
A STABILITY CONJECTURE FOR THE COLORED JONES
POLYNOMIAL

STAVROS GAROUFALIDIS AND THAO VUONG

Abstract. We formulate a stability conjecture for the coefficients of the colored Jones
polynomial of a knot when the color lies in a fixed ray of a simple Lie algebra. Our conjecture
is motivated by a structure theorem for the degree and the coefficients of a q-holonomic
sequences given in [Gar11] and by a stability theorem of the colored Jones polynomial of an
alternating knot given in [GL15]. We prove our conjecture for all torus knots and all simple
Lie algebras of rank 2. Finally, we illustrate our results with a few explicit q-series.
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1. Introduction

1.1. The degree and coefficients of a q-holonomic sequence. Our goal is to formulate
a stability conjecture for the coefficients of q-holonomic sequences that appear naturally in
Quantum Knot Theory [GL05]. Our conjecture is motivated by

(a) a structure theorem for the degree and coefficients of a q-holonomic sequence of
polynomials given in [Gar11],

(b) a stability theorem of the colored Jones polynomial of an alternating knot [GL15].

To discuss our first motivation, recall [Zei90] that a sequence (fn(q)) is q-holonomic if it
satisfies a linear recursion

d∑
j=0

cj(q
n, q)fn+j(q) = 0

for all n where cj(u, v) ∈ Z[u, v] and cd 6= 0. Here, fn(q) is either in Z[q±1], the ring of
Laurent polynomials with integer coefficients, or more generally in Q(q), the field of rational
functions with rational coefficients or even Z((q)), the ring of Laurent power series in q∑

j∈Z ajq
j (with aj integers, vanishing when j is small enough). Z((q)) has a subring Z[[q]]

of formal power series in q, where aj = 0 for j < 0. The degree δ∗(f(q)) of f(q) ∈ Z((q)) is
the smallest integer m such that qmf(q) ∈ Z[[q]].

Thus, we can expand every non-zero sequence (fn(q)) in the form

(1) fn(q) = a0(n)qδ
∗(n) + a1(n)qδ

∗(n)+1 + a2(n)qδ
∗(n)+2 + . . .

where δ∗(n) is the degree of fn(q) and ak(n) is the k-th coefficient of q−δ
∗(n)fn(q), reading

from the left. We will often call ak(n) the k-th stable coefficient of the sequence (fn(q)).
In [Gar11] it was proven that if (fn(q)) is q-holonomic, then

• δ∗(n) is a quadratic quasi-polynomial for all but finitely many values of n,
• for every k ∈ N, ak(n) is recurrent for all but finitely many values of n.

Recall that a quasi-polynomial (of degree at most d) is a function of the form

p : N −→ Z, n 7→ p(n) =
d∑
j=0

cj(n)nj

where cj : N −→ Q are periodic functions. Let P denote the ring of integer-valued quasi-
polynomials. A recurrent sequence is one that satisfies a linear recursion with constant
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coefficients. Recurrent sequences are well-known in number theory under the name of Gen-
eralized Exponential Sums [vdP89, EvdPSW03]. The latter are expressions of the form

a(n) =
m∑
i=1

Ai(n)αni

with roots αi, 1 ≤ i ≤ m distinct algebraic numbers and polynomials Ai. Integer-valued
generalized exponential sums form a ring E , which contains a subring P that consists of
integer-valued exponential sums whose roots are complex roots of unity.

1.2. Stability of the colored Jones polynomial of an alternating link. The second
motivation of our Conjecture 1.5 below comes from the stability theorem of [GL15] that
concerns the colored Jones polynomial of an alternating link. Let Z((q)) denote the ring of
formal Laurent power series in q with integer coefficients. Every element of Z((q)) has the
form f(q) =

∑∞
n=n0

anq
n for some n0 ∈ Z and an ∈ Z. If f(q) 6= 0, the smallest n such that

an 6= 0 is denoted by δ∗(f). Given fn(q), f(q) ∈ Z((q)), we say that

lim
n→∞

fn(q) = f(q)

if there exists C such that δ∗(fn(q)) > C for all n, and for every m ∈ N there exists nm ∈ N
such that

fn(q)− f(q) ∈ qmZ[[q]]

for all n ≥ nm. The next definition of stability appears in [GL05] and the notion of its tail
is inspired by Dasbach-Lin [DL06].

Definition 1.1. We say that a sequence fn(q) ∈ Z[[q]] is stable if there exists a series
F (x, q) =

∑∞
k=0 Φk(q)x

k ∈ Z((q))[[x]] such that for every k ∈ N, we have

(2) lim
n→∞

q−k(n+1)

(
fn(q)−

k∑
j=0

Φj(q)q
j(n+1)

)
= 0 .

We will call F (x, q) the (x, q)-tail (in short, the tail) of the sequence (fn(q)).

Examples of stable sequences are the shifted colored Jones polynomials of an alternating
link. Let JK,n(q) ∈ Z[q±1/2] denote the colored Jones polynomial of a link K colored by the
(n + 1)-dimensional irreducible representation of sl2 (see [Tur88, Tur94]). Let δ∗K(n) and
aK,0(n) denote the degree and the 0-th stable coefficient of JK,n(q). It is well-known that
aK,0(n) = (−1)c−n where c− is the number of negative crossings of K [Lic97].

Theorem 1.2. [GL15] If K is an alternating link, then the sequence aK,0(−n)q−δ
∗
K(n)JK,n(q) ∈

Z[q] is stable.

1.3. c-stability. We are now ready to introduce the notion of c-stability.

Definition 1.3. We say that a sequence fn(q) ∈ Z((q)) with q-degree δ∗(n) is c-stable (i.e.,
cyclotomically stable) if there exists a series F (n, x, q) =

∑∞
k=0 Φk(n, q)x

k ∈ P((q))[[x]] such
that for every k ∈ N, we have

(3) lim
n→∞

q−k(n+1)

(
q−δ

∗(n)fn(q)−
k∑
j=0

Φj(n, q)q
j(n+1)

)
= 0 .
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We will call F (n, x, q) the (n, x, q)-tail (in short, tail) of the sequence (fn(q)).

Remark 1.4. The stable coefficients of a c-stable sequence (fn(q)) are quasi-polynomials.
I.e., with the notation of Equation (1), we have that ak ∈ P for all k. In fact, if (fn(q)) is
c-stable and l ∈ N, the stable coefficients of the sequence

q−l(n+1)

(
fn(q)−

l−1∑
j=0

Φj(q)q
j(n+1)

)
are quasi-polynomials.

1.4. Our results. For a knot K in S3, colored by an irreducible representation Vλ of a
simple Lie algebra g with highest weight λ, one can define the colored Jones polynomial
Jg
K,Vλ

(q) ∈ Z[q±1] [Tur88, Tur94]. This requires a rescaled definition of q, which depends
only on the Lie algebra and not on the knot, and is discussed carefully in [Le00]. In [GL05]
it was shown that for every knot K and every simple Lie algebra g, the function λ 7→ Jg

K,Vλ
(q)

(and consequently the sequence (Jg
K,nλ(q))) is q-holonomic.

Conjecture 1.5. Fix a knot K, a simple Lie algebra g and a dominant weight λ of g. Then
the sequence (Jg

K,nλ(q)) of colored Jones polynomials is c-stable.

Theorem 1.6. Conjecture 1.5 holds for all torus knots and all rank 2 simple Lie algebras.

For a precise formula for the tail, see Theorem 7.2.
An earlier publication [GMV13] gives an alternative proof of Theorem 1.6 for the trefoil

and the case of the A2 simple Lie algebra.

Remark 1.7. Theorem 1.2 implies that if K is an alternating knot with c− crossings and
k ∈ N, the k-th stable coefficient aK,k(n) of the sequence (JK,n(q)) is given by

aK,k(n) = (−1)c−ncoeff(ΦK,0(q), qk)

and satisfies the first order linear recurrence relation

aK,k(n+ 1)− (−1)c−aK,k(n) = 0 .

Here coeff(f(q), qk) denotes the coefficient of qk in f(q) ∈ Z((q)). The stable coefficients
cK,k of an alternating knot K are studied in [GV15, GNV15]. In all examples of the colored
Jones polynomial of a knot that have been analyzed (this includes alternating knots, torus
knots and the 2-fusion knots), the k-stable coefficient is a quasi-polynomial of degree 0, i.e.,
it is constant on suitable arithmetic progressions. One might think that this holds for all
simple Lie algebras. Example 1.10 below shows that this is not the case, hence the notion
of c-stability is necessary.

1.5. A sample of q-series. In this section we give a concrete sample of tails and q-series
that appear in our study.

Example 1.8. Consider the theta series given by [BvdGHZ08]

(4) θb,c(q) =
∑
s∈Z

(−1)sq
b
2
s2+cs .

In Section 10 we will prove the following.
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Theorem 1.9. The tail of the c-stable sequence (JA2

T (2,b),nλ1
(q)) for b > 2 odd is given by

θb, b
2
−1(q)(1 + q3x2) + q3θb, b

2
+2(q)x

(1− q)(1− qx)(1− q2x)
.

In particular, when b = 3 (i.e., the case of the trefoil), the tail equals to

(q)∞
1− qx+ q3x2

(1− q)(1− qx)(1− q2x)
.

Here, (x; q)∞ =
∏∞

k=0(1− qkx) and (q)∞ = (q; q)∞.

Example 1.10. The tail of the c-stable sequence (JA2

T (4,5),nρ(q)) is given by

1

(1− xq)2(1− x2q2)
(A0(q) + nA1(q))

where A0(q), A1(q) ∈ Z[[q]] are given explicitly in Proposition 10.3. The first few terms of
those q-series are given by

A0(q) = 1− 2q + 2q3 − q4 + q48 − 2q55 − 2q57 + 2q63 + 2q66 + 2q69 + 2q75 − q76 − 2q78 − 2q81

− 2q82 − q84 − 2q85 + 2q87 + . . .

A1(q) = 1− 2q + 2q3 − q4 − q6 + 2q9 + 2q10 − 2q12 − 4q15 − q18 + 2q19 + 2q21 + 3q22 − 2q27

− 2q30 − 2q33 + 4q36 − q42 − 2q46 + q48 − 2q49 + 2q51 + 2q55 + 4q57 − 2q58 + 2q60 − 4q64

− 2q66 − 2q69 − 2q73 − q76 + 4q78 + 2q81 + 2q82 + q84 + 2q85 − 2q87 + . . .

