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Abstract. The mapping class group of a closed surface of genus g is an extension
of the Torelli group by the symplectic group. This leads to two natural problems:
(a) compute (stably) the symplectic decomposition of the lower central series of the
Torelli group and (b) compute (stably) the Poincaré polynomial of the cohomology of
the mapping group with coefficients in a symplectic representation V . Using ideas from
graph cohomology, we give an effective computation of the symplectic decomposition
of the quadratic dual of the lower central series of the Torelli group, and assuming
the later is Kozsul, it provides a solution to the first problem. This, together with
Mumford’s conjecture, proven by Madsen-Weiss, provides a solution to the second
problem. Finally, we present samples of computations, up to degree 13.
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1. Introduction

The mapping class group Γg is the group of isotopy classes of diffeomorphisms of

a closed oriented surface Σg of genus g. A surface diffeomorphism acts on the first

homology of the surface H1(Σg,Z) ' Z2g preserving the intersection form (a symplectic

form defined over the integers). This induces a linearization map Γg → Sp(2g,Z) which

turns out to be onto with kernel the Torelli group Tg:

1 −→ Tg −→ Γg −→ Sp(2g,Z) −→ 1 . (1.1)

In other words, Tg is the group of surface diffeomorphisms, up to isotopy, that act

trivially on the homology of the surface. The lower central series of any group G is

a graded Lie algebra, and the action of G on itself by conjugation becomes a trivial

action on its graded Lie algebra. Since Tg is a normal subgroup of Γg, it follows that the

action of Γg by conjugation on the lower central series tg of Tg descends to an action

of Sp(2g,Z). Said differently, the lower central series of Tg is a symplectic module,

which in fact is finitely generated at each degree. What’s more, using Mixed Hodge

Structures, R. Hain showed in [Hai97] that (for g ≥ 6) tg is a quadratic Lie algebra

given by the following presentation

tg = L(〈13〉)/(R)

where L is the free Lie algebra, and R+ 〈22〉+ 〈0〉 = Λ2(〈13〉). In particular, it follows

that the stable algebra t
def
= limg→∞ tg exists, and is given by the above presentation.

The purpose of our paper is to

(P1) compute the symplectic decomposition of the lower central series of the Torelli

group,

(P2) compute (stably) the Poincaré polynomial of the cohomology of the mapping

group with coefficients in a symplectic representation V .

Our solution to (P1) uses ideas of graph cohomology to compute the symplectic de-

composition of the quadratic dual of t. Assuming that t is Koszul, a symplectic de-

composition of t follows. The latter, along with Mumford’s conjecture (proven by

Madsen-Weiss [MW07]), provide a solution to (P2).

Our paper combines the work of Hain, Harer, Kawazumi, Looijenga, Morita Mad-

sen and Weiss, and gives explicit symplectic decomposition formulas, and a sample

of computations. Regarding computations, irreducible finite dimensional symplectic

representations are parametrized by partitions. The symplectic decomposition of t in

degree n involves partitions with at most 3n parts, and for n = 13 (where the answer

is given in [Gar]) the number of those is 177970. The article was written in 1997 and

a computation of the symplectic character of t up to degree 10 was done in Brandeis.

The computation was repeated in 2006 in Georgia Tech and reached degree 13. Back

in 1997 when the paper was written, it assumed Mumford’s conjecture (now proven by

Madsen-Weiss [MW07]) and the Kozsulity conjecture for the graded Lie algebra of the
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Torelli group (still open), and our results predated the representation-stability ideas of

Church-Farb [CF13]. Further work on the Torelli homomorphism and the Goldman-

Turaev Lie bialgebra can be found in Kawazumi-Kuno’s survey article [KK16].

1.1. The lower central series of the Torelli group. Let Σr
g,s be an oriented surface

of genus g with r distinct ordered points and s boundary components, and let Γrg,s
(resp. Let Tr

g,s) be the mapping class group π0(Diff+(Σr
g,s)) (resp., the subgroup of the

mapping class group that generated by surface diffeomorphisms that act trivially on the

homology of the surafce). It is customary to omit the indices s, r when they are zero.

Recall that rational irreducible representations of the symplectic group are indexed by

partitions. Let tg denote the graded Lie algebra whose degree n part equals (rationally)

to the quotient of the nth commutator group of the Torelli group Tg modulo the (n+

1)th commutator group. The exact sequence (1.1) implies that tg is a graded R(spg)-

Lie algebra whose universal enveloping algebra can be identified with the completion

(̂Q Tg)I of the group ring Q[Tg] with respect to its augmentation ideal I. Using Mixed

Hodge Structures, R. Hain showed in [Hai97] that (for g ≥ 6) tg is a quadratic Lie

algebra given by the following presentation

tg = L(〈13〉)/(R)

where L is the free Lie algebra, and R+ 〈22〉+ 〈0〉 = Λ2(〈13〉). In particular, it follows

that the stable algebra t
def
= limg→∞ tg exists, and is given by the above presentation.

1.2. The homology of the mapping class group. Harer [Har85] has proved that

the cohomology groups of the mapping class groups stabilize as g →∞. Let γg ∈ Z[t] be

the Poincaré polynomial of Γg, and let γ∞ = limg→∞ γg ∈ Z[[t]]. Mumford’s conjecture,

proven by Madsen-Weiss [MW07], amounts to the formula

γ∞ = Exp
( 1

1− t2
)
. (1.2)

Let H be the symplectic vector space H1(Σg,C). The symplectic action of Γg on H

induces a homomorphism from the representation ring R(sp2g) of the symplectic group

to that R(Γg) of the mapping class group. Using Harer’s results on stability of the

cohomology of the mapping class groups, Looijenga [Loo96] has shown that the for every

representation V ∈ R(sp2g), the cohomology groups H•(Γg, V ) stabilize as g →∞, and

will thus be denoted by H•(Γ, V ). Assuming Mumford’s conjecture, Looijenga further

calculated (stably) the Poincaré polynomials for all symplectic representations V .

On the other hand, using an extension due to Morita of the Johnson homomorphism,

one can define classes in H•(Γ,T(H)), where T(H) =
⊕∞

n=0 H⊗n. A priori, the number of

these classes may differ than the ones counted by Looijenga. It is a purpose of the paper

to compare the classes counted by Looijenga with the ones constructed by Morita’s

extension and to show that they precisely agree, assuming Mumford’s conjecture. En
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route, will also give a computation for the above mentioned Poincaré polynomials using

ideas from graph cohomology.

We now briefly recall some homomorphisms studied by Morita. Generalizing re-

sults of Johnson [Joh80, Joh83], Morita [Mor93, Mor96] defined group homomorphisms

ρ, ρ1 (over 1/24Z, although we will only need their version over C) that are part of a

commutative diagram

Γ1
g

ρ1−−−→ N1 o Sp(H)y y
Γg

ρ−−−→ N o Sp(H)

where H = H1(Σg,Z) and N1, N are explicit torsion free nilpotent groups, related by

an exact sequence 1 → 〈1〉 + 〈12〉 → N1 → N → 1, and Γ1
g → Γg is induced by the

forgetful map Σ1
g → Σg. ρ induces a map on cohomology ρ∗ : H•(N o Sp(H),T(H))→

H•(Γ,T(H)). Since Sp(H) is reductive, the Lyndon-Hochshild-Serre spectral sequence

[HS53] (whose E2
p,q-term equals to Hp(Sp(H), Hq(N,T(H))) and vanishes for p > 0)

collapses, thus implying that H•(N o Sp(H),T(H)) ∼= H•(N,T(H))Sp.

