
A NEW APPROACH TO LIGHT BULB TRICKS: DISKS IN
4-MANIFOLDS

DANICA KOSANOVIĆ AND PETER TEICHNER

Abstract. For a 4-manifold M and a knot k : S1 ↪→ ∂M with dual
sphere G : S2 ↪→ ∂M , we compute the set D(M ; k) of smooth isotopy
classes of neat embeddings D2 ↪→ M with boundary k, using an invariant
going back to Dax. Moreover, we construct a group structure on D(M ; k)
and show that it is usually neither abelian nor finitely generated. We
recover all previous results for isotopy classes of spheres with framed
duals and relate the group D(M ; k) to the mapping class group of M .

1. Introduction and main results

The failure of the Whitney trick makes any question about embedded
surfaces in 4-manifolds notoriously difficult to answer. Under certain as-
sumptions, including the existence of algebraic dual spheres, Freedman’s
disk/sphere embedding theorems construct topological embeddings, and in
some cases one can also determine the topological isotopy classes. It there-
fore came as a huge surprise to the 4-manifold community, when Dave Gabai
proved his light bulb theorem (LBT) for embedded spheres S2 ↪→ N4 with
common embedded dual sphere in the smooth category [Gab20]. This was
inspired by the well-known 3-dimensional LBT that says that the homotopy
and isotopy classification of knots S1 ↪→ N3 with common dual sphere agree
for any 3-manifold N . Our main result is the following LBT, generalizing
the simply-connected case in [Gab21, Thm.0.6(i)].

Two submanifolds are dual if they intersect transversely in a single point.
A map K : X → Y between smooth manifolds is neat if it is smooth, in-
tersects ∂Y transversely and K−1(∂Y ) = ∂X. Throughout this paper M
will denote a smooth, oriented 4-manifold with nonempty boundary, and
embeddings and isotopies are smooth.

Theorem 1.1. For a knot k : S1 ↪→ ∂M that has a dual sphere in ∂M ,
two neat embeddings D2 ↪→ M with boundary k are isotopic (rel. k) if and
only if they are homotopic (rel. k) and their relative Dax invariant vanishes.

In Section 2.2 we show how this LBT for disks implies all previous re-
sults for spheres [Gab20; ST22], but for its proof we use very different tech-
niques, e.g. the work of Dax in the 1970’s on homotopy groups of embedding
spaces [Dax72]. It turns out that the classification for disks is more subtle in
the sense that the Dax invariant for disks realizes all values in a much larger
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group then the Dax invariant for spheres, see Example 1.15. It is an open
problem whether Theorem 1.1 continues to hold if a common dual sphere
only exists in the interior of M but see [Sch21] for a special case.

Even though more general, we believe that our proof is the simplest and
most conceptual approach to the LBT. We realized that space level meth-
ods of Cerf and Dax, extended to all dimensions in [KT21] and recalled in
Section 2.3 below, can be combined to not only construct the Dax invariant
Dax but show that it completely classifies isotopy. We can also identify the
image of Dax and describe the set of isotopy classes geometrically, see Theo-
rems 1.5 (which directly implies 1.1) and 1.7. Since this classification follows
by delooping our space of embedded disks, we also get a group structure on
the set of isotopy classes, see Theorem 1.13. In the rest of the introduction,
apart from stating these results (with proofs in Section 5.3), we also explain
the relative Dax invariant for general neat disks and give some examples.

1.1. The relative Dax invariant for neat disks. Assume M is an arbi-
trary smooth, oriented 4-manifold with a basepoint in ∂M and fundamental
group π := π1M . Let Z[πr 1] be the free abelian group on the set of its
nontrivial elements, with the usual involution induced by σ(g) = g := g−1.
Following work of Jean-Pierre Dax [Dax72] we define a homomorphism

dax : π3(M)→ Z[πr1]σ := {r ∈ Z[πr1] : r = r}

of abelian groups, recently also made explicit by Gabai [Gab21]. The ele-
ment dax(a) counts self-intersections of a special kind of generic immersion
D3 # D2×M4 obtained from a : S3 →M , with fundamental group elements
defined by a clever choice of sheets at each double point, avoiding the usual
indeterminacy g = −g for self-intersection invariants in dimension 6.

The homomorphism dax is an interesting invariant of the 4-manifold M ,
only depending on the component of ∂M that contains the basepoint. In
Theorem 3.15 we show that dax combines Wall’s self-intersection invariants
µ2 and µ3 for maps of 2- respectively 3-spheres toM , enabling computations.
In particular, in Proposition 3.13 we compute the Whitehead product of ai ∈
π2M in terms of the reduced intersection form λ̄ ofM (see Proposition 1.16):

(1.2) daxu
(
[a1, a2]Wh

)
= λ̄(a1, a2) + λ̄(a2, a1).

Moreover, in [Kos21] the surprising behavior of dax under the π-action on
π3M was exhibited, with an important special case as follows.

Example 1.3. In the connected sum M = (D2 × S2)#M ′ the separating 3-
sphere C has dax(C) = 0 as it is embedded. However, the class g ·[C] ∈ π3M ,
obtained by the usual π-action on π3M , is represented by adding a tube along
g to C, and is no longer embedded. We will show that dax(g · [C]) = g+ g in
Lemma 3.20. This will be used in Section 4.4 to prove that forM a connected
sum as above, the Dax invariant reduces to the Freedman–Quinn invariant
of [ST22], suitably adapted to disks in Definition 4.11.
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Now fix a knot k : S1 ↪→ ∂M , not necessarily having a dual. Then the
count of Dax also works for a homotopy H (rel. boundary) between neat
embeddingsK0,K1 : D2 ↪→M with ∂K0 = ∂K1 = k, leading to an Dax(H) ∈
Z[πr1]σ. This behaves additively under gluing homotopies, and the element
dax(a) above results from the special case where H is the self-homotopy
obtained from K0 × I by an interior connected sum with a : S3 → M . As
a consequence, the class Dax(K0,K1) := [Dax(H)] ∈ Z[πr 1]σ/dax(π3M) is
independent of H; compare [Gab21, Cor.0.5].

Lemma 1.4. The relative Dax invariant Dax(K0,K1) ∈ Z[πr1]σ/dax(π3M)
is defined for homotopic neat embeddings K0,K1 : D2 ↪→ M and is an ob-
struction for the existence of an isotopy between them (all rel. boundary).

A similar definition is given for so-called half-disks in Lemma 4.6, where
the value of the Dax invariant is in general not fixed by the involution.

In [Gab21, Fig.2, Thm.4.9] the Dax invariant relative K0 was realized,
using the simplest type of concordance on K0 with a unique minimum and
index 1 critical point: For g ∈ πr1, start with an unknotted sphere S0 ⊆ R4

next to a basepoint of K0 and add a tube along an embedded arc A that
connectsK0 to S0 to obtain a diskKg. This arc A first runs fromK0 through
S0 (i.e. it intersects once the 3-ball bounding S0), then follows g and ends
on S0. The resulting self-referential disk satisfies Dax(K0,Kg) = [g + ḡ].

Note that dual spheres are not required for the definition of Dax nor the
self-referential disks. But the vanishing of Dax(K0,K1) is obviously not a
sufficient condition for Ki to be isotopic; e.g. for M = D4 the fundamental
group of the complements is a simple additional invariant.

1.2. Classification of neat disks via a geometric group action. We
provide new realization and classification results for the Dax invariant in the
presence of a dual sphere in the boundary.

Theorem 1.5. Assume that k : S1 ↪→ ∂M is null homotopic in M and has
a dual G : S2 ↪→ ∂M (i.e. k t G = pt). Then the set D(M ; k) of isotopy
classes of neat embeddings D2 ↪→M with boundary k is nonempty and

(1) the abelian group Z[πr 1] acts on D(M ; k) via finger moves and
Norman tricks, written (r,K) 7→ K + fm(r)G, see Figure 1.6;

(2) the action of Z[πr 1]σ preserves the homotopy class of disks (rel.
boundary), is transitive on disks in the same homotopy class and has
stabilizer subgroups dax(π3M) ≤ Z[πr1]σ, independently of K;

(3) the relative Dax invariant inverts this action in the sense that for
r ∈ Z[πr1]σ and K ∈ D(M ; k) we have Dax(K,K + fm(r)G) = [r].

This result implies Theorem 1.1, and in addition gives all possible values
of Dax and a geometric construction of each value. In particular, if π1M = 1
we obtain a bijection D(M ; k) ∼= [D2,M ; k], with the set of homotopy classes
of maps D2 →M with boundary k, reproving [Gab21, Thm.0.6(i)].
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Our geometric action (r,K) 7→ K+ fm(r)G of Z[πr1] on D(M ; k) is given
as follows, see Figure 1.6. First perform finger moves to K along the group
elements that make up r ∈ Z[πr 1] (each finger move guided by g ∈ π
introduces a pair of double points with double point loop g), and then revert
this immersion back into an embedding by adding a tube for each double
point (along distinct choices of sheets for the given double point pair) into
a parallel copy of ±G. This tubing into the dual is often called the Norman
trick, and was used in [ST22] to obtain embedded Norman spheres.

Figure 1.6. Constructing isotopy classes of disks with fixed boundary
k by finger moves along g and Norman tricks on distinct sheets.

On homotopy classes of disks with boundary k, we will see in Lemma 5.15

[K + fm(r)G] = [K#(r − r) ·G] ∈ [D2,M ; k],

where # denotes the interior connected sum, cf. Figure 1.11. The right hand
side equals [K] precisely for r ∈ Z[πr1]σ by Lemma 3.18 which explains the
appearance of this subgroup in Theorem 1.5.

The following result is a convenient way to express all information about
our group action, see Definition 5.16.

Proposition 1.7. Assume k : S1 ↪→ ∂M is null homotopic in M and has
a dual G : S2 → ∂M . Then our Z[πr1]σ-action (+ fmG)(r,K) := K+fm(r)G

on D(M ; k) from Theorem 1.5 fits into a 4-term exact sequence

Z[πr1]σ�dax(π3M) D(M ; k) [D2,M ; k] Z[πr1]�〈r−r〉
+ fmG j µ2

where j takes the underlying homotopy class and µ2 is Wall’s reduced self-
intersection invariant. The exactness means from left to right:

− Every disk in D(M ; k) has stabilizer dax(π3M) ≤ Z[πr1]σ,
− j factors through an injection of D(M ; k)/Z[πr1]σ,
− im(j) = µ−1

2 (0),
− µ2 is surjective.

The invariant µ2 counts double points (with signs and fundamental group
elements, away from the trivial element) of a generic immersion J : D2 #M
representing the given homotopy class [J ] ∈ [D2,M ; k]. The element µ2[J ]
is an obstruction for representing [J ] by an embedding and exactness means
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that it is the only obstruction in our setting, thanks to the Norman trick
along G, see the proof of Proposition 1.7 in Section 5.3. We note that gluing
−U to a map D2 →M along the boundary gives a natural bijection

(1.8) −U ∪ • : [D2,M ; k]
∼=−→ π2M.

The following class of examples exhibits the richness of Dax. For a framed,
null homotopic knot c : S1 ↪→ S1× S2 define the 4-manifold Mc by attaching
a 2-handle to the boundary of S1×D3 along c, see Figure 1.9 for an example.
The group π := π1Mc is infinite cyclic with generator t represented by the
meridian of the dotted circle. The inclusions of t ·Z[t] into Z[πr1]σ and into
Z[πr1]/〈r− r〉 are both isomorphisms, so we identify the targets of dax and
µ2 with t · Z[t].

0

Figure 1.9. A handle diagram for Mc with µ2(Sc) = −t+ t2.

Let Sc ∈ π2Mc be represented by the sphere built out of the core of the
2-handle, together with a null homotopy of c in S1 × S2. One can compute
µ2(Sc) ∈ t · Z[t] by undoing c via self-intersections and summing a term ±t`
for each double point, where ` is the absolute value of the linking number of
the double point loop with the dotted circle. The following provides many
algebraic possibilities for the image of dax; the proof is after Example 3.17.

Lemma 1.10. For Mc as above, the subgroup dax(π3Mc) is equal to the
principal ideal µ2(Sc) ·Z[t] ⊆ t ·Z[t]. Moreover, for any polynomial f ∈ t ·Z[t]
there exists a framed null homotopic knot c : S1 ↪→ S1× S2 with µ2(Sc) = f .

Therefore, any group t · Z[t]/(f) arises as the target Z[πr1]σ/dax(π3Mc)
of the invariant Dax for some c.

For example, t ·Z[t]/(ntm) ∼= Zm−1×(Z/n)∞ arises. The group t ·Z[t]/(f)
is finitely generated if and only if the leading coefficient of f is ±1. By
attaching several 2-handles one can see that any finitely generated abelian
group can be realized as the target of the Dax invariant.

To put this into the context of Theorems 1.1 and 1.5, we need a boundary
condition k : S1 ↪→ ∂M with a dual sphere G. For M = Mc these exist only
if c is a 0-framed unknot, giving exactly Example 1.15. However, in the
boundary connected sum M = (D2 × S2) \Mc we can take k = S1 × pt and
G = 0×S2, and Theorem 3.15 implies dax(π3M) = dax(π3Mc) = µ2(Sc)·Z[t].

1.3. Nilpotent group structure on neat disks. A surprising by-product
of our methods is a group structure on the set of isotopy classes D(M ; k)
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in Theorem 1.5. This will enable many calculations and be related to the
mapping class group π0 Diff∂(M), see Sections 2.1 and 3.3.

