry with
deficiency indices 0 and 1. Thus its inverse Cayley transform has no self-adjoint extension.

Let Inffin be the space of all self-adjoint operators on H, with finite spectrum and
multiplicity (not necessarily densely defined).

Proposition 3.6. The Cayley transform induces the following bijections

Inf
a
←→ Hom(C0(R),K)

c
� Hom(C(S 1),K + C · 11)

b
←→U ∩ (K + C · 11)

Inffin a
←→ Hom(C0(R),FR)

c
� Hom(C(S 1),FR + C · 11)

b
←→U ∩ (FR + C · 11)

where K and FR are the compact respectively finite rank operators on H. Moreover, the
bijections b on the right, given by functional calculus, are homeomorphisms from the point-
wise norm topology on the spaces of C∗-homomorphisms to the operator norm topology
onU.

Proof. The Cayley transforms give the bijections from the very left to the very right
because one can read off the conditions of being compact respectively finite rank from the
spectrum and multiplicities of the operators. These conditions are mapped into each other
by definition of the spaces. The fact that the maps b are homeomorphisms is proved exactly
as in Theorem 3.1 �

We now have complete control over the topology on our various spaces. The largest
space Ĩnf is homeomorphic toU and hence contractible by Kuiper’s theorem, whereas the
subspaces Inffin and Inf are homotopy equivalent (see Proposition 4.6) and have a very
interesting topology.

We shall now add some bells and whistles, like grading, real structure and Clifford
action to make these spaces even more interesting. In a first step, assume that our complex
Hilbert space H has a real structure, i.e. that

H = HR ⊗R C

for some real Hilbert space HR. If we think of the real structure (a.k.a. complex conjuga-
tion) on H as a grading involution α (which has the property that the even and odd parts
are isomorphic) then the above Proposition 3.6 leads to the following result.

Proposition 3.7. The Cayley transform induces homeomorphisms

Infodd(H)
c
≈ O(HR) ∩ (K + C · 11) and Inffin

odd(H)
c
≈ O(HR) ∩ (FR + C · 11)

Here Infodd(H) denotes the subspace of odd operators in Inf(H) (which are still C-linear)
and O(HR) is the usual orthogonal group, thought of as the subgroup of real operators in
the unitary groupU(H).
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Proof. Since both sides have the subspace topology, it suffices to show that the Cayley
transform is a bijection between the spaces given in the Proposition. An operator D in
Inf(H) is odd if and only if Dα := αDα = −D. Since our grading involution α is C-
antilinear, we also have iα = −i and therefore1

c(D) = c(D)α =

(D + i
D − i

)α
=
−D − i
−D + i

=
D + i
D − i

= c(D)

Since the operators in U(H) that commute with complex conjugation are clearly those in
the real orthogonal group O(HR), we get c(D) ∈ O(HR) and as before, c(D)− 11 is compact
(respectively finite rank). Conversely, a similar calculation shows that if c(D) is real then
Dα = −D. �

Let Hn be as in the introduction, a graded real Hilbert space with a ∗-action of the
real Clifford algebra Cn. For example, the above discussion is the case n = 1 if we define
H1 = H with the grading and C1 = C-action as above. Note that in this case one can think
of C-linear operators, say inK(H), as R-linear operators that commute with the C1-action.
This motivates the following definition.

Definition 3.8. We denote by Kn (respectively FRn) the space of all Cn-linear self-
adjoint compact (respectively finite rank) operators onHn, and by Infn (respectively Inffin

n )
the subspace of Inf (respectively Inffin) that consists of all Cn-linear and odd operators.

In order to extend Proposition 3.7 to Infn we have to identify the image of these spaces
under the Cayley transform in O(Hn). We now assume the following model for our graded
Hilbert space Hn. For n ≥ 1, let Hn be a real Hilbert space that is a Cev

n -module and
consider the graded Cn-module

Hn := Hn ⊗Cev
n Cn � Hn ⊗R C.

The last isomorphism should be interpreted as saying that the complex structure on Hn is
given by the last basis element en ∈ Cn and that the grading can be thought of as corre-
sponding to complex conjugation, just like in our previous discussion.

Proposition 3.9. For all n ≥ 1 there are homeomorphisms

Inffin
n ≈ M

fin
n and Infn ≈ Mn.

For n = 1 they are given by the Cayley transform D 7→ c(D) and for n > 1 by D 7→
en−1c(D).

Proof. We will show that there is a homeomorphism Infn ≈ Mn which restricts to the
desired homeomorphism on Inffin

n . The case n = 1 was discussed above because in this
case we have by definition

O(H1) ∩ (11 +K) =M1 and O(H1) ∩ (11 + FR) =Mfin
1 .

Now, let n ≥ 2. Recall that the complex structure on Hn is given by en, hence the relation
Den = enD gives the C-linearity of c(D). We claim that the relations Dei = eiD for the
remaining n − 1 generators ei of Cn imply that the generators ei of Cn−1 satisfy

eic(D) = c(D)−1ei.

To see this, note that we have the relations

ei(D ± i) = (D ∓ i)ei and ei(D ± i)−1 = (D ∓ i)−1ei

1The notation (D ± i)−1 best interpreted on each pair of eigenspaces Vλ ⊕ V−λ of D separately; there it
definitely makes sense and that is all we care about here.
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which together yield

eic(D) = ei(D − i)(D + i)−1 = (D + i)(D − i)−1ei = c(D)−1ei.

Note that all these are operators onHn but that our odd operator D gives an action of c(D)
on Hn. We assert that the same relation holds for this operator c(D) on Hn. First, note that
since c(D) is C-linear, i.e. it commutes with en, we have eneic(D) = c(D)−1enei. Next, one
checks that under the isomorphism Cev

n � Cn−1 the action of enei ∈ Cn, i = 1, ..., n − 1,
corresponds to the automorphism ei ⊗ id of Hn ⊗ C. This together with the relation we
computed for c(D) ⊗ id implies eic(D) = c(D)−1ei for i = 1, . . . , n − 1.

Hence we see that the Cayley transform c gives a homeomorphism

Infn ≈ {A ∈ O(Hn) | A ≡ 1 mod K(Hn) and eiA = A−1ei for i = 1, ..., n − 1}

The space on the right-hand side is not quite Mn yet. However, we claim that it can be
identified withMn by associating to an operator A the complex structure

J := en−1A ∈ Mn.

It is clear that J ≡ en−1 mod K(Hn). Furthermore, J is indeed a complex structure:

J2 = en−1Aen−1A = en−1AA−1en−1 = −11.

It remains to check that J anti-commutes with the generators of Cn−2. The following com-
putation shows this claim using ẽi = (en−1ei):

(en−1ei)(en−1A) = (en−1ei)(A−1en−1) = en−1Aeien−1 = −(en−1A)(en−1ei)

where we have interpreted Hn as a module over Cn−2 via

Cn−2
�
−→ Cev

n−1, ẽi 7→ en−1ei,

with ẽ1, ..., ẽn−2 denoting the standard generators of Cn−2. �

For later use, we define the real graded C∗-algebra S to be given by real valued func-
tions in C0(R) with trival ∗ and with grading involution induced by x 7→ −x (leading to the
usual decomposition into even and odd functions).

To motivate the use of self-adjoint operators, we make the following easy observation
that comes from the above case n = 1.

Lemma 3.10. Restriction to self-adjoint elements defines homeomorphisms

Homgr(C0(R),K(H))←→ Homgr(S,K sa(H))

where H is a complex Hilbert space with grading involution as above and Homgr denotes
grading preserving ∗-homomorphisms. The analogous statement holds for FR in place of
K .

Proof. Recall that S are just the real valued functions in C0(R) (a.k.a. the self-adjoint
elements in this complex C∗-algebra) and that the grading involutions agree. Moreover,
there is an isomorphism

S ⊗R C � C0(R)
The same statements apply toK (respectively FR) and therefore the complexification map
gives an inverse to the restriction map in the lemma. �

The following result follows from the observation that for an odd operator D ∈ Inf,
functional calculus leads to a grading preserving ∗-homomorphism f 7→ f (D) from S to
K . Vice versa, if this ∗-homomorphism is grading preserving then D must have been odd
to start with.
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Proposition 3.11. Functional calculus induces the homeomorphisms

Infn ≈ Homgr(S,Kn) and Inffin
n ≈ Homgr(S,FRn).

4. Configuration Spaces

The unbounded operators of the previous section can be visualized as configurations
on the real line: an operator D ∈ Inf is completely determined by its eigenvalues and
eigenspaces and hence by the map V that associates to λ ∈ R the subspace V(λ) on which
D = λ. We call V a ‘configuration on R’, since V(λ) may be thought of as a label attached
at λ ∈ R. Since slightly different spaces of configurations will appear in Section 8, we give
a general definition that also covers the case considered there.

Let Λ be a topological space equipped with an involution s andH a separable graded
Hilbert space with grading involution α. A configuration on Λ indexed by orthogonal
subspaces of H is a map V from Λ to the set of closed (ungraded) subspaces of H such
that

• the subspaces V(λ) are pairwise orthogonal
• H is the Hilbert sum of the V(λ)’s
• V is compatible with s and α, i.e. V(s(λ)) = α(V(λ)) for all λ ∈ Λ.

Recall that closed subspaces of H correspond precisely to continuous self-adjoint projec-
tion operators onH . Hence we may interpret V as a map

V : X −→ Proj(H) ⊂ B(H).

To save space, we write Vλ := V(λ). Define supp(V) := { λ ∈ Λ | Vλ , 0 }.

Definition 4.1. The space Conf(Λ;H) of configurations on Λ indexed by orthogonal
subspaces of H is the set of all configurations V : Λ → Proj(H) equipped with the
topology generated by the subbasis consisting of the sets

B(U, L) := { V ∈ Conf(Λ;H) | VU :=
∑
λ∈U

Vλ ∈ L, supp(V) ∩ ∂U = ∅ },

where U and L range over all open subsets U ⊂ Λ and L ⊂ Proj(H).
We will need the following variations. Let Θ ⊂ Λ be a subspace that is preserved under

the involution s. Define Conf(Λ,Θ;H) ⊂ Conf(Λ;H) to be the subspace of configurations
V such that Vλ has finite rank for all λ ∈ Θc := Λ \Θ and such that the subset of all λ ∈ Θc

with V(λ) , 0 is discrete in Θc.2 Replacing the discreteness condition by requiring that
there should be only finitely many λ ∈ Θc with Vλ , 0 we obtain the space Conffin(Λ,Θ;H)
of configurations that are ‘finite away from Θ’. Finally, if C is an R-algebra and H is a
C-module, we can replace subspaces of H by C-submodules in order to obtain spaces
ConfC(Λ,Θ;H). If C is graded then we assume that H is a graded C-module, but the
subspaces V(λ) are still ungraded; only those for which s(λ) = λ are graded modules over
C. Our main examples will be the Clifford algebras C = Cn.

Examples 4.2. Consider the one-point compactification R̄ of R equipped with the
involution s(x) := −x. Define

Confn := ConfCn (R̄, {∞};Hn),

2This terminology will be convenient for our purposes. However, we should point out that with our notation
Conf(Λ;H) = Conf(Λ,Λ;H) and not Conf(Λ;H) = Conf(Λ, ∅;H).
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where Hn is the graded Cn-module from the previous section. We will see in Proposi-
tion 4.4 that Confn gives a different model for the space Infn of unbounded operators
introduced above. The homeomorphism Infn → Confn is given by mapping D ∈ Infn

to the configuration defined by associating to λ ∈ R the λ-eigenspace Vλ of D. Here we
let V∞ := dom(D)⊥. Since D has compact resolvent, the set of λ ∈ R with Vλ , 0 is
indeed discret in R and each eigenspace Vλ, λ ∈ R, is finite-dimensional. The relation
V(s(λ)) = α(V(λ)) corresponds toD being odd.

In order to get a better feeling for the topology on Confn, let us describe a neighbor-
hood basis for each configuration in Confn. This will also be useful for the proof that the
map Infn → Confn is a homeomorphism.

We begin by pointing out that the topology on Confn is generated by the sets B(U, L),
where U ⊂ R is bounded. To see this, note that, by definition of Confn, ∞ ∈ supp(V) for
all V ∈ Confn. Hence B(U, L) = ∅ whenever∞ ∈ ∂U so that the case of unbounded U ⊂ R
is irrelevant. Furthermore, if∞ ∈ U we can use B(U, L) = B(Uc, 1−L) to describe B(U, L)
in terms of Uc := R̄ \ U. Thus it is sufficient to consider B(U, L) for U ⊂ R bounded.

Definition 4.3. Let V ∈ Confn and let K be a (large) positive real number such that
VK = 0. Let BK(0) be the ball of radius K around 0 and denote by λ1, ..., λlK the numbers
in BK(0) such that Vλi , 0. Let δ > 0 and ε > 0 be (small) real numbers; we may choose δ
so small that Bδ(λi) ∩ Bδ(λ j) = ∅ for i , j. Denote by VK,δ,ε the set of all configurations W
such that ||VBδ(λi) −WBδ(λi)|| < ε for all i and such that Wλ = 0 for all λ ∈ BK(0) that do not
lie in one of the balls Bδ(λi).

Thus, an element W ∈ VK,δ,ε almost looks like V on BK(0): the only thing that can
happen is that a label Vλ ‘splits’ into labels Wλ j with |λ − λ j| small (< δ) and

∑
j Wλ j close

to Vλ (< ε). The VK,δ,ε form indeed a neighborhood basis of V: assume V ∈
⋂n

k=1 B(Uk, Lk),
with Uk ⊂ R bounded. Choose K as above with

⋃n
k=1 Uk ⊂ BK(0). Picking δ > 0 so small

that Bδ(λi) ⊂
⋂n

k=1 Uk for all i it follows easily using the triangle inequality that for ε > 0
sufficiently small VK,δ,ε ⊂

⋂n
i=1 B(Ui, Li).

In particular, we see that the topology on Confn controls configurations well on com-
pact subsets of R but not near infinity. The discussion also shows that Confn is first count-
able since we may choose K, δ, and ε in Q.

Given any V ∈ Confn = ConfCn (R̄, {∞};Hn) and any function f ∈ S, we can define
a Cn-linear operator f (V) on Hn by requiring that f (V) has eigenvalue f (λ) exactly on
Vλ. This operator is always compact and it is of finite rank if and only if V ∈ Conffin

n :=
Conffin

Cn
(R̄, {∞};Hn) ⊂ Confn, the subspace of configuration that are finite away from {∞}.

Moreover, the relation V(s(λ)) = α(V(λ)) corresponds to f 7→ f (V) being grading preserv-
ing.

Proposition 4.4. Functional calculus F(V)( f ) := f (V) gives homeomorphims

F : Confn
≈
−→ Homgr(S,Kn) and Conffin

n
≈
−→ Homgr(S,FRn).

Combining this result with Proposition 3.11 we obtain as a corollary

Infn ≈ Confn and Inffin
n ≈ Conffin

n .

Proof. It is clear that F is a bijection because the map that identifies operators with
the eigenspaces and eigenvalues is obviously a bijection and it is the composition of F
with a homeomorphism. Since Confn is first countable, we can check the continuity of F
on sequences. To do so, assume Vn → V and fix f ∈ S. We have to prove f (Vn) → f (V).
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Given ε > 0, choose K > 0 such that | f (x)| < ε if |x| > K. Since the continuous map f is
automatically uniformly continuous on compact sets, we can find a δ > 0 such that for all
x ∈ BK(0) we have | f (x) − f (y)| < ε provided |x − y| < δ. The assumption Vn → V tells us
that Vn ∈ VK,δ,ε for large n. The claim now follows from the following estimate that holds
for all W ∈ VK,δ,ε:

|| f (V) − f (W)|| = ||
∑
λ∈R

f (λ)Vλ −
∑
µ∈R

f (µ)Wµ ||

≤ ||
∑

λ∈BK (0), Vλ,0

 f (λ)Vλ −
∑

µ∈Bδ(λ)

f (µ)Wµ

 || + 2ε

≤ #{λ ∈ BK(0) | Vλ , 0 } ·
(

max
λ∈BK (0)

f (λ) · ε + ε

)
+ 2ε

≤ C · ε,

where the constant C only depends on f and V . The first inequality follows by re-arranging
the terms and using the triangle inequality together with | f (x)| < ε for |x| > K. The second
inequality follows from

|| f (λ)Vλ −
∑

µ∈Bδ(λ)

f (µ)Wµ|| ≤ || f (λ)(Vλ −WBδ(λ))|| + ||
∑

µ∈Bδ(λ)

( f (λ) − f (µ))Wµ||

≤ max
λ∈BK (0)

f (λ) · ε + ε.

The space Homgr(S ,Kn) is also first countable. This follows since f (Vn) → f (V) for
all f ∈ S if and only if this is the case for f (x) = e−x2

and f (x) = xe−x2
(see the proof

of Lemma 5.12). Thus we can check the continuity of F−1 on sequences as well. Assume
f (Vn) → f (V) for all f ∈ S and V ∈ B(U, L). We have to show Vn ∈ B(U, L) for n
sufficiently large. More explicitly: supp(Vn) ∩ ∂U = ∅ for n large and limn→∞ ||(Vn)U −

VU || = 0.
Note that for an accumulation point γ ∈ R of the set

⋃
n supp(Vn) we must have

Vγ , 0, because otherwise we would also have || f (Vn) − f (V)|| ≥ 1
2 for infinitely many

n if we choose f to be a bump function with f (γ) = 1 that is concentrated near γ. This
together with supp(V)∩∂U = ∅ implies that there is a neighborhood v(∂U) of ∂U such that
(Vn)λ , 0 for λ ∈ v(∂U) occurs only for finitely many n. In particular, supp(Vn) ∩ ∂U = ∅

for n large. Now, choose f ∈ S such that f |R̄\U = 0 and f |U\v(∂U) = 1. By construction,
f (Vn) = χU(Vn) for n large, where χU denotes the indicator function for U. The same
identity holds for V and hence we can conclude

lim
n→∞
||(Vn)U − VU || = lim

n→∞
||χU(Vn) − χU(V)|| = lim

n→∞
|| f (Vn) − f (V)|| = 0.

This completes the proof. �

Remark 4.5. A continuous map f : Λ → Λ′ that commutes with the involutions on
Λ and Λ′ induces

f∗ : Conf(Λ;H) −→ Conf(Λ′;H), ( f∗(V))λ′ :=
∑

λ∈ f −1(λ′)

Vλ.

We show that the map f∗ is continuous under the assumption that the space Λ′ is normal.
Let V ∈ f −1

∗ (B(U, L)). From the definition of B(U, L) we find supp( f∗V) ∩ ∂U = ∅. Since
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Λ′ is normal, there is an open neighborhood NV of supp( f∗V) such that NV ∩ ∂U = ∅.
Unravelling the definitions one finds

V ∈ B( f −1(U), L) ∩ B( f −1(NV ), {idH }) ⊂ f −1
∗ (B(U, L))

so that f −1
∗ (B(U, L)) is a neighborhood of V . Thus f −1

∗ (B(U, L)) is open.
The additional properties that we required in the definition of the spaces Conf(Λ,Θ;H)

are not stable under pushforward. In order to get an induced map we have to require f to
be ‘nice’. For example, if f : (Λ,Θ) → (Λ′,Θ′) is a proper map between locally compact
Hausdorff spaces, we get an induced map f∗ : Conf(Λ,Θ;H)→ Conf(Λ′,Θ′;H).