Since N is a nilpotent Lie group satisfying [N, [N,N ]] = 0, N/[N,N ] = 〈13〉, [N,N ] =

〈22〉, and the natural map Λ2(N) → [N,N ] is onto, it follows that its cohomology

H•(N,T(H)) can be identified with A⊗ T(H), where

A = Λ•(〈13〉)/(〈22〉) (1.3)

denotes the R(sp)-quadratic algebra with respect to the decomposition

Λ2(〈13〉) = 〈16〉 ⊕ 〈14〉 ⊕ 〈12〉 ⊕ 〈0〉 ⊕ 〈22, 12〉 ⊕ 〈22〉.

The above discussion implies the existence of an algebra map

µ : A −→ H•(Γ,T(H)),

where the product on the right hand side is induced by the shuffle product on T(H).

Similarly, we obtain that the cohomology H•(N1 o Sp(H),T(H)) equals to (A1 ⊗
T(H))Sp, where

A1 = Λ•(〈13〉+ 〈1〉)/(〈22〉+ 〈12〉)

denotes the R(sp)-quadratic algebra with respect to the decomposition

Λ2(〈13〉+ 〈1〉) = 〈16〉 ⊕ 2〈14〉 ⊕ 3〈12〉 ⊕ 2〈0〉 ⊕ 〈22, 12〉 ⊕ 〈22〉 ⊕ 〈2, 12〉,

where 〈12〉 → 3〈12〉 is nonzero in all three factors. This induces a map A1 → A as well

as µ1 : A1 → H•(Γ1,T(H)).
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1.3. Statement of our results. Our first theorem uses ideas from graph cohomology

and its interpretation as symplectic representation theory [Kon94, GN98].

Theorem 1.1. The character ct(A) of A and ct(A
1) of A1 in Λ[[t]] is given by

ct(A) = ω̃ exp(−D′) Exp (cht(V))

ct(A
1) = ω̃ exp(−D′) Exp (h1t+ cht(V)) ,

where

cht(V) = −th1 − h2 +
∑

2k−2+n≥0

t2k−2+nhn =
1

t2

(
Exp(th1)

1− t2
− 1− (t+ t3)h1 − t2h2

)
,

ω̃ : Λ→ Λ is the involution on the ring of symmetric functions defined by ω̃(pn) = −pn
and

D′ =
∞∑
n=1

(
n

2

∂2

∂p2
n

+
∂

∂p2n

)
.

Theorem 1.2. The maps µ and µ1 are algebra isomorphisms that are part of a com-

mutative diagram

A
µ−−−→ H•(Γ,T(H))y y

A1 µ1

−−−→ H•(Γ1,T(H)).

The rext result assumes a Koszulity conjecture for the quadratic algebra A. For a

detailed discussion on Koszul duality, see [PP05].

Theorem 1.3. Assuming that U(t) (or equivalently, A) is Koszul, the sp-character ct(t)

of t in Λ[[t]] is given by

ct(t) = t2 − Log(c−t(A)).

Remark 1.1. In degree n ≤ 5, Theorem 1.3 agrees with independent calculations of

the character of t by S. Morita, giving evidence for the Koszulity of A.

1.4. Acknowledgment. The article was written in 1997 while both authors were in

Boston. The first author wishes to thank I. Gessel for computing guidance in Brandeis in

the fall of 1997. The authors were supported in part by the National Science Foundation.

2. Symmetric functions

2.1. The ring of symmetric functions. In this section, we recall some results on

symmetric functions and representations of the symmetric, general linear and symplectic

groups which we need later. For the proofs of these results, we refer to Macdonald

[Mac95].
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The ring of symmetric functions is the inverse limit

Λ = lim←−Z[x1, . . . , xk]
Sk .

It is a polynomial ring in the complete symmetric functions

hn =
∑

i1≤···≤in

xi1 . . . xin .

We may also introduce the elementary symmetric functions

en =
∑

i1<···<in

xi1 . . . xin ,

with generating function

E(t) =
∞∑
n=0

tnen =
∏
i

(1 + txi) = H(−t)−1.

We see that Λ is also the polynomial ring in the en. Let ω : Λ → Λ be the involution

of Λ which maps hn to en. The power sums (also known as Newton polynomials)

pn =
∑
i

xni

form a set of generators of the polynomial ring ΛQ = Λ ⊗ Q. This is shown by means

of the elementary formula

P (t) = t
d

dt
logH(t), (2.4)

where

H(t) =
∞∑
n=0

tnhn =
∏
i

(1− txi)−1 and P (t) =
∞∑
n=0

tnpn =
∑
i

(1− txi)−1.

Written out explicitly, we obtain Newton’s formula relating the two sets of generators:

nhn = pn + h1pn−1 + · · ·+ hn−1p1.

The involution ω acts on the power sums by the formula ωpn = (−1)n−1pn.

A partition λ is a decreasing sequence (λ1 ≥ · · · ≥ λ`) of positive integers; we write

|λ| = λ1 + · · · + λ`, and denote the length ` of λ by `(λ). Associate to a partition λ

the monomial hλ = hλ1 . . . hλ`
in the complete symmetric functions hn. The subgroup

Λn ⊂ Λ of symmetric functions homogeneous of degree n is a free abelian group of rank

p(n), with bases {hλ | |λ| = n} and {eλ | |λ| = n}.
We may also associate to a partition λ the monomial pλ = pλ1 . . . pλ`

in the power

sums pn; the vector space Λn ⊗ Q has basis {pλ | |λ| = n}. Inverting (2.4), we obtain

the formula

H(t) = exp
( ∞∑
n=1

tn
pn
n

)
=
∑
λ

t|λ|
pλ
z(λ)

. (2.5)
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The integers z(λ) arise in many places: for example, the conjugacy class Oλ of Sn
labelled by the partition λ of n, consisting of those permutations whose cycles have

length (λ1, . . . , λ`), has n!/z(λ) elements.

2.2. Schur functions. There is an identification of Λ with the ring of characters

Λ = R(gl) = lim←−R(glr),

where glr is the Lie algebra of GL(r,C), obtained by mapping eλ to the representation

Λλ1(C∞)⊗ . . .⊗ Λλ`(C∞) = lim←−Λλ1(Cr)⊗ . . .⊗ Λλ`(Cr).

Thus, Λ has a basis consisting of the characters of the irreducible polynomial representa-

tions of gl. These characters, given by the Jacoby-Trudy formula sλ = det
(
hλi−i+j

)
1≤i,j≤`,

are known as the Schur functions.

2.3. Symplectic Schur functions. There is also an identification of Λ with the ring

of characters

Λ = R(sp) = lim←−R(sp2g),

where sp2g is the Lie algebra of Sp(2g,C), obtained by mapping eλ to the representation

Λλ1(C∞)⊗ . . .⊗ Λλ`(C∞) = lim←−Λλ1(C2g)⊗ . . .⊗ Λλ`(C2g).