The group structure on D(M ; k) actually exists at the space level: The
space of embeddings Emb(D2,M ; k) is homotopy equivalent to a based loop
space ΩE and the new group structure is the one of the fundamental group
π1E. This is also the key to our proofs and will be discussed in Section 2.3.

Figure 1.11. The interior connected sum K#rG, the immersed disk
Ktw obtained by an interior twist on K, and the resolved disk KG

tw.

To understand the group structure on D(M ; k), we extend our Z[πr 1]-
action on D(M ; k) to a Z[π]-action. Let 1 ∈ π act by sending K to the disk
K+fm(1)G := KG

tw obtained from K by adding one positive interior twist as
in Figure 5.4 and tubing the resulting double point into −G; see Figure 1.11
for a dimension reduced picture (arcs in a surface) and Section 5.1 for details.
The orientations of G and k (and hence K) are chosen so that the unique
intersection point k ∩G is positive.

For any U ∈ D(M ; k), taking the Euler number eU(K) of the normal
bundle νK relative to the framing on k induced by νU, gives a map

(1.12) eU : D(M ; k) −→ Z, K 7→ eU(K).

A regular homotopy, like a finger move, does not change this framing infor-
mation, however, an interior twist changes it by 2. Since G is framed, it
follows that eU(U + fm(r)G) is twice the coefficient of 1 in r ∈ Z[π]. The
decomposition Z[π] = Z[πr1]× Z · 1 allows us to take the product of a Dax
invariant with eU/2 to get the following main result.

Theorem 1.13. If k : S1 ↪→ ∂M has a dual G : S2 → ∂M then any choice
of U ∈ D(M ; k) gives a group structure on the set D(M ; k) that fits into a
group extension (by two abelian groups)

Z[π]�dax(π3M) D(M ; k) π2M�Z[π] ·G
U+fm(−)G

Dax × eU/2

pU

In particular, U = U + fm(0)G is the trivial group element and the dotted
splitting is defined on the kernel of the epimorphism pU(K) := [−U ∪ K].
Up to isomorphism of extensions, this structure does not depend on U.
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In [Gab21, Prop.4.2] an abelian group structure on j−1[U] with unit U
was introduced such that Dax(U, •) : j−1[U] � Z[πr 1]σ/dax(π3M) is an
epimorphism. Our Theorem 1.13 not only implies that this is an isomorphism
of groups, via Proposition 5.17, but also that the entire set D(M ; k) can
be given a group structure – that can be nonabelian, as we shall see in
Proposition 1.16. In Theorem 1.13 we are using a more general Dax invariant,
derived from that for half-disks in Section 4.1.

By [KT21, Lem.5.8] eU is a homomorphism; its image is in 2 · Z if and
only if the universal cover M̃ is spin. However, a spinc structure W on
M̃ , that always exists, will lead in Proposition 5.13 to a homomorphism
ηW,U : D(M ; k) → Z that also takes the value 1 on UG

tw. In particular, the
group D(M ; k) always splits off a factor of Z.

Remark 1.14. If G : S2 ↪→ ∂M has dual circles k and k′ that are null homo-
topic in M , one gets an isomorphism D(M ; k) ∼= D(M,k′), a straightforward
consequence of our construction.

Example 1.15. For the boundary connected sum M = (D2 × S2)\(S1 ×D3)
with U := D2×pt and G := 0×S2, we have dax = 0, see [Gab21, Thm.3.10] or
apply Theorem 3.15. Since M ' S2 ∨S1 and π2M/〈G〉 = 0, the extension in
Theorem 1.13 gives Z[t, t−1] ∼= D(M ; k) and µ−1

2 (0) ∼= Z[t, t−1]/〈t+t−1〉, for t
a generator of π1M . Therefore, every homotopy class of embeddings contains
infinitely many isotopy classes, which is a completely new phenomenon, very
different from the spherical case.

We next determine all group commutators in D(M ; k). Denote the inter-
section form of M by λ : π2M × π2M → Z[π] and its coefficient at 1 by λ1,
and write λ̄ := λ− λ1, the reduced intersection form of M .

Proposition 1.16. The group commutator of K1,K2 ∈ D(M ; k) is

[K1,K2] = U + fm(λ̄(−U ∪K1,−U ∪K2))G.

In particular, the extension in Theorem 1.13 is central and the group D(M ; k)
is 2-step nilpotent. Moreover, D(M ; k) is abelian if and only if we have
λ̄(a1, a2) ∈ dax(π3M) for all a1, a2 ∈ π2M .

The centrality simply follows from the fact that −U∪• vanishes on classes
coming from the left, so the λ̄-term in the commutator vanishes as well. We
use the fact that the intersection form λ of M factors through the quotient
π2M/Z[π] ·G because G lies in the boundary of M .

In Example 1.15 the group D(M ; k) is free abelian of infinite rank. By
Proposition 1.16, to find a nonabelian example it suffices to find classes
a1, a2 ∈ π2M such that λ̄(a1, a2) /∈ Z[πr 1]σ, simply because dax(π3M) lies
in this fixed set. For example, takeM = M1#M2 for any simply connected 4-
manifoldM1 that has nontrivial intersection form, and where π1M2 contains
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an element g with g 6= g. Then λM1(a1, a2) ∈ Zr 0 for some ai ∈ π2M1, so
λ̄M (g · a1, a2) = g · λM1(a1, a2) 6= g · λM1(a1, a2) = λ̄M (g · a1, a2).

Remark 1.17. The commutator pairing of the extension in Theorem 1.13
induces a skew-symmetric map π2M ×π2M → Z[π]/dax(π3M), but Proposi-
tion 1.16 involves the hermitian pairing λ̄ which is not skew-symmetric for
most 4-manifolds! Fortunately, the formula (1.2) for Whitehead products,
proven in Proposition 3.13, says that this becomes true modulo dax(π3M).
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Hannah Schwartz and Rob Schneiderman for interesting discussions related
to this work. Both authors cordially thank the Max Planck Institute for
Mathematics in Bonn. The first author was also supported by the Fondation
Sciences Mathématiques de Paris.
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2. Further results and relations to other work

We first fix some notation. Recall thatM is a smooth, oriented 4-manifold
with a fixed knot k : S1 ↪→ ∂M in the boundary. If there exists G : S2 ↪→ ∂M
with k t G = pt, and a neat embedding U: D2 ↪→M with boundary ∂U = k,
we say we are in the setting with a dual and denote it by the triple (M,U, G).

We let MG denote the manifold obtained from M by attaching a 3-handle
h3 to G. This is well defined because G is uniquely framed by our choices of
orientations. There is a diffeomorphism

(2.1) MG := M ∪G h3 =
(
MrνU

)
∪ (h2 ∪G h3) ∼= MrνU

ofMG with the complement of an open tubular neighborhood νU of U inM .
Namely, M is obtained from MrνU by attaching a 2-handle h2 with cocore
U. As G is dual to k = ∂U and has trivial normal bundle, the standard
handle cancellation of this 2- and 3-handle pair gives the diffeomorphism.

This implies that the diffeomorphism type of the 4-manifoldMrνU ∼= MrU
is independent of the choice of U, as long as k is fixed. Hence, the main
source of isotopy invariants for such U, namely the diffeomorphism class
of its complement, is completely useless in Theorem 1.1! Furthermore, by
reversing the argument, we see that in the presence of any U with boundary
k, the diffeomorphism type of the manifoldMG is actually independent both
of the choice of a dual G for k and the framing of G.

Recall the map eU from (1.12). Its kernel is a normal subgroup

D(M ; k)0 := ker(eU) E D(M ; k).

consisting of disks that induce the same framing on the boundary knot k as
the chosen undisk U.

2.1. Application to mapping class groups of 4-manifolds. In the set-
ting with a dual as above, the complement of νU does not carry any isotopy
information, so it is natural to expect that different isotopy classes classes
of U will lead to interesting diffeomorphisms of the 4-manifold M . This is
indeed the case, as the following Theorem 2.2 shows.

Let Diff∂(X) denote the topological group of diffeomorphisms of a mani-
fold X that are identity on ∂X. Extending a diffeomorphism by the identity
over the 3-handle h3 inMG is a homomorphism iG : Diff∂(M) ↪→ Diff∂(MG),
and similarly extending over νU gives iU : Diff∂(Mr νU) ↪→ Diff∂(M). In
Lemma 5.19 we show that the composite iG ◦ iU is a homotopy equivalence.

Theorem 2.2. In the setting (M,U, G) there is a split (by π0iU) extension

D(M ; k)0 π0 Diff∂(M) π0 Diff∂(MG)
aU π0iG

of groups, where aU is an “ambient isotopy” map which, roughly speaking,
takes a neat disk K, considers −U ∪K as a loop of embedded arcs, extends
this isotopy to an ambient isotopy and takes the endpoint aU(K).
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A point-theoretic splitting of aU is induced by sending a diffeomorphism ϕ
to the disk ϕ(U). In future work we will show how Theorem 2.2 generalizes
results of Wall on diffeomorphisms of stabilized 4-manifolds, show that the
action of π0 Diff∂(MG) is the natural one on the normal subgroup and con-
clude that ϕ 7→ ϕ(U) is rarely a group homomorphism, i.e. this semi-direct
product is rarely a direct product of groups.

Remark 2.3. It follows that for K ∈ D(M ; k)0 there is a diffeomorphism
of M rel. boundary, that takes K to U. One can see this directly using that
MrνK ∼= MG

∼= MrνU as in (2.1) extends across νK if the framings agree.
Compare [Sch19, Lem.2.3], [ST22, Lem.6.1], [Gab21, Lem.5.3].

2.2. Deriving the light bulb trick for spheres. For a framed embedding
G : S2 ↪→ N in the interior of a smooth oriented 4-manifold N , the set S(N)G

of isotopy classes of embeddings F : S2 ↪→ N that are dual to G, was studied
previously in [Gab20; ST22]. Gabai’s LBT for spheres needed the assumption
that the fundamental group of the ambient 4-manifoldM has no elements of
order 2. Together with Rob Schneiderman [ST22], the second author found
a completely general isotopy classification of spheres with common framed
dual, by introducing a “Freedman–Quinn invariant” FQ in addition to the
homotopy class of the sphere.

That proof shows, roughly speaking, that the Whitney moves in a ho-
motopy can be chosen as inverses to the finger moves, up to isotopy of the
two 2-spheres and assuming control over FQ (that vanishes if there are no
elements of order 2 in π1M). Remarkably, the Freedman–Quinn invariant
can be thought of as the Dax invariant for spheres, despite their very dif-
ferent origins, see Proposition 2.4. These two previous proofs have not been
generalized from spheres to disks, but see [Sch21] for partial results in this
direction.

These isotopy classifications for spheres follow from our setting of disks as
follows. Denote by M := Nr νG ⊆ N the complement of an open tubular
neighborhood of G, and by mG : D2 ↪→ N a meridian disk of G. Then
the boundary ∂M contains the meridian circle k := ∂mG and also a dual
sphere for k, a parallel push-off of G. Thus, we are in a setting (M,U, G)
as in Proposition 1.7 and we can classify the set D(M ; k) of disks in M with
boundary k via an exact sequence. We next use this to describe S(N)G itself.

Forgetting that F is an embedding gives the map j to the set [S2, N ]G of
based homotopy classes of maps S : S2 → N with λ(S,G) = 1. Note that
neither S(N)G nor [S2, N ]G comes with a group structure, but [ST22] defines
an action fm(•)G on S(N)G by a quotient of the F2-vector space generated
by 2-torsion TN in π1N .
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Proposition 2.4. There is an isomorphism of 4-term exact sequences

Z[πr1]σ�dax(π3M) D(M ; k) [D2,M ; k] Z[πr1]�〈r−r〉

F2[TN ]�µ3(π3N) S(N)G [S2, N ]G Z[π1Nr1]�〈r−r〉

∼=

+ fmG

Dax
•∪mG∼=

j

•∪mG∼=

µ2

=

+ fmG

FQ

j µ2

The relative Dax respectively Freedman–Quinn invariants Dax and FQ invert
the actions as in Theorem 1.5 (3) and they make the left square commute.

The relative Freedman–Quinn invariant FQ was defined and shown to
invert the action in [ST22], together with the exactness of the lower sequence.
We will show in Section 4.4 how those results follow from our upper sequence.
The crucial step was sketched in Example 1.3, which applies to the manifold
M = NrνG since ∂M ∼= S1 × S2 t ∂N and S1 × pt bounds in M , implying
that M ∼= (D2 × S2)#M ′. Thus, g + g is contained in dax(π3M) for all g,
which gives rise to the leftmost isomorphism since Z[π]σ/〈1, g+g〉 ∼= F2[TN ].

Remark 2.5. Note that a triple (M,U, G) is of such a connected sum form
if and only if G lies in a connected component of ∂M that is diffeomorphic
to S1×S2. In this situation, one can forget the rest of the boundary ∂M and
prove our result for disks with the methods of [ST22] by first filling in D2×S2,
i.e. turning U into a sphere in the interior, and again using Example 1.3 to
see that the classifying invariants, Dax and Freedman–Quinn, agree.

In Section 4.2 we will see that the Dax invariant always determines the
Freedman–Quinn invariant for disks, and note that if the component of ∂M
containing G is not diffeomorphic to S1 × S2, then Dax is a strictly stronger
invariant in general, taking values in a larger abelian group (torsion higher
than just 2-torsion and also torsion-free parts arise, see Lemma 1.10).