A sightly more complicated argument along the same lines can be used to show that a
homotopy h : Λ×[0, 1]→ Λ′ induces a homotopy H : Conf(Λ,H)×[0, 1]→ Conf(Λ′,H),
at least if Λ is compact.

The following result implies that the ’finite’ and ’non-finite’ versions of the spaces
considered in the previous chapters are homotopy equivalent.

Proposition 4.6. The inclusion Conffin
n ↪→ Confn is a homotopy equivalence.

Proof. Consider the family of maps ht : R̄ −→ R̄ defined by

ht(x) :=
{ x

1−t|x| if x ∈ (− 1
t ,

1
t )

∞ else.

These induce a homotopy

Ht := (ht)∗ : Confn −→ Confn

from the identity on Confn to H1. Note that the image of H1 equals Conffin
n . Thus, we

see that the inclusion Conffin
n ↪→ Confn is a homotopy equivalence with homotopy inverse

H1 : Confn → Conffin
n . �

Remark 4.7. We will later consider the space colimk→∞ Conf(k)
n , where Conf(k)

n is the
subspace of configurations V ∈ Confn such that Vλ , 0 for at most k numbers λ with
0 < λ < ∞. As a set, colimk→∞ Conf(k)

n is just Conffin
n , but the topology has more open sets

than the topology of Conffin
n . We claim that

colimk→∞ Conf(k)
n ↪→ Confn

is also a homotopy equivalence. The same homotopy as in the proof of Proposition 4.6 can
be used. This works because the map H1 : Confn −→ colimk→∞ Conf(k)

n is still continuous.
This follows from the observation that

C : Confn −→ N, V 7→ C(V) :=
∑
−1≤λ≤1

dim Vλ

is locally bounded so that for every V ∈ Confn we can find an open neighborhood N of
V such that H1(N) ⊂ Conf(k)

n for some k (since H1 moves all labels outside (−1, 1) to ∞).
Since continuity can be checked locally and since on Conf(k)

n the topology induced from
Confn and the colimit topology coincide, it follows that H1 : Confn → colimk→∞ Conf(k)

n
is continuous.

In particular, we see that the identity map id : colimk→∞ Conf(k)
n → Conffin

n is a homo-
topy equivalence.

The same argument applies in the case of the filtration Xk of Conffin
n given by the

dimension of a configuration: if Xk ⊂ Conffin
n is the subspace of configurations V with
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dim(V) := dimCn (⊕λ∈RVλ) ≤ 2k, then the identity map colimk→∞ Xk → Conffin
n is a homo-

topy equivalence.

5. Super semigroups of operators

In this section we will define super semigroups of operators (SGOs) using as little
super mathematics as possible. We will only need basic definitions and results from the
theory of supermanifolds, as can be found in Chapter 2 of [DM]. Super manifolds are par-
ticular ringed spaces, i.e. topological spaces together with a sheaf of rings, and morphisms
are maps of ringed spaces. The local model for a supermanifold of dimension (p|q) is
Euclidean space Rp equipped with the sheaf of commutative super R-algebras

U 7→ C∞(U) ⊗ Λ∗(Rq).

This ringed space is the supermanifold Rp|q.

Definition 5.1. A supermanifold M of dimension (p|q) is a pair (|M|,OM) consist-
ing of a (Hausdorff and second countable) topological space |M| together with a sheaf of
commutative super R-algebras OM that is locally isomorphic to Rp|q.

To every supermanifold M there is an associated reduced manifold

Mred := (|M|,OM/nil)

obtained by dividing out nilpotent functions. By construction, this gives a smooth manifold
structure on the underlying topological space |M| and there is an inclusion of supermani-
folds Mred ↪→ M. For example, (Rp|q)red = Rp.

The main invariant of a supermanifold M is its ring of functions C∞(M), defined as
the global sections of the sheaf OM . For example, C∞(Rp|q) = C∞(Rp) ⊗ Λ∗(Rq). It turns
out that the maps between supermanifolds M and N are just given by grading preserving
algebra homomorphisms between the rings of functions:

Hom(M,N) � HomAlg(C∞(N),C∞(M))

Example 5.2. Let E → M be a real vector bundle of fiber dimension q over the
smooth manifold Mp. Then (M,Γ(Λ∗E)) is a supermanifold of dimension (p|q). Bachelor’s
theorem [Ba] says that every supermanifold is isomorphic (but not canonically) to one of
this type. This result does not hold in analytic categories, and it shows that in the smooth
category, supermanifolds are only interesting if one takes their morphisms seriously and
doesn’t just consider isomorphism classes.

Definition 5.3. Define the ‘twisted’ super Lie group structure on R1|1 by

m : R1|1 × R1|1 −→ R1|1, (t, θ), (s, η) 7→ (t + s + θη, θ + η).

This super Lie group plays a special role in super geometry, the reason being the
particular structure of its super Lie algebra: Lie(R1|1) � R[D] is the super Lie algebra
generated freely by one odd generator D. Thus, R1|1 may be considered the odd analogue
of the Lie group R. For example, integrating an odd vector field on a supermanifold M
leads to a flow M × R1|1 → M, and formulating the flow property involves the ‘twisted’
group structure.
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From the definition of m it is clear that the open sub supermanifold R1|1
>0 defined by the

inclusion R>0 ⊂ R inherits the structure of a super semigroup.3 Now we can already guess
what a SGO should be: just as an ordinary semigroup of operators is a homomorphism from
R>0 to an algebra of operators, a super semigroup of operators will be a homomorphism
from the super semigroup R1|1

>0 to a (Z2-graded) operator algebra. In order to make sense
of such a homomorphism, we will consider the latter to be a generalized super semigroup
using the ‘functor of points’ formalism (see [DM], §§2.8-2.9). Note that we, implicitly,
already used the ‘functor of points’ language when writing down the group law m. The
formula above tells us what the product of two elements in the group Hom(S ,R1|1) is.
Since the rule holds functorially for all supermanifolds S , this defines the map m by the
Yoneda lemma.

Finally, we would like to remark that the structure of Lie(R1|1) and the existence of an
odd infinitesimal generator D for a SGO Φ that we will prove below are closely related:
D is nothing but the image of D under the derivative of Φ. However, making this precise
requires some work (note that Φ maps to an infinite-dimensional space!). We will avoid
such problems altogether: the super Lie algebras do not appear in our argument.

5.1. Generalized supermanifolds and super Lie groups. We will use the following,
somewhat primitive, extension of the notion of supermanifolds:

Definition 5.4. A generalized supermanifold M is a contravariant functor from super-
manifolds to sets.4 Similarly, if M takes values in the category of (semi)groups, we call it a
generalized super (semi)group. Morphisms in all these categories are natural transforma-
tions.

Examples 5.5. (1) The Yoneda lemma implies that supermanifolds are embedded as
a full subcategory in generalized supermanifolds by associating to a supermanifold M the
functor

S 7→ M(S ) := Hom(S ,M).
The analogous statement holds for super (semi)groups. For example, we will consider R1|1

>0
as a generalized super semigroup by identifying it with the contravariant functor

S 7→ Hom(S ,R1|1
>0)

from supermanifolds to semigroups.
(2) Every Z2-graded real Banach space B = B0 ⊕ B1 may be considered as a generalized
supermanifold as follows. We define the value of the functor B on a super domain U =

(|U |,C∞( )[θ1, ..., θq]) ⊂ Rp|q to be

B(U) := (C∞(|U |, B)[θ1, ..., θq])ev.

The superscript ev indicates that we pick out the even elements, so that an element f ∈
B(U) is of the form

f =
∑

I

fIθ
I

where I ⊂ {1, ..., q} and θI :=
∏

j∈I θ j and each fI is a smooth map |U | → B|I|. For a map
ϕ : U′ → U between super domains, the map B(ϕ) is defined using the formal Taylor

3A super (Lie) semigroup is a supermanifold M together with an associative multiplication M×M → M. In
terms of the functor of points language: the morphism sets Hom(S ,M) carry semigroup structures, functorially
in S .

4We use this simple notion here in order to avoid dealing with infinite-dimensional supermanifolds.
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expansion, just as in the case of usual supermanifolds. This functor on super domains may
be extended to the whole category of supermanifolds by gluing.
(3) If B is a Z2-graded Banach algebra, B(U) is an algebra and thus B is a generalized super
semigroup. Again, B may be extended to all supermanifolds by gluing.

Remark 5.6. Giving a morphism from an ordinary supermanifold T to a generalized
supermanifold B amounts to prescribing the image of the universal element id ∈ Hom(T,T )
in B(T ). Hence B(T ) is exactly the set of morphisms from T to B.

Now assume that, in addition, T and B carry super (semi)group structures. A map
Φ : T → B is a homomorphism if

Hom(S ,T ) × Hom(S ,T ) Hom(S ,T )

B(S ) × B(S ) B(S ).

//

�� Φ×Φ �� Φ
//

commutes for all supermanifolds S . Again, it suffices to check the commutativity for the
universal element

pr1 × pr2 ∈ Hom(T × T,T ) × Hom(T × T,T ).

Definition 5.7. LetH be a Z2-graded Hilbert space, and denote by B(H) the Banach
algebra of bounded operators onH equipped with the Z2-grading inherited fromH .
(1) A super semigroup of operators onH is a morphism of generalized super semigroups

Φ : R1|1
>0 −→ B(H).

As explained in the previous remark, Φ is of the form A + θB, where

A : R>0 → Bev(H) and B : R>0 → Bodd(H)

are smooth maps. The homomorphism property amounts to certain relations between A
and B (cf. the proof of Proposition 5.9).
(2) If K ⊂ B(H) is a subset, we say Φ is a super semigroup of operators with values in K
if the images of A and B are contained in K.
(3) If H is a module over the Clifford algebra Cn, we say Φ is Cn-linear if it takes values
in Cn-linear operators.

Examples 5.8. SGOs arise in a natural way from Dirac operators. We give two exam-
ples of that type and then extract their characteristic properties to describe a more general
class of examples. The verification of the SGO properties for these more general examples
also includes the case of Dirac operators.
(1) Let D be the Dirac operator on a closed spin manifold X. There is a corresponding
SGO on the Hilbert space of L2-sections of the spinor bundle S over X. It is given by the
super semigroup of operators

R1|1
>0 −→ B(L2(S )), (t, θ) 7→ e−tD2

+ θDe−tD2
( = e−tD2+θD )

and takes values in the compact, self-adjoint operators K sa(L2(S )) ⊂ B(L2(S )).
(2) If dim X = n, one can consider the Cn-linear spinor bundle and the associated Cn-
linear Dirac operator (see [LM], chapter 2, §7). Using the same formula as in the previous
example one obtains a Cn-linear SGO.
(3) Now, letH be any Z2-graded Hilbert space. For any closed subspace V∞ ⊂ H invariant
under the grading involution and any odd, self-adjoint operator D on V⊥∞ with compact



FROM MINIMAL GEODESICS TO SUPER SYMMETRIC FIELD THEORIES 25

resolvent, there is a unique super semigroup of self-adjoint, compact operators Φ = A + θB
defined (using functional calculus) by

A(t) = e−tD2
and B(t) = De−tD2

on V⊥∞
and A(t) = B(t) = 0 on V∞. The first thing to check is that the maps A and B are indeed
smooth; this follows easily using the fact that the map R>0 → C0(R), t 7→ e−tx2

, is smooth.
Since D is self-adjoint, the same holds for A and B. Finally, we have to show that Φ is a
homomorphism. Let t, θ, s, η be the usual coordinates on R1|1

>0 × R
1|1
>0 . It suffices to consider

the universal element pr1× pr2 = (t, θ)× (s, η). The computation, which, of course, heavily
uses that odd coordinates θ and η square to zero, goes as follows (cf. [ST], page 38):

Φ(t, θ)Φ(s, η)

= (e−tD2
+ θDe−tD2

)(e−sD2
+ ηDe−sD2

)

= e−tD2
e−sD2

+ e−tD2
ηDe−sD2

+ θDe−tD2
e−sD2

+ θDe−tD2
ηDe−sD2

= e−(t+s)D2
+ (θ + η)De−(t+s)D2

+ θDηDe−(t+s)D2

= (1 − θηD2)e−(t+s)D2
+ (θ + η)De−(t+s)D2

= e−(t+s+θη)D2
+ (θ + η)De−(t+s+θη)D2

= Φ(t + s + θη, θ + η)

The second to last equality uses the typical Taylor expansion in super geometry.
We call D the infinitesimal generator of Φ. We will see presently that every super

semigroup of self-adjoint, compact operators has a unique infinitesimal generator and is
hence one of our examples. Note that if V∞ is a Cn-submodule and if D is Cn-linear, then
A and B will also be Cn-linear.

Next, we will construct infinitesimal generators for super semigroups of operators.
We restrict ourselves to the compact, self-adjoint case, which makes the proof an easy
application of the spectral theorem for compact, self-adjoint operators. However, invoking
the usual theory of semigroups of operators it should not be too difficult to prove the result
for more general SGOs.

Proposition 5.9. Every super semigroup Φ of compact, self-adjoint operators on a
Z2-graded Hilbert spaceH has a unique infinitesimal generatorD as in Example 3 above
and is hence of the form

Φ(t, θ) = e−tD2
+ θDe−tD2

.

If Φ is Cn-linear, so isD.

We need the following technical lemma:

Lemma 5.10. Let A, B : R>0 → K
sa(H) be smooth families of self-adjoint, compact

operators on the Hilbert space H, and assume that the following relations hold for all
s, t > 0:

A(s + t) = A(s)A(t)(5.1)
B(s + t) = A(s)B(t) = B(s)A(t)(5.2)

A′(s + t) = −B(s)B(t).(5.3)

Then H decomposes uniquely into orthogonal subspaces Hλ, λ ∈ R̄ := R ∪ {∞}, such that
on Hλ

A(t) = e−tλ2
and B(t) = λe−tλ2
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(where we set e−∞ = 0,∞·e−∞ = 0). For λ ∈ R, the dimension of Hλ is finite. Furthermore,
the subset of λ in R with Hλ , 0 is discrete.

Proof. The identities (1) − (3) above show that all operators A(s), B(t) commute. We
apply the spectral theorem for self-adjoint, compact operators to obtain a decomposition
of H into simultaneous eigenspaces Hλ of the A(s) and B(t); the label λ takes values in R̄
and will be explained presently. We define functions Aλ, Bλ : R>0 → R by

A(t)x = Aλ(t)x and B(t)x = Bλ(t)x for all x ∈ Hλ.

Clearly, Aλ and Bλ are smooth and satisfy the same relations as A and B.
From (1) we see that Aλ is non-negative, and (3) shows A′λ ≤ 0, hence Aλ is decreasing.

On the other hand, (1) implies Aλ( 1
n ) =

n√Aλ(1), so that

Aλ(0) := lim
t→0

Aλ(t) exists and equals 0 or 1.

In the first case we conclude Aλ ≡ 0 and thus also Bλ ≡ 0; the label of the corresponding
subspace is λ = ∞. In the second case, we have Aλ(1) , 0 and using (1) again we compute

A′λ(s) =
Aλ(1)
Aλ(1)

lim
t→0

Aλ(s + t) − Aλ(s)
t

=
Aλ(s)
Aλ(1)

lim
t→0

Aλ(1 + t) − Aλ(1)
t

= −λ2Aλ(s),

where λ2 := −A′λ(1)/Aλ(1) defines the label λ up to choice of a sign. By uniqueness of
solutions of ODEs, we must have

Aλ(t) = e−tλ2
.

Finally, (3) gives

Bλ(t) = λe−tλ2
,

picking the appropriate sign for λ. �

Proof of Proposition 5.9. Let Φ = A + θB be a super semigroup of compact, self-
adjoint operators. As before, we consider U = R1|1

>0 × R
1|1
>0 with coordinates t, θ, s, η. For

the universal element pr1 × pr2 = (t, θ)× (s, η) the homomorphism property of Φ gives that

Φ(t + s + θη, θ + η) = A(t + s + θη) + (θ + η)B(t + s + θη)
= A(t + s) + A′(t + s)θη + (θ + η)(B(t + s) + B′(t + s)θη)
= A(t + s) + θB(t + s) + ηB(t + s) + θηA′(t + s)

equals

Φ(t, θ)Φ(s, η) = (A(t) + θB(t))(A(s) + ηB(s))
= A(t)A(s) + θB(t)A(s) + ηA(t)B(s) − θηB(t)B(s).

Comparing the coefficients5 yields exactly the relations in Lemma 5.10. Using the corre-
sponding decompostion ofH into subspacesHλ we define the operatorD by lettingD = λ
onHλ. From the construction it is clear thatD is the desired infinitesimal generator. Since
A is even and B is odd, it follows thatD is an odd operator. If Φ is Cn-linear, so isD. �

We can finally give the definition promised in part (5) of our Main Theorem.

5Just to make the formal aspect of this computation clearer, we would like to point out that the considered
identity is an equation in the algebra K sa(H)(R1|1

>0 × R
1|1
>0 ) = C∞(R>0 × R>0,K sa(H))[θ, η]ev.
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Definition 5.11. LetH be a Z2-graded Hilbert space and C ⊂ B(H) a subspace of the
algebra of bounded operators onH . We denote by SGO(C) the set of super semigroups of
operators with values in C and in particular

SGOn := SGO(Kn) and SGOfin
n := SGO(FRn)

(the subspaces Kn and FRn were defined in Definition 3.8). We endow SGO(C) with the
topology of uniform convergence on compact subsets, i.e.

Φn = An + θBn −→ Φ = A + θB

if and only if for all compact K ⊂ R>0 we have

An(t) −→ A(t) and Bn(t) −→ B(t) uniformly on K

with respect to the operator norm on B(H).

We will now relate the spaces SGOn with our configuration spaces Confn. We have a
triangle (and an analogous one for finite rank operators)

SGOn Homgr(S,Kn)

Confn,
''OOOOOO

I

oo R

77ooooo F

where I maps a super semigroup of operators to its infinitesimal generator, F is given by
functional calculus,

F(D)( f ) := f (D),
and R is given by

R(ϕ) := ϕ(e−tx2
) + θϕ(xe−tx2

).

Proposition 5.12. The maps I, F, and R are homeomorphims, and similarly for finite
rank operators.

Proof. From the previous discussion it is clear that the composition of the three ar-
rows is the identity no matter where in the triangle we start. We already know from Propo-
sition 4.4 that F is a homeomorphism. We complete the proof by showing that R is a
homeomorphism.