Thus, Λ has a basis consisting of the characters of the irreducible representations 〈λ〉
of sp. These characters, given by the symplectic Jacoby-Trudy formula

s〈λ〉 =
1

2
det
(
hλi−i+j + hλi−i−j+2

)
1≤i≤`, (2.6)

are known as the symplectic Schur functions.

2.4. The Frobenius characteristic. If V is a finite-dimensional Sn-module V with

character χV : Sn → Z, its characteristic is the symmetric function

chn(V ) =
∑
|λ|=n

χV (Oλ)
pλ
z(λ)

.

Although it appears from its definition that chn(V ) is in Λ⊗Q, it may be proved that

it actually lies in Λ.

Proposition 2.1. The characteristic map induces an isomorphism of abelian groups

chn : R(Sn) −→ Λn.

Let S be the groupoid formed by taking the union of the symmetric groups Sn, n ≥ 0.

An S-module is a functor n→ V(n) from S to the category of N-graded vector spaces,

finite dimensional in each degree. If V is an S-module we define its characteristic to be

the sum

cht(V) =
∞∑
n=0

∑
i

(−t)i chn(Vi(n)),
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where Vi(n) is the degree i component of V(n). In our paper, we will consider examples

of S-modules that either come from

• geometry, such as M and Cng given in Section 3, or from

• graph complexes, such as A, Btop, B and V given in Section 4, or from

• topology, such as tg and t given in Section 1.1.

In summary, we have four different realizations of the same object Λ: Λ itself, R(gl),

R(sp) and R(S) =
⊕∞

n=0R(Sn). The induced isomorphisms between R(S), R(gl) and

R(sp) are induced by the Schur functor, which associates to an Sn-module V the gl-

module

lim←−
(
V ⊗ (Cr)⊗n

)Sn

and the sp-module

lim←−
(
V ⊗ (C2g)⊗n

)Sn
.

If λ is a partition of n, we denote by Vλ the irreducible representation of Sn with

characteristic the Schur function chn(Vλ) = sλ. For λ a partition of n, and for a

complex vector space W , the vector space
(
Vλ ⊗W⊗n)Sn

is denoted Sλ(W ). We have

the isomorphism of Sn-modules

W⊗n ∼=
⊕
|λ|=n

Vλ ⊗ Sλ(W ). (2.7)

On the other hand, if W is a complex symplectic vector space of dimension 2g and

λ is a partition with at most g parts, the sp2g-module Sλ(W ) will not in general be

irreducible; its submodule of highest weight, which is unique, is denoted S〈λ〉(W ); we

denote the sp2g-module S〈λ〉(C2g) by 〈λ〉, generalizing the case where g → ∞. The

analogue of (2.7) for symplectic vector spaces is

W⊗n ∼=
[n
2
]⊕

k=0

⊕
|λ|=n−2k

IndSn
SkoS2×Sn−2k

(
11−(2)⊗k ⊗ Vλ

)
⊗ S〈λ〉(W ), (2.8)

where 11−(2) is the alternating character of S2 and o denotes the wreath product.

The products on the rings R(gl) and R(sp) correspond to the product on the ring Λ.

However, the product on R(S) is perhaps not as familiar: it is given by the formula

(V×W)(n) =
n⊕
k=0

IndSn
Sk×Sn−k

(
V(k)⊗W(n− k)

)
.

2.5. The Hall inner product. There is a non-degenerate integral bilinear form on Λ,

denoted 〈f, g〉, for which the Schur functions sλ form an orthonormal basis. Cauchy’s

formula (I.4.2 of Macdonald [Mac95])

H(t)(..., xiyj, ...) =
∏
i,j

(1− txiyj)−1 =
∑
|λ|=n

sλ(x)⊗ sλ(y) = exp
( ∞∑
k=1

pk(x)⊗ pk(y)

k

)
.

(2.9)
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implies that

〈pλ, pµ〉 = z(λ)δλµ. (2.10)

The adjoint of multiplication by f ∈ Λ with respect to the inner product on Λ is

denoted f⊥; in particular, 〈f, g〉 = (f⊥g)(0). When written in terms of the power-

sums, the operator f⊥ becomes a differential operator (Ex. 5.3 of Macdonald [Mac95]):

it follows from (2.10) that

f(p1, p2, . . . )
⊥ = f

(
∂
∂p1
, 2 ∂

∂p2
, 3 ∂

∂p3
, . . .

)
. (2.11)

If V and W are S-modules,

cht(V)⊥ cht(W) =
∞∑
k=0

∞∑
n=k

chn−k

(
HomSk

(
V(k),ResSn

Sk×Sn−k
W(n)

))
.

Taking the dimension of cht(V)⊥ cht(W)(0), we obtain the formula

〈cht(V), cht(W)〉 =
∞∑
n=0

∑
i

(−t)i dim
(
HomSn(V(n),W(n))

)
i
.

2.6. Plethysm. Aside from the product, there is another associative operation f ◦ g
on Λ, called plethysm, which is characterized by the formulas

(i) (f1 + f2) ◦ g = f1 ◦ g + f2 ◦ g;

(ii) (f1f2) ◦ g = (f1 ◦ g)(f2 ◦ g);

(iii) if f = f(p1, p2, . . . ), then pn ◦ f = f(pn, p2n, . . . ).

The corresponding operation on S-modules is called composition.

Proposition 2.2. If V and W are S-modules, let

(V ◦W)(n) =
∞⊕
k=0

(
V(k)⊗

⊕
f :[n]→[k]

W(f−1(1))⊗ . . .⊗W(f−1(k))
)

Sk

,

where [n] = {1, . . . , n} and [k] = {1, . . . , k}. We have cht(V ◦W) = cht(V) ◦ cht(W).

Proof. When V and W are ungraded, this is proved in Macdonald [Mac95]. In the

general case, the proof depends on an analysis of the interplay between the minus signs

in the Euler characteristic and the action of symmetric groups on tensor powers of

graded vector spaces. �

The operation

Exp(f) =
∞∑
n=0

hn ◦ f (2.12)

plays the role of the exponential in Λ. It takes values in the completion of Λ with

respect to the ideal ker(ε) where ε : Λ → Z is the homomorphism ε(f) = f(0) which

sends hn to 0 for n > 0. We will discuss this completion at greater length in the next
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section. The operation Exp extends to the λ-ring Λ[[t]] by pn ◦ t = tn, and satisfies the

property

Exp(f + g) = Exp(f) Exp(g) (2.13)

Proposition 2.3. We have the formula Exp(e2)
⊥ = exp(D), where

D =
∞∑
n=1

(
n

2

∂2

∂p2
n

− ∂

∂p2n

)
.

Proof. By (2.11), it suffices to substitute n∂/∂pn and 2n∂/∂p2n for pn and p2n on the

right-hand side of

Exp(e2) = exp

(
∞∑
n=1

pn
n

)
◦
(

1
2
(p2

1 − p2)
)

= exp

(
∞∑
n=1

1

2n
(p2
n − p2n)

)
. �

Using this heat-kernel, we can relate the bases sλ and s〈λ〉 of Λ corresponding respec-

tively to the irreducible representations in R(gl) and R(sp). The following formula is a

consequence of (2.8):

s〈λ〉 = exp(−D)sλ. (2.14)

3. Stable cohomology of mapping class groups with symplectic

coefficients

In this section, we briefly present Looijenga’s calculation of the stable cohomology

of the mapping class groups with arbitrary symplectic coefficients. Define a linear map

L : R(sp)→ Z[[t]] by the formula

L
[
s〈λ〉
]

= lim
g→∞

∑
i

(−t)iH i(Γg, S
〈λ〉(H)).