For example, M = (D2 × S2)#(S1 × D3) is a non-simply connected ex-
ample for which Z[πr1]σ/dax(π3M) is trivial, so in M there is at most one
isotopy class of embeddings in a given homotopy class. In contrast, we saw
in Example 1.15 that the boundary connected sum (D2×S2)\(S1×D3) has an
interesting Dax invariant; this was utilized in [Gab21, Thm.0.8] to construct
in this manifold a 3-ball homotopic but not isotopic to pt× D3.

Remark 2.6. In both [Gab20] and [ST22] it is only assumed that the given
spheres with dual G are homotopic, not based homotopic. However, in both
cases it is argued at the start of the proofs why such a homotopy can also be
found in the based setting, see [ST22, Lem.2.1] for an elementary argument.

2.3. Key inputs from spaces of embeddings. Crucial ingredients for
the above results come from our previous work [KT21], concerning neat
embeddings of k-disks into d-manifolds, with a dual sphere for the boundary
condition. The following is the case k = 2, d = 4 of [KT21, Thm.B].
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Theorem 2.7. In the setting (M,k,G), any choice of U ∈ Emb(D2,M ; k)
induces homotopy equivalences

Emb(D2,M ; k) ' Emb( D,MG; kε) ' Ω Embε(D1,MG; kε0).

The space Embε(D1,MG; kε0) of “ε-augmented neat arcs” appearing on
the right consists of embeddings D1 × [0, ε] ↪→ MG with a fixed boundary
condition kε0 : [−1 + ε, 1− ε]× [0, ε] ↪→ ∂MG. Up to homotopy equivalence,
this can be thought of as a neat arc with a choice of normal vector field, see
below or [KT21, Prop.5.1]. We pick an ε-augmented arc uε as a basepoint
and write Ω Embε(D1,MG; kε0) for the space of loops based at it.

The proof in [KT21] that this loop space and Emb(D2,M ; k) are homotopy
equivalent uses an intermediate space Emb( D,MG; kε) of half-disks in MG.
These are embeddings of disks whose boundary k = k− ∪ u consists of an
arc k− : D1 ↪→ ∂MG and a neat arc u : D1 ↪→ MG, so that ∂k− = k0 = ∂u.
Such a k in MG arises precisely as k : S1 ↪→M ⊆MG := M ∪νG h3, since the
arc u := k ∩ νG is neat in MG, whereas k− := k ∩ (∂MrνG) remains in the
boundary after the handle h3 is attached. As a consequence, a disk in M
becomes precisely a half-disk in MG. Moreover, we require that half-disks in
Emb( D,MG; kε) all agree actually on a collar kε of their boundary.

To prove that Emb( D,MG; kε) deloops to the space of ε-augmented arcs,
we use a trick going back to Cerf (in the case of diffeomorphisms of Dd): the
larger space Emb( D,MG; k−) is contractible, and the restriction to the free
boundary arc is a fibration, so a connecting map is a desired equivalence.

Taking connected components of the spaces in Theorem 2.7 gives bijections

(2.8) D(M ; k)←→ D(MG; kε)←→ π1(Embε(D1,MG; k0), uε).

between the sets of isotopy classes of neat disks in M and half-disks in MG,
and the fundamental group of the space of ε-augmented arcs in MG. This
provides the explanation for the group structure on D(M ; k) from Section 1.3:
it comes by definition from the concatenation of loops of arcs.

In [KT21, Sec.5] we next studied the map forgetting the augmentation
evε : Embε(D1,MG; kε0)� Emb(D1,MG; k0). This is a fibration, whose fiber
ΩS2 measures the normal derivative along an arc. We showed that π1ev

ε is
onto with kernel Z, and that this Z can be split back using a splitting ηW
(which depends on the choice of a spinc structure W on the universal cover
of MG). Thus, there is a group isomorphism:

(2.9) ηW × evε : π1(Embε(D1,MG; k0), uε)
∼=−→ Z× π1(Emb(D1,MG; k0), u).

The fundamental group of the space of arcs in a 4-manifold falls into the so-
called metastable range, so it can be computed using the work of Dax [Dax72]
(following Haefliger), or at the second stage of the Goodwillie–Weiss embed-
ding calculus, see [GKW01]. We make Dax’s result explicit and computable,
and for this case obtain the following, see [KT21, Thm.4.6, Thm.4.9].
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Theorem 2.10. Fix an oriented smooth 4-manifold X and k0 : S0 ↪→ ∂X.
Then there is an inverse pair of isomorphisms

Dax : π2

(
Imm(D1, X; k0),Emb(D1, X; k0), u

)
Z[π1X] : r

This is our second black box, which we use in Section 3 to describe the
group π1(Emb(D1,MG; k0), u) as an extension of π2(MG) by a certain quo-
tient of Z[π1MG

r 1], and study its commutator pairing. We use (2.9) to
extend this to the augmented version in Proposition 5.13. In Section 5.3
this will give rise to our main results, using (2.8) and our action + fmG,
described in details in Section 5.1. The main step, Proposition 5.5, says that
the relative Dax invariant inverts this action.

Notation. Throughout the paper we assume X,N are smooth, oriented, con-
nected 4-manifolds, with ∂X 6= ∅, and N has no condition on the boundary
but comes with a fixed framed G : S2 ↪→ N . We use the following notation.

Object
Notation for
smooth maps/
embeddings

Boundary
condition

Isotopy
classes of
emb.

Homotopy
classes of
maps

neat disks in X Map(D2, X; k)
Emb(D2, X; k)

k : S1 ↪→ ∂X D(M ; k) [D2, X; k]

spheres in
N dual to G

Map(S2, N)G

Emb(S2, N)G
/ S(N)G [S2, N ]G

half-disks in X Map( D, X; k)
Emb( D, X; k)

k = k− ∪ u
k− : D1 ↪→ ∂X

u : D1 neat↪→ X

D(X; k) [ D, X; k]

neat arcs in X Map∂(D1, X)
Emb∂(D1, X)

k0 : S0 ↪→ ∂X / /

3. Spaces of embedded and immersed arcs

We review some notions from [KT21] in the special case of arcs in 4-
manifolds and prove a number of results that are characteristic for this case.
For our 4-manifold X with π := π1X and an “unknot’ u : D1 ↪→ X, we
consider the spaces Emb∂(D1, X) := Emb(D1, X; k0) and Imm∂(D1, X) of
neat embedded and immersed arcs, with boundary k0 = ∂u and based at u.

3.1. The Dax invariant for spaces of arcs. We now recall the definition
of the isomorphism Dax appearing in Theorem 2.10, since we need to identify
this invariant for arcs with the relative Dax invariant for disks used in our
main results. The domain of Dax depends on the basepoint u, but we will
see that this dependence disappears if u is homotopic into the boundary, as
in our case. For an explicit inverse of Dax, the realization map r, see [KT21,
Sec.4.1.4]. We point out that [Gab21] proves statements equivalent to this
isomorphism using the “spinning map” and the same definition of Dax.
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To define Dax for arcs, denote I := [0, 1] and represent a given relative
homotopy class by a map F : I2 → Imm∂(D1, X) satisfying

F (∂I× I ∪ I× 1) = u and F (I× 0) ⊆ Emb∂(D1, X).

After a small perturbation of F preserving boundary conditions the map

F̃ : I2 × D1 −→ I2 ×X, (~t, θ) 7→ (~t, F (~t )(θ) )

is an immersion whose only singularities are isolated transverse double points
in the interior of I2 × D1. By definition, double point values have the form
(~ti, yi) for ~ti ∈ I2 and yi := F (~ti)(θ

−
i ) = F (~ti)(θ

+
i ) ∈ X with θ−i < θ+

i ∈ D1.

Definition 3.1. Let Dax[F ] :=
∑k

i=1 ε(~ti,yi)
gyi ∈ Z[π] with signs and group

elements as follows. Let ε(~ti,yi)
∈ {±1} be the relative orientation at (~ti, yi),

obtained by comparing orientations of the tangent space T(~ti,yi)
(I2×X) and:

(3.2) dF̃
(
T(~ti,θ

−
i )(I

2 × D1)
)
⊕ dF̃

(
T(~ti,θ

+
i )(I

2 × D1)
)
.

Define the group element gyi ∈ π1(X,u(−1)) to be represented by the follow-
ing loop based at u(−1) (see Figure 3.4):

(3.3) F (~ti)|[−1,θ−i ] · F (~ti)|−1

[−1,θ+i ]
.

Note how the order θ−i < θ+
i along the arc is crucial for defining these

loops. In contrast, when computing associated loop for a self-intersection of
an immersion D3 # Y 6, one has the indeterminacy gy = (−1)g−1

y coming
from the choice of the order of sheets at y in the 6-manifold Y , see Section 4.2.

∂X ∂X

F (~ti)

yi
x− x+

g

∂X ∂X

F (~ti)≤θ−i

F (~ti)
−1

≤θ+i
x− x+yi

g

Figure 3.4. The double point yi ∈ X of the arc F (~ti) ∈ Imm∂(D1, X)
has the associated loop gyi = g−1.

In [KT21] we then consider (Imm,Emb) := (Imm∂(D1, X),Emb∂(D1, X))
with basepoint u, and the associated exact sequence on homotopy groups:

(3.5)

π3S3 ∼= Z

π2(Imm, u) π2(Imm,Emb, u) π1(Emb, u) π1(Imm, u)

π3X Z[π] π2X

i∗

δImm

pu

∂

Dax∼= pu∼=r
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The left vertical short exact sequence and the isomorphism on the right are
obtained by Smale–Hirsch immersion theory from the maps

πn(Imm∂(D1, X), u)
j∗−→ πn(Map∂(D1, X), u)

pu−→ πn+1(X,u(−1))

given by inclusion and adjunction. We showed that Dax ◦δImm ◦ i∗ : Z→ Z[π]
sends 1 to 1 in [KT21, Prop.4.15], leading to the following definition.

Definition 3.6. The homomorphism daxu : π3X → Z[πr1] is obtained from
the composite Dax ◦ δImm by the canonical identification Z[πr1] ∼= Z[π]/〈1〉.

In other words, for a ∈ π3(X,x−) we pick any map Sa : I2 → Imm∂(D1, X)
taking the entire ∂I2 to u and such that the adjoint of the union S0∪∂I2Sa is a
representative of a, where S0(~t) = u for all ~t ∈ I2. Then daxu(a) = Dax(Sa)
modulo the coefficient at 1.

Next consider all maps Map := Map∂(D1, X) of arcs intoX with boundary
k0 and compare the pair sequence (3.5) with that for the pair (Map,Emb):

(3.7)

π3S3 ∼= Z Z[π]

π2(Imm, u) π2(Imm,Emb, u) π1(Emb, u) π1(Imm, u)

π2(Map, u) π2(Map,Emb, u) π1(Emb, u) π1(Map, u)

π3X Z[πr1] π2X

i∗

1 7→ 1

r

δImm

j∗

∂

Dax ∼=

j∗∼=
δMap

pu∼=

∂

Dax∼= pu∼=
daxu

r

The advantage of working with the lower pair sequence is that we can use
the Dax homomorphism (with values in Z[πr 1], i.e. not counting double
points with trivial group element) without having to worry about arcs being
immersed. For example, daxu = Dax ◦ δMap ◦ p

−1
u is computed as explained in

the paragraph below Definition 3.6, with the only change that we only need
to pick Sa : I2 → Map∂(D1, X). We still perturb the corresponding map
S̃(~t, θ) = (~t, Sa(~t)(θ)) to be a generic immersion, but then only count its
double points with nontrivial group element, such that cusps do not matter.

It is clear that daxu only depends on the homotopy (=isotopy) class of the
neat arc u. In particular, if u is homotopic rel. endpoints into ∂X, we have

(3.8) dax := daxu : π3X → Z[πr1]

which is a homomorphism depending only on the component of ∂X that
contains the endpoints of u. Precisely this case occurs in our settingX = MG

of Section 2.3, since there exists D2 →MG with boundary k = k− ∪ u.

3.2. Group commutators and Whitehead products. The exact se-
quence (3.7) actually reduces to the following group extension. Recall that
λ̄ : π2X × π2X → Z[πr1] is the reduced intersection form λ̄ := λ− λ1.
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Proposition 3.9. There is a central extension of groups

Z[πr1]�daxu(π3X) π1(Emb∂(D1, X), u) (π2X,+)∂r pu

with the commutator of fi ∈ π1(Emb∂(D1, X), u) given by the formula

[f1, f2] = ∂r
(
λ̄(puf1, puf2)

)
.

As a consequence, π1(Emb∂(D1, X), u) is abelian if and only if the image of
λ̄ is contained in daxu(π3X) ⊆ Z[πr1].

Note that in higher ambient dimensions, the analogue of this group exten-
sion takes place in the category of abelian (higher homotopy) groups, so the
commutator pairing can only be interesting in dimension 4. And indeed, we
get that it is usually nontrivial, as was discussed after Proposition 1.16. That
result will follow from Proposition 3.9 applied to X = MG, see Section 5.3.

For the proof of Proposition 3.9 we introduce a convenient notion of
“parametrized connected sums” and prove a lemma about them, Lemma 3.12.