The continuity of R−1 follows from the following assertion. We claim that we have
convergences of operators

f (Dn) −→ f (D) for all f ∈ C0(R)

if and only if the following two sequences converge:

e−D
2
n −→ e−D

2
and Dne−D

2
n −→ De−D

2
.

The first obviously implies the second condition. To see the converse, note that the as-
sumption implies that f (Dn) → f (D) for all f that can be written as a polynomial in the
functions e−x2

and xe−x2
. Furthermore, the Stone-Weierstraß Theorem implies that e−x2

and
xe−x2

generate C0(R) as a C∗-algebra so that the set of such f is dense in C0(R). Using that
|| f (D)|| ≤ || f || for all D and the triangle inequality we can deduce that f (Dn) → f (D)
holds for all f ∈ C0(R).

The continuity of R amounts to showing that if f (Dn)→ f (D) for all f , then e−tD2
n →

e−tD2
and Dne−tD2

n → De−tD2
uniformly for all t in a compact subset K ⊂ R>0. As before,

we can use || f (D)|| ≤ || f || and the triangle inequality to see that for a given ε > 0 we can
find N such that we do not only have || f (Dn)− f (D)|| ≤ ε for all n ≥ N, but that this estimate
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also holds for all g in a small neighborhood of f . This together with the compactness of K
and the continuity of the maps t 7→ e−tx2

and t 7→ xe−tx2
implies the claim. �

Remark 5.13. The arguments in the last parts of the proof can be used to show that we
could also have equipped SGOn with the topology that controls all derivatives of a super
semigroup map Φ and still would have obtained the same topological space. We find this
interesting, because this is the topology that one usually considers on spaces of smooth
maps.

5.2. Super semigroups of operators and Euclidean field theories. In the context of
super symmetric Euclidean field theories of dimension (1|1) slight variations of the spaces
SGOn appear. We conclude this chapter by describing these spaces and showing that they
have the same homotopy type as the spaces SGOn. More information about the axiomatic
definition of super symmetric EFTs will be given in the next chapter.

Definition 5.14. Let TC(Hn) be the Banach algebra of trace class operators on Hn,
equipped with the trace or nuclear norm. Define SGOTC

n to be the space of super semi-
group homomorphisms R1|1

>0 → TC(Hn) with values in self-adjoint Cn-linear operators.
As before, we consider the topology given by uniform convergence on compact subsets
K ⊂ R>0. In the same way, we define SGOHS

n , where TC(Hn) is replaced by HS(Hn), the
Banach algebra of Hilbert-Schmidt operators on Hn, equipped with the Hilbert-Schmidt
norm.

Examples 5.15. An SGO defined by an infinitesimal generator D lies in SGOTC re-
spectively SGOHS if the eigenvalues ofD converge to infinity sufficiently fast. This is, for
example, the case for Dirac operators on closed spin manifolds, cf. [LM], Chapter 3, §5.

Proposition 5.16. The injections

SGOTC
n ↪→ SGOn and SGOHS

n ↪→ SGOn

are homotopy equivalences.

Proof. We give the proof for SGOTC
n , the argument for SGOHS

n being very similar.
The basic observation we use is that on operators of rank at most k the operator norm and
the nuclear norm are equivalent. More precisely,

||T || ≤ ||T ||nuc ≤ k · ||T ||

if rank(T ) ≤ k. Namely, if T =
∑k

i=1 si〈., ei〉 fi with s1 ≥ · · · ≥ sk ≥ 0 for orthonormal
systems ei and fi, then ||T || = s1 and ||T ||nuc =

∑k
i=1 si ≤ ks1. Denote by S(k) ⊂ SGOTC

n the
subspace of SGOs whose infinitesimal generator has domain of dimension ≤ 2k. By our
basic observation, the topology on S(k) is the same as the one we get by considering it as a
subspace of SGOn. Using the identification I : SGOn ≈ Confn and Remark 4.7 we see that
S := colimk→∞ S

(k) ' SGOn. Hence, if we can show that i : S ↪→ SGOTC
n is a homotopy

equivalence, then the same is true for SGOTC
n ↪→ SGOn. Define homotopies H̃ and HTC

by the commutative diagram

SGOTC
n × [0, 1] SGOn × [0, 1] Confn ×[0, 1]

SGOTC
n SGOn Confn,

�� HTC

� � //

�� H̃

//≈

��
H

� � // //≈
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where H is the homotopy used in the proof of Proposition 4.6. It is easy to see that the map
i−1 ◦ HTC

1 : SGOTC
n → S is continuous. We claim that it is homotopy inverse for i. The

argument works exactly as in Remark 4.7. The only thing to check is that the homotopy
HTC is continuous (note that now we are using the topology that comes from the nuclear
norm). For t , 0, the continuity follows from the continuity of H̃ and the fact that HTC

locally maps to S(k), for some k, as long as t , 0.
Let us now consider the case t = 0. Assume Φm → Φ and tm → 0. For C ⊂ R,

we denote by ΦC the SGO defined by the infinitesimal generator obtained from I(Φ) by
omitting all labels in R \C. Let K ⊂ R>0 compact, ε > 0. Write ||Φ|| := sups∈K(||A(s)||nuc +

||B(s)||nuc). Since Φ ∈ SGOTC, we can choose a big symmetric interval C = [−κ, κ] ⊂ R
with I(Φ)κ = 0 such that ||Φ − ΦC || < ε. Note that Φm → Φ also implies ΦC

m → ΦC . The
continuity of H̃ implies that the restriction of HTC to S(k) × [0, 1] is continuous for all k. In
particular, we have HTC(ΦC

m, tm)→ ΦC . Now, choose N ∈ N such that for all m > N

||Φ − Φm|| < ε, ||Φ
C − ΦC

m|| < ε, and ||HTC(ΦC
m, tm) − ΦC || < ε.

It then follows that for all m > N

|||Φ − HTC(Φm, tm)|| ≤ ||Φ − ΦC || + ||ΦC − HTC(ΦC
m, tm)|| + ||HTC(ΦR\Cm , tm)||

≤ 2ε + ||Φm − Φ|| + ||Φ − ΦC || + ||ΦC − ΦC
m||

≤ 5ε

where we used that ||HTC(ΦR\Cm , tm)|| ≤ ||ΦR\Cm || = ||Φm − ΦC
m||. This inequality follows

directly from the definition of HTC (provided we choose κ ≥ mins∈K 1/
√

2s), which we
can certainly do). Hence, HTC(Φm, tm)→ Φ in SGOTC

n so that HTC is continuous. �

Remark 5.17. In [ST] the notation 1|1-EFT−n was used for the space SGOHS
n . In

this paper we want to reserve the notation 1|1-EFT for the “correct” notion of Euclidean
field theories: we give a geometric definition of super symmetric positive Euclidean field
theories of dimension (1|1) in the next section. It turns out that the resulting classifying
spaces are homotopy equivalent to SGOTC

n .

6. Super symmetric Euclidean field theories

In this section we outline how the spaces SGOTC
n of super semigroups of self-adjoint

trace-class operators, studied in the previous section, are related to super symmetric (1|1)-
dimensional positive Euclidean field theories. Here we shall only treat the case n = 0, so
there is no Clifford algebra Cn in the game. If n , 0, we would have to explain twisted Eu-
clidean field theories that are defined in terms of certain 2-functors between 2-categories.
This would lead too far afield in this paper and in the end, it would only give a different
way that the Clifford algebras Cn arise.

The Atiyah-Segal definition of a d-dimensional topological field theory (TFT) is in
terms of a symmetric monoidal functor E : d-Bord→ Vect or shorter

E ∈ Fun⊗(d-Bord,Vect)

The target of the functor E is the category Vect of vector spaces with tensor product. The
domain category d-Bord is the bordism category whose objects are closed (d−1)-manifolds
and whose morphisms are homeomorphism classes of compact d-dimensional bordisms
with boundary decomposed into an incoming and an outgoing part. Composition is given
by gluing bordism along the specified parts of the boundary. The symmetric monoidal
structures is given by disjoint union of manifolds.
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Our notion of a Euclidean field theory is based on such functors but we need to vary
the source and target categories, mainly putting in geometry in the source, topology in the
target and working in families. The new target category is easiest to describe and so we
do this in the next subsection, where we shall recall some basic facts about Fréchet spaces
and their (projective) tensor product.

In the following subsections we shall add geometry, families and super symmetry into
the definition of various bordism categories. In the last subsection we shall put all this
information together and discuss the spaces 1|1-PEFT mentioned in our Main Theorem.

6.1. The symmetric monoidal category of Fréchet spaces. We start with a review
of some basic facts on Fréchet spaces, see for example [K] or [MV]. These are the complete
topological vector spaces whose topology can be defined by an increasing sequence of
semi-norms

ρ1 ≤ ρ2 ≤ . . .

Typical examples are Banach spaces (defined by a single norm) or spaces of continuous
functions C0(X), for X a union of an increasing sequence of compact sets Kn. In this case,
the ρn are given by the supremum norms on Kn. For a smooth manifold M, the Sobolev
norms on C∞(M) qualify for the ρs.

For a Banach space, the dual space has again a complete norm and hence a preferred
topology. For a Fréchet space V there are many interesting topologies on the continuous
dual V ′. For example, one can define a strong topology on V ′ that agrees with the norm
topology if V is Banach. Moreover, a Fréchet space is Banach if and only if its strong dual
is a Fréchet space and in general there is no topology on V ′ that always ends up with a
Fréchet space!

The two basic theorems for Fréchet spaces are the closed graph theorem and the open
mapping theorem: For a linear map A : V → W between Fréchet spaces the former says
that A is continuous if and only if its graph is closed and the latter says that A is open if it is
continuous and surjective. It follows that there is at most one Fréchet topology, finer than
the subspace topology, on a subspace of a linear Hausdorff space and that a continuous
bijective linear map between Fréchet spaces is an isomorphism.

There are many topologies on the algebraic tensor product of two topological vector
spaces V and W. We will only study the projective topology which is the finest topology
on the algebraic tensor product V ⊗alg W for which the canonical bilinear map

V ×W −→ V ⊗alg W

is continuous. This means that a linear map V ⊗alg W → G is continuous if and only if the
corresponding bilinear map V ×W → G is continuous.

Lemma 6.1. If V,W are Fréchet spaces then the completion V ⊗ W of the algebraic
tensor product in the projective topology is again a Fréchet space, [K, II, 178]. This
tensor product is associative and commutative in the sense that SFr, the category of Fréchet
spaces, becomes a symmetric monoidal category under this projective tensor product.

Examples 6.2. If V is Fréchet then C∞(M; V) � C∞(M) ⊗ V . In particular,

C∞(M × N) � C∞(M) ⊗C∞(N)

for any smooth manifolds M and N. In fact, in the graded category these statements con-
tinue to hold for super manifolds.

If V,W happen to be Hilbert spaces then V ⊗ W can be identified with the space of
trace-class operators from V to W by the canonical map. Note that the Hilbert tensor
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product of V and W leads to the space of Hilbert-Schmidt operators. If V = W is infinite
dimensional, the inner product extends to a continuous homomorphism on the former but
not the latter space, that’s why we cannot use the monoidal category of Hilbert spaces as
the target for our field theories.

The following lemma will be used in the main theorem of this section in order to pick
out one Fréchet space from a zoo of possibilities.

Lemma 6.3. Let V be a Fréchet space and h : V̄ ⊗ V → C a continuous linear map
that is hermitian, positive definite and induces an (algebraic) isomorphism V̄→V ′. Then
(V, h) is a Hilbert space whose norm topology agrees with the original Fréchet topology.

Before we give the proof of this lemma, we point out the case V = C∞(M) for a
compact Riemannian manifold M. The inclusion C∞(M) ↪→ L2(M) is continuous but not
open. It induces a positive definite inner product h on V which satisfies all the conditions
except that V̄ → V ′ is only 1 − 1 and not onto (V ′ is a space of distributions). So the
following proof of Lemma 6.3 has to use that V̄→V ′ is an isomorphism decisively.

Proof. It is clear that the composition

V
∆
−→ V × V

h
−→ C

is continuous and therefore the identity is a continuous map V → H, where V denotes the
original Fréchet space and H denotes V with the norm topology given by ||v||2 := h(v, v).
We will see in the next paragraph that the pre-Hilbert space H is actually complete. Hence
we can apply the open mapping theorem to the identity map V −→ H and conclude that it
is an isomorphism, as asserted.

Since the identity map V → H is continuous, we have an inclusion ι : H′ ↪→ V ′. The
composition H̄ ↪→ V ′ of ιwith the canonical map c : H̄ −→ H′ is surjective since it is equal
to the composition H̄ = V̄ −→ V ′ which is surjective by assumption. It follows that the
canonical map H̄ −→ H′ is surjective and hence the pre-Hilbert space H is complete. �

6.2. Riemannian bordism categories. In [ST2] we defined the Riemannian bordism
category d-RB as an internal category over the 2-category of symmetric monoidal cate-
gories. This means that we have

(0) objects: closed piecewise smooth (d − 1)-manifolds Yc with a d-dimensional
Riemannian bicollar Y .

(1v) vertical 1-morphisms: germs of isometries between objects (Y,Yc).
(1h) horizontal 1-morphisms: d-dimensional Riemannian bordisms Σ between such

objects.
(2) 2-morphisms: germs of isometries of horizontal 1-morphisms Σ.

This 2-categorical language is very important if one wants to make twisted field theories
precise, for example for degree n , 0. In this paper we decided to skip this complication
and hence we collapse the above structure to that of a symmetric monoidal category. We
hope that using the same notation d-RB as in [ST2] will not be confusing for the readers.
Here are the detailed definitions used in this paper. One important aspect is that all our
manifolds are without boundary, making it easier to deal with geometric structures.

Definition 6.4. The objects of the category d-RB are quadruples (Y,Yc,Y±), where Y
is a Riemannian d-manifold (usually non-compact) and Yc ⊂ Y is a compact codimension 1
submanifold which we call the core of Y . Moreover, we require that Y r Yc = Y+ q Y−,
where Y± ⊂ Y are disjoint open subsets whose closures contain Yc. An isomorphism in
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Y−
Y+

Yc

Figure 1. An object (Y,Yc,Y±) of 2-RB

d-RB from (Y0,Yc
0 ,Y

±
0 ) to (Y1,Yc

1 ,Y
±
1 ) is the germ of an invertible isometry f : W0 → W1.

Here W j ⊂ Y j are open neighborhoods of Yc
j and f is required to send Yc

0 to Yc
1 and W±0 to

W±
1 where W±j := W j ∩ Y±j . As usual for germs, two such isometries represent the same

isomorphism if they agree on some smaller open neighborhood of Yc
0 in Y0.

Disjoint union makes this a symmetric monoidal groupoid, the invertible part of d-RB.
We shall now introduce the general morphisms of d-RB as (isometry classes of) certain
bordisms and we shall rediscover the above isomorphisms as very special types of bor-
disms.

Definition 6.5. A Riemannian bordism from Y0 = (Y0,Yc
0 ,Y

±
0 ) to Y1 = (Y1,Yc

1 ,Y
±
1 ) is

a triple (Σ, i0, i1) consisting of a Riemannian d-manifold Σ and smooth maps i j : W j → Σ.
Here W j ⊂ Y j are open neighborhoods of the cores Yc

j . Letting i±j : W±
j → Σ be the

restrictions of i j to W±j := W j ∩ Y±j , we require that
(+) i+j are isometric embeddings into Σ r i1(W−

1 ∪Wc
1) and

(c) the core Σc := Σ r
(
i0(W+

0 ) ∪ i1(W−1 )
)

is compact.
Particular bordisms are given by isometries f : W0 → W1 as above, namely by using Σ =

W1, i1 = idW1 and i0 = f . Note that in this case the images of i+0 and i+1 are not disjoint but
we didn’t require this condition.

Below is a picture of a Riemannian bordism; we usually draw the domain of the bor-
dism to the right of its range, since we want to read compositions of bordisms, like com-
positions of maps, from right to left. Roughly speaking, a Riemannian bordism between
objects Y0 and Y1 of d-RB is just an ordinary bordism Σc from Yc

0 to Yc
1 equipped with a

Riemannian metric, thickened up a little bit near its boundary to make gluing possible.
The composition of two Riemannian bordisms Σ : Y0 → Y1 and Σ′ : Y1 → Y2 is

defined as follows. Consider the maps i1 : W1 → Σ and i′1 : W ′1 → Σ′ that are part of
the data for our Riemannian bordisms. Here W1,W ′1 ⊂ Y1 are open neighborhoods of Yc

1
and we set W ′′1 := W1 ∩ W ′1. Our conditions guarantee that i1 and i′1 restrict to isometric
embeddings of (W ′′1 )+ := W ′′1 ∩ Y+

1 . We use these isometries to glue Σ and Σ′ along W ′′1 to
obtain Σ′′ defined as follows:

Σ′′ :=
(
Σ′ r i′1((W ′1)+ r (W ′′1 )+)

)
∪(W′′1 )+

(
Σ r i1(W−

1 ∪Wc
1)

)
The maps i0 : W0 → Σ and i2 : W2 → Σ′ can be restricted to maps (on smaller open neigh-
borhoods) into Σ′′ and they induce isometric embeddings as required by our conditions.
This makes Σ′′ a Riemannian bordism from Y0 to Y2 using the following remark.
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i0(W+
0 )i0(W−0 )

i0(Yc
0 )

Σ

i1(W+
1 )i1(W−1 )

i1(Yc
1 )

︸                                                             ︷︷                                                             ︸
Σc

Figure 2. A 2-dimensional Riemannian bordism (Σ, i0, i1)

Remark 6.6. We point out that the condition (+) and (c) in the above definition of a
Riemannian bordism also make sure that the composed bordism is again a Hausdorff space.
In other words, gluing two topological spaces along open subsets preserves conditions like
“locally homeomorphic to Rn” and structures like Riemannian metrics. However, it can
happen that the glued up space is not Hausdorff, for example if one glues two copies of
R along the interval (0, 1). The reader is invited to check that our claim follows from the
following easy lemma.

Lemma 6.7. Let X, X′ be manifolds and let U be an open subset of X and X′. Then
X ∪U X′ is a manifold if and only if the natural map U → X × X′ sends U to a closed set.

An isometry between Riemannian bordism Σ,Σ′ : Y0 → Y1 is a germ of a triple of
isometries

F : X → X′ f0 : V0 → V ′0 f1 : V1 → V ′1.

Here X ⊂ Σ (respectively V j ⊂ W j ∩ i−1
j (X) ⊂ Y j) are open neighborhoods of Σc (respec-

tively Yc
j ) and similarly for X′,V ′0,V

′
1. We require the conditions for f j to be an isomor-

phism in d-RB as in Definition 6.4 and that the following diagram commutes:

V1
i1 //

f1
��

X

F

��

V0
i0oo

f0
��

V ′1 i′1
// X′ V ′0i′0

oo

Two such triples (F, f0, f1) and (G, g0, g1) represent the same germ if there there are smaller
open neighborhoods X′′ of Σc ⊂ X and V ′′j of Y j ⊂ V j ∩ i−1

j (X′′) such that F and G agree
on X′′, and f j and g j agree on V ′′j .