It follows that for every fixed k, the k-th stable coefficient ak(n) of (JA2

T (4,5),nρ(q)) satisfies the

linear recursion relation

ak(n+ 2)− 2ak(n+ 1) + ak(n) = 0

for all n.
Using the methods of [BvdGHZ08], one can show that

A1(q) =
∑

m1,m2∈Z

q20(m2
1+3m1m2+3m2

2)+2m1+3m2(1− q4m1+1)(1− q4m1+12m2+1)(1− q8m1+12m2+2)

= (q)∞

∑
n∈Z

(−1)nq
15n2+n

2 −
∑

n∈ 3
5

+Z

(−1)nq
15n2+n

2


= (q)∞

(
(q7; q15)∞(q8; q15)∞(q15; q15)∞ − q(1− q2)(q13; q15)∞(q15; q15)∞(q17; q15)∞

)
.

2. Lie algebra notation

We recall some standard Lie algebra notation that we will use throughout the paper
[Bou68, Hum78].

g denotes a simple Lie algebra over the complex numbers. W is the Weyl group of g, Λ
and Λr are the weight and root lattices of g. Λ+ denotes the set of dominant weights, with
respect to a choice of Weyl chamber.
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p : Λr −→ N denotes the Kostant partition function which is the number of ways to express
an element of the root lattice as a linear combination (of nonnnegative integer coefficients)
of positive roots of g.

Let ρ denote half of the sum of positive roots.
If λ ∈ Λ+ is a dominant weight, Vλ denote the irreducible representation of highest weight

λ, and Πλ denote the set of weights of Vλ.
If r is the rank of g, we we denote by αi for i = 1, . . . , r the simple roots of g, and by λi

for i = 1, . . . , r the fundamental weights of g.

3. The colored Jones polynomial of a torus knot

3.1. The Jones-Rosso formula. To verify Conjecture 1.5 for all torus knots T (a, b) (where
0 < a < b and a and b are coprime integers), we will use the formula of Jones-Rosso [RJ93].
It states that

(5) Jg
T (a,b),λ(q) =

θ−abλ

dλ

∑
µ∈Sλ,a

mµ
λ,adµθ

b
a
µ

where

• dλ is the quantum dimension of Vλ and θλ is the eigenvalue of the twist operator on
the representation Vλ given by:

(6) dλ =
∏
α>0

[(λ+ ρ, α)]

[(ρ, α)]
, θλ = q

1
2

(λ,λ+2ρ), [n] =
q
n
2 − q−n2
q

1
2 − q− 1

2

.

• mµ
λ,a ∈ Z is the multiplicity of Vµ in the a-plethysm of Vλ where ψa denote the

a-Adams operation. I.e., we have:

(7) ψa(chλ) =
∑
µ∈Sλ,a

mµ
λ,achµ

where chλ is the formal character of Vλ.

To describe the plethysm multiplicity mµ
λ,a and the summation set Sλ,a, recall the Kostant

multiplicity formula [Kos59] which expresses the multiplicities mµ
λ of the µ-weight space of

Vλ in terms of the Kostant partition function p:

(8) mµ
λ =

∑
σ∈W

(−1)σp(σ(λ+ ρ)− µ− ρ) .

As usual, W is the Weyl group of the simple Lie algebra g and ρ is half the sum of its positive
roots.

Lemma 3.1. (a) We have:

(9) mµ
λ,a =

∑
σ∈W

(−1)σm
µ+ρ−σ(ρ)

a
λ
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where the summation is over the elements σ ∈ W such that µ+ρ−σ(ρ)
a

is in the weight lattice
(but not necessarily a dominant weight).
(b) It follows that

(10) Sλ,a =

[ ⋃
σ∈W

(σ(ρ)− ρ+ aΠλ)

]
∩ Λ+

where Πλ is the set of all weights of Vλ and Λ+ is the set of dominant weights of g.

Remark 3.2. The Jones-Rosso formula (5) combined with Equations (8) and (9) imply that
that we can write

(11) Jg
T (a,b),λ(q) =

∑
σ,σ′∈W

Jg
T (a,b),λ,σ,σ′(q)

for some rational functions Jg
T (a,b),λ,σ,σ′(q). It is easy to see that the sequences (Jg

T (a,b),nλ,σ,σ′(q))

are q-holonomic (with respect to n) and c-stable. If cancellation of the leading and trailing
terms did not occur in Equation (11), it would imply a short proof of Theorem 1.6 for all
torus knots and all simple Lie algebras. Unfortunately, after we perform the sum in Equation
(11) cancellation occurs and the degree of the summand is much lower than the degree of
the sum. This already happens for A2 and the trefoil, an alternating knot. This cancellation
is responsible for the minimizer µλ,a to be of order O(λ) rather than O(1) in case A2, part
(b) of Theorem 3.4.

3.2. The degree of the colored Jones polynomial. The Jones-Rosso formula can be
written in the form

Jg
T (a,b),λ(q) =

q−
ab
2

(λ,λ)−(−1+ab)(λ,ρ)∏
α�0

(1− q(λ+ρ,α))

∑
µ∈Sλ,a

q
b
2a

(µ,µ)+(−1+ b
a

)(µ,ρ)
∏
α�0

(1− q(µ+ρ,α)) .(12)

Here the products are taken over the set of positive roots {α} of g. When the dominant
weight λ and the torus knot T (a, b) is fixed, the minimum and the maximum degree of the
summand are positive-definite quadratic forms f ∗(µ) and f(µ) given by

f ∗(µ) =
b

2a
(µ, µ) +

(
−1 +

b

a

)
(µ, ρ)− ab

2
(λ, λ)− (−1 + ab)(λ, ρ)(13a)

f(µ) =
b

2a
(µ, µ) +

(
1 +

b

a

)
(µ, ρ)− ab

2
(λ, λ)− (1 + ab)(λ, ρ) .(13b)

In Section 8 we will prove the following.

Theorem 3.3. Fix a simple Lie algebra g and a torus knot T (a, b). The quadratic form

f(µ) achieves maximum uniquely at Mλ,a = aλ ∈ Sa,λ. Moreover, m
Mλ,a

λ,a = 1.

The next theorem states that f ∗(µ) has a unique minimizer which we denote by µλ,a
and describes µλ,a explicitly for all simple Lie algebras of rank 2. Below, {λ1, λ2} are the
dominant weights of a simple Lie algebra of rank 2. Its proof is given in Section 9 using a
case-by-case analysis.
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Theorem 3.4. When g is a simple Lie algebra of rank 2, then
(a)The quadratic form f ∗(µ) achieves minimum uniquely at µλ,a ∈ Sa,λ and mµ

λ,a 6= 0.
(b) For a dominant weight λ = m1λ1 +m2λ2, we have
For A2:

µλ,2 =

{
(m1 −m2)λ2 if m1 ≥ m2

(m2 −m1)λ1 if m1 ≤ m2

µλ,3 = 0

and

µλ,a =


0 if m1 ≡ m2 mod 3

(a− 3)λ1 if m1 ≡ m2 + 1 mod 3

(a− 3)λ2 if m1 ≡ m2 + 2 mod 3

for a ≥ 4 .

For B2:

µλ,2 =

{
λ1 if m1 = 0 ,m2 ≡ 1 mod 2

0 otherwise
µλ,3 =


0 if m1,m2 ≡ 0 mod 2

2λ2 if m1 ≡ 1 mod 2 ,m2 ≡ 0 mod 2

λ1 + λ2 if m2 ≡ 1 mod 2

µλ,4 = 0 µλ,a =

{
0 if m2 ≡ 0 mod 2

(a− 4)λ2 if m2 ≡ 1 mod 2
for a ≥ 5 .

For G2:

µλ,a = 0 for a ≥ 2 .

Theorem 3.4 part (b) implies the following.

Corollary 3.5. µnλ,a is a piecewise quasi-linear (i.e., quasi-polynomial of degree 1) function
of n for n� 0.

Let δ∗K(λ) and δK(λ) denote the minimum and the maximum degree of the colored Jones
polynomial Jg

K,Vλ
(q) with respect to q.

Corollary 3.6. We have:

δ∗T (a,b)(λ) = f ∗(µλ,a)(14a)

δT (a,b)(λ) = f(aλ) .(14b)

4. Some lemmas about stability

In this section we collect some lemmas about stable sequences.

Lemma 4.1. Fix natural numbers c and d and consider gn(q) = fn(q)
1−qcn+d . Then (fn(q)) is

stable if and only if (gn(q)) is stable. In that case, their corresponding tails F (x, q) and
G(x, q) satisfy

(15) G(x, q) =
F (x, q)

1− qdxc
.
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Proof. Let

F (x, q) =
∞∑
k=0

φk(q)x
k, G(x, q) =

∞∑
k=0

ψk(q)x
k .

If F and G satisfy Equation (15), collecting powers of xk on both sides implies that

(16) ψk(q) =
∑
i+jc=k

φi(q)q
jd .

Assume that fn(q) is stable, and define ψk(q) by Equation (16). We will prove by induction
on k that gn(q) is k-stable with corresponding limit ψk(q). Let

α0,n(q) =fn(q)

αk,n(q) =q−n(αk−1,n − φk−1(q))

=q−kn

(
fn(q)−

k−1∑
l=0

φl(q)q
ln

)
, k ≥ 1

and

β0,n(q) =gn(q)

βk,n(q) =q−n(βk−1,n − ψk−1(q))

=q−kn

(
gn(q)−

k−1∑
l=0

ψl(q)q
ln

)
, k ≥ 1 .