Given f1, f2 ∈ π1(Emb∂(D1, X), u), by a preliminary homotopy we may
assume that they are represented by maps fi : I → Emb∂(D1, X) supported
on disjoint open subintervals J1, J2 ⊆ D1, in the sense that for θ /∈ Ji and
all t ∈ I we have fi(t)(θ) = u(θ). By general position, we may also assume
fi(I)(Ji) ∩ u(D1) = ∅ for both i.

Definition 3.10. For f1, f2 : I→ Emb∂(D1, X) define the parametrized con-
nected sum f1#f2 : I2 → Imm∂(D1, X) by

f1#f2(t1, t2)(θ) :=


f1(t1)(θ), for θ ∈ J1,

f2(t2)(θ), for θ ∈ J2,

u(θ), for θ ∈ D1r (J1 ∪ J2).

The boundary ∂(f1#f2) : ∂I2 → Emb∂(D1, X) is equal to the commutator
[f1, f2] = f1f2f

−1
1 f−1

2 ∈ Ω Emb∂(D1, X). This can be seen by schematically
labeling the domain square:

(3.11)
u u

u u

f1

f1

f2 f1#f2 f2
∼=

u u

u u

f1#f2

[f1, f2]

Moreover, each f1#f2(t1, t2) is a local embedding (hence an immersion),
so f1#f2 represents an element in π2(Imm∂(D1, X),Emb∂(D1, X), u) with
boundary ∂(f1#f2) = [f1, f2] ∈ π1(Emb∂(D1, X), u). We saw above that
this relative group is isomorphic to Z[π] via Dax, computed using certain
generic representatives in which only finitely many arcs have double points.
We will now arrange this for our map f1#f2.

First note that the arc f1#f2(t1, t2) is embedded if and only if we have
f1(t1)(J1) ∩ f2(t2)(J2) = ∅. This is generically not true for all (t1, t2) ∈ I2,
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but by general position fi can be chosen so that their adjoints I× D1 → X

are transverse, so intersect in isolated points yj = f1(tj1, θ
j
1) = f2(tj2, θ

j
2) ∈ X

for (tji , θ
j
i ) ∈ I×D1, 1 ≤ j ≤ r. As a consequence, the only arcs f1#f2(t1, t2)

that are not embedded are those with t1 = tj1, t2 = tj2 for some j, and then
f1#f2(tj1, t

j
2)(θj1) = f1#f2(tj1, t

j
2)(θj2) = yj the only double point of this arc.

Lemma 3.12. If J1 is before J2 in the orientation of D1 then

Dax(f1#f2) = λ̄(puf1, puf2) ∈ Z[πr1].

Proof. Recall that pufi : I2 → ΩX is the union of (t 7→ fi(t) · u−1) and
canonical null homotopies of u · u−1 for t ∈ ∂I2 (recall that · concate-
nates D1’s). As fi(I)(Ji) ∩ u(D1) = ∅, the transverse intersection points
{y1, . . . , yr} = puf1 ∩ puf2, counted by the pairing λ, correspond exactly to
the double points of those arcs f1#f2(t1, t2) that are not embedded, counted
in the Dax invariant. The Dax loop gyj goes along a whisker on f1 from u(−1)
to yj and then back on f2, exactly as in the formula computing λ(puf1, puf2).

The signs also agree. If sgnyj (puf1, puf2) = +1, then df1|(tj1,θj1)
⊕ df2|(tj2,θj2)

orients TyjX, so with the standard vectors (dtj1, dt
j
2) orients T

(tj1,t
j
2)
I2⊕TyjX.

For Dax, near θji the derivative d(f1#f2) is zero in the other direction t3−i,
so d(f1#f2)|

(tj1,t
j
2,θ

j
1)

is oriented as −(dtj2 ⊕ df1|(tj1,θj1)
), as we had to flip the

first two vectors, whereas d(f1#f2)|
(tj1,t

j
2,θ

j
2)

) is oriented as dtj1⊕df2|(tj2,θj2)
. It

follows that their sum orients T
(tj1,t

j
2)
I2 ⊕ TyjX (since dtj1 passes 3 vectors to

become first), so εyj = 1 by its definition (3.2). �

Proof of Proposition 3.9. The claimed commutator pairing follows immedi-
ately from Lemma 3.12, since ∂r is the inverse to Dax:

[f1, f2] = ∂(f1#f2) = (∂r ◦ Dax)(f1#f2) = ∂r(λ̄(puf1, puf2)).

As this clearly vanishes on ker(pu), our extension is indeed central. �

Note that for the above proof we could have equally well chosen the op-
posite order J2 < J1 in D1. Equivalently, keep J1 < J2 but in Defini-
tion 3.10 use a map f ′i supported on J3−i, and isotopic to fi. Observe that
∂(f ′1#f ′2)(t) = [f ′1, f

′
2](t) is isotopic to ∂(f1#f2)(t) = [f1, f2](t) continuously

in t ∈ ∂I2. Using this isotopy on an annulus extends f ′1#f ′2 to a map

f1#f2 : I2 → Imm∂(D1, X), with ∂(f1#f2) = [f1, f2].

In particular, ∂(f1#f2−f1#f2) = 0 so the Dax invariant of this difference has
to be in ker(∂r) = 〈1, daxu(π3X)〉. As in Lemma 3.12 we find Dax(f1#f2) =

−λ(a2, a1) = −λ(a1, a2), since now arcs f2 appear as the θ−-sheet, so:

λ(a1, a2)− λ(a1, a2) ∈ daxu(π3X).

We now also identify the class in π3X witnessing this.
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Proposition 3.13. For the Whitehead product [a1, a2]Wh ∈ π3X of two
elements ai ∈ π2X we have

daxu
(
[a1, a2]Wh

)
= λ̄(a1, a2) + λ̄(a2, a1).

Proof. Pick fi : S1 → Emb∂(D1, X) so that ai = pufi and f1#f2 generic as
above. Then f1#f2 is also generic, and gluing them along ∂I2 gives a map
f1#f2 − f1#f2 : S2 → Imm∂(D1, X) for which we show

pu(f1#f2 − f1#f2) = [a1, a2]Wh.

Let Fi : S1 → ΩX be obtained from pufi by null homotoping its part which
agrees with u·u−1, so ai = Fi. Similar homotopies, continuous in (t1, t2) ∈ I2
and agreeing on ∂I2, show that in ΩX we have

(f1#f2(t1, t2))·u−1 ' F1(t1)·F2(t2) and (f1#f2(t1, t2))·u−1 ' F2(t2)·F1(t1)

These homotopies glue to a homotopy rel. boundary from pu(f1#f2−f1#f2),
a map I2 → ΩX defined by (t1, t2) 7→ (f1#f2−f1#f2)(t1, t2) union canonical
null homotopies of u · u−1 ' c := constu(−1) on ∂I2, to the map obtained
by gluing squares (t1, t2) 7→ F1(t1) · F2(t2) and (t1, t2) 7→ F2(t2) · F1(t1).
Schematically (on the left the canonical null homotopies are not drawn, but
are used for the homotopy):

(3.14)

uu−1 uu−1

uu−1 uu−1

uu−1 uu−1

(f1#f2)·u−1

[f1, f2] · u−1

−(f1#f2)·u−1

'

c c

c c

c c

F1·F2

[F1, F2]

−(F2·F1)

The Whitehead product [a1, a2]Wh ∈ π3X (in fact, its adjoint, the Samel-
son product, see [Whi78]) is represented by the map [F1, F2] : I2 → ΩX
taking (t1, t2) to the commutator loop [F1(t1), F2(t2)] ∈ ΩX, union canoni-
cal null homotopies [F1(t), u] ' c for t ∈ ∂I2. By cutting the loop direction
D1 in half, we can view the adjoint [F1, F2] : I2 × D1 → X as glued from
two cubes along their faces I2 × 0. After a manipulation which is the 3-
dimensional analogue of (3.11), these cubes become precisely the adjoints of
the two squares on the right of (3.14), showing that [F1, F2] is homotopic to
pu(f1#f2 − f1#f2). �

3.3. Some algebraic topology of the dax homomorphisms. We next
develop an important method to compute the invariant dax from (3.8), de-
fined for a 4-manifold X with basepoint in ∂X, π = π1X.
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Theorem 3.15. There is a commutative diagram of short exact sequences
of abelian groups

Γ(π2X) π3X H3X̃

Z[πr1]�〈g − g〉 Z[πr1]σ Z[π]σ�〈1, g + g〉

Γ(−◦H)

Γ(µ2)

Hur

dax µ3

g 7→ g+g

In particular, dax(a ◦H) = µ2(a) + µ2(a) = λ̄(a, a) for all a ∈ π2X.

The horizontal maps on the right are the Hurewicz map for the universal
covering X̃ and the natural quotient map. The bottom row is exact by
construction, whereas the first row is Whitehead’s “certain exact sequence”
[Whi50], with a homomorphism out of Γ(π2X) by definition the same as a
quadratic map out of π2X. Precomposing with the Hopf map H : S3 → S2

is one such map (injective as the next term in the sequence H4X̃ vanishes
since ∂X 6= ∅). Another one is reduced Wall’s self-intersection invariant
µ2 : π2X → Z[πr 1]/〈g − g〉, analogous to the one from Proposition 1.7.
Counting self-intersections of a connected sum, it follows that µ2 is quadratic:

(3.16) µ2(a1 + a2) = µ2(a1) + µ2(a2) + [λ̄(a1, a2)].

The last term is the class of the reduced intersection form λ̄ := λ− λ1, as in
Proposition 1.16, modulo 〈g − g〉. Although λ is hermitian, i.e. λ(a1, a2) =

λ(a2, a1), this reduction makes it symmetric, as required by the Γ-functor.
Lastly, the map µ3 on the right is also a Wall invariant, counting self-

intersections of π1-trivial 3-manifolds immersed in X × R2, where the R2-
factor makes µ3 linear because the bilinear intersection term vanishes, see
Section 4.2. Its target Z[π]σ/〈1, g + g〉 is isomorphic to F2[TX ] (recall that its
cokernel is the target of the Freedman–Quinn invariant in Proposition 2.4).

For closed 4-manifolds the entire diagram in Theorem 3.15 still exists, ex-
cept for the map dax, whose definition requires a nonempty boundary. In
fact, there is an S2-bundle X over RP2 for which there cannot be a homomor-
phism π3X → Z[πr1]σ making the left square commute, see Example 3.17.

Proof of Theorem 3.15. The upper sequence is exact by a classical result
of Whitehead [Whi50]: the kernel of the Hurewicz homomorphism is equal
to the image of − ◦ H : Γ(π2X) → π3X, where Γ is a certain quadratic
functor making this precomposition with the Hopf map H : S3 → S2 into a
homomorphism. The lower sequence is exact since the kernel of the quotient
map q : Z[π]σ � Z[π]σ/〈1, g + g〉 is precisely the image of the norm map
Z[πr1]→ Z[πr1]σ, g 7→ g + g, whose kernel is generated by elements g − g.

In [ST22, Lem.4.2] it was shown that µ3 factors through the Hurewicz map
π3X � H3(X̃), and the right hand side square commutes by Lemma 4.9.
Moreover, since µ3 vanishes on im(−◦H), on that image daxmust have values
in ker(q). It remains to show that the left hand side square commutes, where
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both maps out of the Γ-group come from quadratic maps on π2X. By the
universal property of Γ it suffices to show that dax(a◦H) equals µ2(a)+µ2(a)
for all a ∈ π2X. Counting intersection of a with a push-off gives the well
known formula λ̄(a, a) = µ2(a) + µ2(a) that reduces things to λ̄(a, a).

Since [ι, ι]Wh = 2H we get [a, a]Wh = a ◦ [ι, ι]Wh = a ◦2H = 2(a ◦H). From
Proposition 3.13 it follows that dax([a, a]Wh) = 2λ̄(a, a) and hence

2 · dax(a ◦H) = dax(2(a ◦H)) = dax([a, a]Wh) = 2 · λ̄(a, a).

Notice that this equation lives in the abelian group Z[πr1]σ, which is torsion-
free as a subgroup of the free abelian group Z[πr1]. Therefore, we can divide
both sides of the last equation by 2, giving the desired result. �

For closed 4-manifolds, the outer homomorphisms µ2, µ3 in Theorem 3.15
still work but there cannot exist a homomorphism dax making the left square
commute, as the following example demonstrates.

Example 3.17. Consider S2×S2 with generators a1, a2 ∈ π2(S2×S2) com-
ing from the factors. Then the Whitehead product [a1, a2]Wh vanishes by
definition and so a1⊗a2 +a2⊗a1 ∈ Γ(π2(S2×S2)) is in the kernel of − ◦H.
It is also the image of the generator coming from H4(S2 × S2;Z).

The group Z/2 = 〈t〉 acts freely on S2×S2 via t · (v1, v2) = (−v1,−v2) and
if we define N to be its quotient then µ2(a1 ⊗ a2 + a2 ⊗ a1) = µ2(a1 + a2)−
µ2(a1) − µ2(a2) = [λ(a1, a2)] = [1 − t] = [−t] 6= 0. Hence a homomorphism
dax making the left diagram in Theorem 3.15 commute cannot exist for N .

However, if we remove an open 4-ball from N to create a 4-manifold X
with boundary, then − ◦H becomes an isomorphism and dax([a1, a2]Wh) be-
comes twice the generator in Z[π1Xr 1]σ ∼= Z as required by our diagram.
Since the projections of ai to N are embedded spheres, µ2 vanishes on them,
so does dax, and the target of the Dax invariant is Z[π1Xr1]σ/dax(π3X) =
Z/2 (and agrees with the target of the Freedman–Quinn invariant).