Isometries with a germ of the form (F, idV0 , idV1 ) are referred to as being rel boundary.

Definition 6.8. We define the morphisms in d-RB to be isometry classes (rel bound-
ary) of Riemannian bordisms as defined above. The composition is well-defined and asso-
ciative on such isometry classes. It is not hard to check that the isomorphisms in d-RB all
come from isometries as explained above.
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Disjoint union makes d-RB into a symmetric monoidal category.

Remark 6.9. It is extremely important to observe that there are no orientations used
to distinguish between incoming and outgoing boundaries. From our perspective, it is
an unfortunate historical coincidence that in many papers orientations are mixed up with
categorical source and target information. In the above approach the convention is that
incoming boundaries of Σ have the −-side on the inside whereas outgoing boundaries have
the −-side on the outside. In the figures for d = 1 below, one can also remember this by
noting that the •, representing the core of a point, is on the outside of the pictured bordism
if and only if it is an outgoing boundary component.

It will also become clear later that this is the correct convention when studying functors
into infinite dimensional vector spaces.

The following object pt ∈ 1-RB is clearly the unique connected non-empty object up
to isomorphism, implying that π0(1-RB) = N0:

pt := (pt, ptc, pt±) := (R, {0},R±)

In fact, pt is the germ around {0} and a good picture is given by drawing the core ptc as a
•, the +collar pt+ as a dashed line and ignoring the −collar pt− all together:

•
pt ___

This choice comes from the fact that only the +collar is assumed to be embedded when
considering Riemannian bordisms in and out of pt.

We draw the interval of length t ≥ 0, a morphism It ∈ 1-RB(pt, pt) as follows:

•
pt ___ � � i1 // •

It
• _ __ ? _

i0oo •
pt ___

The underlying Riemannian manifold of It is R, the incoming embedding i0 is given by
translation by t and the outgoing embedding i1 is the identity. As for the object pt we only
draw the +collars embedded in It (and not the images of the −collars that aren’t assumed
to be embedded). The corresponding topological bordism Ic

t is the usual compact interval
[0, t], obtained by removing the dashed line on the right. Here we only needed to remove
the image of the +collar under the embedding i+0 since the image of the −collar under i1
isn’t even drawn. Note that I0 represents the identity morphism for the object pt.

Two pictures of important morphisms in 1-RB are as follows:

(6.1)
L0 •

ls
K R

•

Rt

•

We draw such bordisms so that their source is on the right and their target is on the left,
to make it easier to compare pictures with algebraic formulas. We call Rt : ∅ → ptq pt
the right elbow and Lt : ptq pt → ∅ the left elbow. It is very important to notice that
Rt is only defined for t > 0, for t = 0 condition (+) in the definition of a Riemannian
bordism is violated. However, it is satisfied for L0 which is an example of a non-invertible
Riemannian bordism for which the core is a single point (just like for isometries of pt).

Remark 6.10. Originally we thought that the intervals It are all one needs to under-
stand 1-manifolds: just pick a triangulation that decomposes any 1-manifold into intervals.
However, one should be more careful and rather think of manifolds decomposed into han-
dles, then 0- and 1-handles are relevant for 1-manifolds. Categorically, this can also be
seen by observing that there is no way to recover Rt just from intervals. To deal with this
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problem, we introduced the ‘adjunction transformations’ on the bordism categories and
on Vect in our original approach [ST]. We required the functor E to preserve these extra
structures, leading to a more awkward definition.

However, if one defines the category 1-RB as above, these additional properties are
automatically satisfied as one can see by playing with the morphism L0. We now prefer
this approach because it introduces the concept of handle decomposition of 1-manifolds
in a precise fashion: In the following Theorem, think of L0 as associated to a 0-handle
(of length 0) and Rt as associated to 1-handles (of length t > 0). The relations come
from Morse cancelling a pair of such handles and the orientation reversing isometry of an
interval.

Theorem 6.11. The symmetric monoidal category 1-RB is generated by the object pt
and the morphisms L0 and Rt, t ∈ R>0, subject to the following relations

• L0 and Rt are symmetric, i.e. they interact as follows with the symmetry braiding
σ of 1-RB: L0 = L0 ◦ σ and Rt = σ ◦ Rt.

• Rt1+t2 equals the composition Rt1 ◦L0 Rt2 := (I0 q L0 q I0) ◦ (Rt1 q Rt2 ):

(6.2) •

Rt1

•

L0 •

ls
K R

•

Rt2

•

Proof. Having a set of generators for a symmetric monoidal category B means that
the symmetric monoidal category freely generated by this set comes with an essentially
surjective functor to B. In our case, this is true since

(1) any object in 1-RB is isometric to the disjoint union of points,
(2) any morphism in 1-RB is isometric to the disjoint union of Riemannian circles

and intervals,
(3) the moduli space of intervals (and circles) is (0,∞) given by the length t,
(4) all ways of assigning source and target to an interval are given by It, Lt,Rt. More-

over, L0 and Rt can be composed to give It, Lt,
(5) circles are obtained from composing Lt and Rt.

To find the relations between the generators L0 and Rt we have to understand their isome-
tries relative boundary: These are clearly given by reflections and the first set of relations
arises. The second relation is a geometric version of Morse cancellation if one thinks of L0
as associated to a 0-handle (of length 0) and Rt as associated to 1-handles (of length t > 0).
In this dimension, this is the only possible Morse cancellation. With some care, the usual
statement of handlebody theory, namely that any two handle decompositions of a manifold
differ by a sequence of Morse cancellations, leads to a proof of our theorem. �

For those readers who are not familiar with the notion of generators and relations for
symmetric monoidal categories, the following consequence of Theorem 6.11 can serve as
a definition.
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Corollary 6.12. For any symmetric monoidal category C, the groupoid of symmetric
monoidal functors from 1-RB to C (and natural isomorphisms) is equivalent to a certain
groupoid C3:

Fun⊗(1-RB,C) ' C3

Here the objects of C3 are triples (V, µ, ρt) where V ∈ C and

µ : V ⊗ V → 11 respectively ρt : 11→ V ⊗ V, t ∈ R>0

are symmetric morphisms in C subject to the relations

ρt1+t2 = ρt1 ◦µ ρt2 := (11 ⊗ µ ⊗ 11) ◦ (ρt1 ⊗ ρt2 )

shown in Figure 6.2. Note that this figure explains how to use a fixed morphism µ to intro-
duce a monoidal structure on C(11,V ⊗ V), denoted by ◦µ above. This works in any sym-
metric monoidal category C and our relation says that ρ is a homomorphism of monoids
R>0 → C(11,V ⊗ V).

The morphisms C3((V, µ, ρt), (V ′, µ′, ρ′t)) are isomorphisms in C(V,V ′) for which the
obvious diagrams involving µ, µ′, ρt, ρ

′
t commute.

In particular, applying this result to C = Vect, we see that 1-dimensional Riemannian
field theories form a groupoid equivalent to Vect3. For example, given a Hilbert space V
with inner product µ and an operator A on V , one can form the semigroup of operators
ρ̂t := exp(−tA) and hope that it comes from ρt ∈ V ⊗V . There are a few problems with this
example.

(1) Since µ is a bilinear pairing, rather then hermitian, it qualifies as an inner prod-
uct only over the real numbers. To relate to hermitian pairings over the com-
plex numbers, one needs to introduce orientations on the Riemannian manifolds
which we do in [HST].

(2) If we are using the algebraic tensor product on Vect then V ⊗ V can be identi-
fied with the finite rank operators, putting severe restrictions on A. This problem
is resolved by working in the category of Fréchet space with projective tensor
product as explained in Section 6.1. Note that the monoidal category of Hilbert
spaces only works in finite dimensions because in infinite dimensions the pairing
µ is not defined on the Hilbert tensor product of V with itself: this tensor prod-
uct is isomorphic to the Hilbert-Schmidt operators on V whereas the projective
tensor product gives trace-class operators on V . In the translation, the pairing µ
turns into the trace which is defined on this projective tensor product but doesn’t
make sense for all Hilbert-Schmidt operators.

(3) Most importantly, if we want that all Riemannian field theories arise in this
manner, we have to make sure that the elements ρt vary continuously, or even
smoothly, in t. Then the semigroup ρ̂t can be differentiated to give an infinitesi-
mal generator A. This requirement leads naturally to include family versions of
the categories d-RB, introduced in the next two subsections.

6.3. Families of Rigid Geometries. Let M denote one of the categories of manifolds
Man, super manifolds SMan, or complex super manifolds csM. The latter are defined
in [DM] in terms of an ordinary p-manifold, together with a sheaf of commutative super
algebras over C that are locally isomorphic to

C∞(Rp|q) ⊗ C
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In this case, p|q is again referred to as the super dimension. One should think of these
manifolds as having p real coordinates and q complex coordinates and they all arise from
complex vector bundles over ordinary manifolds.

Here and in the following, a manifold will stand for an object in M (which has no
boundary). Let G be a group object in M, i.e. a Lie group, Lie super group or Lie cs-
group. We want to think of a G-action on a fixed manifold M as the local model for rigid
geometries with isometry group G. This idea is very well explained in [Th] and goes back
to Klein’s Erlangen program.

Definition 6.13. A (G,M)-structure on a manifold Y is a maximal atlas consisting of
charts which are diffeomorphisms

Y ⊇ Ui
ϕi

�
// Vi ⊆ M

between open subsets of Y and open subsets ofM such that the Ui’s cover Y and for all i, j
the transition function

M ⊇ ϕi(Ui ∩ U j)
ϕ j◦ϕ

−1
i // ϕ j(Ui ∩ U j) ⊆ M

is given by an element g ∈ G, it is the restriction of the map

M = pt×M
g×id
−→ G ×M −→ M

for some g : pt → G. Here G ×M → M is the action map and this careful formulation is
particularly relevant for super manifolds.

In the category of super manifolds (or cs-manifolds), any morphism pt → G factors
uniquely through Gred ⊂ G. As a consequence, a (G,M)-structure on a super manifold Y
is the same thing as a (Gred,M)-structure on Y . Therefore, the relevant notion for super
manifolds is that of families of (G,M)-manifolds which we define next.

Definition 6.14. A family of (G,M)-manifolds is a morphism p ∈ M(Y, S ) together
with a maximal atlas consisting of charts which are diffeomorphisms ϕi between open
subsets of Y and open subsets of S ×M making the following diagram commutative:

Y ⊇ Ui
ϕi

�
//

p
""FF

FF
FF

FF
F Vi ⊆ S ×M

p1
zztttttttttt

S

We require that the open sets Ui cover Y and that for all i, j the transition function

S ×M ⊇ ϕi(Ui ∩ U j)
ϕ j◦ϕ

−1
i // ϕ j(Ui ∩ U j) ⊆ S ×M

is of the form (s,m) 7→ (s, gi j(s)m), where gi j ∈ M(p(Ui ∩ U j),G). We note that the
conditions imply in particular that p is a submersion and p(Ui ∩ U j) ⊆ S are open.

If Y → S and Y ′ → S ′ are two families of (G,M)-manifolds, an isometry between
them is a pair of maps ( f , f̂ ) making the following diagram commutative:

Y

��

f̂ // Y ′

��
S

f // S ′
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We require that f̂ preserves the fiberwise (G,M)-structure in the following sense: There
are charts (Ui, ϕi) respectively (U′i , ϕ

′
i) of Y respectively Y ′ such that f̂ (Ui) ⊆ U′i and

ϕ′i ◦ f̂ |Ui ◦ ϕ
−1
i is of the form (s,m) 7→ ( f (s), gi(s)m) for some gi ∈ M(p(Ui),G).

The result is a category M(G,M) of families of (G,M)-manifolds and their isome-
tries. It is easy to see that the forgetful functor M(G,M) → M is a Grothendieck fibration,
i.e. pullbacks exist.

Example 6.15. In the category Man of manifolds, we can consider M := Ed, the d-
dimensional Euclidean space. Let G := Iso(Ed) be the isometry group of Ed which is the
Euclidean group of translations, reflections and rotations of Ed. A Euclidean structure on
a smooth d-manifold Y is a (Iso(Ed),Ed)-structure in the above sense. It is clear that such
an atlas determines a flat Riemannian metric on Y by transporting the standard metric on
Ed to Ui via the diffeomorphism ϕi. Conversely, a flat Riemannian metric can be used to
construct such an atlas.

We want to give a super version of this geometric structure, at least in dimension 1|1.
We would like the local model to be M = R1|1 and the translational part of the isometry
group to be R1|1 with the group structure from Definition 5.3. This is the right group
structure for the current setting because its Lie algebra is free on one odd generator D with
square ∂t, the infinitesimal generator of the translation group R.

In Iso(E1) we have the reflection that takes t 7→ −t, physically it’s the time reversal. If
we want an automorphism of R1|1 that induces this reflection on the reduced group R then
it has to induce an action on the Lie algebra that sends D 7→ iD, where i is a square-root
of −1. Thus super time R1|1 must be a cs-Lie group if we want to include a super time
reversal.

Example 6.16. In the category csM of cs-manifolds, consider the following rigid
geometry. Define Euclidean cs-space of dimension 1|1 to be

M := E1|1 := R1|1
cs

and let G := R1|1
cs o Z/4 be the isometry group. So by definition, Iso(E1|1) := G, where the

group structure on the translational part R1|1
cs comes from Definition 5.3. The “rotational”

part Z/4 is generated by the pin generator pg which is the automorphism of the group R1|1
cs

given by
pg(t, θ) := (−t,−iθ), i2 = −1.

One checks that G acts onM by first rotating and then left translating. Then

csM(Iso(E1|1),E1|1)

is the category of families of Euclidean cs-manifolds.
Note that the underlying reduced Lie group of Iso(E1|1) is R o Z/4, a central double

covering of Iso(E1). Hence the underlying reduced manifold of a Euclidean 1|1-manifold
comes equipped with a Riemannian metric and pin-structure (more precisely, a tangential
Pin−(1)-structure).

Remark 6.17. We used to think of a 1|1-dimensional Euclidean structure in terms
of an odd complex vector field Q that can be locally written as ∂θ + θ∂t and that is well-
defined up to multiplication by complex numbers of length 1. It is actually not difficult to
see that the above group G := R1|1

cs oZ/4 is exactly the group of isometries of this geometric
structure on R1|1

cs .
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We recently decided to use the approach via rigid geometries because in this setting
one can easily define d|δ-dimensional Euclidean manifolds (and bordism categories), see
[ST2].

For later use in the definition of real field theories, we shall introduce the concept of
complex conjugation on categories M(G,M). Recall that for a cs-manifold S , the complex
conjugate cs-manifold S̄ has the same real sheaf of functions but the complex numbers
act by precomposing with complex conjugation. If S is a manifold or super manifold, we
define S̄ := S .

Definition 6.18. A real structure on a manifold S (in Man,SMan or csM) is a iso-
morphism

rS : S −→ S̄ such that r̄ ◦ r = idS

For example, if O(S ) is the real sheaf of functions on a super manifold S then there is a
canonical cs-manifold S cs with (S cs)red = S red and sheaf of functions O(S cs) = O(S ) ⊗ C.
The usual real structure on C then induces a real structure on S cs which is the identity on
the reduced manifold.

A morphism f : S ′ → S is real if rS ◦ f = f ◦rS ′ . The above functor S 7→ S cs gives an
equivalence of categories between SMan and the category of real cs-manifolds (with real
structures that are the identity on the reduced part) and real morphisms. In the following,
we shall not require our real structures to be the identity on the reduced part.

A real structure on a local model (G,M) for rigid geometry is a real structure on G
and a real structure on M such that all structure maps (group multiplication, unit, inverse,
group action) are real.

Lemma 6.19. A real structure on (G,M) induces an involution on the category M(G,M)
that extends the complex conjugation functor Y 7→ Ȳ on total spaces of families of (G,M)-
manifolds. In particular, the forgetful functor M(G,M) → M respects these complex con-
jugations.

Proof. Let ϕi : Ui → Vi be charts for a family p : Y → S as in Definition 6.14 above
with transition functions coming from gi j ∈ M(p(Ui ∩ U j),G). Then

Ȳ ⊇ Ūi
ϕ̄i

�
// V̄i

idS ×rM
�

// Wi ⊆ S̄ ×M

are charts for Ȳ → S̄ . One can easily check that, as required for a family of (G,M)-
manifolds, the transition functions are of the form (x,m) 7→ (x, (rG ◦ ḡi j)(x)m) where ḡi j ∈

M(p(Ūi ∩ Ū j), Ḡ).
If an isometry f : Y → Y ′ is locally given by gi ∈ M(p(Ui),G) then one similarly

checks that the isometry f̄ : Ȳ → Ȳ ′ is locally given by rG ◦ ḡi ∈ M(p(Ūi),G). �

Example 6.20. In the case of 1|1-dimensional Euclidean cs-structures from Exam-
ple 6.16, we can define the real structure rM onM = E1|1 = R1|1

cs as in Definition 6.18. This
also defines the real structure on the translational part of

G = Iso(E1|1) = R1|1
cs o Z/4

If we think of Z/4 as the 4-th roots of unity inside C then the usual real structure on C
induces one on Z/4. On the pin generator pg, this real structure is rG(pg) := pg−1 which
means that it permutes the sheets, even of the reduced manifold RoZ/4. This permutation
is necessary in order to make (rG, rM) into a real structure on the local model (G,M) for
Euclidean cs-manifolds.
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6.4. Fibred Euclidean Bordism categories. In this subsection we define the (family)
Euclidean bordism category d-EB → Man and its generalizations. These are symmetric
monoidal categories (Grothendieck) fibred over the site Man of smooth manifolds, com-
pare [ST2] or [HKST].

Definition 6.21. An object in d-EB is given by (S ,Y,Yc,Y±), where S is a smooth
manifold, Y → S is a family of d-dimensional Euclidean manifolds and Yc ⊂ Y is a smooth
codimension 1 submanifold such that the restriction of p to Yc is proper. This assumption
is a family version of our previous assumption in Definition 6.4 that Yc is compact, since it
reduces to that assumption for S = pt. Also part of the data is the decomposition of Y r Yc

as the disjoint union of two open subsets Y±, both of which contain Yc in their closure.
A morphism Σ in d-EB, lying over a smooth map f : S → S ′ of manifolds, is defined

as follows: First fix the source (S ,Y0) and target (S ′,Y ′) of Σ which are objects as above.
Then pull back the target to get another object (S , f ∗(Y ′)) over S which we denote by
(S ,Y1). Then Σ = (Σ, pΣ, i0, i1) contains the following additional data:

• a family of d-dimensional Euclidean manifolds pΣ : Σ→ S
• for = 0, 1, smooth maps i j : W j → Σ over S , where W j ⊂ Y j are open neigh-

borhoods of the cores Yc
j . Letting i±j : W±j → Σ be the restrictions of i j to

W±j := W j ∩ Y±j , we require that
(+) i+j are isometric embeddings into Σ r i1(W−1 ∪Wc

1) and

(c) the restriction of pΣ to the core Σc := Σ r
(
i0(W+

0 ) ∪ i1(W−
1 )

)
is proper.