In this section, we calculate the map L (and its natural extension L : R(sp)[[t]]⊗̂Λ →
Λ[[t]] on the complete λ-ring) explicitly, by means of a calculation in R(sp)[[t]]⊗̂Λ; our

basic ingredients are the results of Looijenga [Loo96].

Let Mg be the moduli stack of genus g curves (that is, the homotopy quotient of

Teichmüller space by Γg), and for n > 0, let Mn
g be the moduli stack of genus g

curves with a configuration of n ordered distinct points. Let Mg be the S-module

Mg(n) = H•(Mn
g ,C), and M its stable version.

Theorem 3.1.

cht(M) = γ∞ Exp
( h1

1− t2
)

Proof. In [Loo96, Prop.2.2] Looijenga proves that in degree less than g,

H•(Mn
g ,C) ∼= H•(Mg,C)⊗ C[u1, . . . , un],
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where the classes ui of degree 2 are the Chern classes of the line bundles whose fibre at

[Σ, z1, . . . , zn] is T ∗zi
Σ. If 11(n) is the trivial Sn-module and C[u] is the S-module such

that C[u](1) = C[u] and C[u](n) = 0 for n 6= 1, we have

11(n) ◦ C[u] ∼= C[u1, . . . , un].

Taking the characteristic of both sides, we see that

cht(C[u1, . . . , un]) = hn ◦
h1

1− t2
.

Summing over n and using Equation (2.12) concludes the proof. �

Let Cng be the nth fibred product of the universal curve M1
g → Mg. There is an

open embedding Mn
g ↪→ Cng , whose image is the complement of a divisor with normal

crossings. Let Cg be the S-module Cg(n) = H•(Cng ,C), and C its stable version.

Theorem 3.2.

cht(C) = L
[
Exp

(
(1− tH + t2)h1

)]
Proof. Since π is a smooth projective morphism, the Leray-Serre spectral sequence for

the projection π : Cng →Mg collapses at its E2-term Hp(Mg, R
qπ∗C). Observe that

Rqπ∗C ∼=
⊕

j+k+`=n
k+2`=q

IndSn
Sj×Sk×S`

(
C⊗j ⊗ H[−1]⊗k ⊗ C[−2]⊗`

)
,

and hence that

H i(Cng ,C) ∼=
i⊕

p=0

⊕
j+k+`=n
k+2`=q

IndSn
Sj×Sk×S`

(
C⊗j ⊗Hp(Mg,H[−1]⊗k)⊗ C[−2]⊗`

)
.

By the main theorem of Looijenga [Loo96], the right-hand side stabilizes for p < g/2+k.

Taking characteristics, we obtain

∞∑
i=0

(−t)i chn(H i(Cng ,C)) =
∑

j+k+`=n

σj(p1) · L
[
σk(−tHh1)

]
· σ`(t2h1)

= L
[
σk((1− tH + t2)h1)

]
. �

Theorem 3.3. cht(C) = cht(M) ◦ t−2
(
Exp(t2h1)− 1

)
Proof. Fill in ... Easy, given results in Looijenga. �

Corollary 3.1. cht(C) = γ∞ Exp
1

t2

(
Exp(t2h1)− 1

1− t2

)
Combining all of these results, we obtain a formula for the operation L.
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Theorem 3.4.

L
[
Exp

(
Hh1

)]
=

γ∞

Exp
(
(1− t2)−1

) Exp
1

t2

(
Exp(−th1)

1− t2
− 1 + (t+ t3)e1

)
Proof. The above theorems imply that

L
[
Exp

(
(1− tH + t2)h1

)]
= γ∞ Exp

1

t2

(
Exp(t2h1)− 1

1− t2

)
.

Multiplying both sides by Exp
(
−(1 + t2)h1

)
gives

L
[
Exp

(
−tHh1

)]
= γ∞ Exp

1

t2

(
Exp(t2h1)− 1

1− t2
− t2(1 + t2)h1

)
.

Replacing h1 by −h1/t, we obtain

L
[
Exp

(
Hh1

)]
= γ∞ Exp

1

t2

(
Exp(−th1)− 1

1− t2
+ t(1 + t2)h1

)
,

and the result follows. �

Corollary 3.2.∑
λ

L
[
s〈λ〉
]
sλ = L

[
exp(−D) Exp

(
Hh1

)]
=

γ∞

Exp
(
(1− t2)−1

) Exp
1

t2

(
Exp(−th1)

1− t2
− 1 + (t+ t3)e1 − t2e2

)
=

γ∞

Exp
(
(1− t2)−1

) ω̃ Exp
1

t2

(
Exp(th1)

1− t2
− 1− (t+ t3)h1 − t2h2

)
=

γ∞

Exp
(
(1− t2)−1

) ω̃ Exp (cht V) .

4. Graph cohomology and the sp-character of A

In this section, we will calculate the sp-character of A using the ideas of graph co-

homology, which interprets classical invariant theory of Lie groups in terms of graphs.

For similar applications of graph cohomology see [Kon94, GN98].

Let ct(A) =
∑∞

k=0(−t)kAk denote the character of A in Λ[[t]]. Let Btop be the S-module

given by

Btop(n) = (A• ⊗ Tn
top(H))sp, (4.15)

where Ttop(H) is the quotient of the algebra T(H) modulo the two sided ideal generated

by ωsympl ∈ T2(H), where ωsympl is the symplectic form on H.

Proposition 4.1.

cht(Btop) = Exp (cht(V)) ,

where cht(V) is as in the statement of theorem 1.1.
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Corollary 4.2.

ct(A) = ω̃ exp(−D′) cht(Btop), (4.16)

which implies part of theorem 1.1.

Proof. It follows from the fact that

Ttop(H) =
⊕
λ

S〈λ〉(H)⊗ Sλ(H),

as well as equation (2.14) and exp(−D)ω̃ = ω̃ exp(−D′). �

Corollary 4.3.
γ∞

Exp((1− t2)−1)
ct(A) =

∑
λ

L
[
s〈λ〉
]
s〈λ〉

Proof. Compare corollaries 3.2 and 4.2. �

Proof. (of proposition 4.1) Recall, from [KM94] and [GK98, Section 2.5], that a graph

G is a finite set Flag(G) (whose elements are called flags) together with an involution

σ and a partition λ. (By a partition of a set, we mean a disjoint decomposition into

several unordered, possibly empty, subsets called blocks).

The vertices of G are the blocks of the partition λ, and the set of them is denoted by

Vert(G). The subset of Flag(G) corresponding to a vertex v is denoted by Leg(v). Its

cardinality is called the valence of v, and denoted by n(v). The degree of a graph with

k trivalent vertices and n legs equals to 2k + n. This agrees with the grading of stable

graphs given in [GK98], if the genus label of every trivalent vertex is zero.