Recall that Lemma 1.10 determines the image of the homomorphism dax
for the manifolds Mc = S1 × D3 ∪c h2.

Proof of Lemma 1.10. Whenever π has no elements of order 2, the target of
µ3 in Theorem 3.15 vanishes. All 4-manifolds Mc have the homotopy type
of S1 ∨ S2 because c is null homotopic. It follows that H3M̃c = 0 and hence
the image of dax can be computed from Γ(µ2).

For a free abelian group A, Whitehead’s group Γ(A) is freely generated
by symmetric tensors ai ⊗ ai and ai ⊗ aj + aj ⊗ ai, where ai runs through
an ordered basis for A and i > j. Since A = π2Mc and π2Mc is a free
Z[π]-module with one generator Sc, our basis is ai = ti · Sc, i ∈ Z. Thus,

Γ(µ2)(ai ⊗ ai) = µ2(ai) = ti · µ2(Sc) · t−i = µ2(Sc),

Γ(µ2)(ai ⊗ aj+aj ⊗ ai) = µ2(ai+aj)− µ2(ai)− µ2(aj)

= λ̄(ai, aj) =̂ ti−j · µ2(Sc)
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in t · Z[t]. The last equality uses λ̄(Sc, Sc) = µ2(Sc) + µ2(Sc) and our iden-
tification of the targets of these maps with t · Z[t]. It follows that the image
of Γ(µ2) is exactly the ideal generated by µ2(Sc).

To realize a given polynomial f , we start with the unknot in S1 × S3 and
for each ±biti in f we do bi finger moves along the group element ti, with
the crossing change of correct sign ±, see Figure 1.9. �

Let nowM be a 4-manifold and k : S1 ↪→ ∂M a knot null homotopic inM ,
and which has a dual G : S2 ↪→ ∂M . As before, letMG denote the 4-manifold
obtained from M by attaching a 3-handle along G, and π := π1M .

Lemma 3.18. The inclusion M ⊆MG induces an isomorphism π ∼= π1MG,
a surjection π3M � π3MG, and a short exact sequence of Z[π]-modules

Z[π] π2M π2MG.
·G

with a splitting on the left given by λrelM (U, •) for the relative intersection
form λrelM : π2(M,∂M)× π2(M)→ Z[π] between disks and spheres.

Proof. Since attaching a 3-handle is homotopy equivalent to attaching a 3-
cell, we immediately get πiM ∼= πiMG below degree 2. Moreover, the relative
homotopy group π3(MG,M) is the free Z[π]-module spanned by h3. Once
we show that homomorphism λrelM (U, •) is a splitting, the surjectivity on π3

will follow from the long exact sequence of a pair. Indeed, since G is the
geometric dual for k = ∂U, we have λ∂M (k,G) = 1, so a push-off of G
intersects U in the interior with λrelM (U, G) = 1. �

Recall from (3.8) that a homomorphism daxX : π3X → Z[π1Xr1] is defined
for any 4-manifold X with a choice of a basepoint in ∂X.

Lemma 3.19. We have daxMG
(π3MG) = daxM (π3M) as subgroups of Z[π].

Proof. The following diagram commutes:

π3M π3MG Z[π]
p

daxM

daxMG

since attaching a handle to ∂M does not have influence on the calculation of
daxM ([f ]) := Dax(F ). Indeed, for f : S3 →M represented by F (~t) : D1 #M ,
the same family also computes daxMG

([f ]), implying im daxM ⊆ im daxMG
.

The other inclusion follows since the map p is surjective by Lemma 3.18: if
r = daxMG

(a) for a ∈ π3M , then r = daxM (b) for b = p(a). �

For the following lemma we assume that k : S1 ↪→M lies in a component
∂0M of ∂M that is diffeomorphic to S1 × S2. If U: D2 ↪→ M has boundary
k, we can use it to ambiently surger ∂0M into a 3-sphere C : S3 ↪→ M
that decomposes M into a connected sum M ∼= (D2 × S2)#M ′. Then U =
D2 × pt, k = ∂D2 × pt, G = 0× S2 and π = π1M ∼= π1M

′.



22 DANICA KOSANOVIĆ AND PETER TEICHNER

Lemma 3.20. In this setting, dax(C) = 0 and for all g ∈ πr 1 we have
dax(g · [C]) = g + g, where we use the usual π-action on π3M .

Proof. Recall that this action is by precomposing whiskers with loops, so
the class g · [C] ∈ π3M is represented by adding an embedded representative
γ : S1 ↪→M of g to the whisker of C. Since our basepoint m− = u(−1) is in
∂0M , the circle γ intersects C transversely in two points of opposite sign as
in Figure 3.21.

We now represent g · [C] by a 1-parameter family of arcs. For time t ∈
[0, 1/4] the arc u (dashed in the figure) slides along γ (take the midpoint of
u and drag it along γ) until the tip reaches C, then for t ∈ [1/4, 3/4] the
arcs swing around C (using our fixed foliation of S2 by a 1-parameter family
of arcs), and finally for t ∈ [1/4, 3/4] return back to u (run the family for
t ∈ [0, 1/4] backwards). Since this family of arcs is obtained from the one
for [C] by conjugating all the arcs by γ, it represents g · [C].

u

γ
g

m− m+ ∂M

y+y− C

Figure 3.21. The immersed arc in the family for g · [C] ∈ π3M .

There is a single arc which is not immersed, namely the one depicted in
Figure 3.21, with two double points, y− and y+. We claim that the signed
group element at y+ is +g. Namely, the Dax loop is obtained by following
the black arc from u(−1) to the first occurrence of y+, and then back on the
black arc from the second occurrence of y+ to u(−1), is clearly homotopic
to γ. To see the sign, note that the first sheet moves towards the reader
and points right at y+, whereas the second sheet points downwards at y+,
forming a positive basis of the present R3. Similarly, at y− the double point
loop is given by g−1, and we claim the sign is −(−1)3. Namely, (−1)3 arises
since here the earlier time θ− occurs on the sheet which is not moving, while
the additional minus sign arises because that sheet has the opposite tangent
vector (unchanged for the other sheet). �

This lemma was also was proven in [Kos21]. More generally, in that paper
the first author studied a general 4-manifold X and another useful tool for
computing dax – namely, the action of π := π1X on π3X, and showed that
if λ(g · a, g) ∈ Z[πr 1] denotes the equivariant intersection number between
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the 3-sphere g · a and the loop g, and λ̄ is λ minus the coefficient at 1, then
the following formula holds in Z[πr1]:

(3.22) dax(g · a) = g · dax(a) · g − λ̄(g · a, g) + λ̄(g · a, g),

Observe that π acts on all groups in Theorem 3.15: on the bottom three by
the conjugation action on Z[π], and on homotopy groups of M by changing
whiskers. The maps µ2, µ3 are π-equivariant, µi(g · a) = g · µi(a) · g, but
for dax we have (3.22). If a = b ◦ H for b ∈ π2M then λ̄(g · a, g) = 0,
since a(S3) = b(S2) is “2-dimensional”, so generically disjoint from any 1-
dimensional loop g. Thus, (3.22) is consistent with the equivariance of µ2.

4. The relative Dax invariant for disks in 4-manifolds

In this section we discuss relative Dax invariants for both neat disks and
half-disks in an arbitrary smooth, oriented 4-manifold X. We will later
restrict to two settings: neat disks in X = M with a dual for the boundary
knot as in Section 1, and half-disks in X = MG as in Section 2.3.

The first order of business is to translate the Dax invariant for families of
arcs to an invariant of disks. To this end, we fix a convenient parametrization
of D2 by the rectangle I×D1 = [0, 1]×[−1, 1]→ D2. This collapses the upper
face I × 1 to the point i ∈ D2, the lower face I × −1 to the point −i ∈ D2,
and restricts to a diffeomorphism I× (−1, 1) ∼= D2r{±i}, (t, θ) 7→ at(θ).

We thus think of D2 as foliated by the smooth family of arcs at : D1 ↪→ D2

each going from −i to i, for t ∈ [0, 1]. Then a0 is the left semicircle, a1 is the
right semicircle and a1/2 is the vertical arc through 0. We can actually choose
at to be the projection to D2 ⊆ R2 of the upper great circles in S2 ⊆ R3.

Then an embedding K : D2 ↪→ X gives a smooth family K ◦ at : D1 ↪→ X
of embedded arcs. We now add the following requirements on K that define
our two central notions, neat embeddings versus embeddings of half-disks.

all For all embeddings K : D2 ↪→ X we require that K ◦ at are neat for
t 6= 0, 1 and that K ◦ a0 : D1 ↪→ ∂X lies in the boundary.

neat We call K neat if K ◦ a1 : D1 ↪→ ∂X again lies in the boundary and
forms a smooth knot K|∂D2 : S1 ↪→ ∂X together with K ◦ a0.

half We call K a half-disk if K ◦ a1 : D1 ↪→ X is a neat arc (that typically
makes a “right angle” with K ◦ a0), called the “free” boundary of K.

In the neat case, this is just a convenient reformulation of the notion used
in Section 1. Note that for a half-disk K, the domain of definition is still D2

and our half-disk symbol Dis just a reminder that K has a free boundary
arc (and is hence not neat). We now fix boundary conditions in both cases.

Definition 4.1. Fix a knot k : S1 ↪→ ∂X and let Emb(D2, X; k) be the space
of neat embeddings with boundary k. We can decompose k = k ◦ a0 ∪ k ◦ a1

into two arcs that have the same endpoints x± ∈ ∂X.
In addition, fix a neat arc u : D1 ↪→ X with endpoints x± and denote by

Emb( D, X; k) the space of half-disks with boundary k = k ◦ a0 ∪ u. We will
sometimes also use the notation k− := k ◦ a0 so that k = k− ∪ u.
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Note that Emb( D, X; k) has a weaker boundary condition compared to
Emb( D, X; kε) from Section 2.3. We will switch between them in Section 5.3.

4.1. Dax invariant for half-disks and neat disks. A homotopy between
half-disks K0,K1 ∈ Emb( D, X; k) can be parametrized by

H : I× (I× D1) −→ X, (s, t, θ) 7→ Hs(t, θ),

with H0 = K0 and H1 = K1, such that each Hs has the same boundary
condition k. Then (s, t) 7→ Hs(t,−) defines a map I2 → Map∂(D1, X) to
which we would like to apply the Dax invariant from Section 3.1.

In Definition 3.1 the boundary condition u occurs on all but one boundary
face of I2 (on which it lies in embeddings), while here we have for s ∈
{0, 1} embeddings K0,K1 and for t ∈ {0, 1} the constant arcs k− = k ◦ a0

respectively u. The former setup was convenient for the relative homotopy
group π2(Imm∂(D1, X),Emb∂(D1, X), u) because a group structure on it is
given by gluing maps of squares along one constant face. One can translate
between a homotopy H of half-disks and a representative F of a relative
homotopy class as in diagram (4.2).

(4.2) s

t

k− u

k− u

K1

H

K0

∼=
u u

u u

F

K−1
1 ·K0

t2

t1

On the left, each point (s, t) corresponds to the immersed arc Hs(t,−),
whereas on the right (t1, t2) corresponds to the immersed arc F (t1, t2,−),
and double lines denote constant faces. More precisely, there is a diffeo-
morphism ϕ of I2 with which we precompose the map I2 → Imm∂(D1, X)
given by H to get the one given by F . So ϕ is the identity slightly away
from the boundary, whereas on the boundary it fixes only the lower part of
the right face and otherwise arranges exactly for the transition from H to
F as in (4.2). Here we use that the composition K−1

1 · K0 of the paths of
arcs K−1

1 ,K0 : I → Emb∂(D1, X) takes a short pause at k− by definition of
their concatenation. Moving from boundary to the inside of the square, the
diffeomorphism of the boundary is isotoped back to the identity to obtain ϕ.

Definition 4.3. For a homotopy H of half-disks define Dax(H) ∈ Z[πr 1],
with π = π1X, as the sum over double points of a generic representative of

H̃ : I2 × D1 → I2 ×X, (s, t, θ) 7→ (s, t,Hs(t, θ)).

These double points occur at finitely many values of (s, t), for which the
arc Hs(t) has a double point, with a well-defined signed fundamental group
element. As before, we only count the nontrivial group elements.

The following observation holds by comparing H̃ and F̃ via ϕ as above.
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Lemma 4.4. Via the transition between H and F from (4.2), the Dax
invariant for homotopies of half-disks Dax(H) is equal to the Dax invariant
Dax(F ) for [F ] ∈ π2(Map∂(D1, X),Emb∂(D1, X), u) from Section 3.1.

We can now prove one part of Lemma 1.4, namely that Dax(H) is inde-
pendent of the choice of a homotopy H between half-disks K0,K1, modulo
dax(π3M) as in Definition 3.6. In the next section we will show the remain-
ing part, that for neat disks Dax(H) actually takes values in the fixed point
set of the involution σ, see Corollary 4.12.

For homotopies H from K0 to K1 and H ′ from K1 to K2, let H ∪K1 H
′

be their concatenation along the top face K1, as on the left of (4.5). This
is a homotopy with Dax(H ∪K1 H

′) = Dax(H) + Dax(H ′), since each point
in the glued rectangle lies in exactly one of the two squares, so corresponds
to an immersed arc either in H or H ′. This is analogous to the additivity of
Dax, where two squares were instead glued along a vertical u face.