For k = 0, the limit of gn(q) is limn→∞ gn(q) = limn→∞
fn(q)

1−qcn+d = φ0(q) = ψ0(q).
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Assuming by induction that gn(q) is (k − 1)-stable, we have

βk,n(q) =q−kn

(
fn(q)

1− qcn+d
−

k−1∑
l=0

∑
i+jc=l

φi(q)q
jdq(i+jc)n

)

=q−kn

(
fn(q)

∞∑
j=0

qj(cn+d) −
∑

0≤i+jc≤k−1

φi(q)q
inqj(cn+d)

)

=q−kn
b k−1

c
c∑

j=0

qj(cn+d)

(
fn(q)−

k−1−jc∑
i=0

φi(q)q
in

)
+ q−kn

∑
j>b k−1

c
c

qj(cn+d)fn(q)

=

b k−1
c
c∑

j=0

qjdq−(k−jc)n

(
fn(q)−

k−1−jc∑
i=0

φi(q)q
in

)
+ q−kn

∑
j>b k−1

c
c

qj(cn+d)fn(q)

=

b k−1
c
c∑

j=0

qjdαk−jc,n(q) + q−kn
∑

j>b k−1
c
c

qj(cn+d)fn(q)

=

b k−1
c
c∑

j=0

qjdαk−jc,n(q) + q−kn
∑

b k−1
c
c<j≤ k

c

qj(cn+d)fn(q) + q−kn
∑
j> k

c

qj(cn+d)fn(q)

=
∑
i+jc=k

qjdαi,n(q) +
∑
j> k

c

qn(jc−k)+jdfn(q) .

Therefore,

lim
n→∞

βk,n(q) =
∑
i+jc=k

qjdφi(q) = ψk(q) .

Conversely, if (gn(q)) is stable, so is (fn(q)). �

Lemma 4.2. Fix a rational polytope P ⊂ [0,∞)r that intersects the interior of every positive
coordinate ray and a positive definite quadratic function Q : Zr −→ Z. Let c : N×Zr −→ Z
be such that for each fixed v ∈ Zr and for n � 0, c(n, v) = t(n, v) where n 7→ t(n, v) is a
quasi-polynomial. For each natural number n define

Tn(q) =
∑

v∈nP∩L

c(n, v)qQ(v) ,

where L = Zr. Then (Tn(q)) is c-stable and its (n, x, q)-tail is independent of x and given by

F (n, x, q) =
∑

v∈L∩Rr+

t(n, v)qQ(v) .

Proof. Let φ0(n, q) =
∑

v∈L∩Rr+
t(n, v)qQ(v). We need to prove that for all k ≥ 0, we have

lim
n→∞

q−kn(Tn(q)− φ0(n, q)) = 0 .
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Let Pn = nP ∩ L. We have

q−kn(Tn(q)− φ0(n, q)) =q−kn
∑
v∈Pn

(c(n, v)− t(n, v))qQ(v) −
∑

v∈(L∩Rr+)\Pn

t(n, v)qQ(v)−kn(17)

=−
∑

v∈(L∩Rr+)\Pn

t(n, v)qQ(v)−kn(18)

for n large enough. Let us first assume that Q is a quadratic form and let d be the minimum
of Q on Rr \ P ◦, where P ◦ denotes the interior of P . We will prove that d > 0. Indeed,
since Q is a positive definite form we only need to minimize Q over the union F of the faces
of P that are not in the coordinate planes. Since F is compact, Q attains its minimum at
some v0 ∈ F and d = Q(v0) > 0 since v0 6= 0. If v ∈ Rr \ nP ◦ then v = nv′, v′ ∈ Rr \ P ◦,
so Q(v) = Q(nv′) = n2Q(v′) ≥ dn2. Therefore the limit of the right hand side of Equation
(17) as n approaches infinity is zero.

If Q is not a quadratic form we can write Q = Q2 +Q1 where Q2 is the quadratic part of
Q. Then if v ∈ Rr \ nP ◦ we have Q(v) = Q2(v) + Q1(v) ≥ dn2 + Q1(v) > (d + 1)n2 for n
large enough. �

Remark 4.3. Let p ∈ P . The tangent cone Tan(P, p) is defined to be the set of all directions
v that one can go and stay in P :

Tan(P, p) = {v ∈ Rr|p+ εv ∈ P for small ε > 0} .

Lemma 4.2 still holds if we replace nP with n(P − p) or nP − p and L with a union of a
finite number of translates of L. In this setting, the stable series is

F (n, x, q) =
∑

v∈Tan(P,p)∩Zr
t(n, v)qQ(v) .

Remark 4.4. Suppose that fn(q) satisfies δ∗(fn(q)) ≥ cn2 for some c > 0, n ≥ 0 then gn(q)
is c-stable if gn(q) + fn(q) is c-stable and they have the same tails.

5. Stability of the multiplicity

5.1. Lie algebra notation. Let us recall some standard notation from [Bou68, Hum78]. Let
g denote a simple Lie algebra of rank r with weight lattice Λ, root lattice Λr and normalized
inner product (·, ·) on Λ. Let W be its Weyl group and Λ+ the set of all the dominant
weights with respect to a fixed Weyl chamber. Let αi (resp., λi), 1 ≤ i ≤ r, be the set of
simple roots (resp., fundamental weights) of g.The root lattice Λr has the partial order given

by β ≺ α if and only if α− β =
r∑
i=1

niαi where ni ∈ N, i = 1, . . . , r.

For a dominant weight λ ∈ Λ+, let Vλ denote the corresponding irreducible representation
Vλ and let Πλ denote the set of all of the weights of Vλ.

The Kostant partition function p(α) of an element of the root lattice α is the sum of all
ways of writing α as a nonnegative integer linear combination of positive roots [Kos59].
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5.2. A formula for the multiplicity of the plethysm. In this section we prove Lemma
3.1.

Proof. (of Lemma 3.1) (a) We have

(19) ψa(chλ) = ψa(
∑
µ∈Πλ

mµ
λeµ) =

∑
µ∈Πλ

mµ
λψa(eµ) =

∑
µ∈Πλ

mµ
λeaµ .

From Equations (7) and (19) we have

(20)
∑
µ

mµ
λ,achµ =

∑
µ∈Πλ

mµ
λeaµ .

Let us define ω(µ) :=
∑
σ∈W

(−1)σeσ(µ) by for µ ∈ Λ+. The Weyl character formula states

that [Hum78]:

ω(ρ)chλ = ω(λ+ ρ) .

Multiplying both sides of Equation (20) with ω(ρ) and applying Weyl’s formula we have

(21)
∑
µ

mµ
λ,aω(µ+ ρ) = (

∑
µ∈Πλ

mµ
λeaµ)ω(ρ) .

Replacing ω(µ+ ρ) with
∑
σ∈W

(−1)σeσ(µ+ρ) and ω(ρ) with
∑
σ∈W

(−1)σeσ(ρ) in Equation (21) we

have ∑
µ

∑
σ∈W

(−1)σmµ
λ,aeσ(µ+ρ) =(

∑
µ∈Πλ

mµ
λeaµ)(

∑
σ∈W

(−1)σeσ(ρ))(22)

=
∑
µ∈Πλ

∑
σ∈W

(−1)σmµ
λeaµ+σ(ρ) .(23)

Setting σ(µ + ρ) = ν + ρ on the left hand side of Equation (23) and aµ + σ(ρ) = ν + ρ on
right hand side we have

(24)
∑
ν

∑
σ∈W

(−1)σm
σ−1(ν+ρ)−ρ
λ,a eν+ρ =

∑
ν

∑
σ∈W

(−1)σm
ν+ρ−σ(ρ)

a
λ eν+ρ .

But we want σ−1(ν + ρ)− ρ to be a dominant weight, which can happen only when σ = 1.
Therefore Equation (24) becomes

(25)
∑
ν

mν
λ,aeν+ρ =

∑
ν

∑
σ∈W

(−1)σm
ν+ρ−σ(ρ)

a
λ eν+ρ .

Identifying the coefficients of eν+ρ on both sides of Equation (25) gives us the desired equality.

(b) This follows from the fact that mν
λ 6= 0 if and only if ν ∈ Πλ. If ν = µ+ρ−σ(ρ)

a
this means

that µ ∈ σ(ρ)− ρ+ aΠλ. �
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5.3. Stability of the plethysm multiplicity. In this section we will prove that mµ+nν
nλ,a

is a piecewise quasi-polynomial of n � 0 where λ ∈ Λ+, µ, ν ∈ Λ. A piecewise quasi-
polynomial function on a rational vector space is a rational polyhedral fan together with a
quasi-polynomial function on each chamber of the fan. Piecewise quasi-polynomials appear
naturally as vector partition functions [Stu95]. The Kostant partition function of a simple
Lie algebra g is a vector partition function (see [Kos59]), hence a piecewise quasi-polynomial.

Theorem 5.1. Let λ ∈ Λ+, µ, ν ∈ Λ, then mµ+nν
nλ,a is a piecewise quasi-polynomial in n for

n� 0.

Proof. We have

(26) mµ+nν
nλ,a =

∑
σ∈W

(−1)σm
µ+nν+ρ−σ(ρ)

a
nλ

and by Kostant’s multiplicity formula in [Kos59], we have

m
µ+nν+ρ−σ(ρ)

a
nλ =

∑
σ′∈W

(−1)σ
′
p

(
σ′(nλ+ ρ)− (

µ+ nν + ρ− σ(ρ)

a
+ ρ)

)
=

∑
σ′∈W

(−1)σ
′
p

(
nσ′(λ)− (

µ+ nν + ρ− σ(ρ)

a
+ ρ− σ′(ρ))

)
=

∑
σ′∈W

(−1)σ
′
p

(
n(σ′(λ)− ν

a
)− (

µ+ ρ− σ(ρ)

a
+ ρ− σ′(ρ))

)
=

∑
σ′∈W

(−1)σ
′
p (nλ′ − α′) .

Assume that nλ′−α′ can be written as sum of positive roots of g so that p(nλ′−α′) 6= 0. For
n� 0, nλ′−α′ stays in some fixed Kostant chamber and it follows from Theorem 1 in [Stu95]
that p(nλ′−α′) is a quasi-polynomial in n. Since mµ+nν

nλ,a is a finite sum of quasi-polynomials
in n, it is also a quasi-polynomial in n. �

6. The summation set

6.1. A lattice point description of the summation set. In this section give a lattice
point description of the summation set Sλ,a. Let Pλ denote the convex polytope defined by
the convex hull of Πλ ∩ Λ+.