The edges of G are the pairs of flags forming a two-cycle of σ, and the set of them

is denoted by Edge(G). The legs of G are the fixed points of σ, and the set of them is

denoted by Leg(G).

Following [Wey39], we review a description of the sp-invariant algebra T(H)sp in

terms of an algebra of graphs. A chord diagram of degree m is a graph (σ, λ1
2m) where

σ is an involution of the set [2m] = {1, . . . , 2m} without fixed points and λ1
2m is the

partition of the set [2m] in all one-element subsets. We consider the two flags in each

chord as ordered. Given a chord diagram of degree 2m, one can associate to it a sp-

invariant tensor in T2m(H)sp by placing a copy of the symplectic form on each edge.

Upon changing the order of the two flags in a chord, the associated invariant tensor

changes sign. Thus, we get a map

CD −→ T(H)sp (4.17)

where CD is the quotient of the vector space C〈chord diagrams〉 over C spanned by all

chord diagrams modulo the relation O1 shown in figure 1. The above map is a stable

algebra isomorphism, where the product of chord diagrams is the disjoint union.

The above map can describe the sp-invariant part of several quotients of the tensor

algebra T(H). For every quotient A of the tensor algebra T(H) which we consider below,



14 STAVROS GAROUFALIDIS AND E. GETZLER

there is an onto map from the algebra CD to a combinatorial algebra CA, together with

a commutative diagram

CD −−−→ T(H)spy y
CA −−−→ Asp

such that the map CA → Asp is a stable isomorphism of graded algebras (which mul-

tiplies degrees by 2). We now discuss some quotients of the tensor algebra.

The natural projection T3(H) → Λ3(H) induces a map T(T3(H)) → T(Λ3(H)).

The corresponding quotient of CD is the algebra C〈T-graphs-no legs′〉 of trivalent

graphs (without legs, equipped with an ordering of the set of their vertices, a cyclic

ordering of the three flags around each vertex, as well as an orientation on each

edge), modulo the relations (O1, O2), where O2 is shown in figure 1. The map CD →
C〈T-graphs-no legs′〉/(O1, O2) sends a chord diagram (σ, λ1

6m) of degree 6m to the triva-

lent graph (σ, λ3
6m) of degree 6m, where λ3

6m = {{1, 2, 3}, {4, 5, 6, }, . . . , {6m− 2, 6m−
1, 6m}}, thus inducing a stable isomorphism of algebras

C〈T-graphs-no legs′〉/(O1, O2) −→ T(Λ3(H))sp.

The projection Λ3(H)→ 〈13〉, induces a map T(Λ3(H))→ T(〈13〉), where throughout

the text, all projections of sp-modules will be well defined up to a nonzero scalar. The

corresponding quotient of CD is the algebra C〈T-graphs-no legs′〉/(O1, O2, loop), where

loop is the relation shown in figure 1, thus inducing a stable isomorphism of algebras

C〈T-graphs-no legs′〉(O1, O2, loop) −→ T(〈13〉)sp.

Consider the projection T(〈13〉)→ Λ(〈13〉). The corresponding quotient of CD is the

algebra of trivalent graphs (without legs, equipped with a sign ordering of the set of

their vertices, a cyclic ordering of the three flags around each vertex, and an orientation

on each edge), modulo the relations (O1, O2, O3, loop), where O3 is shown in figure 1. It

is easy to see that the above algebra is isomorphic to the algebra C〈T-graphs-no legs〉 of

trivalent graphs (without orientations or legs) modulo the relation loop, thus inducing

a stable isomorphism of algebras

C〈T-graphs-no legs〉/(loop) −→ Λ(〈13〉)sp.

Figure 1. The antisymmetry relations O1, O2, O3 and the loop relation.
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Consider the projection Λ(〈13〉)→ A. It was shown in [GN98] that the corresponding

quotient of the algebra CD is the algebra of trivalent graphs (without any orientations)

modulo the relations (IH, loop), where IH is shown in figure 2. In addition, it was shown

that the algebra C〈T-graphs〉/(IH, loop) is isomorphic to a free polynomial algebra

Q[e2,0, e3,0, . . . ] (where ek,0, shown in figure 3, is of degree 2k − 2), thus inducing a

stable isomorphism of algebras

Q[e2,0, e3,0, . . . ] −→ Asp. (4.18)

Figure 2. On the left, the IH relation, with the understanding that the

flags of I and H are not part of an edge. On the right, a consequence of

the IH relation.

Consider the projection Λ(〈13〉) ⊗ T(H) → A ⊗ T(H). The above discussion implies

that the corresponding quotient of CD is the algebra C〈T-graphs〉 of trivalent graphs

with ordered legs (equipped with an orientation on each edge that connects two legs),

modulo the relations IH, loop. We claim that every connected such graph with 2k−2+n

trivalent vertices and n legs, equals, modulo the IH relation to the graph ek,n shown in

figure 3. Indeed, using the IH relation as in figure 3, we can move edges touching a leg

anywhere around the graph, thus we can assume that there are no legs (i.e., n = 0),

in which case the result follows from a previous discussion. Notice that ek,n is a trivial

representation of Sn.

Figure 3. The T-graph ek,n for k ≥ 1 has k−1 vertical edges on a circle

and n horizontal legs. The T-graph e0,n for n ≥ 2 is a tree with n − 2

vertical legs. On the left, the graphs e3,3 and e0,4, and on the right their

images.

The stable isomorphism of algebras

C〈T-graphs〉/(IH, loop) −→ (A⊗ T(H))sp,

implies that the S-module B defined by

B(n) = (A• ⊗ Tn(H))sp
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equals to E ◦ (e0,2 + V), where E is the S-module whose characteristic cht(E) equals

to
∑

h≥0 hn, and V is the S-module with basis ek,n ∈ V2k−2+n(n), k ≥ 0, where ek,n
spans a copy of the trivial representation of Sn, excluding e0,0, e1,0, e1,1 and e0,2. It

follows that the characteristic of V is given by the statement of theorem 1.1, and that

cht(B) = Exp(h2 + cht(V)).

Finally, consider the projection Λ(〈13〉)⊗T(H)→ A⊗Ttop(H). The above discussion

implies that the corresponding quotient of CD is the quotient of the algebra C〈T-graphs〉
modulo graphs some component of which contains an edge connecting two legs; thus

obtaining that Btop = E ◦ V, which concludes the proof of proposition 4.1. �

Similarly, we have a stable isomorphism of algebras

C〈T-graphs〉/(IH1) −→ (A1 ⊗ T(H))sp,

(where IH1 is the relation of figure 2, assuming that at most two of the four flags of the

graphs I and H belong to the same edge), which implies that the S-module B1 defined

by

B1(n) = (A• ⊗ Tn(H))sp

equals to E ◦ (e0,2 + e1,1 + V), and that the S-module B1
top defined by

B1
top(n) = (A1,• ⊗ Tn

top(H))sp

equals to E ◦ (e1,1 + V), thus

ct(A
1) = ω̃ exp(−D′) cht(B

1
top) = Exp(h1t+ cht(V))

which concludes the proof of theorem 1.1.