(4.5)

k− u

k− u

k− u

K2

H′

K1

H

K0

k− u

k− u

k− u

K0

−H′′

K1

H

K0

∼

u u

u u

u u

H

K−1
1 ·K0

−H′′

Lemma 4.6. If H,H ′′ are two homotopies from K0 to K1, then we have
Dax(H) − Dax(H ′′) ∈ dax(π3X). In particular, the relative Dax invariant
Dax(K0,K1) := [Dax(H)] ∈ Z[πr 1]/dax(π3X) is a well-defined isotopy in-
variant of half-disks. By definition, it satisfies Dax(K1,K0) = −Dax(K0,K1)

Proof. We can view −H ′′ as running backwards from K1 to K2 = K0, so
precisely one time direction is reversed, cf. (4.2). This implies Dax(−H ′′) =
−Dax(H ′′). Then by the last paragraph we have Dax(H)− Dax(H ′′) =

= Dax(H) + Dax(−H ′′) = Dax(H ∪K1 −H ′′) = Dax(H ∪K−1
1 ·K0

−H ′′).

The last equality follows by (4.2), see the right hand side of (4.5). The final
Dax invariant lies in dax(π3X) by definition, since this family is now equal
to u along all of the boundary ∂I2. Finally, if H is an isotopy we clearly
have Dax(H) = 0, so this is an obstruction to isotopy. �

The entire discussion in this section can be repeated word by word for
neat disks with fixed boundary condition k : S1 ↪→ ∂X. A homotopy H (rel.
boundary) between K0 and K1 has a Dax invariant Dax(H) ∈ Z[πr 1] that
only depends on Ki modulo dax(π3X).

4.2. Dax invariant and Wall’s self-intersection invariant. We would
like to relate the invariant Dax(H) from the previous section to Wall’s self-
intersection invariant µ3(B) for a generic map B : D3 # P , where P is any
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smooth 6-manifold and we assume that B takes a basepoint in S2 to the
basepoint in P . Being generic means that the only singularities of B are
isolated transverse double points in the interior of the 3-ball. In particular,
the restriction B|∂D3 is an embedding that does not meet the interior of B.

Definition 4.7. The self-intersection invariant µ3(B) ∈ Z[π1P ]/〈1, g + g〉
is given by the sum of signed group elements gp := B(wa)B(wb)

−1 over all
double points y = B(a) = B(b) of B, where wa, wb : I → D3 are arbitrary
whiskers from a basepoint in ∂D3 to a, b ∈ D3. There is no preferred order
of the sheets a, b so we have to mod out g + g to remove this ambiguity.

Then µ3(B) is invariant under homotopies Bs of the 3-ball which satisfy
Bs(∂D3) ∩ Bs(D3r ∂D3) = ∅ for all s ∈ I. This condition avoids moving a
double point off across the boundary, which would change µ3(B).

Remark 4.8. To show invariance of µ3(B) under such homotopies, one
perturbs them to become generic which reduces to the following kind of ho-
motopies (that in particular restrict to isotopies on ∂D3):

− 1-parameter families of generic maps – these are given by pre- and
post-composition with ambient isotopies,

− 1-parameter families of maps that are either generic or have interior
self-tangencies of codimension 1 – these are given by finger moves
and Whitney moves in the interior of B.

− cusp homotopies that introduce a single interior self-intersection with
trivial group element.

Note that µ3 is in particular preserved by homotopies through families
of neat maps Bs : (D3, S2) → (P, ∂P ), s ∈ I, that restrict to an isotopy of
embeddings on the boundary.

Lemma 4.9. For a generic representative F : I2 → Map∂(D1, X) of a class
in π2(Map,Emb) as in Section 3.1, the induced map F̃ : I2×D1 # I2×X is
generic in the sense above Definition 4.7 and µ3(F̃ ) = q(Dax(F )), where

q : Z[πr1]� Z[πr1]/〈g + ḡ〉 = Z[π]/〈1, g + g〉

is the projection and π = π1X.
As a consequence, we have µ3(H̃) = q(Dax(H)) for a homotopy H (rel.

boundary) between neat or half-disks as in the previous section, and q ◦ dax
is equal to µ3 applied to (homotopy classes of) maps S3 → X.

Proof. Both invariants, µ3(F̃ ) and Dax(F ) count double points of F̃ with
groups elements and signs. The only difference is the particular choice of
sheets in the definition of Dax(F ), where the order of inverse images in D1

is used to distinguish a double point loop g from −ḡ. To prove the property
µ3(F̃ ) = q(Dax(F )) it thus suffices to compare the definitions of double
points and signs on both sides.



A NEW APPROACH TO LIGHT BULB TRICKS: DISKS IN 4-MANIFOLDS 27

For Dax(F ) the fundamental group element gy at a double point y =

(~t, F (a)) = (~t, F (b)) ∈ I2 × X with ~t = (t1, t2) and a = (~t, θ−), b = (~t, θ+)
is defined as the concatenation gy = waw

−1
b for wa = F (~t,−)|[−1,θ−] and

wb = F (~t,−)|[−1,θ+], see (3.3).
Observe that these two arcs are a particular choice for whiskers used for

computing the double point loop for µ3. Moreover, in both cases the signs
are computed as in (3.2). �

4.3. The Freedman–Quinn invariant for neat disks. We now turn to
the definition of the Freedman–Quinn invariant that uses a less clever way to
turn a homotopy H between disks into a generic map Ĥ of a 3-manifold into
a 6-manifold. The main advantage of this second method is that it agrees
with the above discussion in the neat case, and can be used show that Dax
gives elements in the fixed point set Z[πr1]σ, using the following result.

Lemma 4.10. If P 6 = I×Q5 and B : D3 # P has B(S2) ⊆ {1
2}×∂Q ⊆ ∂P ,

then µ3(B) = µ3(B).

Proof. This is a consequence of the formula µ3(B) − µ3(B) = λP (B,B′)
for a 3-ball in any 6-manifold P and B′ any push-off of B. Under our
assumption, we can find an extension β : D3 # 1

2 ×Q of ∂B : S2 ↪→ 1
2 × ∂Q

that is homotopic (rel. boundary) to B. Therefore, we only need to prove the
property for β in place of B. However, we can arrange that β and its push-
off β′ have distinct I-coordinates and hence are disjoint, so their intersection
number λP (β, β′) = λP (B,B′) vanishes. �

Consider a homotopy H : I × D2 → X between Ki : D2 ↪→ X. As in the
previous section we use the coordinates I×D1 � D2, but now study the map

Ĥ : I× (I× D1)→ I2 ×X, (s, t, θ) 7→ (
1

2
, s,Hs(t, θ))

where the pair (I, 1
2) plays the same exact role as (R, 0) in [ST22]. One easily

checks that Ĥ satisfies the assumption of Lemma 4.10 if and only if Ki are
neat embeddings – if they are half-disks then the boundary points (s, 1, θ)
map to (1

2 , s,Hs(1, θ)) = (1
2 , s, u(θ)) that do not all lie in {1

2} × ∂(I × X),
because u : D1 ↪→ X is a neat arc.

However, for neat disks Ki we deduce from Lemma 4.10 that the ele-
ment µ3(Ĥ) is fixed under the involution. Therefore, we get the following
straightforward generalization to neat disks of the Freedman–Quinn invari-
ant for spheres from [ST22].

Definition 4.11. The relative Freedman–Quinn invariant of homotopic neat
disks Ki ∈ Emb(D2, X; k) is defined by

FQ(K0,K1) := [µ3(Ĥ)] ∈ Z[π]σ�〈1, g + g, µ3(π3X)〉 ∼=
F2[TX ]�µ3(π3X).
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Recall that π := π1X, and Z[π]σ denotes the fixed point set of σ(g) = g.
The isomorphism used in the definition comes from F2[TX ] ∼= Z[π]σ/〈1, g+g〉,
induced by the inclusion TX ⊆ π of the set of nontrivial 2-torsion elements.

Corollary 4.12. For neat disks Ki, FQ(K0,K1) = q(Dax(K0,K1)) and
Dax(K0,K1) takes values in the fixed set of the involution σ.

Proof. By Lemma 4.9 we have µ3(H̃) = q(Dax(H)), so it suffices to show
that µ3(Ĥ) = µ3(H̃). Recall that H̃(s, t, θ) = (s, t,Hs(t, θ)) was used to
define Dax(H), whereas Ĥ is used to define FQ. Both H̃ and Ĥ are immer-
sions (D3, S2)# (P, ∂P ) where D3 ∼= I2 × D1 and P = I2 ×X, so it suffices
to find a homotopy between themthat restricts to an isotopy on the bound-
ary. Observe that we can certainly place the constant 1

2 also in the second
component of Ĥ without changing µ3. Then we get the required homotopy

I× I2 × D1 3 (r, s, t, θ) 7→ (s, r/2 + t(1− r), Hs(t, θ)) ∈ I2 ×X

and one easily checks that for each r ∈ I it to an embedding on the boundary.
Finally, as ker(q) by definition consists of elements fixed under the involu-

tion σ, and q(Dax(H)) = µ3(Ĥ) is fixed by Lemma 4.10, so is Dax(H). �

4.4. Deducing previous results for spheres. There is one assumption
under which our results are equivalent to previous results for spheres. Namely
assume that ∂M has a connected component ∂0M diffeomorphic to S1× S2,
and k and G are duals in ∂0M corresponding to S1 × p and q × S2.

Given a neat disk U: D2 ↪→M with boundary k, the union of the ambient
2-handle νU and a collar in M of ∂0M leads to a connected sum decompo-
sition M ∼= (D2×S2)#M ′ along the separating sphere C : S3 ↪→M . We can
now apply Lemma 3.20 which is precisely about this setting: it says that
dax(g · C) = g + g ∈ Z[πr1] for every g ∈ πr1.

Corollary 4.13. In this setting we have

Z[π]σ�〈1, dax(π3M)〉 = Z[π]σ�〈1, g + g, dax(π3M)〉 ∼=
F2TM�µ3(π3M)

So in this case the relative Dax and Freedman–Quinn invariants for neat
disks take values in the same group.

The last equality was explained in Definition 4.11 of the Freedman–Quinn
invariant FQ: recall that its target is precisely this quotient of the F2-vector
space generated by TM := {g ∈ πr 1 | g2 = 1}, by the image of Wall’s
(reduced) self-intersection invariant µ3 : π3M → Z[π]/〈1, g + g〉.

Proof of Proposition 2.4. We will show that all vertical maps are bijections
and that the first square with Dax and FQ maps commutes, while the rest
of the diagram commutes by construction.

Observe thatN is obtained fromM := NrνG by attaching a 2-handle with
core mG to k and a 4-handle. Since by assumption there exists a dual sphere
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S for G, the circle k bounds the disk U := SrmG inM , so it is null homotopic
in M . Thus, the inclusion i : M ↪→ N induces a canonical isomorphism
π = π1M ∼= π1N , so the rightmost vertical map is an isomorphism.

The Hurewicz theorem π2M ∼= H2(M̃) and π2N ∼= H2(Ñ), the fact that
no 3-handles are attached and λ(S,G) = 1, imply a short exact sequence

π2M π2N Z[π].
i∗ λ(•,G)

From the bijection [D2,M ; k] ∼= π2M , J 7→ −U∪J from (1.8) it follows that
the second to right map is a bijection as well:

[D2,M ; k]→ [S2, N ]G, J 7→ J ∪mG = (−U ∪ J)#(U ∪mG).

The map q from Corollary 4.12 takes the relative Dax invariant to the
Freedman–Quinn invariant for neat disks in M , now becomes an isomor-
phism thanks to Corollary 4.13:

Dax(K0,K1) ∈ Z[π]σ�〈1, dax(π3M)〉 ∼=
F2TM�µ3(π3M) 3 FQ(K0,K1).

By construction FQ(K0,K1) maps under i to the invariant FQ(F0, F1) for
spheres Fi = Ki ∪mG in N . Thus, once we show i∗(µ3(π3M)) = µ3(π3N),
the leftmost vertical map will be an isomorphism and the first square will
commute. This equality of subsets of F2TN is similar to Lemma 3.19, except
that µ3 factors through the (surjective) Hurewicz maps, so it suffices to see
that i∗ : H3(M̃) → H3(Ñ) is surjective. Indeed, the 2-handle is attached in
a homotopically trivial way so leaves H3(M̃) unchanged.

We are left with the most interesting vertical arrow, second from the left,
D(M ; k)→ S(N)G, K 7→ K∪mG. It is surjective because for any F ∈ S(N)G

we can arrange that it is isotopic tomG nearG. Namely, use local coordinates
in which G andmG are linear around F∩G = mG∩G, so the inverse function
theorem applied to the restriction of F to an R2 neighborhood of the point
F−1(F ∩G), that is F| : R2 ↪→ ν(F ∩G) = R2 ×R2 → R2, implies that F is
locally a graph over mG and hence can locally be isotoped to it; this isotopy
can be extended to all of F , keeping G fixed.