Lemma 6.1. For all λ, a we have:

(27) Sλ,a ⊆ Lλ,a ∩ Paλ
where

(28) Lλ,a =
⋃
σ∈W

(aλ+ σ(ρ)− ρ+ aΛr) .

is a finite union of translates of the root lattice aΛr. Let

(29) Rλ,a = (Lλ,a ∩ Paλ) \ Sλ,a
denote the set of missing points.
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Proof. Recall that Pλ consists of all α that satisfy (see [Hum78]),

(30) (α, αi) ≥ 0, (λ− α, λi) ≥ 0

for all i = 1, . . . , r. We first prove that Sλ,a ⊆ Paλ. By Lemma 3.1(b), we can write
µ = aν + σ(ρ) − ρ ∈ Λ+ where ν ∈ Πλ. Since µ ∈ Λ+, Inequality (30) holds trivially. To
prove the second part of Inequality (30), it suffices to show that (µ, λi) ≤ (aλ, λi) for every
1 ≤ i ≤ r. We have

(aλ, λi)− (µ, λi) = (aλ− µ, λi)
= (a(λ− µ) + ρ− σ(ρ), λi)

≥ 0

since a(λ− µ) + ρ− σ(ρ) is a N-linear combination of positive roots.
Let µ = aν + σ(ρ) − ρ ∈ Sλ,a where ν ∈ Πλ and σ ∈ W . Then µ = a(λ − α) + σ(ρ) − ρ

where α is some positive root. It follows that µ ∈ aΛr + aλ + σ(ρ)− ρ ⊂ Lλ,a. This proves
that Sλ,a ⊆ Lλ,a and completes the proof of the lemma. �

Remark 6.2. The inclusion in Equation (27) is not an equality in general. For example,
consider g = B2, λ = ρ, a = 2. In weight coordinates we have (see also Figure 1)

Sρ,2 = ∪σ∈W (σ(ρ)− ρ+ 2Πρ) ∩ Λ+(31)

= {(2, 2), (0, 4), (3, 0), (2, 0), (0, 2), (1, 0), (0, 0)} .(32)

Figure 1. Sρ,2.

It is clear that (1, 2) ∈ P2ρ. We show that (1, 2) = λ1 + 2λ2 ∈ Lρ,2, hence this is a missing
point. Indeed, by the definition of Lρ,2, we only need to find σ ∈ W and a root α such that

(33) λ1 + 2λ2 = 2α1 + 3α2 = 2ρ+ σ(ρ)− ρ+ 2α .

In root coordinates we have

2ρ = 3α1 + 4α2, ρ− σ(ρ) ∈ {0, α1, α2, α1 + 3α2, 2α1 + α2, 3α1 + 4α2} .

So by choosing α = α2 and σ such that ρ− σ(ρ) = α1 + 3α2 we have equality (33).

Nevertheless, equality holds when g = A2, a = 2, λ = λ1. This is the content of the next
section.
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6.2. A special case: no missing points.

Proposition 6.3. For A2, we have: Snλ1,2 = Lnλ1,2 ∩ P2nλ1 .

Proof. Let Lnλ1,2 ∩ P2nλ1 3 µ = 2nλ1 + σ(ρ)− ρ+ 2α = 2ν − (ρ− σ(ρ)) where ν = nλ1 + α
and some σ ∈ W . As σ runs over the Weyl group W , ρ − σ(ρ) is expressed in weight and
root coordinates as follows

(34)
weight (0, 0) (2,−1) (−1, 2) (0, 3) (3, 0) (2, 2)
root (0, 0) (0, 1) (1, 0) (1, 2) (2, 1) (2, 2)

Since µ ∈ P2nλ1 , from inequality (30) we have (2ν − (ρ − σ(ρ)), αi) ≥ 0, i.e., 2(ν, αi) ≥
(ρ − σ(ρ), αi), i = 1, 2. Looking at the first row of the above table we see that this forces
(ν, αi) ≥ 0, i = 1, 2. Therefore we have ν ∈ Λ+.

From inequality (30) we have (2nλ1 − µ, λi) ≥ 0, i = 1, 2. This implies that (−2α + ρ −
σ(ρ), λi) ≥ 0 or equivalently

(35) (ρ− σ(ρ), λi) ≥ 2(α, λi),

i = 1, 2. We consider the following cases.
Case 1: If ρ − σ(ρ) = 0, α1 or α2 then inequalities (35) imply that (α, λi) ≤ 0 for all i

so α ≺ 0. Since ν = nλ1 + α ∈ Λ+, it follows from [Hum78, §13.4] that ν ∈ Πnλ1 and hence
µ ∈ Snλ1,2.

Case 2: If ρ − σ(ρ) = α1 + 2α2 then from (35) we have (α, λ1) ≤ 0 and (α, λ2) ≤ 1.
If we also have (α, λ2) ≤ 0 then by a similar the argument to Case 1 we conclude that
µ ∈ Snλ1,2. If (α, λ2) = 1 we can write α = −xα1 + α2, where x ∈ N. It follows that
µ = 2nλ1 + 2α − (ρ − σ(ρ)) = 2nλ1 − 2xα1 + 2α2 − α1 − 2α2 = 2(nλ1 − xα1) − α1.
Since ν = nλ1 + α ∈ Λ+, from inequality (30) we have (nλ1 − xα1 + α2, α1) ≥ 0, i.e.,

n − 2x − 1 ≥ 0. We have 〈nλ1, α1〉 = 2(nλ1,α1)
(α1,α1)

= n ≥ 2x + 1 > x, therefore nλ1 − xα1 ∈
Πnλ1 (see [Hum78, § 13.4]). Since we can choose σ′ such that ρ − σ′(ρ) = α1, we have
µ = 2(nλ1 − xα1)− (ρ− σ′(ρ)) ∈ Snλ1,2.

Case 3: If ρ − σ(ρ) = 2α1 + α2 then by a similar argument to the above we can write
α = α1−xα2, x ∈ N. We show that α cannot have this form. Indeed, since ν = nλ1+α ∈ Λ+,
we have (nλ1 +α1− xα2, α2) ≥ 0, i.e., −1− 2x ≥ 0. This is in contradiction to the fact that
x ∈ N.

Case 4: If ρ − σ(ρ) = 2α1 + 2α2 = 2ρ then (α, λ1) ≤ 1 and (α, λ2) ≤ 1. If either
(α, λ1) ≤ 0 or (α, λ2) ≤ 0 then the same argument as in Cases 2 and 3 above apply. If
(α, λ1) = (α, λ2) = 1 then α = α1 +α2 = ρ and µ = 2nλ1 +2α−(ρ−σ(ρ)) = 2nλ1 +2ρ−2ρ =
2nλ1 ∈ Π2nλ1 ⊆ Snλ1,2. �

6.3. An estimate for the missing points. The next proposition shows that the norm of
the missing points in Rnλ,a is bounded below by a quadratic function of n.

Proposition 6.4. For every λ ∈ Λ+ there exists a simple root β such that if µ ∈ Rnλ,a and
n� 0 then

(µ, µ) ≥ a2n2((λ, λ)− (λ, β)2

(β, β)
− 1) .
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Proof. Let µ = aα + anλ + σ(ρ) − ρ = a(nλ + α) + σ(ρ) − ρ for some α ∈ Λr and σ ∈ W .
Since µ 6∈ Snλ,a, we have that nλ+ α 6∈ Πnλ. The ray nλ+ α meets one of the facets of the
convex hull of Πnλ at some point, say λn. There exist σ1, σ2 ∈ W such that σ1(nλ), σ2(nλ)
are the vertices of this facet, and we have

(nλ+ α, nλ+ α) ≥ (λn, λn)

≥ (
σ1(nλ) + σ2(nλ)

2
,
σ1(nλ) + σ2(nλ)

2
)

=
n2

4
((σ1(λ), σ1(λ)) + (σ2(λ), σ2(λ)) + 2(σ1(λ), σ2(λ)))

=
n2

4
(2(λ, λ) + 2(σ1(λ), σ2(λ)))

=
n2

2
((λ, λ) + (σ1(λ), σ2(λ))) .

Since σ1(λ), σ2(λ) are in two nearby chambers, there exists a simple root β such that

(σ1(λ), σ2(λ)) = (λ, σβ(λ))

We have

(λ, σβ(λ)) = (λ, λ− 2
(λ, β)

(β, β)
β) = (λ, λ)− 2

(λ, β)2

(β, β)

So

(nλ+ α, nλ+ α) ≥ n2((λ, λ)− (λ, β)2

(β, β)
)
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Therefore

(µ, µ) = (a(nλ+ α)− (ρ− σ(ρ)), a(nλ+ α)− (ρ− σ(ρ)))

= a2(nλ+ α, nλ+ α)− 2a(nλ+ α, ρ− σ(ρ)) + (ρ− σ(ρ), ρ− σ(ρ))

≥ a2n2((λ, λ)− (λ, β)2

(β, β)
− 1)

for large enough n. �

Let us introduce some useful notation.

(36) Ŝλ,a = Sλ,a − µλ,a, L̂λ,a = Lλ,a − µλ,a, P̂aλ = Paλ − µλ,a, R̂λ,a = Rλ,a − µλ,a.

Remark 6.5. From now we fix a natural number n0 and we work with n ≡ n0 mod da where
d is the order of the fundamental group Λ/Λr. Theorem 3.4 implies that for such n, we have:

• µnλ,a = nν1
λ,a + ν0

λ,a for some fixed weights ν1
λ,a , ν

0
λ,a ∈ Λ+.

• L̂nλ,a = L̂n0λ,a. Indeed, we have

L̂nλ,a = Lnλ,a − µnλ,a
= nλ+ σ(ρ)− ρ+ aΛr − nν1

λ,a − ν0
λ,a

= n0λ+ σ(ρ)− ρ+ aΛr − n0ν
1
λ,a − ν0

λ,a + (n− n0)(λ− ν1
λ,a)

= n0λ+ σ(ρ)− ρ+ aΛr − µn0λ,a + k(a.d)(λ− ν1
λ,a), k ∈ N

= n0λ+ σ(ρ)− ρ+ aΛr − µn0λ,a (since d(λ− ν1
λ,a) ∈ Λr)

= Ln0λ,a − µn0λ,a = L̂n0λ,a .

Corollary 6.6. (1) Ŝnλ,a ⊂ L̂n0λ,a ∩ P̂anλ.
(2) Let R̂nλ,a = (L̂n0λ,a ∩ P̂anλ) \ Ŝnλ,a. If µ̂ ∈ R̂nλ,a then

(µ̂, µ̂) + 2(µ̂, µnλ,a) ≥ a2n2

(
(λ, λ)− (λ, β)2

(β, β)
− 1

)
− (µnλ,a, µnλ,a)

for some simple root β.