Remark 4.4. There is a curious degree preserving map from t-graphs ek,n of degree

2k − 2 + n > 0 with n legs to stable graphs (in the terminology of [GK98]) with one

vertex of genus k and n legs, see figure 3. There is also a similarity between the character

cht(V) of V and the Feynman transform of [GK98]. Notice also that the S-module V

has an additional multiplication

� : V(n)⊗ V(m) −→ V(n+m− 2)

defined by joining a leg of ek,n with one of el,m, in other words by ek,n�el,m = ek+l,n+m−2.

Under the isomorphism Btop
∼= E ◦V, � corresponds to a map � : Btop(n)⊗Btop(m)→

Btop(n + m − 2) (denoted by the same name) defined using the product in A and the

contraction map

� : T(H)⊗ T(H) −→ T(H)

given by

(a1 ⊗ . . .⊗ an)⊗ (b1 ⊗ . . .⊗ bm) −→
∑
i,j

(ai · bj)a1 ⊗ . . . âi . . .⊗ an ⊗ b1 ⊗ . . . b̂j . . .⊗ bm,

where ai, bj ∈ H and · : H⊗ H→ C is given by the symplectic form.
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5. Proof of theorem 1.2

Let N denote the S-module N(n) = H•(Γ,Tn(H)). Under the isomorphism B ∼= E◦V,

the discussion in the introduction implies the existence of a map

µF : B(n) −→ N(n)

which is part of a commutative diagram:

B(n)⊗B(m)
µF (n)⊗µF (m)−−−−−−−−→ N(n)⊗N(m)

�
y y�

B(n+m− 2)
µF (n+m−2)−−−−−−−→ N(n+m− 2)

where the vertical map on the right hand side is induced by the the cup product follows

by a contraction on T(H).

Note that the left vertical map is onto. We claim that assuming Mumford’s conjec-

ture,

• The right vertical map is onto

• µF (0) is onto (follows from Morita’s papers, assuming Mumford’s conjecture.

We could give a proof here anyway.)

• µF (1) is onto.

Then, µF is onto and since cht(B) = cht(N), µF is an isomorphism, thus proving

theorem 1.2.

Let us do as an example the following special case for R = T3(H). Assuming

Mumford’s conjecture it follows from corollary 3.2 that dimH1(Γ,T3(H)) = 1, and

that dimH1(Γ1,T3(H)) = 4. With the notation of the introduction, after projecting

N → N/[N,N ] = 〈13〉, ρ can be thought of as a crossed homomorphism Γg → 〈13〉 ↪→ R,

in other words as a 1-cocycle of Γg with values in R; let [ρ] ∈ H1(Γg, R) denote its co-

homology class. Then µF (1)(e0,3) = [ρ], and Morita proves that [ρ] is nonzero, by an

explicit cocycle computation. Similarly, µ1
F (1)(e0,3) = [ρ1] ∈ H1(Γ1

g, R) is nonzero too.

(A1 ⊗R)sp −−−→ H1(Γ, R)y y
(A1

1 ⊗R)sp −−−→ H1(Γ1, R)

where

e0,3 −−−→ [ρ]y y
3e1,1e0,2 + e0,3 −−−→ [ρ1]

where 2e1,1e0,2 correspond to the three labelings of the legs of the graph e1,1e0,2, and

these maps are up to scalar multiples that are missing.

Note that Morita’s map k0 [KM96] is simply µF (2)(e0,2) ∈ H1(M2
g,H), and that

the contraction formula that they have must be included in our commutative diagram

above.
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6. The symplectic character of the Torelli Lie algebra

In this section we give a proof of Theorem 1.3 using properties of quadratic algebras

and Koszul duality, explained in detail in [PP05]. Recall from Section 1.1 the quadratic

presentation of the R(sp)-Lie algebra tg. Hain also established a central extension of

graded Lie algebras

1 −→ Q(2) −→ tg −→ ug −→ 1,

where Q(2) is a one dimensional abelian subalgebra of tg in degree 2. The characteristic

of the Lie algebra tg and its universal enveloping algebra U(tg) are related by

ct(tg) = Log(ct(U(tg)) = t2 + Log(ct(U(ug))

On the other hand, the quadratic dual U(ug)
! of U(tg) equals, by definition, to A; see

[PP05, Chpt.1.2]. It follows that that A is Koszul if and only if u is Koszul if and only

if t is Koszul. Since Koszul dual algebras (B,B!) statisfy ct(B) c−t(B
!) = 1 (see [PP05,

Cor.2.2]), this concludes the proof of Theorem 1.3.

7. Computations

Theorem 1.1 implies that the character of An is a linear combination of symplectic

Schur functions s〈λ〉 for |λ| ≤ 3n, and can thus be calculated by truncating Exp in

degrees at most 3n. Note that partitions with |λ| = 3n appear in An.

Assuming that A is Koszul, Theorem 1.3 implies that the character of tn is a linear

combination of symplectic Schur functions s〈λ〉 for |λ| ≤ n + 2, and can be calculated

by truncating Exp in degrees at most 3n.

A computation of the character of A and (assuming Koszulity) of t was obtained up

to degree 12, using J. Stembridge’s [Ste95] symmetric function package SF for maple.

Below, we present the results for An for n = 1, . . . , 4 and for tn for n = 1, . . . , 8. A table

for n ≤ 13 is available in [Gar].

To explain our computations, we add a few comments on some of our equations.

Equation (2.14) states the following: if f =
∑

λ aλsλ, then exp(−D)f =
∑

λ aλs〈λ〉.

Using Exp(f + g) = Exp(f) Exp(g) and hn(t) = tn and Exp(t) =
∑∞

n=0 hn(t) =

(1− t)−1, we see that the right hand side of Equation (1.2) is given by:

Exp
( 1

1− t2
)

= Exp
( ∞∑
n=0

t2n
)

=
∞∏
n=0

Exp(t2n) =
1∏∞

n=1(1− t2n)

Corollary 4.2 states that if ω̃ cht(Btop) =
∑

λ aλsλ, then ct(A) =
∑

λ aλs〈λ〉.

The next lemma is an effective way to compute the character Exp(cht(V)) using the

SF package.

Lemma 7.1. We have:

Exp(cht(V)) =
∑
λ

γλ (7.19)
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where

γ(1l12l2 ... ) =
∏
n

hln ◦
tcnhn
1− t2

= tδ(λ)
∏
n

hln ◦
hn

1− t2
(7.20)

and cn = n − 2 (resp., 0, 3, 2) when n ≥ 3 (resp., n = 0, n = 1, n = 2) and

(.1
l12l2 . . . ) =

∑
n cnln.

Note that to calculate the Λn[[t]] part of Exp(cht(V)), we can truncate Equation

(7.19) to partitions λ with |λ| ≤ 3n. Indeed, the worst case occures when λ = (3n)

when |λ| = 3n and (.λ) = n. Compare also with [Loo96, Eqn.(1)].

Proof. Using Equations (2.12) and (2.13), we have

Exp(cht(V)) = Exp
( 1

1− t2
+

t3h1

1− t2
+

t2h2

1− t2
+
∞∑
n=3

tn−2hn
1− t2

)
=

∞∏
n=0

Exp
( tcnhn

1− t2
)

=
∞∏
n=0

∞∑
ln=0

hln ◦
tcnhn
1− t2

Encoding partitions λ = (1l12l2 . . . ) by their number of parts, the first result follows.