Two such families of Euclidean bordisms Σ→ S and Σ′ → S represent the same morphism
in d-EB if they are isometric (rel. boundary) over the identity of S .

Then d-EB → Man is a fibred category which has a fibrewise symmetric monoidal
structure, simply given by disjoint union (of total spaces Y respectively Σ). It is customary
to denote by d-EBS the fibre categories of this fibration: For fixed S ∈ Man, the objects are
families Y → S and the morphisms are restricted to lie over the identity map of S .

Recalling the categories M(G,M) of families of (G,M)-manifolds (and their isome-
tries) from Section 6.3, it is not hard to use the same technique as above to define the
family bordism categories B(G,M) → M. If M is one of the two possible sites of su-
per manifolds then we note that the properness assumptions on p : Yc → S is only an
assumption on the reduced (ordinary) manifolds.

In particular, using Euclidean cs-manifolds of dimension 1|1 as defined in Exam-
ple 6.16, we get a fibred symmetric monoidal category 1|1-EB→ csM.

Definition 6.22. In this paper we shall make an additional positivity assumption on the
cores of our Euclidean families: If Y → S is a familiy of Euclidean manifolds (representing
objects or morphisms in d-EB) then we require that the induced map of cores Yc → S is
a locally trivial fibre bundle and refer to this as a positive family. Roughly speaking, this
means that we only explore the topology on the open part of the moduli space of Euclidean
bordisms. We shall denote this positive Euclidean bordism category by d-PEB.

Using the same positivity assumption, we get a fibred category 1|1-PEB → csM of
positive Euclidean cs-bordisms.

For d = 1 positivity implies that there are no smooth families that shrink the intervals
It or Lt as t 7→ 0. Such families exist for t > 0 and the morphisms I0 = idpt and L0 also
exist but we don’t consider the limits t 7→ 0, motivating the use of the word positive. As a
consequence, I0 and L0 represent isolated points in the moduli space of intervals.

This assumption of positivity is related to our choice of the family version of the
target category Vect to be that of (locally trivial) vector bundles. In future work, we plan to
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investigate more general family bordism categories (partial compactifications of our open
moduli space) mapping to more general sheaves of vector spaces.

The forgetful functor d-PEB → Man sending (S ,Y,Yc,Y±) to S is a Grothendieck
fibration and will be considered as part of the structure of the family bordism category. We
will denote by d-PEBS the fibre category over the manifold S , describing S -families of
positive Euclidean bordisms.

The disjoint union of total spaces Y gives a (fibrewise) symmetric monoidal structure
on this fibration as explained in [HKST] and [HST]. We have the following family version
of Theorem 6.11.

Theorem 6.23. The fibred symmetric monoidal category 1-PEB → Man is gener-
ated by the object pt ∈ 1-PEBpt and the morphisms L0 ∈ 1-PEBpt(ptq pt, ∅) and R ∈
1-PEBR>0 (∅, ptq pt) subject to the following relations

• L0 and R are symmetric as before: L0 = L0 ◦ σ ,R = σ ◦ R
• The relation Rt1+t2 = Rt1 ◦L0 Rt2 shown in Figure 6.2 holds, interpreted as saying

that using the three maps p1, p2,m : R>0 × R>0 → R>0, where m is addition and
R>0, one has

p∗1(R) ◦L0 p∗2(R) = m∗(R) ∈ 1-PEBR>0×R>0 (∅, ptq pt)

We note that Rt is obtained from R by pullback via the map pt → R>0 with image
t > 0. Theorem 6.23 follows from Theorem 6.11 by an analysis of the topology of the
moduli space of intervals, see [HST].

As in Corollary 6.12, the theorem has the following important consequence (which
can again be used as the definition of the notion of “generators and relations” for fibred
symmetric monoidal categories).

Corollary 6.24. For any symmetric monoidal category C→ Man, fibred over smooth
manifolds, the groupoid of fibred symmetric monoidal functors from 1-PEB to C (and nat-
ural isomorphisms) is equivalent to a certain groupoid C3:

Fun⊗Man(1-PEB,C) ' C3

Here the objects of C3 are triples (V, µ, ρ) where V ∈ Cpt and

µ ∈ Cpt(V ⊗ V, 11) respectively ρ ∈ CR>0 (11,V ⊗ V)

are symmetric morphisms in C subject to the relations ρt1+t2 = ρt1 ◦µ ρt2 as explained in the
theorem above. The morphisms C3((V, µ, ρ), (V ′, µ′, ρ′)) are isomorphisms in Cpt(V,V ′) for
which the obvious diagrams involving µ, µ′, ρ, ρ′ commute.

Note that the same result holds without the above restriction to isomorphisms but we
chose this formulation because it is the groupoids whose classifying space later leads to
the correct homotopy types.

In particular, we can consider as target the fibred category FrR → Man of real Fréchet
vector bundles over smooth manifolds, equipped with fibrewise projective tensor product.
This leads to the following corollary.

Corollary 6.25. The groupoid Fun⊗Man(1-PEB,FrR) is equivalent to the groupoid of
triples (V, µ, ρ) where V is a Fréchet space with a symmetric pairing µ : V ⊗ V → R and a
smooth symmetric semigroup ρ : R>0 → V ⊗ V. Morphisms are isomorphisms of Fréchet
spaces, compatible with the extra structure given by µ, ρ.
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The equivalence is given by assigning to field theory E the triple (V, µ, ρ), where

V = E(pt), µ = E(L0) and ρ = E(R)

Definition 6.26. A 1-dimensional field theory E ∈ Fun⊗Man(1-PEB,FrR) is non-negative
if µ(v,w) ≥ 0 for all v,w ∈ V . We call E positive if V is in addition infinite dimensional and
separable and µ gives an (algebraic) isomorphism from V to its continuous dual space V ′.
The full subgroupoid of Fun⊗Man(1-PEB,FrR) given by positive field theories is the denoted
by 1-PEFT, the groupoid of positive Euclidean field theories of dimension 1.

Remark 6.27. We point out that the notion of a positive Euclidean field theory has
two aspects:

(1) the functor E is defined on the positive Euclidean bordism category.
(2) The inner product µ = E(L0) is positive in the above sense.

Both these conditions have their own reason to be called positive and as a (desirable)
consequence, we only need one adjective to describe the resulting Euclidean field theory.

In the positive case, Lemma 6.3 implies that V is a real Hilbert space with inner product
µ. Therefore, V ⊗ V is the space of trace-class operators and we obtain the following final
computation from the fact that any two infinite dimensional, separable Hilbert spaces are
isometric.

Corollary 6.28. Let (H, µ) be an infinite dimensional separable real Hilbert space.
Then the groupoid 1-PEFT of positive Euclidean field theories of dimension 1 is equivalent
to the groupoid 1-PEFT(H) of smooth semigroups ρt of self-adjoint trace-class operators
on H. The morphisms are isometries of (H, µ) that are compatible with the semigroups.

We note that in the absence of the positivity condition in Definition 6.22, 1-EFTs
satisfying the conditions of Definition 6.26 do not exist at all! This comes from the fact that
if the semigroup ρt = exp(−tA) extends smoothly to t = 0 then its infinitesimal generator A
needs to give a continuous operator on V . If V is a Hilbert space then A needs to be bounded
and the trace-class condition implies that A and hence all ρt have finite rank. Taking the
limit t 7→ 0 shows that ρ0 = idV and hence V is finite dimensional.

Our assumption that the EFT is only defined on positive bordisms in 1-PEB implies
in particular that ρ0 does not have to be the identity on V , it only has to be a projection
operator. We shall refer to the kernel of ρ0 as the∞-Eigenspace of A.

In [HST] we shall study general 1-EFTs, i.e. . the groupoid Fun⊗Man(1-EB,FrR), so that
we have to allow V to be a Fréchet space like C∞(S 1). Then the pairing µ may only induce
an injection V ↪→ V ′ and may even be indefinite. The advantage of using C∞, rather than
L2-functions, is that the infinitesimal generator A can be unbounded but continuous on V ,
for example if A comes from the differentiation operator. We believe that this general class
of 1-EFTs still leads to a homotopy equivalent classifying space if one uses the construction
from the next section, see Remark 6.30.

6.5. Internal groupoids of smooth field theories. In this section we explain how
groupoids of smooth field theories can be naturally equipped with a topology so that we
may consider the corresponding classifying spaces. More precisely, if G is one of these
groupoids, we shall naturally define a new groupoid Man(M,G) for every manifold M ∈
Man which serves as the groupoid of smooth maps from M to G. In fact, these groupoids
will fit together to a category G → Man fibred in groupoids. In all cases at hand, we will
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show that G is equivalent to a fibred groupoid coming from a contravariant functor from
manifolds to small groupoids:

sG : Manop −→ sGrp

In particular, this functor sG has a well defined classifying space, obtained from realizing
the simplicial space

∆op −→ Manop sG
−→ sGrp

|.|
−→ Top

We shall denote this classifying space simply by |G| to emphasize the naturality of the con-
struction of G and since the choice of sG cannot alter the homotopy type of this classifying
space. We shall give this construction in great generality in order to

(1) express its naturality,
(2) be able to apply it to super symmetric EFTs,
(3) use it in dimensions d > 1 in future papers.

The main goal of the current Section 6 is the following result:

Theorem 6.29. In the notation of this and the following subsection, the groupoids
1-PEFT and 1|1-PEFT of positive Euclidean field theories of dimensions 1 respectively 1|1
have classifying spaces whose homotopy type is given by:

|1-PEFT | ' pt and |(1|1)-PEFT | ' BO × Z

Remark 6.30. In [HST] we ignore all positivity assumptions and work with general
sheaves of Fréchet spaces to obtain the groupoids 1-EFT and 1|1-EFT. The construction
of this section applies to obtain the corresponding classifying spaces and we conjecture
that this does not change homotopy types:

|1-EFT | ' |1-PEFT | and |(1|1)-EFT | ' |(1|1)-PEFT |

Note however, that applying our current construction in dimensions 0 and 0|1 leads to
contractible classifying spaces

|0-EFT | ' |(0|1)-EFT | ' pt

This is the reason why we worked with field theories over a manifold X in [HKST]. We
proved that this approach leads to the correct homotopy type for de Rham cohomology
to appear (in the twisted case) by using simplices in place of X. We believe that this
more difficult construction gives the correct homotopy type in all dimensions and view our
current method as a shortcut for K-theory, i.e. for dimension 1|1. We are uncertain whether
this shortcut also works in the most interesting dimension 2|1.

The groupoids G for which we shall construct a classifying space |G| will be of the
following form: Let S be a base category, in this paper S = Man or SMan. We require
that S has finite products and we fix a functor Man→ S. Our notation will not reflect this
functor, i.e. we will just think of manifolds as objects in S (which is certainly correct in
the two cases at hand). Let B and V be two categories fibred over S, where B will later
be some bordism category and V some category of vector bundles. Then we consider the
groupoid of fibred functors

G = FunS(B,V)

where the morphisms are natural isomorphisms over S. In our applications, B and V will
actually be symmetric monoidal fibred categories and the functors will be assumed to be
symmetric monoidal.
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Definition 6.31. The category G→ S fibred in groupoids is defined as the inner Hom
in fibred categories. Its fibre GS over an object S ∈ S is given by

GS = FunS(B,V)S = FunS(B,V(S ))

where V(S ) = FunS(S ,V) is the fibred category with fibres V(S )T := VS×T . Here all
functor categories are considered as groupoids, i.e. we only allow natural isomorphisms,
not all natural transformations, as morphisms.

Remark 6.32. This definition is a certain version of inner Hom, where the variable S
is built in on the right hand side. This implies good functoriality properties and applications
of Corollary 6.24 in the case B = 1-PEB. We note that in general there are equivalences of
categories

FunS(B,FunS(S ,V)) ' FunS(B × S ,V) ' FunS(B,V)S

because

V(S )T = VS×T ' FunS(S × T ,V) ' FunS(S ,V)T

As an example, let’s take the relevant fibred categories from the previous section, i.e.

S = Man, B = 1-PEB and V = FrR

Then we can apply Corollary 6.24 to the fibred category C = FrR(S ) for any manifold S .
We obtain an equivalence of groupoids

Fun⊗Man(1-PEB,FrR)S ' FrR(S )3

where the objects of the groupoid FrR(S )3 are triples (V, µ, ρ). Here V is a Fréchet bundle
over S with a symmetric pairing µ and symmetric semigroup ρ.

We now restrict the functors to be positive, in the (family version) sense of Defini-
tion 6.26 and obtain (full) sub-groupoids

1-PEFTS ⊂ Fun⊗Man(1-PEB,FrR)S

The above equivalence takes this sub-groupoid to the category of triples (V, µ, ρ) with V is
a Hilbert bundle over S , fibrewise inner product µ and self-adjoint semigroup ρ.

By the contractibility of the orthogonal group O(H), this category is equivalent to the
one where V is the trivial bundle H × S and µ is constant. Then ρ : S → SGOTC(H) is
a smooth map into all self-adjoint semigroup homomorphisms R>0 → H ⊗ H, where the
right hand side denotes the projective tensor product, isomorphic to the space of trace-class
operators TC(H).

Smoothness means that the adjoint of ρ, the map S × R>0 → H ⊗ H, is smooth. It is
self-adjoint and has the semigroup property for each fixed s ∈ S .

Remark 6.33. The notation ‘semigroup of operators’ SGOTC is also used in Propo-
sition 5.16 where there is an additional index n, expressing the fact that the Hilbert space
in question is graded and has a Cn-action. Here we have no grading (until we get to su-
per symmetric field theories) and no Cn-action (until we discuss twisted field theories of
degree n) but we prefer to keep the infinite dimensional separable Hilbert space H in the
notation.

Summarizing, we get
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Corollary 6.34. The fibred category 1-PEFT→ Man is equivalent to the one coming
from the functor into small groupoids:

SGOTC(H)/O(H) : Manop −→ sGrp

This is actually a quotient fibration, i.e. the value of this functor at a manifold S is the
transport groupoid for the action of C∞(S ,O(H)) on C∞(S ,SGOTC(H)).

The last step in this discussion is the computation of the classifying space of this
quotient fibration. As explained at the beginning of this subsection, it is defined by using
(extended) k-simplices as manifolds S above to obtain a small simplicial groupoid that can
be geometrically realized to get |1-PEFT |.

This realization means that one forms a bisimplicial set by taking the nerves of the
groupoids involved. Then one has the choice of realizing this bisimplicial set in the two
possible orders. If we first realize the original simplicial direction we get a simplicial space
that is the nerve of an internal groupoid in Top with objects respectively morphisms given
by the realizations of the simplicial sets

[k] 7→ C∞(∆k,O(H)) respectively [k] 7→ C∞(∆k,SGOTC(H))

By a version of the smooth approximation theorem, these simplicial sets have the same
homotopy type as the singular simplicial sets of O(H) respectively SGOTC(H) (which are
formed by replacing C∞ by C0 in the above equations). Both of these spaces have the
homotopy type of CW-complexes and hence the realizations of this singular simplicial sets
are homotopy equivalent to the original spaces O(H) respectively SGOTC(H). The nerve
of this internal (transport) groupoid in Top then has realization |1-PEFT |, proving the first
part of the following result.

Theorem 6.35. The classifying space of the groupoid 1-PEFT of positive 1-EFTs has
the homotopy type

|1-PEFT | ' |SGOTC(H)/O(H)| ' SGOTC(H) ' pt

Proof. The second homotopy equivalence follow from the contractibility of O(H). It
remains to show that the space SGOTC(H) of self-adjoint trace-class semigroups in H is
contractible. The graded analogue was discussed at length in Section 5, see particularly
Propositions 5.12 and 5.16. Therefore we shall be fairly brief in this argument. First recall
that the zero semigroup ρt ≡ 0 serves as the basepoint in SGOTC(H). It corresponds to all
Eigenspaces of the infinitesimal generator A, ρt = exp(−tA), being at∞. A contraction

H : SGOTC(H) × [1,∞] −→ SGOTC(H)

to this basepoint is then given by the formula H(ρt, s) := ρs·t. This has infinitesimal gener-
ator s · A and looking at its Eigenspaces, we see that they move to∞ as s 7→ ∞. �

Remark 6.36. By looking at the Eigenspaces of infinitesimal generators, the set
SGOfin(H) can be identified with Segal’s configuration space F((−∞,+∞]) discussed in
the introduction. This comes from the fact that Eigenspaces can move exactly to +∞ in
SGOfin(H) because exp(−sA) becomes zero as s 7→ +∞ and unbounded as s 7→ −∞. Our
contraction of SGOfin(H) in the proof above is then just the configuration space version of
the contraction of (−∞,+∞] to the point +∞.
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6.6. Proof of Part 6 of our Main Theorem. In the remaining parts of Section 6,
we shall redo all of the above considerations for super manifolds to obtain the classifying
space of positive 1|1-dimensional Euclidian field theories. It will turn out that it has an
interesting homotopy type, rather than being contractible as above. We need the following
steps:

(1) Recall the Euclidean cs-bordism category 1|1-EB and its positive subcategory
1|1-PEB.

(2) Find generators and relations for 1|1-PEB.
(3) Identify the resulting category 1|1-PEFT → Man fibred in groupoids with the

quotient fibration SGOTC(H)/Oev(H) for a fixed Z/2-graded separable Hilbert
spaceH such that the even and odd parts are infinite dimensional.

(4) Compute the homotopy type of the classifying space for super symmetric posi-
tive 1|1-EFTs

|(1|1)-PEFT | ' |SGOTC(H)/Oev(H)| ' SGOTC(H) ' BO × Z

Similarly to the discussion around Theorem 6.35, step (4) follows from step (3) by Propo-
sitions 5.12 and 5.16.

Step (1) was explained in Section 6.4, where we defined the family bordism categories
B(G,M) → M for arbitrary (G,M)-structures on the site M. The case of Euclidean struc-
tures in arbitrary dimension d|δ is explained in [ST2], for dimension 1|1 see Example 6.16
and Definition 6.21.

Step (2) is then a computation of the relevant super moduli spaces of 0- and 1-handles
and will be carried out in the next subsections. In the remainder of this subsection, we’ll
use the following corollary to Theorem 6.48 of to finish step (3) of the current discussion.

Corollary 6.37. Let H be a separable real Hilbert space, graded in a way such that
the even and odd parts are both infinite dimensional. Then the groupoid 1|1-PEFT of pos-
itive Euclidean field theories of dimension 1|1 is equivalent to the groupoid 1|1-PEFT(H)
of super semigroups %t,θ of even self-adjoint trace-class operators on H . The morphisms
are even isometries ofH that are compatible with the semigroups.