Finally, the injectivity of this map follows from the commutativity of the
square with the Dax and FQ invariants, and the exactness of the top sequence:
IfK0 andK1 lead to isotopic spheres Fi then Dax(K0,K1) = FQ(F0, F1) = 0,
hence K0,K1 are also isotopic. �

In this proof, we started with the 4-manifold N and removed νG to create
M with a new boundary component diffeomorphic to S1 × S2. Conversely,
we may start with a 4-manifold M with such a boundary component (cf.
Example 1.3) and add D2 × S2 to M along it. If there exists U: D2 ↪→ M
with boundary k = S1 × pt, then this larger 4-manifold N contains in its
interior a framed sphereG = 0×S2, dual to a sphere FU := U∪s(D2×pt). The
normal Euler number of FU depends on the precise way we glue D2×S2 toM ,
our Z choices being parametrized by π1(SO2) � π1(SO3) ≤ Diff(S1 × S2),
if we want our disks to match up along k. Due to the factorization over
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π1(SO3) = Z/2, there are at most two diffeomorphism types of manifolds N
that can arise, differing by a Gluck twist. Then Proposition 2.4 shows that
the previous LBT for spheres in N implies our LBT for disks in M .

5. Remaining proofs

Recall from the introduction our geometric action of Z[π] on the set of
isotopy classes D(M ; k) of neat disks in M with boundary k for which there
is a dual G : S2 ↪→ ∂M . For example, 1 ∈ π acts by sending K to KG

tw,
obtained by an interior twist on K as in Figure 5.4 and tubing into G.
When we turn these neat disks in M into half-disks in MG = M ∪G h3 as
in Theorem 2.7, the resulting half-disks K ′ and K ′tw become isotopic as will
see in Corollary 5.8.

However, the remaining Z[πr1]-action on D(M ; k) does descend to the set
D(MG; k). We now define this action for half-disks in an arbitrary 4-manifold

X, with boundary k = k− ∪ u as before (see the introduction to Section 4).

5.1. Geometric actions on half-disks in 4-manifolds. We now define a
Z[πr1]-action on isotopy classes of half-disks D(X; k), with π = π1X.

Definition 5.1. The action (J, r) 7→ J + fm(r) of Z[πr 1] on D(X; k) is
given by writing r =

∑
i εigi, with εi ∈ {±1}, gi ∈ πr1, and performing the

following maneuvers for each signed group element εigi.

g

x− x+u

k−

y+

y−

Figure 5.2. The part of a finger move in
present; two open disks from the tip of the
finger are in past and future.

x− x+u

k−

y+

x− x+u

k−

b+

Figure 5.3. Push the
double point y+ along
dashed arc across u.

To define the half-disk J + fm(g) for g 6= 1 first do a finger move along
g on J , creating a generic immersion Jg that has a single pair of transverse
double points y± = Jg(a±) = Jg(b±) with opposite signs (let the a-sheet be
on the finger), see Figure 5.2. Then push off the points a+ and b− across the
free boundary u of Jg to create a new half-disk J + fm(g), as in Figure 1.6.

Define J+fm(−g) for g 6= 1 similarly, but using the opposite sheet choice:
push off a− and b+ instead.
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For readers not familiar with 4-dimensional maneuvers, we give a precise
meaning to the above constructions. They are best understood in terms of a
stratification of the space of all maps Map( D, X; k) of half-disks. The open,
dense (codimension 0) stratum are the generic immersions whose singular-
ities are finitely many interior double points that are transverse. A path in
Map( D, X; k) can be perturbed to a finite concatenation of paths of generic
immersions (that can be implemented by self-isotopies of domain and range)
and the following three types of paths Js, s ∈ [0, 1] (or their reverses) that
meet the codimension 1 strata transversely in a single point.

− A finger move is a regular homotopy Js, s ∈ I, so that the individual
Js : D# X are generic immersions, except for one time s = s0 when
Js0 has one singularity: an interior double point that is not transverse
but with tangent spaces meeting in a 1-dimensional subspace. Thus,
one sheet moves by an ambient isotopy along a path g before it
exhibits a self-tangency and right after creates a pair of additional
transverse double points y± as in Figure 5.2.

− Pushing off a double point y+ across the free boundary is another fin-
ger move Js so that the individual Js are generic immersions, except
for one time s = s0 when Js0 has one singularity: an intersection
Js0(a) = Js0(bs0) between the interior point a ∈ Dr∂ Dand the free
boundary point bs0 ∈ ∂ D. Thus, the sheet of J0 around a ∈ J−1

0 (y+)
moves along the dashed arc bs so that Js(a) = Js(bs) for s ∈ [0, s0],
whereas this double point disappears for s > s0, as in Figure 5.3.

− A cusp homotopy Js as in Figure 5.4 creates an interior double point
with trivial group element. There is a single time s = s0 when Js
has a singularity: at the cusp point the differential of Js0 has rank
only 1. We say that J1 is obtained from J0 by an interior twist.

Note that in Definition 5.1 the homotopy class of the half-disk remains un-
changed, J ' J ± fm(r)G, and that using distinct sheet choices is essential:
pushing off a+ and a− instead (or b+ and b−), gives a half-disk isotopic to J
(use an additional parameter to push off the tangency in the finger move).

t = 1

t = 0

t = −1
s = 0

t = 1

t = 0

t = −1
s = 0

t = 1

t = 0

t = −1
s = 0

t = 1

t = 0

t = −1
s = 0

t = 1

t = 0

t = −1
s = 0 s = s0 s = 1

Figure 5.4. Movies in time t of the nonregular homotopy Js from a
local disk to the interior twist on it. From right to left pull all arcs tight
and observe a cusp at s = s0, t = 0.
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The notation J+fm(r) hides a number of choices made in the construction,
for example the choice of disjointly embedded arcs from the double points
y± to the free boundary. It is possible to show geometrically that the isotopy
class of the resulting half-disk is well defined and depends only on J and r;
however, we show this by the following indirect reasoning, which uses the
observation that any choice comes with a canonical homotopy Js from J to
J + fm(r) (move the finger, then perform the push-offs).

Proposition 5.5. For all r ∈ Z[πr1] and any choices in the construction
of J + fm(r), the relative Dax invariant is given by

Dax(J + fm(r), J) = [r] ∈ Z[πr1]�dax(π3X)

As a consequence, the isotopy class of the half-disk J + fm(r) only depends
on the isotopy class of J and on [r].

Proof. By definition, Dax(J+fm(g), J) = Dax(Js) is the sum of double points
of arcs that foliate a homotopy Js : D→ X from J0 = J + fm(r) to J1 = J .

g

x− x+

y+

y−

u

k−

α+
α0

α−

Figure 5.6. Arcs α−, α0, α+ in our foliation of a homotopy Js for the
action, and dashed arcs guiding the push-offs.

The homotopy in the description of the finger move mentioned above is
one such choice and we now foliate it conveniently, see Figure 5.6. If Js0
denotes the moment of self-tangency, when the finger touches the disk, we
foliate it so that a single arc, call it α0, has this point as a transverse self-
intersection. Then Js for some nearby s < s0 has two double points y−, y+

which must occur on two distinct arcs α−, α+ of the foliation, so that α+ is
closer to u than α0 and α− is further from it. We pick the guiding arc for
the pushing-across operation for y+ to be the shortest path from y+ to u, so
that pushing never produces self-intersecting arcs. For the guiding arc for
y− we pick the part of α0 from y− all the way close to x−, and then a short
arc from there to u. Similarly, all arcs stay embedded during this push.

There is clearly only one immersed arc in this 2-parameter family, namely
α0 in the half-disk Js0 , and we claim that its unique double point has group
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element +g, so that Dax(Js) = g. Indeed, this arc looks precisely like the one
in the realization map family r(g), see [KT21, Fig.11] and cf. Figure 3.21.

The final claim now follows from the exact sequence in Proposition 5.7:
The isotopy class of a half-disk is determined by its homotopy class and Dax
invariant, and have just shown J ' J+fm(r) and Dax(J, J+fm(r)) = [r]. �

Proposition 5.7. For any half-disk U ∈ D(X; k), our action induces a
map U + fm(•) : Z[πr 1] → D(X; k) that translates under the bijection
(5.11) D(X; k) ∼= π1(Emb∂(D1, X), u) to the realization map of [KT21]. As
a consequence, we have a group extension:

Z[πr1]�dax(π3X) D(X; k) π2X
U+fm(•)

Dax

−U∪•

and Dax inverts the action map on homotopic half-disks.

Proof. We have seen in Theorem 2.10 that the realization map r is inverted
by the invariant Dax for arcs, whereas our geometric action is inverted by
the invariant Dax for half-disks by Proposition 5.5. By Lemma 4.4 these
invariants agree, so r translates to U+fm(•). The exact sequence now follows
from the one in Proposition 3.9. �

Corollary 5.8. Let Utw : D↪→ X be the half-disk obtained from U by
one interior twist, followed by pushing the resulting double point off the free
boundary u, as in Figure 5.9. Then Utw and U are isotopic half-disks in X.

Figure 5.9. Movie of the half-disk Utw.

Proof. These disks are homotopic by construction: first use a cusp homotopy
on U and then a finger move across the free boundary. Moreover, their
relative Dax invariant vanishes because we are not counting the trivial group
element. Thus, Proposition 5.7 implies the statement. �
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Remark 5.10. One can see an isotopy from Utw to U as follows: Rotate the
arcs in Figure 5.9 around their right endpoints (comprising u) by 360 degrees
in the plane of the paper and isotope the over/under-strands accordingly.
Then pull each strand tight.

5.2. From half-disks to neat disks. We have a commutative diagram

(5.11)

D(M ; k) D(MG; kε) π1(Embε(D1,MG; k0), uε)

D(M ; k)�〈UG
tw〉 D(MG; k) π1(Emb(D1,MG; k0), u)

∼=

pr

∼=

evε

∼=

where the top row is (2.8) (implied by Theorem 2.7), and uses augmented
boundary conditions for half-disks and augmented arcs inMG. In the bottom
row we have the simpler set of half-disks D(MG; k) with the non-augmented
boundary condition, which is in turn homotopy equivalent to the space of
non-augmented arcs in MG. The bottom right arrow is another foliation
map from [KT21], for the non-augmented case.

The bottom left arrow exists since G bounds a 3-ball in MG, so under the
map D(M ; k) ∼= D(MG; kε) � D(MG; k) the neat disk UG

tw turns into the
half-disk Utw, which is isotopic to U in D(MG; k) by Lemma 5.8. We next
show this map is an isomorphism.

Recall that (2.9) says that the kernel of the rightmost vertical arrow is
Z, and that this sequence splits by a homomorphism ηW . We now define
an analogous splitting for disks. For the tangent bundle of the universal
cover of M we have the Stiefel-Whitney class w2(M̃) ∈ H2(M̃ ;Z/2)π ∼=
Homπ(π2M,Z/2). Since G has trivial normal bundle in M , this induces a
homomorphism

D(M ; k) π2M�〈G〉 Z/2,−U∪• w2 K 7→ w2(M̃)(−U ∪K).

which is the mod 2 reduction of the Euler homomorphism eU from (1.12).
Thus, the division by 2 in the following definition makes sense.

Definition 5.12. Define a map ηW,U : D(M ; k)→ Z by

ηW,U(K) =
1

2
(eU(K)−W (−U ∪K)),

where W ∈ H2(M̃ ;Z)π ∼= Homπ(π2M,Z) is a π-equivariant integer lift of
w2(M̃) such that W (G) = 0.

Proposition 5.13. The bijection D(M ; k) ∼= D(MG; kε) from (2.8) re-
duces to the bijection D(M ; k)/〈UG

tw〉 ∼= D(MG; k). Moreover

ηW,U × pr : D(M ; k)
∼=−→ Z× D(M ; k)�〈UG

tw〉
is an isomorphism of groups.
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Proof. The top left bijection in (5.11) induces a bijection on the fibers of the
vertical surjections, so it suffices to show that ηW,U is a splitting.

Thus, we just need to check that ηW,U takes UG
tw to 1. Firstly, eU(UG

tw) = 2
because: interior twist changes the framing by 2, finger move does not change
it, neither does tubing into G as it is framed. Secondly, W (−U ∪ UG

tw) = 0
since UG

tw is homotopic (rel. boundary) to U#(−G) by Lemma 5.15, and
W (G) = 0. Together we get the desired ηW,U(UG

tw) = 1. �

A liftW as in Proposition 5.13 exists because any oriented 4-manifold has
a spinc structure [VT]. Alternatively, in our setting such W was constructed
in [KT21, Prop.B.10]. Using Proposition 5.13 and a small diagram chase we
get the following consequence for the group D(M ; k)0 that is relevant in the
study of mapping class groups in Section 5.4.

Corollary 5.14. There is an exact sequence of groups

{1} −→ D(M ; k)0 −→ D(M ; k)�〈UG
tw〉

w2−→ Z/2

that is short exact if and only if M̃ is not spin.

Recall that we extend the involution σ(g) = g for g 6= 1 in a nonstandard
way by setting σ(1) := 0. This makes the next result true: for r = 1 it says
that K + fm(1)G = KG

tw ' K#(−G) for the +1-interior twist in Figure 5.4.

Lemma 5.15. For a neat disk K in M the geometric action of r ∈ Z[π]
changes its homotopy class by a connected sum with (σ(r)− r) copies of G,
that is, K + fm(r)G is homotopic to K#(σ(r)− r) ·G rel. boundary.