Since hln is homogeneous of degree ln, we have hln ◦ tcnhn = tlncnhln ◦ hn. The result

follows. �

n An
1 〈13〉
2 〈0〉+ 〈14〉+ 〈12〉+ 〈16〉+ 〈22, 12〉
3 〈19〉+ 〈22, 15〉+ 〈23, 13〉+ 〈32, 13〉+ 〈3, 23〉+ 2 〈15〉+ 〈2, 13〉+ 〈22, 1〉+ 〈17〉+ 〈2, 15〉

+〈22, 13〉+ 〈23, 1〉+ 2 〈13〉+ 〈1〉
4 2 〈0〉+ 4 〈22, 14〉+ 〈3, 23, 1〉+ 4 〈16〉+ 4 〈14〉+ 2 〈12〉+ 3 〈22, 12〉+ 〈22〉+ 〈34〉+ 2 〈23, 12〉

+3 〈18〉+ 2 〈24〉+ 〈32, 12〉+ 〈22, 18〉+ 〈3, 22, 1〉+ 2 〈2, 16〉+ 〈112〉+ 〈3, 23, 13〉+ 〈23, 16〉
+〈32, 16〉+ 〈24, 14〉+ 2 〈24, 12〉+ 2 〈23, 14〉+ 〈3, 2, 15〉+ 〈3, 22, 13〉+ 〈32, 14〉+ 〈32, 22〉
+〈32, 2, 12〉+ 〈2, 12〉+ 〈2, 18〉+ 2 〈22, 16〉+ 〈110〉+ 〈3, 2, 13〉+ 〈23〉+ 2 〈2, 14〉+ 〈32, 2, 14〉
+〈26〉+ 〈32, 22, 12〉+ 〈42, 14〉+ 〈4, 3, 22, 1〉
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n Degree n part of t

1 〈13〉

2 〈0〉+ 〈22〉

3 〈3, 12〉

4 〈2〉+ 〈3, 1〉+ 〈4, 2〉+ 〈23〉+ 〈3, 13〉

5 〈2, 1〉+ 〈13〉+ 〈4, 1〉+ 〈3, 2〉+ 〈3, 12〉+ 〈22, 1〉+ 〈2, 13〉+ 〈5, 12〉+ 〈4, 2, 1〉+ 〈32, 1〉

+〈3, 2, 12〉+ 〈22, 13〉

6 〈2〉+ 〈0〉+ 〈22, 14〉+ 〈24〉+ 〈3, 2, 13〉+ 〈3, 22, 1〉+ 2〈32, 12〉+ 〈4, 14〉+ 〈4, 2, 12〉+ 2〈4, 22〉
+〈4, 3, 1〉+ 〈42〉+ 〈5, 13〉+ 〈5, 2, 1〉+ 〈6, 2〉+ 〈16〉+ 〈2, 14〉+ 3〈22, 12〉+ 〈23〉+ 2〈3, 13〉
+4〈3, 2, 1〉+ 2〈32〉+ 2〈4, 12〉+ 2〈4, 2〉+ 2〈5, 1〉+ 2〈14〉+ 2〈2, 12〉+ 5〈22〉+ 2〈3, 1〉+ 2〈4〉
+2〈12〉

7 〈7, 12〉+ 6〈4, 13〉+ 10〈4, 2, 1〉+ 4〈4, 3〉+ 4〈5, 12〉+ 4〈5, 2〉+ 2〈6, 1〉+ 13〈3, 12〉+ 7〈4, 1〉
+〈5〉+ 4〈3〉+ 2〈33〉+ 〈4, 15〉+ 2〈4, 3, 2〉+ 3〈5, 2, 1, 1〉+ 〈5, 22〉+ 3〈5, 3, 1〉+ 〈6, 13〉
+〈6, 2, 1〉+ 〈6, 3〉+ 3〈3, 22, 12〉+ 〈3, 16〉+ 2〈32, 2, 1〉+ 3〈4, 3, 12〉+ 3〈4, 22, 1〉+ 3〈4, 2, 13〉
+〈42, 1〉+ 〈3, 2, 14〉+ 〈23, 13〉+ 〈32, 13〉+ 〈3, 23〉+ 7〈2, 1〉+ 5〈13〉+ 2〈2, 15〉+ 4〈22, 13〉
+4〈23, 1〉+ 4〈3, 14〉+ 10〈3, 2, 12〉+ 6〈3, 22〉+ 6〈32, 1〉+ 〈1〉+ 8〈22, 1〉+ 8〈2, 13〉+ 〈15〉
+8〈3, 2〉

8 15〈2〉+ 5〈22, 14〉+ 3〈24〉+ 20〈3, 2, 13〉+ 23〈3, 22, 1〉+ 15〈32, 12〉+ 11〈4, 14〉+ 29〈4, 2, 12〉
+17〈4, 22〉+ 22〈4, 3, 1〉+ 3〈42〉+ 10〈5, 13〉+ 20〈5, 2, 1〉+ 6〈6, 2〉+ 〈16〉+ 16〈2, 14〉
+20〈22, 12〉+ 20〈23〉+ 32〈3, 13〉+ 45〈3, 2, 1〉+ 9〈32〉+ 25〈4, 12〉+ 31〈4, 2〉+ 12〈5, 1〉
+6〈14〉+ 29〈2, 12〉+ 16〈22〉+ 31〈3, 1〉+ 8〈4〉+ 5〈12〉+ 3〈7, 1〉+ 5〈6〉+ 8〈5, 3, 12〉
+4〈5, 3, 2〉+ 3〈5, 4, 1〉+ 2〈6, 14〉+ 4〈6, 22〉+ 3〈6, 3, 1〉+ 2〈6, 4〉+ 〈7, 13〉+ 2〈7, 2, 1〉
+〈8, 2〉+ 10〈5, 3〉+ 〈4, 32〉+ 〈5, 15〉+ 5〈5, 2, 13〉+ 5〈5, 22, 1〉+ 3〈6, 2, 12〉+ 6〈6, 12〉
+3〈33, 1〉+ 〈32, 22〉+ 5〈4, 22, 12〉+ 2〈2, 16〉+ 5〈4, 2, 14〉+ 〈23, 14〉+ 9〈4, 3, 2, 1〉+ 5〈4, 23〉
+6〈4, 3, 13〉+ 〈42, 12〉+ 5〈42, 2〉+ 14〈32, 2〉+ 9〈23, 12〉+ 8〈3, 15〉+ 4〈3, 22, 13〉+ 〈3, 17〉
+2〈3, 2, 15〉+ 2〈25〉+ 6〈32, 2, 12〉+ 〈32, 14〉+ 3〈3, 23, 1〉

Appendix A. λ-rings

Using the ring Λ, it is possible to give a very direct definition of Grothendieck’s λ- and

special λ-rings. We follow more recent usage in referring to special λ-rings as λ-rings,

and to λ-rings as pre-λ-rings.

A.1. Pre-λ-rings. A pre-λ-ring is a commutative ring R, together with a morphism

of commutative rings σt : R→ R[[t]] such that σt(a) = 1 + ta+O(t2). Expanding σt in

a power series

σt(a) =
∞∑
n=0

tnσn(a),
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we obtain endomorphisms σn of R such that σ0(a) = 1, σ1(a) = a, and

σn(a+ b) =
n∑
k=0

σn−k(a)σk(b).