Proof. Part (1) follows from Lemma 6.1(b) and Remark 6.5:

Ŝnλ,a ⊂ L̂nλ,a ∩ P̂anλ = L̂n0λ,a ∩ P̂anλ .

For part (2), recall that

(µ, µ) = (µ̂+ µnλ,a, µ̂+ µnλ,a)

and therefore if µ̂ ∈ R̂nλ,a then

(µ̂, µ̂) + 2(µ̂, µnλ,a) = (µ, µ)− (µnλ,a, µnλ,a)

≥ a2n2

(
(λ, λ)− (λ, β)2

(β, β)
− 1

)
− (µnλ,a, µnλ,a)

by Proposition 6.4. �
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Proposition 6.7. If g has rank 2 and µ̂ ∈ R̂nλ,a then

(µ̂, µ̂) + 2(µ̂, µnλ,a) ≥ n2 .

Proof. We can prove this by a direct computation for the rank 2 simple Lie algebras A2, B2

and G2 using Theorem 3.4 that gives an explicit formula for µλ,a.
For A2 and m1 ≥ m2, from Theorem 3.4 we have

(µnλ,a, µnλ,a) ≤ (n(m1 −m2)λ2, n(m1 −m2)λ2) =
2

3
n2(m1 −m2)2

By Corollary 6.6 we have

(µ̂, µ̂) + 2(µ̂, µnλ,a) ≥ a2n2((λ, λ)− (λ, α1)2

(α1, α1)
− 1)− (µnλ,a, µnλ,a)

≥ a2n2(
2

3
(m2

1 +m1m2 +m2
2)− m2

1

2
− 1)− 2

3
n2(m1 −m2)2

= n2(
a2 − 4

6
m2

1 +
2

3
(a2 + 2)m1m2 +

2

3
(a2 − 1)m2

2 − 1)

≥ n2(4m1m2 + 2m2
2 − 1)

≥ n2

except when a = 2 and m2 = 0. In the later case, Proposition 6.3 says that Rnλ,a = ∅ and
the inequality holds trivially. The argument is similar for the case m1 ≤ m2.

For B2, (λ,β)2

(β,β)
is either

m2
1

2
or m2

2. We have

(µ̂, µ̂) + 2(µ̂, µnλ,a) ≥ a2n2((λ, λ)− (λ, α1)2

(α1, α1)
− 1)− (µnλ,a, µnλ,a)

= a2n2(m2
1 +m1m2 +

m2
2

2
−max{m

2
1

2
,
m2

2

4
} − 1)− (µnλ,a, µnλ,a)

≥ n2

where in the last inequality we have used the fact that (µλ,a, µλ,a) is bounded for B2, see
Theorem 3.4.

For G2, (λ,β)2

(β,β)
is either

m2
1

2
or

m2
2

6
. Therefore we have

(µ̂, µ̂) + 2(µ̂, µnλ,a) ≥ a2n2((λ, λ)− (λ, α1)2

(α1, α1)
− 1)− (µnλ,a, µnλ,a)

= a2n2(2m2
1 + 6m1m2 + 6m2

2 −max{m
2
1

2
,
3m2

2

2
} − 1)− (µnλ,a, µnλ,a)

≥ n2

since µλ,a = 0 for G2, see Theorem 3.4. �
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7. Proof of Theorem 1.6

In this section we will prove Theorem 1.6 assuming Theorem 3.4. Corollary 3.6 implies
that the shifted colored Jones polynomial defined by

(37) Ĵg
T (a,b),λ(q) = q−δ

∗
T (a,b)

(λ)Jg
T (a,b),λ(q) ∈ Z[q]

satisfies

Ĵg
T (a,b),λ(q) =

1∏
α�0

(1− q(λ+ρ,α))
J̌g
T (a,b),λ(q)

where

(38) J̌g
T (a,b),λ(q) =

∑
µ̂∈Ŝλ,a

m
µ̂+µλ,α
λ,a q

b
2a

(µ̂,µ̂)+(−1+ b
a

)(µ̂,ρ)+ b
a

(µ̂,µλ,α)
∏
α�0

(1− q(µ̂+µλ,a+ρ,α))

with Ŝλ,a = Sλ,a − µλ,a and µ̂ = µ− µλ,a.
Fix a natural number n, observe that (fn(q)) is c-stable if and only if (fMn+n0(q)) is c-

stable for all n0 = 0, 1, ...,M . In what follows, we will use M = ad and fix n ≡ n0 mod
ad.

Proposition 7.1. (Ĵg
T (a,b),nλ(q)) is c-stable if and only if

(39)
1∏

α�0

(1− q(nλ+ρ,α))

∑
µ̂∈L̂n0λ,a

∩P̂anλ

m
µ̂+µλ,α
λ,a q

b
2a

(µ̂,µ̂)+(−1+ b
a

)(µ̂,ρ)+ b
a

(µ̂,µλ,α)
∏
α�0

(1− q(µ̂+µλ,a+ρ,α))

is c-stable. In that case, they have the same tails.

Proof. Fix a, b, λ and let gn(q) denote the difference between ĴT (a,b),nλ(q) and Equation (39).
Then

gn(q) =
1∏

α�0

(1− q(nλ+ρ,α))
(40)

×
∑

µ̂∈R̂nλ,a

m
µ̂+µnλ,α
λ,a q

b
2a

(µ̂,µ̂)+(−1+ b
a

)(µ̂,ρ)+ b
a

(µ̂,µnλ,α)
∏
α�0

(1− q(µ̂+µnλ,a+ρ,α)) .

Proposition 6.7 implies that the minimum degree of the summands of Equation (40) is greater
or equal to b

2a
n2 for n� 0. The proof then follows from Remark 4.4.

Proposition 6.7 implies that we can replace the summation set Ŝnλ,a by L̂nλ,a∩P̂anλ without

affecting the stability of Ĵg
T (a,b),nλ(q): if µ̂ ∈ (L̂λ,a ∩ P̂anλ) \ Ŝnλ,a then the minimum degree

of the summand of Equation (39) is

b

2a
(µ̂, µ̂) + (−1 +

b

a
)(µ̂, ρ) +

b

a
(µ̂, µnλ,α) =

b

2a
((µ̂, µ̂) + 2(µ̂, µλ,a))− (µ̂, ρ)

≥ b

2a
n2 − (µ̂, ρ) =

b

2a
n2 +O(n)

where the last inequality follows from Proposition 6.7. By Remark 6.5 we have L̂nλ,a = L̂λ,a
and the Proposition follows. �
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Let tλ,µ̂,a(n) = m
µ̂+µnλ,a
nλ,a . Theorem implies that tλ,µ̂,a is a quasi-polynomial. Lemma 4.2,

Proposition 6.7, Proposition 7.1 together with the special case given in Section 10.1 imply
the following.

Theorem 7.2. Fix a rank 2 simple Lie algebras g, a dominant weight λ, and a torus knot
T (a, b). The colored Jones polynomial Ĵg

T (a,b),nλ(q) is c-stable and its (n, x, q)-tail is given by

FT (a,b),λ(n, x, q) =
1∏

α�0

(1− x(λ,α)q(ρ,α))

∑
µ̂∈L̂λ,a∩Λ+

tλ,µ̂,a(n)q
b
2a

(µ̂,µ̂)+(−1+ b
a

)(µ̂,ρ)+ b
a

(µ̂,ν0
λ,a)xν

1
λ,a

(41)

∏
α�0

(1− q(µ̂+ν0
λ,a+ρ,α)xν

1
λ,a) ,

where µnλ,a = nν1
λ,a + ν0

λ,a.

8. Proof of Theorem 3.3

In this section we prove Theorem 3.3. Since λ is fixed, it suffices to maximize

g(µ) =
b

4
(µ, µ) +

(
−1 +

b

2

)
(µ, ρ)

on the set Sλ,a.

Lemma 8.1. Let µ ∈ Λ+ and α � 0 be a positive root such that µ+α ∈ Λ+. Then we have

(µ, µ) < (µ+ α, µ+ α) .

Proof. We have:

(µ+ α, µ+ α)− (µ, µ) = 2(µ, α) + (α, α) .

Now (µ, α) > 0 since µ is dominant and α is a positive root and (α, α) > 0 since (·, ·) is
positive definite. �

If ν ∈ Πλ then ν = λ − α′ where α′ � 0. Since ρ − σ(ρ) � 0, we have µ = aλ − α
where µ ∈ Sa,λ and α � 0. It follows from the above lemma that Mλ,a = aλ is the unique
maximizer of f(µ).

Next, we compute the plethysm multiplicity mλ,a. From Lemma 3.1 we have

maλ
λ,a =

∑
σ∈W

(−1)σm
aλ+ρ−σ(ρ)

a
λ

=
∑
σ∈W

(−1)σm
λ+

ρ−σ(ρ)
a

λ

= 1

since λ+ ρ−σ(ρ)
a
� λ if ρ−σ(ρ)

a
∈ Λr, with equality only when σ = 1. This concludes the proof

of Theorem 3.3. �
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9. Proof of Theorem 3.4

This section is devoted to the proof of Theorem 3.4, done by a case-by-case analysis for a
fixed simple Lie algebra g of rank 2. Let λ = m1λ1 +m2λ2 and µ = u1λ1 +u2λ2 be dominant
weights. Since λ is fixed, it suffices to minimize

g∗(µ) =
b

4
(µ, µ) +

(
−1 +

b

2

)
(µ, ρ)

on the set Sλ,a. We use the following lemma and its consequence, Corollary 9.2, in the proof
of Theorem 3.4.

Lemma 9.1. g∗(µ) ≥ 0 with equality if and only if µ = 0.

Proof. g∗(µ) is non-negative since (·, ·) is a positive-definite form and (µ, ρ) ≥ 0 since µ is a
dominant weight and ρ is a linear combination of simple roots with positive coefficients. If
g∗(µ) = 0 then (µ, µ) = 0 which implies that µ = 0. �

Corollary 9.2. If m0
λ,a 6= 0 then µλ,a = 0 is the unique minimizer of g∗(µ).

We give the proof of Theorem 3.4 in Section 9.1 below.

9.1. Theorem 3.4 for A2.

9.1.1. Plethysm multiplicities for A2. There are two simple roots {α1, α2} of A2 and three
positive roots {α1, α1 + α2, α2} shown in Figure 2. The Kostant function p(u, v) = p(uα1 +
vα2) is given by

p(u, v) = 1 + min(u, v) .