Corollary 6.38. The fibred category 1|1-PEFT → Man is equivalent to the one com-
ing from the quotient fibration

SGOTC(H)/Oev(H) : Manop −→ sGrp

The same computation of the classifying space of this quotient fibration as in Theo-
rem 6.35 shows that it has the homotopy type of SGOTC(H). This is the space denoted by
SGOTC

0 in Proposition 5.16, where it was show that its homotopy type is that of

|(1|1)-PEFT | ' SGO0 ≈ Conf0 ' BO × Z

This finishes the proof of part 6 of our Main Theorem in the introduction, modulo Theo-
rem 6.48.

6.7. Generators and Relations for 1|1-PEB. First we note that any super or cs-
manifold has an involution that negates its odd coordinate. We shall refer to this as the
pin flip, written f̀ . If Y has a (G,M)-structure, one may ask whether f̀ Y is an isometry.
It turns out that this is indeed the case if f̀ M comes from an element g ∈ G in the sense
explained at the end of Definition 6.13. This is true in the example of 1|1-dimensional
Euclidean cs-manifolds, where f̀ M is the square of the pin generator pg, see Example 6.16.
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The following object sp ∈ 1|1-EB will be referred to as the super point

sp := (sp, spc, sp±) :=
(
E1|1,R0|1,R1|1

±

)
= pt×R0|1

Note that the core is again a codimension 1 submanifold and for the following lemma it is
essential that an automorphism of the super point is required to preserve it.

Lemma 6.39. The (inner) isometry group Iso(sp) of the super point is Z/2, generated
by f̀ .

Proof. By definition, the isometry group of our super Euclidean space E1|1 = R1|1 is

Iso(E1|1) = R1|1 o Z/4

and we need to decide which of these isometries preserve the additional data spc and sp±.
The core spc of sp is given by coordinates (0, η). Hence none of the translations

Tt,θ(0, η) = (t + θη, θ + η)

preserve the core. The pin generator pg(t, θ) = (−t,−iθ) does preserve the core but only its
square preserves the parts sp± of the super point. This is exactly the pin flip f̀ . �

Remark 6.40. There is another object in 1|1-EB that looks just like the above super
point, with the same ambient manifold and core but where the ±-parts are interchanged.
The pin generator is an isometry from this new object to sp and hence we don’t need to
consider this as an extra generator. In the oriented bordism category, these two objects are
not isomorphic.

To obtain interesting families of Euclidean cs-manifolds over a fixed cs-manifold S ,
we start with a function

f ∈ C∞(S ) � csM(S ,R1|1) such that fred : S red → R
1|1
red = R satisfies fred > 0.

Then we can use the super group structure m on R1|1 given in Definition 5.3 to define the
translation map

T f : S × R1|1 id× f×id
−→ S × R1|1 × R1|1 id×m

−→ S × R1|1

Let Σ := S × E1|1 with iout the identity map S × sp→ Σ and iin be given by T f .

Definition 6.41. For any cs-manifold S , write f ∈ C∞(S ) as f = t + θ where t and θ
are even respectively odd functions on S and assume that fred = tred > 0. Then the above
morphism (Σ, iin, iout) is called the super interval of length (t, θ), written as

It,θ ∈ 1|1-PEBS (S × sp, S × sp).

It lies over the identity map of S in csM. There are two close cousins also lying over the
identity of S , the left respectively right elbow of length (t, θ), written as

Rt,θ ∈ 1|1-PEBS (∅, S × (spqsp)) respectively Lt,θ ∈ 1|1-PEBS (S × (spqsp, ∅))

These are defined like It,θ with one exception, namely the pin generator pg has to enter the
discussion (it does not depend on the parameters in S ). For the left elbow, iout is empty and
iin is the disjoint union of pg and the translated embedding T f . For the right elbow, iin is
empty and iout is the disjoint union of the identity and T f pre-composed by pg.
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We note that as before, the left elbow L0 also exists, except that it’s not related
smoothly to the above family. The above definitions are direct generalizations of bosonic
families which we didn’t explain in such detail. In particular, the use of the pin genera-
tor gives on the reduced part a reflection that needed to be used to parametrize one of the
boundary points of Rt in Figure 6.2.

Let’s spell out the last definition in the universal case S = R1|1
>0 and f = idS where

the right elbow is just denoted by R = Rt,θ. Then iout is the disjoint union of the identity
id : S × sp→ S × E1|1 and the isometry

S × sp −→ S × E1|1, (t, θ, y, η)
pg
7→ (t, θ,−y,−iη) 7→ (t − y − iθη, θ − iη)

With this convention, one can easily check the super semi group relation (4) for R in The-
orem 6.42 below. The symmetry condition for L0 turns into relation (2):

L0 ◦ σ = L0 ◦ (f̀ q idsp)

where the right hand side is L0 pre-composed by an isometry of two super points. This
follows from the fact that one has to use the pin generator as the isometry that exchanges
the two boundary points of L0 which has the claimed consequence for the parametrization
of the boundaries. The complete list of generators and relations is as follows. Here σ
denotes the braiding symmetry of the symmetric monoidal category 1|1-PEB.

Theorem 6.42. The fibred symmetric monoidal category 1|1-PEB→ csM is generated
by the super point sp ∈ 1|1-PEBpt, its pin flip f̀ and morphisms L0 ∈ 1|1-PEBpt(spq sp, ∅)
respectively R ∈ 1|1-PEBR1|1

>0
(∅, spq sp). These are subject to the following relations

(1) f̀ 2 = idsp
(2) L0 ◦ (f̀ q f̀ ) = L0 and L0 ◦ (f̀ q id) = L0 ◦ σ
(3) (f̀ q f̀ ) ◦ Rt,θ = Rt,−θ and (f̀ q id) ◦ Rt,iθ = σ ◦ Rt,θ

(4) R(t1+t2+θ1θ2,θ1+θ2) = R(t1,θ1) ◦L0 R(t2,θ2)

The last relation is pictured in Figure 6.2 and says that R is a super semigroup. This
is made precise by using the three maps p1, p2,m : R1|1

>0 × R
1|1
>0 → R

1|1
>0 . Here m is multi-

plication from Definition 5.3, restricted to R1|1
>0 := (0,∞) × R0|1, and the precise relation

is
p∗1(R) ◦L0 p∗2(R) = m∗(R) ∈ 1|1-PEBR1|1

>0×R
1|1
>0

(∅, spq sp)

The proof of Theorem 6.42 will be given in [HST], the verification of the above relations
(1) - (4) being the first (easy) step. The other steps are the same as in Theorem 6.11, except
that at the end of the argument one now needs to compute the relevant cs-moduli spaces of
cs-intervals. This is done by a cs-version of the developing map, compare [Th]. It is used
to construct global (G,M)-charts for rigid geometries on simply-connected manifolds. It
then follows that cs-intervals can be embedded isometrically into E1|1 and that the whole
information is contained in the parametrization of one boundary point.

As in Corollary 6.24, this theorem has the following important consequence (which
can again be used as the definition of the notion of “generators and relations” for fibred
symmetric monoidal categories over csM).

Corollary 6.43. For any fibred symmetric monoidal category C→ csM, the groupoid
of fibred symmetric monoidal functors from 1|1-PEB to C (and natural isomorphisms) is
equivalent to a certain groupoid C4:

Fun⊗csM(1|1-PEB,C) ' C4
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Here the objects of C4 are quadruples (V, α, µ0, ρ) where V ∈ Cpt and

α ∈ Cpt(V,V), µ0 ∈ Cpt(V ⊗ V, 11) and ρ ∈ CR1|1
>0

(11,V ⊗ V)

are morphisms in C subject to the relations (1) - (4) given in the theorem above. The
morphisms in C4 are isomorphisms in Cpt(V,V ′) for which the obvious diagrams commute.
Note that we didn’t need to restrict to isomorphisms but we chose to do so in order to later
get the correct homotopy type for the relevant classifying space.

In particular, we can consider as target the fibred category SFr → csM of complex
Fréchet super vector bundles over cs-manifolds, equipped with fibrewise graded projective
tensor product. The braiding symmetry comes with the usual sign in this setting. Note
also that the pin flip f̀ is taken by any functor E to a grading E(f̀ ) of the (already graded)
Fréchet space V = E(sp).

Definition 6.44. We shall say that E satisfies the spin-statistics relation if E(f̀ ) equals
the given grading on V . We shall write E ∈ Fun⊗,ss for such functors.

Remark 6.45. We initially used the pin flip to induce the Z/2-grading on the vector
spaces E(sp) for any EFT E. This leads to a different category of (positive) 1|1-EFTs whose
classifying space we believe also has the correct homotopy type BO × Z. Moreover, the
tensor product of EFTs gives an H-space structure on this classifying space. However, the
induced braiding symmetry is not the one that extends to degree n twists because it comes
from the unsigned flip on the category of Z/2-graded vector spaces. The reason for this is
that the Clifford algebras Cn only allow graded algebra isomorphisms

Cn ⊗Cm � Cn+m

if one uses the signed flip on the category of graded vector spaces, in fact this symmetric
monoidal category is by definition that of super vector spaces. Recall that a braiding of a
monoidal category is needed in order to give the tensor product of two monoidal objects
the structure of a monoidal object. Different braidings, like the unsigned flip versus the
signed flip in the monoidal category of graded vector spaces, lead to different notions of
monoidal objects. As a consequence, EFTs can only lead to the ring spectrum KO if they
naturally lead to the signed flip. We do not see a better way than to introduce this braiding
on the target category of super Fréchet spaces SFr to begin with.

Using the spin-statistics relation leads to the following corollary.

Corollary 6.46. The groupoid Fun⊗,ss
csM(1|1-PEB,SFr) is equivalent to the groupoid of

triples (V, µ0, ρ) where V is a graded Fréchet space with an even pairing µ0 : V ⊗ V → C
that is symmetric in the naive sense:

µ0(v,w) = µ0(w, v) for all v,w ∈ V.

Moreover, ρ : R1|1
>0 → V ⊗ V is a morphism of generalized cs-semigroups, as in Defini-

tion 5.7, with respect to the composition on V ⊗ V induced by µ0. In addition, ρ satisfies
the following symmetry condition with respect to the decomposition of V ⊗ V into the four
blocks Vev ⊗ Vev etc. given by the grading of V:

ρt,θ =

(
A0

t iθτBt

θBt A1
t

)
where A0 : R+ → Vev ⊗ Vev, A1 : R+ → Vodd ⊗ Vodd and B : R+ → Vev ⊗ Vodd are smooth
maps such that A0 and A1 are symmetric in the naive sense. Moreover, τ : Vev ⊗ Vodd →

Vodd ⊗ Vev is the isomorphism given by u ⊗ v 7→ v ⊗ u.
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Morphisms in this groupoid are isomorphisms of Fréchet spaces, compatible with the
extra structure given by µ0, ρ.

It is important to observe that µ0 is C-bilinear and hence we cannot relate this result di-
rectly to Hilbert spaces. In the next subsection we shall introduce a notion of real Euclidian
field theories for which we obtain an inner product on a real Hilbert space.

Proof of Corollary 6.46. Let’s define V := E(pt), ρ := E(R) and µ0 := E(L0). By
the spin-statistics relation, the grading on V is given by α = E(f̀ ). Therefore, the relations
in (2) of Theorem 6.42 say that µ0 is even and satisfies for all homogenous vectors v,w ∈ V

µ0(α(v),w) = (−1)|v||w|µ0(w, v)

If v and w have different parity, both sides of this equation vanish since µ0 is even. If both
vectors are even then it just gives naive symmetry. If both vectors are odd, then both sides
pick up a minus sign, and hence again one gets the naive symmetry as claimed.

The next step is to observe that the first relation is (3) of Theorem 6.42 says that
ρ : R1|1

>0 → V ⊗ V is a morphism of generalized cs-semigroups. This follows from the fact
that the grading on R1|1

>0 is given by (t, θ) 7→ (t,−θ) whereas it is given by two copies of α
on V ⊗ V . As explained in Definition 5.7, this implies that ρ is of the form A + θB, where

A : R>0 → (V ⊗ V)ev and B : R>0 → (V ⊗ V)odd

are smooth maps. It is easy to check that the second relation in (3) of Theorem 6.42 is
equivalent to the matrix decomposition of ρ as in the statement of our corollary. �

6.8. Real Euclidian Field Theories. We recall from Section 6.3 the notion of real
structures on cs-manifolds and Euclidean cs-manifolds, see Example 6.20. For

G = Iso(E1|1) = R1|1
cs o Z/4

the real structure on the 4-th roots of unity Z/4 is obtained by restriction from the usual
real structure on C. In particular, rG(pg) = pg−1 which implies the following effect on the
generators of the bordism category 1|1-PEB from Theorem 6.42:

sp � sp, f̀ = f̀ , L0 = L0 ◦ (f̀ q id) and It,θ = It,θ

Here we used Lemma 6.19 to get these complex conjugate Euclidean cs-manifolds. This
actually induces an involution of complex conjugation on the whole Euclidean cs-bordism
category 1|1-PEB → csM, compatible with the usual one on csM. Similarly, complex
conjugation of complex vector bundles induces such an involution on the fibred category
SFr→ csM.

Definition 6.47. Consider the resulting conjugation action on the groupoid

Fun⊗,ss
csM(1|1-PEB,SFr),

written as E 7→ Ē. Then the groupoid of real Euclidean field theories is defined to be the
homotopy fixed point groupoid of this Z/2-action and is denoted by

Fun⊗,ss
csM(1|1-PEB,SFr)R

The objects are pairs (E, rE) where E ∈ Fun⊗,ss
csM(1|1-PEB,SFr) and rE : E → Ē is a natural

isomorphism such that r̄E ◦ rE = idE . Morphisms are natural isomorphisms of EFTs that
are compatible with the real structures rE .
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Using Corollary 6.46 and the above relations, we can spell out the data involved in such
a real EFT. Because the super intervals It,θ are real (aka invariant under complex conjuga-
tion), the discussion simplifies in the case where the pairing µ0 = E(L0) is non-degenerate
on V := E(sp), in the sense that the induced map V ⊗ V → End(V) is injective. We refer
to the image of this map simply as the trace-class operators. In this non-degenerate case
one does not lose any information when going from Rt,θ to It,θ = Rt,θ ◦sp L0. We simply call
such EFTs non-degenerate, adding a superscript nd into the notation.

Theorem 6.48. The groupoid Fun⊗,ss
csM(1|1-PEB,SFr)nd

R of non-degenerate real 1|1-
dimensional EFTs is equivalent to the groupoid of triples (W, µ, %) where W is a graded
real Fréchet space with an even pairing µ : W ⊗ W → R that is symmetric in the naive
sense:

µ(v,w) = µ(w, v) for all v,w ∈ W.

Moreover, % : R1|1
>0 → End(W) is an even super semigroup of trace-class operators that is

self-adjoint with respect to µ:

µ(%t,θv,w) = µ(v, %t,θw) for all v,w ∈ W.

Morphisms in this groupoid are even isomorphisms of Fréchet spaces, compatible with the
extra structure given by µ, %.

Proof. We start with a real EFT (E, rE) and first collect the data given by E as in
Corollary 6.46: These are V = E(sp), a complex Fréchet space graded by α = E(f̀ ) with
pairing µ0 = E(L0) and semigroup ρ = E(R). The real structure rE induces a real structure
rV on V that is compatible with the grading α because f̀ = f̀ . Thus the fixed point set W
of rV is a graded real Fréchet space.

The relation L0 = L0 ◦ (f̀ q id) implies that

µ0(rV (v), rV (w)) = µ0(α(v),w) for all v,w ∈ V.

This means that µ0 is real on Wev but purely imaginary on Wodd. That’s why we can’t use
µ0 as the required pairing. However, there is a simple fix to this problem: Define µ by
setting it equal to µ0 on Vev and to i · µ0 on Vodd. Then µ is a real pairing in the sense that
it takes real values on W. Also recall that µ0, and by definition µ, are even, i.e. they vanish
on vectors of distinct parity.

This factor of i does not only give a real pairing but it also cancels the annoying factor
of i in relation (3) of Theorem 6.42: Let %t,θ := E(It,θ) : V → V , an even super semigroup
of trace-class operators. Then this relation (3) implies that

µ0(%t,θv,w) = µ0(v, %t,iθw) for all v,w ∈ V.

We can write % in the form A + θB as in the proof of Corollary 6.46. Here

A : R>0 → End(V)ev and B : R>0 → End(V)odd

are smooth maps. Then we check the self-adjointness with respect to µ instead of µ0, using
the fact that both these pairings are even. If v,w ∈ Vev or v,w ∈ Vodd then

µ(%t,θv,w) = µ(Atv,w) = µ0(Atv,w) = µ0(v, Atw) = µ(v, %t,θw)

In the case where v ∈ Vev,w ∈ Vodd (or vice versa), we have

µ(%t,θv,w) = µ(θBtv,w) = iµ0(θBtv,w) = µ0(v, θBtw) = µ(v, θBtw) = µ(v, %t,θw)
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implying the self-adjointness of %t,θ with respect to µ. Since It,θ is real, the same holds
for %t,θ and we have proven that the triple (W, µ, %) satisfies all the conditions stated in our
corollary.

Conversely, given such a triple, we need to reconstruct the real EFT. This is completely
straightforward, except that we have to use the non-degeneracy of µ (or equivalently, of
µ0) to reconstruct the super semigroup ρ : R1|1

>0 → V ⊗ V from the semigroup %. Then the
conditions line up exactly. �

The last step we need is to nail down the Fréchet space by the following positivity con-
dition that’s the super analogue of Definition 6.26. It implies the non-degeneracy required
above and we use the notation from the previous theorem.

Definition 6.49. A 1|1-dimensional real Euclidean field theory E ∈ Fun⊗,ss
csM(1|1-PEB,Fr)R

is non-negative if µ(v,w) ≥ 0 for all v,w ∈ W. We call E positive if W is in addition
separable and its even and odd part are both infinite dimensional and µ gives an (alge-
braic) isomorphism from W to its continuous dual space W ′. The full subgroupoid of
Fun⊗,ss

csM(1|1-PEB,Fr)R given by positive field theories is denoted by 1|1-PEFT, the groupoid
of positive Euclidean field theories of dimension 1|1.

In the positive case, Lemma 6.3 implies that W is a graded real Hilbert space with even
inner product µ. Therefore, W ⊗W is the space of trace-class operators and we obtain the
final computation already used as Corollary 6.37 from the fact that any two such Hilbert
spaces are isometric.

7. Quillen categories and their classifying spaces

In this section we shall first survey some constructions going back to Quillen and then
relate certain Cn-linear generalizations to our configuration spaces Conffin

n . Recall from [G]
that for any symmetric monoidal category (C,⊕), Quillen defined the S −1S -construction
of C, usually denoted by C−1C as follows: Objects are pairs (C+,C−) of objects of C and a
morphism from (C+,C−) to (D+,D−) is a triple

(A, α+, α−) where A ∈ C and α± : C± ⊕ A −→ D±

modulo the relation that two triples (A, α+, α−) and (B, β+, β−) represent the same morphism
if there is an isomorphism γ : A → B such that α± = β± ◦ (id⊕γ). Quillen showed that
if C is a groupoid and adding objects A ∈ C defines faithfull endo-functors of C then the
classifying space of C−1C is the topological group completion of the classifying space of
C (in the world of homotopy commutative and associative H-spaces).