There are also operations λk(a) = (−1)kσk(−a), with generating function

λt(a) =
∞∑
n=0

tnλn(a) = σ−t(a)−1. (A.21)

The λ-operations are polynomials in the σ-operations with integral coefficients, and vice

versa. In this paper, we take the σ-operations to be more fundamental; nevertheless,

following custom, the structure they define is called a pre-λ-ring.

Given a pre-λ-ring R, there is a bilinear map Λ ⊗ R → R, which we denote f ◦ a,

defined by the formula

(hn1 . . . hnk
) ◦ a = σn1(a) . . . σnk

(a).

The image of the power sum pn under this map is the operation on R known as the

Adams operation ψn. We denote the operation corresponding to the Schur function sλ
by σλ. Note that (2.5) implies the relation

σt(a) = exp
( ∞∑
n=1

tnψn(a)

n

)
,

from which the following result is immediate.

Proposition A.1. If R and S are pre-λ-rings, their tensor product R ⊗ S is a pre-λ-

ring, with σ-operations

σn(a⊗ b) =
∑
|λ|=n

σλ(a)⊗ σλ(b),

and Adams operations ψn(a⊗ b) = ψn(a)⊗ ψn(b).

For example, σ2(a⊗ b) = σ2(a)⊗ σ2(b) + λ2(a)⊗ λ2(b).

A.2. λ-rings. The polynomial ring Z[x] is a pre-λ-ring, with σ-operations characterized

by the formula σn(xi) = xni. Taking tensor powers of this pre-λ-ring with itself, we see

that the polynomial ring Z[x1, . . . , xk] is a pre-λ-ring. The λ-operations on this ring

are equivariant with respect to the permutation action of the symmetric group Sk on

the generators, hence the ring of symmetric functions Z[x1, . . . , xk]
Sk is a pre-λ-ring.

Taking the limit k →∞, we obtain a pre-λ-ring structure on Λ.

Definition A.2. A λ-ring is pre-λ-ring such that if f, g ∈ Λ and x ∈ R,

f ◦ (g ◦ x) = (f ◦ g) ◦ x. (A.22)
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By definition, the pre-λ-ring Λ is a λ-ring; in particular, the operation f ◦ g, called

plethysm, is associative.

The following result (see Knutson [Knu73]) is the chief result in the theory of λ-rings.

Theorem A.1. Λ is the universal λ-ring on a single generator h1.

This theorem makes it straightforward to verify identities in λ-rings: it suffices to

verify them in Λ. As an application, we have the following corollary.

Corollary A.3. The tensor product of two λ-rings is a λ-ring.

Proof. We need only verify this for R = Λ. A torsion-free pre-λ-ring whose Adams

operations are ring homomorphisms which satisfy ψm(ψn(a)) = ψmn(a) is a λ-ring. It

is easy to verify these conditions for Λ⊗ Λ, since ψn(a⊗ b) = ψn(a)⊗ ψn(b). �

In the definition of a λ-ring, it is usual to adjoin the axiom

σn(xy) =
∑
|λ|=n

σλ(a)⊗ σλ(y).

However, this formula follows from our definition of a λ-ring: by universality, it suffices

to check it for R = Λ⊗ Λ, x = h1 ⊗ 1 and y = 1⊗ h1, for which it is evident.

A.3. Complete λ-rings. A filtered λ-ring R is a λ-ring with decreasing filtration

R = F 0R ⊃ F 1R ⊃ . . . ,

such that

(i)
⋂
k F

kR = 0 (the filtration is discrete);

(ii) FmRF nR ⊂ Fm+nR (the filtration is compatible with the product);

(iii) σm(F nR) ⊂ FmnR (the filtration is compatible with the λ-ring structure).

The completion of a filtered λ-ring is again a λ-ring; define a complete λ-ring to be

a λ-ring equal to its completion. For example, the universal λ-ring Λ is filtered by

the subspaces F nΛ of polynomials vanishing to order n − 1, and its completion is

the λ-ring of symmetric power series, whose underlying ring is the power series ring

Z[[h1, h2, h3, . . . ]].

The tensor product of two filtered λ-rings is again a filtered λ-ring, when furnished

with the filtration

F n(R⊗ S) =
n∑
k=0

F n−kR⊗ F kS.

If R and S are filtered λ-rings, denote by R⊗̂S the completion of R⊗ S.

If R is a complete λ-ring, the operation

Exp(a) =
∞∑
n=0

σn(a) : F1R −→ 1 + F1R
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is an analogue of exponentiation, in the sense that Exp(f + g) = Exp(f) Exp(g). Its

logarithm is given by a formula of Cadogan [Cad71].

Proposition A.4. On a complete filtered λ-ring R, the operation Exp : F1R→ 1+F1R

has inverse

Log(1 + a) =
∞∑
n=1

µ(n)

n
log(1 + ψn(a)).

Proof. Expanding Log(1 + a), we obtain

Log(1 + a) = −
∞∑
n=1

1

n

∑
d|n

µ(d)ψd(−a)n/d =
∞∑
n=1

Logn(a).

Let χn be the character of the cyclic group Cn equalling e2πi/n on the generator of Cn.

The characteristic of the Sn-module IndSn
Cn
χn equals

1

n

n−1∑
k=0

e2πik/np
n/(k,n)
(k,n) =

1

n

∑
d|n

µ(d)p
n/d
d ,

while the characteristic of the Sn-module IndSn
Cn
χn ⊗ εn, where εn is the sign represen-

tation of Sn, equals

1

n

∑
d|n

µ(d)
(
(−1)d−1pd

)n/d
=

(−1)n

n

∑
d|n

µ(d)(−pd)n/d.

It follows that (−1)n−1 Logn is the operation associated to the Sn-module IndSn
Cn
χn⊗εn,

and hence defines a map from F1R to FnR.

To prove that Log is the inverse of Exp, it suffices to check this for R = Λ and x = h1.

We must prove that

Exp

(
∞∑
n=1

µ(n)

n
log(1 + pn)

)
= 1 + h1.

The logarithm of the expression on the left-hand side equals

exp
( ∞∑
k=1

pk
k

)
◦
( ∞∑
n=1

µ(n)

n
log(1 + pn)

)
=
∞∑
n=1

∑
d|n

µ(d)
log(1 + pn)

n
= log(1 + p1),

and the formula follows. �
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[KM94] Maxim Kontsevich and Yuri Manin, Gromov-Witten classes, quantum cohomology, and enu-
merative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562.

[KM96] Nariya Kawazumi and Shigeyuki Morita, The primary approximation to the cohomology of
the moduli space of curves and cocycles for the stable characteristic classes, Math. Res. Lett.
3 (1996), no. 5, 629–641.

[Knu73] Donald Knutson, λ-rings and the representation theory of the symmetric group, Lecture Notes
in Mathematics, Vol. 308, Springer-Verlag, Berlin, 1973.

[Kon94] Maxim Kontsevich, Feynman diagrams and low-dimensional topology, First European Con-
gress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, Birkhäuser, Basel, 1994,
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