Figure 2. The two chambers of the Kostant partition function of A2. Kostant
chambers from left to right: u ≤ v, u ≥ v.
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Let λ = m1λ1+m2λ2 denote a dominant weight andm1 ≥ m2. Assuming µ = u1λ1+u2λ2 ∈
Πλ, by Kostant’s formula we have

mµ
λ =

∑
σ∈W

(−1)σp(σ(λ+ ρ)− µ− ρ)

= p(
2m1 +m2

3
− 2u1 + u2

3
,
m1 + 2m2

3
− u1 + 2u2

3
)

− p(2m1 +m2

3
− 2u1 + u2

3
,
m1 −m2

3
− u1 + 2u2

3
− 1)

=


1 + 2m1+m2

3
− 2u1+u2

3
if m1 −m2 < u1 − u2

1 + m1+2m2

3
− u1+2u2

3
if u1 − u2 ≤ m1 −m2 ≤ u1 + 2u2 + 3

1 +m2 if m1 −m2 > u1 + 2u2 + 3

.

Lemma 3.1 gives

mµ
λ,2 =

∑
σ∈S3

(−1)σm
µ+ρ−σ(ρ)

2
λ

= m
1
2

(u1,u2)

λ −m
1
2

(u1+2,u2−1)

λ −m
1
2

(u1−1,u2+2)

λ +m
1
2

(u1,u2+3)

λ +m
1
2

(u1+3,u2)

λ −m
1
2

(u1+2,u2+2)

λ .

Let us consider µ ∈ Sλ,2. There are four cases.
Case 1: u1, u2 are even.

mµ
λ,2 = m

(
u1
2
,
u2
2

)

λ −m(
u1+2

2
,
u2+2

2
)

λ =

{
1 if u1 + 2u2 ≥ 2(m1 −m2)

0 if u1 + 2u2 < 2(m1 −m2)
.(42)

Case 2: u1 even and u2 odd.

mµ
λ,2 = m

(
u1
2
,
u2+3

2
)

λ −m(
u1+2

2
,
u2−1

2
)

λ(43)

=

{
−1 if u1 − u2 ≤ 2(m1 −m2) ≤ u1 + 2u2

0 if 2(m1 −m2) < u1 − u2 or 2(m1 −m2) > u1 + 2u2

.

Case 3: u1 odd and u2 even.

mµ
λ,2 = m

(
u1+3

2
,
u2
2

)

λ −m(
u1−1

2
,
u2+2

2
)

λ =

{
−1 if 2(m1 −m2) < u1 − u2

0 if 2(m1 −m2) ≥ u1 − u2

.

Case 4: u1 and u2 are odd.

mµ
λ,2 = 0 .

Corollary 9.3. For A2, if mµ
λ,2 6= 0 then u1 + 2u2 ≥ 2(m1 −m2).

If m1 ≤ m2 we have a similar corollary:

Corollary 9.4. For A2, if mµ
λ,2 6= 0 then 2u1 + u2 ≥ 2(m2 −m1).
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9.1.2. The minimizer for A2.
Case 1: a = 2. By Corollary 9.3 it suffices to minimize g∗(µ) over subset {µ ∈ Sλ,2 : u1, u2 ∈
N, u1 + 2u2 ≥ 2(m1 −m2)} of Sλ,2. We have

g∗(µ) =
b

4
(µ, µ) +

(
−1 +

b

2

)
(µ, ρ)

=
b

6
(u2

1 + u1u2 + u2
2) + (−1 +

b

2
)(u1 + u2)

=
b

6
((u2 +

u1

2
)2 +

3u2
1

4
) +

b− 2

4
(u1 + u1 + 2u2)

≥ b

8
u2

1 +
b− 2

4
u1 +

b

6
(m1 −m2)2 +

b− 2

2
(m1 −m2)

≥ b

6
(m1 −m2)2 +

b− 2

2
(m1 −m2)

with equality if and only if u1 = 0, u2 = m1 −m2.
Next we show that µλ,2 = (m1 −m2)λ2 ∈ Sλ,2. Indeed,

(1) If m1−m2 ≡ 0 (mod 2) then µλ,2 = 2ν − (ρ− σ(ρ)) ∈ Sλ,2 where ν = m1−m2

2
λ2 ∈ Πλ

and σ = 1.
(2) If m1−m2 ≡ 1 (mod 2) then µλ,2 = 2ν−(ρ−σ(ρ)) ∈ Sλ,2 where ν = m1−m2+3

2
λ2 ∈ Πλ

and ρ such that ρ− σ(ρ) = 3λ2.

Note that from the formula for mµ
λ,2 in Equations (42) and (43) we have m

(m1−m2)λ2

λ,2 = 1
which proves part (a). Part (b) is obvious. The case m1 ≤ m2 is similar.
Case 2: a = 3. From Equation (10), we have

m0
λ,3 = m0

λ +mλ1
λ +mλ2

λ .

Since the fundamental group for A2 consists of only three elements 0, λ1, λ2, at least one
of the terms on the right hand side is greater than zero. Therefore m0

λ,3 > 0 and it follows
from Lemma 9.1 that µλ,3 = 0 for all λ. Therefore part (b) follows. Part (a) follows from
Corollary 9.2 and the fact that m0

λ,3 > 0.
Case 3: a ≥ 4.

Claim. At most one term on the right hand side of Equation (9) is nonzero.

Proof. Indeed, if there are σ1, σ2 in the Weyl group for A2 such that m
µ+ρ−σ1(ρ)

a
λ 6= 0 and

m
µ+ρ−σ2(ρ)

a
λ 6= 0 then µ+ρ−σ1(ρ)

a
− µ+ρ−σ2(ρ)

a
∈ Λr. Equivalently, (ρ−σ1(ρ))− (ρ−σ2(ρ)) ∈ aΛr.

This is a contradiction since a ≥ 4 and by [Kos59],

ρ− σ(ρ) =
∑

α∈∆+:σ−1(α)∈∆−

α

which do not belong to aΛr if a ≥ 4. Here ∆+ is the set of positive roots and ∆− = −∆+. �

Case 3.1: λ ∈ Λr, i.e., m1 −m2 ≡ 0 mod 3. By the above claim we have m0
λ,a = m

ρ−σ(ρ)
a

λ

for some σ. It’s easy to see that the only σ for which ρ−σ(ρ)
a

is a weight is when σ = 1 and
therefore m0

λ,a = m0
λ > 0. It follows from Lemma 9.1 that µλ,a = 0. Therefore part (b)
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follows for this case. Part (a) follows from Corollary 9.2 and the fact that m0
λ,3 > 0.

Case 3.2: If λ 6∈ Λr, or equivalently m1 −m2 6≡ 0 mod 3 then m0
λ,a = m0

λ = 0 so µλ,a 6= 0.
By the above claim, we have

mµ
λ,a = (−1)σm

µ+ρ−σ(ρ)
a

λ

for some σ. Furthermore, m
µ+ρ−σ(ρ)

a
λ 6= 0 if and only if µ+ρ−σ(ρ)

a
= ν ∈ Πλ or equivalently,

µ = aν − (ρ− σ(ρ)). Let ρ− σ(ρ) = sλ1 + tλ2, where

(44)
(s, t) (0, 0) (−1, 2) (1,−2) (0, 3) (3, 0) (2, 2)
(−1)σ 1 −1 −1 1 1 −1

So if ν = v1λ1 + v2λ2 then µ = (av1 − s)λ1 + (av2 − t)λ2. Since µ is a positive weight, we
have we have

av1 − s ≥ 0

av2 − t ≥ 0

Since a ≥ 4 and |s|, |t| ≤ 3, these inequalities imply that v1, v2 ≥ 0, i.e., ν is also a positive
weight. There are two possibilities for λ.
Case 3.2.1: λ1 ∈ Πλ, i.e., m1 ≡ m2 +1 mod 3. Then we can choose ν0 = λ1 and σ0 to be the
unique element in W such that ρ−σ0(ρ) = 3λ1. We will prove that µλ,a = aν0−(ρ−σ0(ρ)) =
(a− 3)λ1 is the minimizer. Indeed, let µ = aν − (ρ− σ(ρ)) ∈ Sλ,a where ν ∈ Πλ as above.
Case 3.2.1.1: If ν = λ1 then for µ to be a dominant weight we should have, according to
Table (44),

ρ− σ(ρ) =


0 which gives µ = aλ1

λ1 − 2λ2 which gives µ = (a− 1)λ1 + 2λ2

3λ1 which gives µ = (a− 3)λ1 = µλ,a

.

It is easy to check that g∗(µ) > g∗(µλ,a) for the first two values of µ.
Case 3.2.1.2: If ν 6= λ1, let ν = v1λ1 + v2λ2 then we have v1, v2 ≥ 0 and v1 + v2 ≥ 3, since
the only cases where v1 + v2 < 3 are ν = λ2 and λ1 + λ2 but these weights donot belong in
Πλ. Let ν = aν − (ρ− σ(ρ)) = (av1 − s)λ1 + (av2 − t)λ2 as before. We have

g∗(µ) =
b

2a
(µ, µ) +

(
−1 +

b

a

)
(µ, ρ)

=
b

3a
(u2

1 + u1u2 + u2
2) + (−1 +

b

a
)(u1 + u2)

=
b

3a
(a2(v2

1 + v1v2 + v2
2)− 2a(v1 + v2)(s+ t) + s2 + st+ t2)

+ (−1 +
b

a
)(a(v1 + v2)− s− t) .

It is easy to check that for all (s, t) ∈ {(0, 0), (−1, 2), (1,−2), (0, 3), (3, 0), (2, 2)} and
(v1, v2) : v1, v2 ≥ 0, v1 + v2 ≥ 3, we have
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a2(v2
1 + v1v2 + v2

2)− 2a(v1 + v2)(s+ t) + s2 + st+ t2 > (a− 3)2

a(v1 + v2)− s− t > a− 3

and therefore g∗(µ) > b
3a

(a− 3)2 + (−1 + b
a
)(a− 3) = g∗(µλ,a) for all µ 6= λ1.

The above argument showed that µλ,a = (a− 3)λ1 is the unique minimizer, and note that

m
(a−3)λ1

λ,a = mλ1
λ 6= 0 since λ1 ∈ Πλ. This proves parts (a) and (b) for Case 3.2.1.