For example, let C be the groupoid of finite dimensional real inner product spaces
(and isometries), with orthogonal sum as monoidal structure. The existence of orthogonal
complements simplifies the above definitions and it is easy to see that one obtains the
following description of the topological category D := C−1C:

• objects of D are graded inner product spaces and
• the morphism spaces D(W1,W2) consist of pairs ( f ,R) where f : W1 ↪→ W2 is

an isometric embedding and R is an odd orthogonal involution on the cokernel
W2 − f (W1).

Here and in the following we use the notation W2 − W1 for the orthogonal complement
of W1 in W2. In this case, a topological version of Quillen’s theorem implies that the
classifying space

|N•(D)| ' BO × Z
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because the right hand side is the group completion of |N•(C)| ' qnBO(n).
To relate these categories to our configurations, let’s fix a separable real Hilbert space

H of infinite dimension and denote by Cδ(H) the same topological groupoid as above,
except that the objects are required to be subspaces of H. Moreover, let C(H) be the
internal groupoid in Top that has the same objects and morphisms as Cδ(H) but where the
the topology on the objects isn’t discrete but has the usual topology of the Graßmannian of
H. It is well known that the two continuous functors

C←− Cδ(H) −→ C(H)

induce homotopy equivalences on classifying spaces. Note the two new categories are not
monoidal since the direct sum is only partially defined: One needs that two given subspaces
of H are orthogonal before one can take their sum (in a way that agrees with the direct sum
in C). As a consequence, we cannot directly apply Quillen’s S −1S -construction (even
though there is a version for partially defined symmetric monoidal structures). However,
there are obvious ambient analogous of the category D above: Consider H = H ⊕ H as a
graded Hilbert space and denote by Dδ(H) respectively D(H) the categories in Top having
as objects graded subspaces ofH (with the discrete respectively natural topology) and with
morphism spaces just like for D. Again there are two continuous functors

D←− Dδ(H) −→ D(H)

and one can show that they give homotopy equivalences on classifying spaces. In the
ambient setting, there is one more simplification one can make. Namely, let D0 be the
subcategory of D(H) with the same space of objects (graded subspaces of H) but with
morphisms restricted to those pairs ( f ,R) where f is an inclusion of subspaces. In partic-
ular, there can only be a morphism from W1 to W2 in D0 if W1 ⊆ W2. Theorem 7.1 below
says that the classifying space of this category in Top has the homotopy type of Conffin

0 .
Using the contractibility of O(H) one can show that the continuous functor

D0 −→ D(H)

also induces a homotopy equivalence on classifying spaces, hence providing an alternative
way to see that Conffin

0 and BO × Z have the same homotopy type.
For any graded algebra A, there are A-linear analogous of the above category D. These

are not directly related to the Quillen construction, at least not to our eyes. In the following,
we shall make the ambient versions of these categories precise for real Clifford algebras
A = Cn.

Fix a Z/2-graded real Cn-module Hn as in the introduction. Using graded Cn-sub-
modules of Hn as objects, one can define categories Dδ(Hn),D(Hn) and Dn in Top as
follows: The morphism spaces consist of pairs ( f ,R) as above such that both f and R are
Cn-linear (and f is restricted to inclusions for Dn). As before one can show that the two
continuous functors

Dn −→ D(Hn)←− Dδ(Hn)

give homotopy equivalences on classifying spaces, the end of Remark 7.3 contains a very
good reference. We shall be mostly concerned with Dn since its classifying space is home-
omorphic to a configuration space. So let’s make that case completely precise: There is no
morphism from W1 to W2 in Dn unless W1 ⊆ W2 and in this case

MorDn (W1,W2) := { R ∈ OCn (W2 −W1) | Rα = −R, R2 = 1}.
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The operators R are Cn-linear, orthogonal, odd involutions on this complement. The ±1-
Eigenspaces V± of R provide an orthogonal decomposition

W2 −W1 = V+ ⊥ V− with V− = α(V+)

In fact, mapping an operator R as above to its +1-Eigenspace gives a bijection with the set
of subspaces V+ ⊂ W2 − W1 satisfying the above property. As in Section 4 we think of
subspaces of Hn as orthogonal projection operators, hence identifying the set of objects
ObjDn

of Dn with a subspace of B(Hn). In order to topologize the set of morphisms MorDn

of Dn we identify it with the set of triples (W1,W2, A), where W1,W2 ∈ ObjDn
and A ∈

B(Hn) such that W2 −W1 is an invariant subspace for A, the kernel of A is (W2 −W1)⊥ and
A defines an odd, orthogonal involution on W2 − W1. We make MorDn into a topological
space, in fact, a metric space, by considering it as a subspace of the product of three copies
of B(Hn).

The nerve N•(Dn) is a simplicial space, whose geometric realization

Qn := |N•(Dn)|

is the classifying space of Dn and it is directly related to configuration spaces:

Theorem 7.1. There is a bijective continuous map G̃n : Qn
'
→ Conffin

n that is also a
homotopy equivalence.

Proof. It suffices to consider the case n = 0. In this case, we suppress the index n
altogether. In order to get the claim for general n, apply the n = 0 case to Hn (merely
considered as a Z2-graded real Hilbert space) to obtain a bijective continuous map G̃ :
BD ≈ Conffin. It is clear from the definition of G̃ (see below) that the classifiying space
BDn ⊂ BD of the subcategory Dn of D corresponds precisely to Conffin

n ⊂ Conffin under G̃.
Since the homotopy used to prove that G̃ is a homotopy equivalence preserves the subspace
Conffin

n , the claim follows for general n.
Recall that the k-simplices x ∈ NkD of the nerve of our internal space category D are

chains of Z/2-graded finite dimensional subspaces

W0 ⊆ W1 ⊆ · · · ⊆ Wk ⊂ H

together with odd, orthogonal involutions Ri on Wi −Wi−1 for i = 1, . . . , k. We abbreviate
this to x = (Wi,Ri). The classifying space BD is the quotient space

(
∐
k≥0

NkD × ∆k) / (β∗(x), t) ∼ (x, β∗(t)) ∀ β : [m]→ [n]

In our context, it is convenient to replace the usual standard simplex by

∆k := { t = (t1, . . . , tk) ∈ R̄k | 0 ≤ t1 ≤ · · · ≤ tk ≤ ∞ }.

The face map di : [k − 1] → [k] induces the map (di)∗ : ∆k−1 ↪→ ∆k, given by repeating
ti, for i = 1, . . . , k. Moreover, (d0)∗ adds a first coordinate equal to 0 and (dk)∗ adds a last
coordinate equal to∞. For i = 0, . . . , k − 1, the degeneracy maps si : [k]→ [k − 1] induce
(si)∗ : ∆k � ∆k−1, given by skipping ti+1.

Now, every (x, t) ∈ NkC × ∆k defines a configuration G(x, t) ∈ Conffin as follows. The
label G(x, t)0 at zero is Wi, where i is the largest index with ti = 0. For 0 < λ < ∞, G(x, t)±λ
is the sum of the ±1 eigenspaces of all operators Ri with indices i with ti = λ. The label
G(x, t)∞ is the orthogonal complement of all the other G(x, t)λ’s. We claim that the map

G̃ : BD→ Conffin, G̃[x, t] := G(x, t)
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is well-defined. We have to check that for all (x, t) and face and degeneracy maps β we
have G(β∗(x), t) = G(x, β∗(t)).

We start with the face maps. In these cases we write t = (t1, . . . , tk−1). If β = d0 :
[k − 1] → [k] then β∗(x) is the chain of subspaces where W0 and R1 have been removed
(and the indices of the other Wi and Ri are shifted to the left). Since β∗(t) = (0, t1, . . . , tk−1)
it is clear from the definition of G that the labels of G(β∗(x), t) and G(x, β∗(t)) coincide.

For i = 1, . . . , k−1 and β = di, the chain β∗(x) is obtained by composing the morphisms
Ri and Ri+1. This means that on Wi+1 − Wi−1 we get an orthogonal sum of these two
operators. Since the ±1 eigenspaces of this orthogonal sum equals the direct sum of the
±1 eigenspaces of Ri and Ri+1 and since β∗(t) just repeats ti, it is clear that G(β∗(x), t)ti =

G(x, β∗(t))ti . All the other labels are clearly unchanged so that G(β∗(x), t) = G(x, β∗(t)).
If β = dk : [k − 1] → [k] then β∗(x) is the chain of subspaces where Wk and Rk have

been removed. However, since β∗(t) = (t1, . . . , tk−1,∞), we have G(β∗(x), t)λ = G(x, β∗(t))λ
for all λ ∈ R and so G(β∗(x), t) = G(x, β∗(t)).

For a degeneracy map β = si : [k] → [k − 1], where i = 0, . . . , k − 1, the argument
is even easier. Then for a (k − 1)-simplex x, we get a chain β∗(x) of length k by inserting
the identity at the i-th subspace. This operation does not alter the operators R j (the identity
corresponds to R = 0 on a 0-space), it only shifts the indices > i to the right. Similarly,
β∗(t1, . . . , tk) = (t1, . . . , t̂i, . . . , tk), so that again a shifting of indices > i to the right occurs
and G(β∗(x), t) = G(x, β∗(t)) follows.

Hence the map G̃ is well-defined. It is bijective, since it has an inverse Conffin → BD
defined by mapping a configuration {Vλ} with exactly k non-trivial labels Vλ1 , . . . ,Vλk with
0 < λi < ∞ to the equivalence class [x, t], where x is defined by the chain W0 ⊆ · · · ⊆ Wk,
where W0 = V0 and

Wi := Wi−1 ⊕ Vλi ⊕ V−λi

for i > 0 and the operator Ri on Vλi ⊕ V−λi is defined to be the one with the ±1 eigenspaces
V±λi . It is clear that this defines an inverse for G̃.

It is easy to see that G̃ is continuous: the description of the neighborhood basis for
Conf in Definition 4.3 and the definition of the topology on MorD imply that G is continu-
ous. Hence the same is true for G̃.

It remains to show that G̃ is a homotopy equivalence. Let Conf(k) ⊂ Conffin be the sub-
space defined in Remark 4.7 and denote by BD(k) the image of NkC×∆k in BD. According
to Lemma 7.2 below, G̃ restricts to a homeomorphism

G̃(k) : BD(k) −→ Conf(k)

for all k ≥ 0. This together with the fact that id : colimk→∞ Conf(k) → Conffin (see
Remark 4.7) implies that G̃ is a homotopy equivalence. This completes the proof of Theo-
rem 7.1. �

Lemma 7.2. For all k ≥ 0, the map

G̃(k) : BD(k) −→ Conf(k)

is a homeomorphism.

Proof. Since G̃ is continuous, so is G̃(k). The proof that G̃(k) is open is based on the
following fact.

Fact: There is a function εk : (0, 1
2 ) → R>0 satisfying εk(δ) → 0 as δ → 0 with the

following property. If l ≤ k and V,W1,W2, ...,Wl, are finite-dimensional subspaces of a
Hilbert space H such that ||PV − P⊕l

i=1Wi
|| < δ < 1

2 and the Wi’s are mutually orthogonal,
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then there exists a splitting of V into mutually orthogonal subspaces V1, ...,Vk such that
||PVi − PWi || < εk(δ) for all i. The idea of the proof is simple. The subspaces W̃i :=
PV (Wi) ⊂ V give a decomposition of V and the W̃i are almost orthogonal. Then use Gram-
Schimdt to orthogonalize the W̃i. Standard estimates plus induction on k yield the desired
function εk (e.g. εk(δ) = 3k−1δ2−(k−1)

works).
Now, given a neighborhood N of [x, t] ∈ BD(k) we have to find K > 0 and δ > 0 such

that VK,δ,δ ∩ Conf(k) ⊂ G̃(k)(N), where V := G̃(k)[x, t] and VK,δ,δ is the neighborhood of V
described in Definition 4.3. We may choose K to be any number such that (−K − 1,K + 1)
contains all non-trivial labels λ ∈ R of V . In order to find δ, observe that the preimage of N
in

∐k
i=0 NiD × ∆i contains a full ε-neighborhood of the equivalence class [x, t] (recall that

NiD × ∆i is a metric space for all i) for some ε > 0. The existence of ε follows from the
Lebesgue covering lemma and the fact that [x, t] is compact.

Now choose δ > 0 such that εk(δ) < ε. In order to show that VK,δ,δ∩Conf(k) ⊂ G̃(k)(N),
consider any W ∈ VK,δ,δ ∩ Conf(k). Let j be minimal with W ∈ Conf( j). Using the Fact it
is easy to see that there is (y, s) ∈ [x, t] ∩ N jD × ∆ j that lies within ε-range of the unique
preimage of W in N jD×∆ j under G. In other words, (y, s) lies within ε distance from [x, t].
Hence the preimage of W under G̃(k) lies in N, as desired. This completes the proof that
G̃(k) is open. �

Remark 7.3. In his thesis [C], Pokman Cheung considers Confn as a discrete set
of objects and introduces a space of morphisms which gives a topological category that
we shall denote by Cδ(Hn). He refers to this as the “category of 1-dimensional super
Euclidean field theories”, even though the morphisms are not defined in terms of field
theories but rather in terms of configurations in Hn, i.e. points in Confn. This is reflected
by the fact that in the 2-dimensional case, Cheung can only define an analogous category
for field theories based solely on annuli where one again can express the data in terms of
configurations of Eigenspaces of an infinitesimal generator.

The space of morphisms in Cδ(Hn) is closely related to the path-space of Confn. Via
the Moore method, the space of paths actually gives a more direct way to get a topological
category with classifying space Confn. However, Cδ(Hn) has the advantage that it connects
very well to the Quillen type category Dδ(Hn) discussed at the beginning of this section.

There are two canonical maps on objects from Cδ(Hn) to Dδ(Hn) and back: One map
takes a configuration {Vλ} ∈ Confn and maps it to V0 ⊂ Hn, the index or Z/2-graded kernel
of the odd infinitesimal generator corresponding to the configuration. This map is not
continuous in the natural topologies and hence the use of discrete topologies is essential.
The other canonical map (which is continuous in the natural topologies) starts with a finite
dimensional Cn-submodule W ⊂ Hn and associates to it the configuration with V0 := W
and no other non-trivial Eigenspaces.

The new idea in [C] is to define the morphisms in Cδ(Hn) in a way that these two maps
extend to continuous functors between topological categories. In fact, a main result [C,
Prop.1.4.1] says that the classifying spaces of Cδ(Hn) and Dδ(Hn) are homotopy equivalent
via these two inverse functors. Moreover, it is shown that the latter classifying space is
homotopy equivalent to the Atiyah-Singer space Fn studied in the next section. The first
steps of the argument [C, Lem. 1.4.3,1.4.4] actually show that the classifying spaces of
Dδ(Hn) and Dn are homotopy equivalent:

|N•D(Hn)| ' |N•Dn| = Qn

The rest of Cheung’s argument is thus an alternative to our proof, in this and the next
section, where we exhibit canonical homotopy equivalences Qn ' Confn ' Fn.
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8. Spaces of Fredholm operators

In this chapter we relate the spaces Confn to the spaces of skew-adjoint Fredholm
operators considered by Atiyah and Singer in [AS]. See the introduction for a quick survey
of this section.

8.1. Fredholm operators. Recall that a Fredholm operator is a bounded operator
whose kernel and cokernel are finite dimensional. Let Fred(H) ⊂ B(H) be the subspace
of Fredholm operators on the infinite dimensional separable real Hilbert space H. Denote
by C(H) := B(H)/K(H) the C∗-algebra of bounded operators modulo compact operators
(a.k.a. Calkin algebra) and by π : B(H) → C(H) the projection. Then Fred(H) is the
preimage of the group of units in C(H) under π, i.e. we have

T ∈ B(H) is Fredholm ⇐⇒ π(T ) ∈ C(H) is invertible.

We will need the following facts about the spectrum σ(T ) of a self-adjoint bounded oper-
ator T . Let σess(T ) := σ(π(T )) be the essential spectrum of T , i.e. the spectrum of π(T ) in
C(H). Then there is a decomposition

σ(T ) = σess(T ) q σdiscrete(T ),

where σdiscrete(T ) consists precisely of the isolated points in σ(T ) such that the correspond-
ing eigenspace has finite dimension. From the definition of the essential spectrum it is clear
that for a Fredholm operator T

(*) σess(T ) ∩ (−ε(T ), ε(T )) = ∅ for ε(T ) := ||π(T )−1||−1
C(H),

where ||.||C(H) is the C∗-norm on the Calkin algebra. In other words: the essential spectrum
of T has a gap of size ε(T ) around 0. Note that the map ε : Fred(H)→ R>0 is continuous.

8.2. K-theory and Fredholm operators. The most important invariant of a Fred-
holm operator T is its index

index(T ) := dim(ker T ) − dim(coker T ).

It turns out that the index is invariant under deformations, i.e. it is a locally constant func-
tion on Fred(H). In fact, it defines an isomorphism

π0 Fred(H)
�
−→ Z, [T ] 7→ index(T ).

This is a special case of the well-known result that Fred(H) is a classifying space for
the real K-theory functor KO0. More explicitly, for compact spaces X there are natural
isomorphisms

KO0(X) � [X,Fred(H)].

This isomorphism is defined as follows. Consider [ f ] ∈ [X,Fred(H)]. Changing f by a
homotopy one can achieve that the dimensions of the kernel and the cokernel of f (x) are
locally constant. This implies that they define vector bundles ker f and coker f over X.
The image of [ f ] is defined to be

[ker f ] − [coker f ] ∈ KO0(X).

For X = pt this reduces to the above isomorphism

π0 Fred(H) � [pt,Fred(H)]
�
−→ KO0(pt) � Z.

Atiyah and Singer showed that the other spaces in the Ω-spectrum representing real K-
theory can also be realized as spaces of Fredholm operators.
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8.3. The Atiyah-Singer spaces Fn. Let n ≥ 1 and let Hn be a real Hilbert space with
an action of Cn−1, just as before. Define

F̃n := { T0 ∈ Fred(Hn) | T ∗0 = −T0 and T0ei = −eiT0 for i = 1 . . . , n − 1 }.

Furthermore, let Fn := F̃n if n . 3 (4). In the case n ≡ 3 (4) define Fn ⊂ F̃n to be the
subspace of operators T0 satisfying the following additional condition (AS): the essential
spectrum of the self-adjoint operator e1 · · · en−1T0 contains positive and negative values
(we say that e1 · · · en−1T0 is neither essentially positive nor negative). Atiyah and Singer
introduce this condition, because it turns out that for n ≡ 3 (4) the space F̃n has three con-
nected components, two of which are contractible. However, for the relation with K-theory
only the third component, whose elements are characterized by the above requirement on
the essential spectrum of e1...en−1T0, is interesting. In fact, the main result of [AS] is that
for all n ≥ 1 the space Fn represents the functor KO−n. We shall reprove this result in terms
of our configuration spaces.