Proof. Under the above correspondence with half-disks, during the homotopy
from K to K + fm(g) we cross u twice, which adds two copies of G. For the
positive double point y+ we use the a-sheet so the group element guiding the
tube into G is clearly g, but the sign is −1. Indeed, signy+(D2

a,D2
b) = +1 and

also λ(K,G) = 1, so we can see in the 3-dimensional model of Figure 5.3 that
we have to tube into the negatively oriented G. The argument is analogous
for the negative double point y−, giving +g. �

5.3. Main proofs. In this section we prove the remaining results from the
introduction, 1.5, 1.7, 1.13 and 1.16. Recall that Theorem 1.1 is a clear
consequence of Theorem 1.5, and Lemma 1.4 was proven as Lemma 4.6 and
Corollary 4.12, whereas the proof of Lemma 1.10 was given in Section 3.3.
Therefore, we can now concentrate on disks in the setting (M,U, G).

Proof of Theorem 1.5. The bijection between half-disks in MG and disks in
M takes the operation of “pushing across the free boundary” into “tubing into
the dual G”, so the Z[πr1]-action on half-disks from Definition 5.1 translates
to the Z[πr1]-action on disks from the introduction (see Figure 1.6). Their
Dax invariants clearly agree (cf. the last paragraph of Section 4.1). Therefore,
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putting X = MG in Proposition 5.5 implies the analogous statement for neat
disks: the action + fm(•)G of the group Z[πr1] on D(M ; k) satisfies

Dax(J + fm(r)G, J) = r ∈ Z[πr1]�dax(π3M).

Thus, given homotopic neat disks K0,K1 ∈ Emb(D2,M ; k) whose relative
Dax invariant Dax(K0,K1) = Z[πr1]σ/dax(π3M) is trivial, the extension in
Proposition 3.9 with U = K1 implies that they are are isotopic. Finally,
Lemma 5.15 says that r ∈ Z[πr1] preserves the homotopy class if and only
if r ∈ Z[πr1]σ, i.e. is fixed under the involution. �

In Propositions 1.7 and 5.17 we use the following convenient notation.

Definition 5.16. For a group G and a set S we denote a group action
a : G× S → S with orbit set S/G by G S S/Ga .

Note that the arrow labeled by a is not a map, but a shortcut for the
group action; once we choose s ∈ S we do have a map G → S, g 7→ a(g, s).
One way to get a short exact sequence of a group action is when S is a
group and the action comes from a group homomorphism ρ : G → S via
a(g, s) := ρ(g) · s, and H = ker(ρ). This exhibits S as a group extension of
G/H by S/G if im(ρ) E S is a normal subgroup.

For example, if p : E → B is a fibration with a basepoint e ∈ E the lifting
property gives a π1(B, b)-action on π0(F ), where b := p(e) and F := p−1(b)
is the fiber over b. The stabilizer of a point x ∈ F is the image of π1(E, x) in
π1(B, b). In our notation this is a short exact sequence of the group action

π1(B, b) π0(F ) π0(F )�π1(B, b)
∼= π0(p)−1[b] ⊆ π0(E).a

This action is usually written as an exact sequence of groups/sets, where one
uses e to get from the group action to a map π1(B, b)→ π0(F ), g 7→ g(e):

· · · → π1(E, e)→ π1(B, b)→ π0(F )→ π0(E)→ π0(B)

The fibration that gives our group actions on disks in a 4-manifold arises
from the inclusion Emb ⊆ Map of embeddings of arcs into all maps (rel.
boundary) as in diagram (3.7). If H is the homotopy fiber of that inclusion
then we get a fibration sequence Ω Emb → Ω Map → H where the loop
spaces are taken at a neat embedding u : D1 ↪→ X as usual. Applying the
general case of a fibration above to this case gives the group action

π1(H,u) π0(Ω Emb) π0(Ω Emb)�π1(H,u)
∼= π0(Ω Map)a

that can be rewritten via π1(H,u) ∼= π2(Map,Emb, u) ∼= Z[πr1] as

Z[πr1] π1(Emb, u) π1(Emb, u)�Z[πr1]
∼= π1(Map, u) ∼= π2X

a

This action leads to Proposition 3.9 by identifying the stabilizers of the ac-
tion, given by the image of π1(Ω Map) ∼= π2(Map) ∼= π3X, with daxu(π3X).
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Proposition 5.17. In the setting (M,U, G) there is a commutative di-
agram of short exact sequences of group actions, with the connecting map
from the upper right to the lower left equal to the identity:

Z[π]�Z[πr1]σ

Z[πr1]σ�dax(π3M) D(M ; k) µ−1
2 (0)

Z[π]�dax(π3M) D(M ; k) π2M�Z[π] ·G

Z[π]�Z[πr1]σ

#(σ−Id)·G

+ fmG j

pU

+ fmG pU

Here pU(K) = [−U ∪K] (mod Z[π] ·G), as in Theorem 1.13.

Proof. The exactness of the lower horizontal sequence is immediate from
Proposition 5.7 and the bijection D(M ; k) ∼= D(MG; k). Indeed, we identified
the fm-actions and Dax invariants for neat and half-disks in the proof of
Theorem 1.5, and we have dax(π3MG) = dax(π3M) by Lemma 3.19 and
π2MG

∼= π2M/Z[π] ·G by Lemma 3.18.
To see that the right vertical sequences is exact, we extend it to the right:

Z[π]�Z[πr1]σ Z[π] Z[π]�im(σ − Id)

D(M ; k) µ−1
2 (0) [D2,M ; k] Z[π]�〈1, g − g〉

π2M�Z[π] ·G π2MG

U#(σ(•)−•)·G

σ−Id

U#(•)·G

j

pU pU

µ2

∼=

and observe that the new vertical sequence is short exact by Lemma 3.18,
and the two new horizontal 3-term sequences are short exact by inspection.

The desired connecting map is computed as follows. Start with g ∈ π1M
representing a generator of the group Z[π]/Z[π]σ in the lower left corner.
Acting by g on U gives U + fm(g)G ∈ D(M ; k), which is by j mapped to
the homotopy class [U + fm(g)G] = [U#(σ(g)− g) ·G] by Lemma 5.15. By
definition, this is also the image of g under the map from the upper right
corner of the diagram. Thus, its connecting map is the identity.

The upper horizontal sequence is now exact by a diagram chase. �
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Proof of Proposition 1.7. The exactness of the group action follows from
Theorem 1.5, except that we still need to prove that µ2 is onto and im(j) =
µ−1

2 (0). The latter follows from the Norman trick using the existence of
our dual sphere G. To prove the former, turn a null homotopy of k into a
generic neat immersion J : D2 # M . Then the boundary condition implies
that λ(J,G) = 1 and hence for any r ∈ Z[πr1] we get

µ2(J#r ·G) = µ2(J) + λ(J, r ·G) = µ(J) + r.

This shows that µ2 is surjective and in particular, the value 0 is attained.
Using the Norman trick, this also shows that D(M ; k) is not empty. �

Proof of Theorem 1.13. The extension in the statement is precisely the lower
exact sequence in Proposition 5.17 (which was obtained from the extension
of Proposition 5.7). To identify the inverse of the action + fmg on the kernel
of −U∪ • we use the splitting result in Proposition 5.13 and the inverse Dax
from Proposition 5.7. The only subtlety is that we only know that K and U
are homotopic modulo G, so we cannot use the Dax invariant for neat disks
as in the rest of the introduction. However, we can use the Dax invariant for
half-disks and then the result follows from those two propositions. �

Proof of Proposition 1.16. In Proposition 3.9 we computed the commuta-
tor pairing for the group π1 Emb∂(D1,MG) ∼= D(MG, k), but not the ε-
augmented version D(MG; kε) ∼= D(M ; k). However, we also showed that
the latter group is a product with Z, see Proposition 5.13. Since the gener-
ator of this Z is given by UG

tw ∈ D(M ; k) which is central, it follows that the
commutator pairing for D(M ; k) is the same. �

Remark 5.18. In upcoming work, we will actually show that the sequence in
Proposition 1.7 can also be equipped with group structures after choosing an
undisk U. Given the quadratic property 3.16 of Wall’s self-intersection in-
variant, it is surprising to find a group structure on [D2,M ; k] for which
µ2 becomes a homomorphism. Via K 7→ (−U ∪ K), this will give the
twisted group structure a1 ? a2 = a1 + a2 − λ(a1, a2) · [G] on π2M . How-
ever, µ2 does not become a homomorphism on π2M , it instead stays qua-
dratic! Nevertheless, the map a 7→ µ2(a) + λ(a,U) is a homomorphism
(π2M,?)→ Z[π]/〈1, g − g〉, since µ2(−U ∪K) = µ2(K)− λ(U,K).

We compare the group (π2M,?) to Proposition 1.16, which computed the
commutator [K1,K2] = U + fm(r)G with r = λ̄(a1, a2) ∈ Z[πr 1], for Ki ∈
D(M ; k) and ai = [−U ∪Ki] ∈ π2M . Since U + fm(r)G ' U#(r − r)G, it
follows that −U∪ [K1,K2] ' −U∪ (U#(r− r) ·G) ' (r− r) ·G. This agrees
with the description of ? as λ is hermitian and the coefficients of 1 cancel.

5.4. An extension of mapping class groups. In this section we prove
Theorem 2.2, a further result from Section 2. In the setting (M,U, G) let
U′ denote the half-disk in MG := M ∪G h3 corresponding to U. Extending
diffeomorphisms by the identity over the additional handle gives inclusions
iG : Diff∂(M) ↪→ Diff∂(MG) and iU : Diff∂(MrνU) ↪→ Diff∂(M).
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Lemma 5.19. The composite map iG ◦ iU is a weak homotopy equivalence.
Therefore, πkiG ◦ πkiU = Id for all k ≥ 0 and in particular, πkiU is injective
and πkiG is surjective.

Proof. The inclusion Mr νU ↪→ M ↪→ MG is an embedding isotopic to
a diffeomorphism, since h2 = νU and h3 form a canceling pair of handles
by (2.1). Namely, Y ′ := νU ∪ h3 = MG

r (Mr νU) is diffeomorphic to a
half-ball, whose boundary is the union of 3-disks D in ∂(MrνU) and Z ′ in
∂MG. Thus, we can use Y ′ to isotope D to Z ′, ending up with the claimed
diffeomorphism.

Now, iG ◦ iU : Diff∂(Mr νU) ↪→ Diff∂(MG) is a weak homotopy equiva-
lence by Cerf’s Theorem [KT21, Prop.2.7] for Y = X = MG, y = IdMG

,
Z = ∂MG. Indeed, Y ′ ⊆ MG is a local normal tube to ∂MG along Z ′, so
EmbZ(Y,X; y) = Diff∂(MG), while EmbZ∪Y ′(Y,X; y) is precisely the image
of iG ◦ iU. �

In the following commutative diagram, all maps in the square on the
right, as well as the vertical map at the bottom left, are restriction maps of
embedding spaces to various submanifolds. Therefore, they are fibrations by
Cerf’s Theorem, see [KT21, Thm.2.6].

Diff∂(MrνU)

Diff∂(M) Diff∂(MG) Emb∂D1×D3(D1 × D3,MG)

Emb(D2,M ; k) Emb( D,MG; k−) Embε∂(D1,MG)

iU
'

act on U

iG

act on U′

act on h1

evD1×[0,ε]

evDε+

Here h1 is the 1-handle in MG that is dual to the 3-handle h3 that was
attached to M . In other words, h1 runs from ∂MG to itself and removing
it brings us back to M . The surjectivity of πkiG, k ≥ 0, from Lemma 5.19,
implies that πk(act on h1) are trivial, and the connecting maps are injective
(and are given by ambient isotopy extension). Similarly, πkiU is injective
(and a section for πkiG), so the map πk(act on U) is surjective, except for
k = 0, where we need to determine the image. For this we extend the
diagram down as follows:

π1 Emb∂D1×D3(D1 × D3,MG) π0 Diff∂(M) π0 Diff∂(MG)

π1 Embε∂(D1,MG) π0 Emb(D2,M ; k)

π0ΩS1 Z

π1evD1×[0,ε]

π0a

π0(act on U)

π0iG

π0aU
∼=

δ eU

∼=
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Here δ is the connecting map for the fibration evD1×[0,ε], whose fiber is homo-
topy equivalent to ΩS1; since the normal bundle of uε is 2-dimensional, its
unit sphere is S1). Therefore, as π1ΩS1 = 0, the map π1evD1×[0,ε] is injective.

To see that the bottom square in the last diagram commutes, note that δ
is by definition given by ambiently extending a loop of ε-augmented arcs to
a loop of “thickened” arcs, which amounts to completing the given loop in
the Stiefel bundle V2(MG) to a V3(MG). In π0ΩS1 this counts the framing
given by that additional vector. If the loop is ambiently extended from U
to a disk K ∈ Emb(D2,M ; k), this additional vector is tangent to K and
this number becomes the relative framing of the normal bundle of K with
respect to U (along their boundary).

Hence the domain of π0amaps isomorphically onto ker(δ) ∼= ker(eU) which
we denoted by D(M ; k)0. We thus get the sequence claimed in Theorem 2.2:

D(M ; k)0 π0 Diff∂(M) π0 Diff∂(MG)
aU π0iG

π0(act on U) π0iU

Note that aU := π0a ◦ (π1evD1×[0,ε])
−1 ◦π0f

ε
U is a homomorphism since lifting

a composition of loops carefully shows that a is a homomorphism, and on
D(M ; k)0 < D(M ; k) := π0 Emb(D2,M ; k) the group structure by construc-
tion comes from that of π1 Embε∂(D1,MG) via π0aU. However, acting on U
gives only a point-theoretic splitting π0(act on U) of aU. �
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