Case 3.2.2: λ2 ∈ Πλ or equivalently, m1 ≡ m2 + 2 mod 3. The proof for this is identical to
the one above.

This completes the proof of Theorem 3.4 for A2. �

9.2. Theorem 3.4 for B2. There are two simple roots {α1, α2} and four positive roots
{a1, α2, α1 +α2, α1 +2α2} of B2 shown in Figure 3. The Kostant partition function p(u, v) =
p(uα1 + vα2) is given by [Tar63]

p(u, v) =


b(v) if u ≥ v

b(v)− (v−u)(v−u+1)
2

if u ≤ v ≤ 2u
(u+1)(v+2)

2
if 2u ≤ v

, b(n) =
n2

4
+ n+

{
1 if 2|n
3
4

if 2 6 |n
.(45)

There are three Kostant chambers shown in Figure 3.

Figure 3. The three chambers of the Kostant partition function of B2.
Kostant chambers from left to right: u ≥ v, u ≤ v ≤ 2u, u ≥ 2v.

Let λ = m1λ1 +m2λ2 denote a dominant weight. In weight coordinates we have

ρ− σ(ρ) = sλ1 + tλ2

where

(46)
(s, t) (0, 0) (2,−2) (−1, 2) (−1, 4) (3,−2) (3, 0) (0, 4) (2, 2)
(−1)σ 1 −1 −1 1 1 −1 −1 1

Lemma 3.1 implies that

m0
λ,a = m0

λ +


−mλ2

λ −m
2λ2
λ +mλ1+λ2

λ if a = 2

−mλ1
λ if a = 3

−mλ2
λ if a = 4

0 if a ≥ 5

.(47)
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Case 1: a = 2. Equation (47) implies that

(48) m0
λ,2 = m0

λ −m
2λ2
λ −mλ2

λ +mλ1+λ2
λ .

Case 1.1: λ ∈ Λr, i.e., m2 ≡ 0 mod 2. In this case, we have λ1 + λ2, λ2 6∈ Λr, and therefore
mλ2
λ = mλ1+λ2

λ = 0. Equation (48) becomes

m0
λ,2 = m0

λ −m
2λ2
λ = 1 .

where the later equality comes from formula (45) and the Kostant multiplicity formula (8).
It follows from Lemma 9.1 that µλ,2 = 0 which proves part (b). Part (a) follows from Corol-
lary 9.2 and the fact that m0

λ,2 = 1 6= 0.

Case 1.2: λ 6∈ Λr, i.e., m2 ≡ 1 mod 2. Since m0
λ = m2λ2

λ = 0 we have

m0
λ,2 = mλ1+λ2

λ −mλ2
λ = −1 .

If m1 > 0 then choose ν = λ1 + λ2 ∈ Πλ and σ such that ρ− σ(ρ) = 2λ1 + 2λ2 we obtain
µλ,2 = 2ν − (ρ− σ(ρ)) = 2(λ1 + λ2)− (2λ1 + 2λ2) = 0. If otherwise m1 = 0 then we choose
ν = λ2 ∈ Πλ, σ such that ρ−σ(ρ) = −λ1 + 2λ2 and get µλ,2 = 2λ2− (−λ1 + 2λ2) = λ1. This
proves part (b). Part (a) follows from Corollary 9.2 and the fact that m0

λ,2 = −1 6= 0.
Case 2: a = 3. Consider two small cases.
Case 2.1: If λ = m1λ1 +m2λ2 ∈ Λr, i.e., m2 ≡ 0 mod 2 then we have

m0
λ,3 = m0

λ −m
λ1
λ =

1

2
+

(−1)m1+m2 + (−1)m1+m2+2

4
.

If m1 ≡ 0 mod 2 then m0
λ,3 = 1. It follows from Lemma 9.1 that µλ,3 = 0 and this

completes part (b). Part (a) follows from Corollary 9.2 and the fact that m0
λ,3 = 1 6= 0.

If m1 ≡ 1 mod 2 then m0
λ,3 = 0. By a similar argument to the one in Case 3 for A2 it can

be shown that µλ,3 = 2λ2 is the unique minimizer and parts (a) and (b) follow.
Case 2.2: If λ = m1λ1 +m2λ2 6∈ Λr, i.e., m2 6≡ 0 mod 2 then by a similar argument to the
one in Case 3 for A2 we have µλ,3 = λ1 + λ2 is the unique minimizer and mλ1+λ2

λ,3 6= 0 which
completes the proof.
Case 3: a = 4. From Equation (10) we have

m0
λ,4 = m0

λ −m
λ2
λ .

If λ = m1λ1 + m2λ2 ∈ Λr, i.e., m2 ≡ 0 mod 2 then we have m0
λ,4 = m0

λ −m
λ2
λ = m0

λ > 0,
since 0 ∈ Πλ.

If λ = m1λ1 + m2λ2 6∈ Λr, i.e., m2 6≡ 0 mod 2 then m0
λ,4 = m0

λ −m
λ2
λ = −mλ2

λ < 0, since
λ2 ∈ Πλ.

It follows from Lemma 9.1 that µλ,4 = 0, which completes part (b). Part (a) follows from
Corollary 9.2.

Case 4: a ≥ 5. The only σ for which µ = ρ−σ(ρ)
a

is a weight is σ = 1 and hence µ = 0. So
from Equation (10) we have m0

λ,a = m0
λ.

If λ = m1λ1 +m2λ2 ∈ Λr, i.e., m2 ≡ 0 mod 2 then m0
λ,a = m0

λ > 0. It follows from Lemma
9.1 that µλ,a = 0, which completes part (b). Part (a) follows from Corollary 9.2.
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If λ = m1λ1 + m2λ2 6∈ Λr, i.e., m2 6≡ 0 mod 2 then by a similar argument to the one in

Case 3 for A2 we have that µλ,a = (a−4)λ2 is the unique minimizer and m
(a−4)λ2

λ,a = mλ2
λ 6= 0.

This completes both parts (a) and (b).
This completes the proof of Theorem 3.4 for B2. �

9.3. Theorem 3.4 for G2. There are two simple roots {α1, α2} and six positive roots
{a1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2} of G2 shown in Figure 4.

Figure 4. The five chambers of the Kostant partition function of G2. Kostant
chambers from left to right: u ≤ v, v ≤ u ≤ 3

2
v, 3

2
v ≤ u ≤ 2v, 2v ≤ u ≤ 3v,

3v ≤ u.

The Kostant partition function p(u, v) = p(uα1 + vα2) is given by [Tar63]

p(u, v) =



g(u) if u ≤ v

g(u)− h(u− v − 1) if v ≤ u ≤ 3
2
v

h(v)− g(3v − u− 1) + h(2v − u− 2) if 3
2
v ≤ u ≤ 2v

h(v)− g(3v − u− 1) if 2v ≤ u ≤ 3v

h(v) if 3v ≤ u

(49)

where

g(n) =



1
432

(n+ 6)(n3 + 14n2 + 54n+ 72) if n ≡ 0 mod 6
1

432
(n+ 5)2(n2 + 10n+ 13) if n ≡ 1 mod 6

1
432

(n+ 4)(n3 + 16n2 + 74n+ 68) if n ≡ 2 mod 6
1

432
(n+ 3)2(n+ 5)(n+ 9) if n ≡ 3 mod 6

1
432

(n+ 2)(n+ 8)(n2 + 10n+ 22) if n ≡ 4 mod 6
1

432
(n+ 1)(n+ 5)(n+ 7)2 if n ≡ 5 mod 6

(50)

and

h(n) =

{
1
48

(n+ 2)(n+ 4)(n2 + 6n+ 6) if n ≡ 0 mod 2
1
48

(n+ 1)(n+ 3)2(n+ 5) if n ≡ 1 mod 2
.(51)
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From Lemma 3.1 we have

m0
λ,a = m0

λ +



−m3α1+α2
λ −m2α1+2α2

λ +m5α1+3α2
λ if a = 2

−m3α1+2α2
λ if a = 3

−mα1+α2
λ if a = 4

−m2α1+α2
λ if a = 5

0 if a ≥ 6

.(52)

From now on, let us consider λ = uα1 + vα2 ∈ Λ+, so 3
2
v ≤ u ≤ 2v.

Case 1: a = 2. We have

(53) m0
λ,2 = mλ −m3α1+α2

λ −m2α1+2α2
λ +m5α1+3α2

λ .

Using the Kostant multiplicity formula we can calculate the weight multiplicities on the right
hand side of Equation (53), we have, for example

m0
λ =

∑
σ∈W

(−1)σp(σ(λ+ ρ)− ρ)

= p(u, v)− p(−u+ 3v − 1, v)− p(u, u− v − 1) + p(3v − u− 1, 2v − u− 2)

+ p(2u− 3v − 4, u− v − 1)

=
u4

9
− 29u3v

36
− 7u3

36
+

17u2v2

8
+

2u2v

3
− 19u2

24
− 29uv3

12
− uv2

2
+ 3uv

+ v4 − v3

12
− 21v2

8
+ c1,0(u)u+ c0,1(v)v + c0,0(u, v)

where

c1,0(u) =


1
4

if u ≡ 0 mod 3
17
36

if u ≡ 1 mod 3
25
36

if u ≡ 2 mod 3

c0,1(u) =


1
12

if u ≡ 0 mod 3

−13
36

if u ≡ 1 mod 3

−29
36

if u ≡ 2 mod 3

c0,0(u, v) =



1 if u ≡ 0 mod 6, v ≡ 0 mod 2
29
72

if u ≡ 1 mod 6, v ≡ 0 mod 2
5
9

if u ≡ 2 mod 6, v ≡ 0 mod 2
5
8

if u ≡ 3 mod 6, v ≡ 0 mod 2
7
9

if u ≡ 4 mod 6, v ≡ 0 mod 2
13
72

if u ≡ 5 mod 6, v ≡ 0 mod 2

c0,0(u, v) =



5
8

if u ≡ 0 mod 6, v ≡ 1 mod 2
5
18

if u ≡ 1 mod 6, v ≡ 1 mod 2
13
72

if u ≡ 2 mod 6, v ≡ 1 mod 2
5
8

if u ≡ 3 mod 6, v ≡ 1 mod 2
29
72

if u ≡ 4 mod 6, v ≡ 1 mod 2
13
72

if u ≡ 5 mod 6, v ≡ 1 mod 2

.
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m3α1+α2
λ ,m2α1+2α2

λ ,m5α1+3α2
λ can be computed similarly to show that m0

λ,2 = 1. This
confirms part (b). Part (a) follows Corollary 9.2.
Case 2: a = 3. We have

m0
λ,3 =m0

λ −m
[3,2]
λ

=− u2 +
7uv

2
+
u

2
− 3v2 − v

2
+ c0,0(u, v)

where

c0,0(u, v) =


1 if u ≡ 0, v ≡ 0 mod 2
1
2

if u ≡ 1, v ≡ 0 mod 2
1
2

if v ≡ 1 mod 2

.