The elements in F̃n can also be interpreted as odd operators on the Z2-graded Hilbert
spaceHn = Hn ⊗Cev

n Cn. If we define

F̃
gr

n := { T ∈ Fred(Hn) | T is odd, Cn-linear, and self-adjoint }

we can identify F̃n and F̃ gr
n using the homeomorphism

ψ⊗en : F̃n
≈
−→ F̃

gr
n , T0 7→ T := T0 ⊗ en.

The operator T has the matrix representation

T =

(
0 T ∗0
T0 0

)
with respect to the decomposition Hn � Hn ⊕ Hn. It is important to note that the skew-
symmetry of T0 is equivalent to the relation Ten = enT .

In the next lemma, we will show that F̃ gr
n is homotopy equivalent to a configuration

space. Let R̃ := [−∞,∞] be the two-point compactification of R equipped with the involu-
tion s(x) := −x.

Lemma 8.1. The subspace A ⊂ F̃ gr
n of all operators T with ||T || = 1 and ε(T ) = 1,

see (*) for the definition of ε(T ), is a strong deformation retract of F̃ gr
n . Furthermore,A is

homeomorphic to the configuration space ConfCn (R̃, {±∞};Hn) as defined in Chapter 4.

Proof. Define a homotopy H : F̃ gr
n × [0, 1]→ F̃ gr

n by

(T, t) 7→ Ht(T ) := (t + (1 − t)||T ||) · φ
(
(tε(T )−1 + (1 − t)||T ||−1) · T

)
.

Here φ : R → [−1, 1] is defined by φ|[−1,1] = id, φ|[1,∞) ≡ 1 and φ|(∞,−1] ≡ −1, and φ( )
denotes the functional calculus with φ. The continuity of H follows from the continuity of
||.|| and ε and from the usual continuity properties of functional calculus, see [RS], The-
orem VIII.20. Also, Cn-linearity and parity of T are preserved under functional calculus.
Furthermore,

H0 = id
F̃

gr
n
, Ht = idA for all t, and H1(F̃ gr

n ) ⊂ A.

HenceA is a strong deformation retract of F̃ gr
n .

Now, for all T ∈ A we have σ(T ) ⊂ [−1, 1] and all λ ∈ σ(T ) ∩ (−1, 1) are eigen-
values of finite multiplicity. The spectral theorem for self-adjoint operators implies that
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the eigenspaces V(T )λ of T are pairwise orthogonal and span all of Hn. Since T is odd,
V(T )−λ = α(V(T )λ), where α is the grading involution onHn. We thus obtain a map

A → ConfCn ([−1, 1], {±1};Hn), T 7→ V(T )

by associating to T the configuration λ 7→ V(T )λ on [−1, 1]. Here the involution on [−1, 1]
is x 7→ −x. It is easy to see that this map is a homeomorphism. Finally, [−1, 1]

≈
−→ R̃, x 7→

x
1−|x| induces a homeomorphism of configuration spaces ConfCn ([−1, 1], {±1};Hn) ≈ ConfCn (R̃, {±∞};Hn),
thus completing the proof of the second statement in the lemma. �

Now we can formulate the relationship between the Atiyah-Singer spaces Fn and our
configuration spaces Confn. Consider the map p : R̃→ R̄ that is the identity on R and that
maps ±∞ to∞. It induces a continuous map

p∗ : ConfCn (R̃, {±∞};Hn) −→ ConfCn (R̄, {∞};Hn) = Confn .

Let H be the homotopy equivalence defined as the composition

H : F̃n
≈
−→ F̃

gr
n

'
−→ ConfCn (R̃, {±∞};Hn).

The main result of this section is:

Theorem 8.2. For all n ≥ 1, p∗H restricts to a homotopy equivalence

p∗H|Fn : Fn
'
−→ Confn .

Proof. Since H is a homotopy equivalence, the same is true for H|Fn . It remains to
show that the restriction of p∗ to the path component H(Fn) of ConfCn (R̃, {±∞};Hn) is a
homotopy equivalence. In order to do this, it will be convenient to work with subspaces
consisting of certain ’finite’ elements. More precisely, if we define

Conf′n := H(Fn) ∩ Conffin
Cn

(R̃, {±∞};Hn).

then we have a commutative diagram

H(Fn) Confn

Conf′n Conffin
n

//p∗

//p∗?�

OO
'

?�

OO
'

whose vertical arrows are homotopy equivalences (for the right arrow this was done in
Proposition 4.6; the same argument works for the arrow on the left). Hence p∗|H(Fn) is a
weak homotopy equivalence exactly if this is the case for p∗ : Conf′n → Conffin

n . This will
be proved in Theorem 8.5 below. It follows that p∗H|Fn is a weak homotopy equivalence.
Since Fn and Confn both have the homotopy type of a CW-complex, the map p∗H|Fn is a
homotopy equivalence, cf. [Mi2]. �

As a first step towards Theorem 8.5, let us give a characterization of the configura-
tions contained the subspace Conf′n. Since the map H is surjective, we have Conf′n =

Conffin
Cn

(R̃, {±∞};Hn) for n . 3 (4) (recall that F̃n = Fn in this case).
The interesting case is n ≡ 3 (4) . Our task is to understand what the Atiyah-Singer

condition (AS) means for the corresponding configurations.
Before we proceed, we need to collect some representation theoretic facts about graded

Clifford modules. Recall from [LM] that for n . 3 (4) the Clifford algebra Cn is simple,
whereas it is the product of two simple algebras in the other cases. Therefore, there is a
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unique irreducible Cn-module (and a unique graded irreducible Cn+1-module) for n . 3 (4)
otherwise there are exactly two such modules.

Remark 8.3. Let n ≡ 3 (4) and recall from [LM, Chapter I, Prop. 5.9] that in this
case the action of the volume element e := e1 · · · en ∈ Cn distinguishes the two distinct
(ungraded) irreducible Cn-modules. (Since e is a central orthogonal involution, it acts as
± id on these modules.)

Now, let T ∈ F̃ gr
n . The diagonal entries of the even operator eT are given by e1 · · · en−1T0 :

Hn → Hn and therefore the Atiyah-Singer condition (AS) that the operator e1 · · · en−1T0 :
Hn → Hn is neither essentially positive nor negative is equivalent to the same condition on
eT : Hn → Hn.

Denote byAfin ⊂ A the subspace of operators with finite spectrum.

Lemma 8.4. Assume n ≡ 3 (4). Let T ∈ Afin and denote by W± the (±1)-eigenspaces
of T .

(1) eT is essentially positive (respectively negative) if and only if the volume element
e has a finite dimensional (−1)-eigenspace on W+ (respectively W−).

(2) The (AS) condition is equivalent to the (±1)-eigenspaces of e, restricted to W+,
both being infinite dimensional.

(3) W+ is a Cn-module and the (AS) condition is equivalent to W+ containing both
irreducible Cn-modules infinitely often.

Proof. For part (1) we observe that eT = Te and hence we can find simultanous
eigenspace decompositions for these self-adjoint operators. Note that the eigenvalues (±1)
are the only possible accumulation points in the spectrum of T and hence such eigenspace
decompositions exist. Since e2 = 1, the operator e has spectrum inside {±1}.

A vector v ∈ Hn is in an essentially positive eigenspace of eT if and only if either
v ∈ W+ and e(v) = +1, or v ∈ W− and e(v) = −1. Since T is odd, its spectrum is symmetric
and, in particular, the grading involution α takes W+ to W−. Furthermore, α anti-commutes
with e and hence

e|W+
= e ◦ α|W− = −α ◦ e|W−

so that α takes the (+1)-eigenspace of e|W+
to the (−1)-eigenspace of e|W− . In particular,

these vector spaces have the same dimension. This finishes the proof of part (1) as well as
part (2).
To prove part (3) notice that T is Cn-linear and therefore W+ is a Cn-module (which is not
graded since α takes it to W−). The claim follows from the well known algebraic fact stated
at the beginning of the lemma. �

Note that Conf′n is exactly the image of Afin ∩ F
gr

n under the identification A ≈
ConfCn (R̃, {±∞};Hn) from Lemma 8.1. Moreover, the (±1)-eigenspaces W± of an oper-
ator T ∈ Afin turn into the (±∞)-eigenspaces W±∞ of the corresponding configuration
W ∈ Conffin

Cn
(R̃, {±∞};Hn).

Hence part (3) of Lemma 8.4 tells us that for n ≡ 3 (4) the subspace Conf′n ⊂
Conffin

Cn
(R̃, {±∞};Hn) consists precisely of the configurations {Wλ} such that W±∞ contains

both irreducible Cn-modules infinitely often.
We will now see why this is a very natural condition in terms of our configuration

spaces:
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Theorem 8.5. The restriction

p := p∗|Conf′n : Conf′n −→ Conffin
n

is a quasi-fibration with contractible fibers (see Definition 8.8).

Remark 8.6. In the case n ≡ 3(4) the space Conf′n is the unique connected component
of Conffin

Cn
(R̃, {±∞};Hn) that is not contractible. On the two remaining components the

map p∗ is not a quasi-fibration as well shall see below (the fibres have distinct homotopy
groups).

Lemma 8.7. Let M be a graded Cn-module.
(1) If M contains all (one or two) irreducible Cn-modules infinitely often then the

Cn-action on M extends to a graded Cn+1-action.
(2) Let M0 be a graded irreducible Cn-module. Then there is a graded vector space

R, the multiplicity space, such that M is isomorphic to the graded tensor product
M0 ⊗ R. In the case n . 3 (4) we may, and shall, assume that R is concentrated
in even degree.

(3) With this notation, the grading preserving Clifford linear orthogonal group OCn (M)
is isomorphic to

OCn (M) � O(R) � O(Rev) × O(Rodd)

In particular, this group is contractible (by Kuiper’s theorem) if and only if the
multiplicity spaces Rev and Rodd are both either zero or infinite dimensional.
This is equivalent to M containing either only one type of graded irreducible
Cn-module, or containing both infinitely often.

Proof. There are two cases to consider for proving (1): If only one graded irreducible
Cn-module exists, then take any irreducible Cn+1-module M0 and restrict it to Cn. It is clear
that over Cn, M must be given by infinitely many copies of M0.

Let’s say there are two graded irreducible Cn-modules M0,M1 and hence n is divisible
by 4. By assumption, M is the sum of infinitely many copies of M0 ⊥ M1. It then suffices
to show that M0 ⊥ M1 has an Cn+1-action. We first claim that M1 � Mop

0 , i.e. M1 is
obtained from M0 by flipping the grading. Using the characterization of ungraded Cn−1-
modules given in Lemma 8.4, it suffices to show that the volume element ẽ1 · · · ẽn−1 acts
with different sign on Mev

0 and Modd
0 . Here ẽi = eien are the usual generators of Cn−1 � Cev

n .
Since n is divisible by 4, it follows that

ẽ1 · · · ẽn−1 = (e1en) · · · (en−1en) = e1 · · · en =: e

is also the volume element in Cn. Writing Modd
0 = ei · Mev

0 for some i, our claim follow
from eei = −eie. Finally, the module M0 ⊥ Mop

0 has a Cn+1-action given by the element
en+1 = fα, where f flips the two summands and α is the grading involution.

For part (2) one again needs to know that in the case that there are two graded irre-
ducible Cn-modules M0,M1, they differ from each other by flipping the grading. This was
proven above. Part (3) is obvious. �

Proof of Theorem 8.5. We begin by proving that the fibers of p are contractible. Fix
V ∈ Conffin

n . The fiber p−1(V) consists of all W ∈ Conf′n such that Vλ = Wλ for λ ∈ R and
V∞ is the orthogonal sum of W∞ and W−∞. Since W−∞ = α(W∞), where α is the grading
involution onHn, we may identify p−1(V) with the space of decompositions of the graded
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Cn-module V∞ of the form V∞ = W∞ ⊥ α(W∞), where W∞ is an ungraded Cn-submodule
of V∞ that for n ≡ 3 (4) satisfies the (AS) condition: both irreducible Cn-modules appear
infinitely often in W∞.

Without the (AS) condition, it is straightforward to show that this space of decompo-
sitions of V∞ is homeomorphic to the following space of Cn+1-structures on V∞:

C̃n+1(V∞) := { en+1 ∈ O(V∞) | e2
n+1 = −11, en+1ei = −eien+1, i = 1, . . . , n }

Namely, given en+1, one can define W±∞ to be the (±1)-eigenspaces of en+1α (and vice
versa). Under this correspondence, the (AS) condition translates into the requirement that
en+1 defines a Cn+1 module structure on V∞ which contains both graded irreducibles infin-
itely often. We denote this subspace of C̃n+1(V∞) simply by Cn+1(V∞) and observe that all
these module structures en+1 on V∞ are isomorphic.

We show in the following 4 steps that the fibre p−1(V) ≈ Cn+1(V∞) is contractible un-
der our assumptions.
Step 1: By our basic assumption, the ambient Hilbert space Hn contains all graded ir-
reducible Cn-modules infinitely often. Since V was a finite configuration to start with,
it follows that V∞ has the same property and by part (1) of Lemma 8.7 it follows that
Cn+1(V∞) is not empty.
Step 2: Since any two points in Cn+1(V∞) lead to Cn+1-module structures on V∞ that are
isomorphic, the orthogonal group OCn (V∞) acts transitively (by conjugation) on Cn+1(V∞).
The stabilizer of a particular Cn+1-structure is OCn+1 (V∞) and hence

Cn+1(V∞) ≈ OCn (V∞)/OCn+1 (V∞)

We shall show that this space is contractible, as a quotient of two contractible groups.
Step 3: As a Cn-module, V∞ contains both graded irreducible Cn-modules infinitely often,
that’s what we need by part (3) of Lemma 8.7 for the contractibility of the larger group
OCn (V∞).
Step 4: For the smaller group OCn+1 (V∞), the (AS) condition tells us again that the assump-
tions of part (3) of Lemma 8.7 are satisfied.

To finish the proof of Theorem 8.5, it remains to show that p is indeed a quasi-fibration.
We will use the criterion in Theorem 8.10 but first we give the relevant definitions.

Definition 8.8. A map p : E � B is a quasi-fibration if for all b ∈ B, i ∈ N and
e ∈ p−1(b), p induces an isomorphism

πi(E, p−1(b), e)
�
−→ πi(B, b).

From the long exact sequence of homotopy groups for a pair it follows that p is a
quasi-fibration exactly if there is a long exact homotopy sequence connecting fibre, total
space and base space of p, just like for a fibration. However, p does not need to have any
(path) lifting properties as the following example shows.

Example 8.9. The pinrotypical example of a quasi-fibration that is not a fibration is
the projection of a ’step’

(−∞, 0] × {0} ∪ {0} × [0, 1] ∪ [0,∞) × {1} ⊂ R2

onto the x-axis. Even though all fibers have the same homotopy type (they are contractible),
the map doesn’t have the lifting property of a fibration, since it is impossible to lift a path
that passes through the origin.

The following sufficient condition for a map to be a quasi-fibration is an easy conse-
quence of the results of [DT]:
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Theorem 8.10. Let p : Y → X be a continuous map between Hausdorff spaces and
X0 ⊂ X1 ⊂ X2 ⊂ ... an increasing sequence of closed subsets of X s.t. X = colimi→∞ Xi.
Assume further that for all i ≥ 0 the map p|Yi+1\Yi is a Serre fibration, where Yi := p−1(Xi),
and that there exists an open neighborhood Ni of Xi in Xi+1 and homotopies dt = d(i)

t :
Ni → Ni and D(i)

t = Dt : p−1(Ni)→ p−1(Ni) s.t.

(1) D covers d, i.e. p ◦ Dt = dt ◦ p for all t.
(2) D0 = id, Dt(Yi) ⊂ Yi for all t, and D1(p−1(Ni)) ⊂ Yi

(3) For every x ∈ Ni, the map D1 : p−1(x) → p−1(d1(x)) is a weak homotopy equiv-
alence.

Then p is a quasi-fibration.

Proof. According to Satz 2.15 in [DT] p is a quasi-fibration provided that p|Yi is a
quasi-fibration for all i ≥ 0. To see this, we proceed by induction on i. It is clear that
p|Y0 is a quasi-fibration, since, by assumption, it is a Serre fibration. Now assume that we
already know that p|Yi is a quasi-fibration. Applying Hilfssatz 2.10 in [DT] with B = Ni,
B′ = Xi, q = p|p−1(Ni), D = D, and d = d, implies that p|p−1(Ni) is a quasi-fibration. Now,
applying the Korollar of Satz 2.2 in [DT] with U = Ni+1 and V = Yi+1 \Yi we see that p|Yi+1

is a quasi-fibration. (Note that p is a quasi-fibration over U ∩ V , since it is even a Serre
fibration.) �

Now, in order to apply Theorem 8.10 we filter Conffin
n by the closed subspaces

Xi := { V ∈ Conffin
n | dim(V) := dimCn (⊕λ∈RVλ) ≤ 2i }.

For each i consider the continuous function

Li : Xi+1 → [0,∞],V 7→ Li(V) := sup { r | dimCn (⊕λ∈(−r,r)Vλ) ≤ 2i }.

Clearly, L−1
i (∞) = Xi. Define Ni := L−1

i ((1,∞]). The homotopies d(i) and D(i) are now
easy to find. Namely, consider the homotopies on Conffin

n and Conf′n induced by the family
of maps ht defined in the proof of Proposition 4.6 (in the case of Conf′n, note that the
formula defining ht indeed also determines a homotopy on R̃ and hence on Conf′n). It is
easy to check that almost all assumptions of the Dold-Thom theorem are hold: (1) and
(2) obviously satisfied. Condition (3) is trivial, since all fibers are contractible. The map
p|Xi+1\Xi is a fiber bundle, in particular, it is a Serre fibration. The crucial point in the proof
of this is that dimension dim(V) of configurations in Xi+1 \ Xi is constant. This makes
it possible to choose an open neighborhood N of V in Xi+1 \ Xi such that the orthogonal
projection PV∞ : W∞ → V∞ is an isomorphism for all W ∈ N. It is easy to write down a
local trivialization of p over such an N; this shows that p|Xi+1\Xi is a fiber bundle.

The only condition in the Dold-Thom theorem that is violated is that Conffin
n is not the

colimit over the subspaces Xi (cf. Remark 4.7). However, this is not a serious issue: we
can endow Conffin

n and Conf′n with the colimit topologies w.r.t. the filtrations Xi and p−1(Xi)
and apply the Dold-Thom theorem to see that p is a quasi-fibration in this case. It follows
directly from the definition of a quasi-fibration that the same also holds if we consider the
original topologies, since the identity maps colimi→∞ Xi → Conffin

n and colimi→∞ Yi →

Conf′n are homotopy equivalences (see Remark 4.7 for the Conffin
n case, the same argument

works in the case Conf′n). This completes the proof of Theorem 8.5. �
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