Note that since 3v
2
≤ u ≤ 2v, −u2 + 7uv

2
+ u

2
− 3v2 − v

2
= (−u2 + 7uv

2
− 3v2) + u−v

2
≥ 0 and

therefore m0
3,λ > 0 for all λ. Part (a) follows from Lemma 9.1 and part (b) follows from

Corollary 9.2.
Case 3: a = 4, 5. The arguments are similar to that of Case 2.
Case 4: a ≥ 6, can be done without computations. Indeed, we have m0

λ,a = m0
λ > 0 since

λ ∈ Λr; see [Hum78, §13.4,Lem.B]. Parts (a) and (b) follow from Lemma 9.1 and Corollary
9.2.

This completes the proof of Theorem 3.4 for G2. �

10. Examples

10.1. The tail for A2 and the T (2, b) torus knots. In this section we compute the tail of
the c-stable sequence JA2

T (2,b),nλ1
(q) for b > 2 odd. From Proposition 3.4 we have µnλ1,2 = nλ2

so Equation (37) gives

ĴA2

T (2,b),nλ1
(q) =

1

(1− q)(1− qn+1)(1− qn+2)
J̌A2

T (2,b),nλ1
(q)

where

J̌A2

T (2,b),nλ1
(q) =

∑
u1λ1+u2λ2∈Snλ1,2

c(u1, u2)q
b
6

(u2
1+u1u2+u2

2−n2)+( b
2
−1)(u1+u2−n)

· (1− qu1+1)(1− qu2+1)(1− qu1+u2+2) ,

and from Cases 1-4 of Section 9.1.1,

c(u1, u2) = mu1λ1+u2λ2
nλ1,2

=



1 if u1 + 2u2 ≥ 2n, u1, u2 are even

0 if u1 + 2u2 < 2n, u1, u2 are even

−1 if u1 + 2u2 ≥ 2n, u1 even, u2 odd

0 if u1 + 2u2 < 2n, u1 even, u2 odd

0 if u1 is odd

.

Lemma 10.1. If µ = u1λ1 + u2λ2 ∈ Snλ1,2 then u1 + 2u2 ≤ 2n.
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Proof. By Lemma 6.1, we have µ ∈ Snλ1,2 ⊂ P2nλ1 . So by Inequality (30) we have

(2nλ1 − u1λ1 − u2λ2, λ2) ≥ 0 i.e., u1 + 2u2 ≤ 2n .

�

From Corollary 9.3 and Lemma 10.1 we have

Corollary 10.2. c(u1, u2) 6= 0 if and only if u1 + 2u2 = 2n.

10.2. Proof of Theorem 1.9. Set s = u1

2
= n− u2, then u2

1 + u1u2 + u2
2− n2 = 3s2 and we

have

J̌g
T (2,b),nλ1

(q) =

n∑
s=0

(−1)sq
b
2
s2+( b

2
−1)s(1− q2s+1)(1− qn−s+1)(1− qn+s+2)

(1− q)(1− qn+1)(1− qn+2)
.

Replacing qn by x and using Lemma 4.1 it follows that (ĴA2

T (2,b),nλ1
(q)) is c-stable and its tail

Gb(x, q) is given by

Gb(x, q) =

∞∑
s=0

(−1)sq
b
2
s2+( b

2
−1)s(1− q2s+1)(1− xq1−s)(1− xqs+2)

(1− q)(1− qx)(1− q2x)

=

∞∑
s=0

(−1)s((q
b
2
s2+( b

2
−1)s − q b2 s2+( b

2
+1)s+1)(1 + q3x2) + (q

b
2
s2+( b

2
+2)s+3 − q b2 s2+( b

2
−2)s+1)x)

(1− q)(1− qx)(1− q2x)

Using s = t+ 1, we have

∞∑
s=0

(−1)s+1q
b
2
s2+( b

2
+1)s+1 =

∞∑
t=−1

(−1)−tq
b
2

(t+1)2−( b
2

+1)(t+1)+1 =
∑
s≤−1

(−1)tq
b
2
s2+( b

2
−1)s .

Therefore,

∞∑
s=0

(−1)s(q
b
2
s2+( b

2
−1)s − q

b
2
s2+( b

2
+1)s+1) =

∞∑
s=−∞

(−1)sq
b
2
s2+( b

2
−1)s = θb, b

2
−1(q) .

Similarly,

∞∑
s=0

q
b
2
s2+( b

2
+2)s+3 − q

b
2
s2+( b

2
−2)s+1 =

∞∑
s=−∞

(−1)sq
b
2
s2+( b

2
+2)s+3 = q3θb, b

2
+2(q) .

Thus,

Gb(x, q) =
θb, b

2
−1(q)(1 + q3x2) + q3θb, b

2
+2(q)x

(1− q)(1− qx)(1− q2x)
.

Note that by replacing s with s+ 1 or s by −s in Equation (4) it follows that

θb,c(q) = −q
b
2

+cθb,b+c(q), θb,−c(q) = θb,c(q) .
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To compute G3(x, q), use b = 3, c = 1
2

in the above equation and Euler’s Pentagonal Theorem
(discussed in detail in [Bel10]) to obtain that

q2θ3, 7
2
(q) = −θ3, 1

2
(q) = −(q)∞ .

This completes the proof of Theorem 1.9. �

10.3. The tail for A2 and the T (4, 5) torus knots. In this section we compute the tail
for the c-stable sequence (JA2

T (4,b),nρ(q)) for b > 4 odd. This example shows that c-stability is

a necessary notion for Conjecture 1.5.
Let

Ab,0(q) =
∑
(s,t)

∑
(u1,u2)

εs,tcs,t(u1, u2)q
b
12

(u2
1+u1u2+u2

2)+( b
4
−1)(u1+u2)(1− qu1+1)(1− qu2+1)(1− qu1+u2+2)

Ab,1(q) =
∑
(s,t)

∑
(u1,u2)

εs,tq
b
12

(u2
1+u1u2+u2

2)+( b
4
−1)(u1+u2)(1− qu1+1)(1− qu2+1)(1− qu1+u2+2)

where the (s, t) summation is over the set

(54)
(s, t) (0, 0) (2,−1) (−1, 2) (0, 3) (3, 0) (2, 2)
εs,t 1 −1 −1 1 1 −1

and (u1, u2) ∈ N2 satisfies u1 ≡ −s mod 4, u1 − u2 ≡ t− s mod 12 and

cs,t(u1, u2) =

{
1− 2u1+u2+2s+t

12
ifu1 + s ≥ u2 + t

1− u1+2u2+s+2t
12

ifu1 + s ≤ u2 + t
.

Proposition 10.3. The tail of the c-stable sequence (ĴA2

T (4,b),nρ(q)) is given by

1

(1− xq)2(1− x2q2)
(Ab,0(q) + nAb,1(q)) .

Proof. We will use Theorem 7.2 and unravel its notation. To begin with, for a = 4, we have

Lnρ,4 =
⋃
σ∈W

4nρ+ σ(ρ)− ρ+ 4Λr =
⋃
σ∈W

σ(ρ)− ρ+ 4Λr =
⋃
σ∈W

{µ ∈ Λ|µ+ ρ− σ(ρ) ∈ 4Λr}.

Since ρ = α1 +α2 ∈ Λr, we have Lnρ,4 = Lρ,4 for all natural numbers n. Let µ = u1λ1 +u2λ2

and ρ− σ(ρ) = sλ1 + tλ2 where (s, t) are given in (54) and (−1)σ = εs,t as in (54). In weight
coordinates we have

(55) Lρ,4 =
⋃
(s,t)

{(u1, u2) ∈ Z2 : u1 ≡ −s mod 4, u1 − u2 ≡ t− s mod 12} .

Next we compute the plethysm multiplicities. Equation (9) implies that

mµ
nρ,4 =

∑
σ∈W

(−1)σm
µ+ρ−σ(ρ)

4
nρ

= m
µ
4
nρ −m

µ+2λ1−λ2
4

nρ −m
µ−λ1+2λ2

4
nρ +m

µ+3λ1
4

nρ +m
µ+3λ2

4
nρ −m

µ+2λ1+2λ2
4

nρ .
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Since nρ ∈ Λr, m
ν
nρ 6= 0 only if ν ∈ Λr. Therefore at most one of the terms in the above

equation is non-zero. Equation (8) gives

mµ
nρ =

{
1 + 2m1+m2

3
− 2u1+u2

3
if u1 ≥ u2

1 + m1+2m2

3
− u1+2u2

3
if u1 ≤ u2

.

Therefore

mµ
nρ,4 = εs,t

{
1 + n− 2u1+u2+2s+t

12
if u1 ≡ −s mod 4, u1 − u2 ≡ t− s mod 12 , u1 + s ≥ u2 + t

1 + n− u1+2u2+s+2t
12

if u1 ≡ −s mod 4, u1 − u2 ≡ t− s mod 12 , u1 + s ≤ u2 + t

where εs,t is given from (54). Since µnρ,4 = 0, we have L̂nρ,4 = Lnρ,4, P̂nρ = Pnρ, Ŝnρ,4 = Snρ,4.
Theorem 7.2 concludes the proof of Proposition 10.3. �

Exercise 10.4. Show that

Ab,1(q) =
∑

m1,m2∈Z

q4b(m2
1+3m1m2+3m2

2)+(b−4)(2m1+3m2)(56)

× (1− q4m1+1)(1− q4m1+12m2+1)(1− q8m1+12m2+2) .

The above equation shows that Ab,0(q) is a sum of theta series of rank 2, hence a modular
form of weight 1; see [BvdGHZ08].
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