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ABSTRACT. An ideal triangulation 7 of a hyperbolic 3-manifold M with one cusp is non-peripheral
if no edge of 7 is homotopic to a curve in the boundary torus of M. For such a triangulation, the
gluing and completeness equations can be solved to recover the hyperbolic structure of M. A planar
projection of a knot gives four ideal cell decompositions of its complement (minus 2 balls), two of
which are ideal triangulations that use 4 (resp., 5) ideal tetrahedra per crossing. Our main result
is that these ideal triangulations are non-peripheral for all planar, reduced, alternating projections
of hyperbolic knots. Our proof uses the small cancellation properties of the Dehn presentation
of alternating knot groups, and an explicit solution to their word and conjugacy problems. In
particular, we describe a planar complex that encodes all geodesic words that represent elements
of the peripheral subgroup of an alternating knot group. This gives a polynomial time algorithm
for checking if an element in an alternating knot group is peripheral. Our motivation for this work
comes from the Volume Conjecture for knots.
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1.1. Motivation: the Volume Conjecture. The motivation of our paper comes from the Kashaev’s
Volume Conjecture for knots in 3-space, which states that for a hyperbolic knot K in S3 we have:
1 Vol(K
lim ~ log | (K) | = Yoaut)
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where (K)y is the Kashaev invariants of K; see [Kas97, MMO1]|. This gives a precise connection
between quantum topology and hyperbolic geometry. The Volume Conjecture has been verified for
only a handful hyperbolic knots: initially for the simplest hyperbolic 4; knot and now, due to the
work of Ohtsuki [Oht17]|, and Ohtsuki and Yokota [OY16], for all hyperbolic knots with at most 6
crossings.

The Volume Conjecture requires a common input for computing both the Kashaev invariant and
the hyperbolic volume. Such an input turns out to be a planar projection of a knot K which allows
one to express the Kashaev invariant as a multi-dimensional state sum whose summand is a ratio
of quantum factorials (4 or 5, depending on the model used).

On the other hand, a planar projection gives four ideal cell decompositions of its complement
(minus 2 balls), two of which are ideal triangulations that use 4 (resp., 5) ideal tetrahedra per
crossing. These ideal triangulations are well-known from the early days of hyperbolic geometry, and
were used by Weeks [Wee05]| (in his computer program SnapPy [CDW]), by the third author [Thu99],
Yokota [Yok02, Yok11], Sakuma-Yokota [SY] and others.

An approach to the Volume Conjecture initiated by the third author in [Thu99], and also by
Yokota, Kashaev, Hikami, the first author and others (see [Gar08, KY, Hik01, Yok02]), is to convert
multi-dimensional state-sum formulas for the Kashaev invariant to multi-dimensional state-integral
formulas over suitable cycles, and then to apply a steepest descent method to study the asymptotic
behaviour of the Kashaev invariant. The summand (and hence, the integrand) depends on the
planar projection and the steepest descend method is applied to a leading term of the integrand,
the so-called potential function. The critical points of the potential function have a geometric
meaning, namely they are solutions to the gluing equations. The latter are a special system of
polynomial equations (studied by W. Thurston and Neumann-Zagier in [Thu77, NZ85|) that are
associated to the ideal triangulations of the knot complement discussed above. A suitable solution
to the gluing equations recovers the hyperbolic structure, and the value of the potential function is
the volume of the knot.

The problem is that every planar projection leads to ideal triangulations, hence to gluing equa-
tions, and even if we know that the knot is hyperbolic, it is by no means obvious that those gluing
equations have a suitable solution (or in fact, any solution) that recovers the complete hyperbolic
structure. It turns out that if a knot is hyperbolic, the lack of a suitable solution occurs only when
edges of the ideal triangulation are homotopic to peripheral curves in the boundary tori.

1.2. Non-peripheral ideal triangulations of alternating knots. Ideal triangulations of hy-
perbolic 3-manifolds with cusps were introduced by W. Thurston in his study of Geometrization
of 3-manifolds; see [Thu77]. For thorough discussions, see [BP92, CDW, NZ85, Wee05]. An ideal
triangulation 7 of a hyperbolic 3-manifold M with one cusp is non-peripheral if no edge of 7T is
homotopic to a curve in the boundary torus of M. For such a triangulation, the gluing and com-
pleteness equations of [NZ85] can be solved to recover the hyperbolic structure of M. For a proof,
see [Til12, Lem.2.2| and also the discussion in [DG12, Sec.3].

A planar projection A of a knot gives rise to four ideal cell decompositions of its complement
(namely, Top(A), T5(A), Top(A) and 72,(A)), the last two of which are ideal triangulations that
use 4 (resp., 5) ideal tetrahedra per crossing. We will briefly recall these decompositions here,
although their precise definition is not needed for the statement and proof of Theorem 1.3 below.
e T55(A) is a decomposition of the knot complement into one ball above and one ball below the
planar projection. These two balls have a cell-decomposition that matches the planar projection of
the knot, and were originally studied by W. Thurston, and more recently by Lackenby [Lac04].
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e 75(A) is a decomposition of the knot complement minus two balls into ideal octahedra, one at
each crossing of A. This was described by Weeks [Wee05], and also by the third author [Thu99],
and by Yokota [Yok02, Yok11].

e Each ideal octahedron can be subdivided into 4 ideal tetrahedra, or into 5 ideal tetrahedra. Thus,
a subdivision of 75(A) gives rise to two ideal triangulations of the knot complement minus two
balls, denoted by 7,5-(A) and 75.(A).

Theorem 1.1. If A is a prime, reduced, alternating projection of a non-torus knot K, then the four
ideal cell decompositions Toap(A), T5(A), Tor(A) and T2(A) are non-peripheral. Consequently, the
gluing equations have a solution that recovers the complete hyperbolic structure.

1.3. Alternating knots and small cancellation theory. The above theorem follows from prov-
ing that all edges of the above ideal triangulations are homotopically non-peripheral. Luckily, we
can describe those edges directly in terms of the planar projection of the knot as follows.

Definition 1.2. Let A C R? be a knot diagram with n crossings. Consider the projection plane
R? as the zy-plane of R3, and consider the knot K C S% = R?® U {oo} obtained from A by “pulling”
the overcrossing arcs above the plane and undercrossing arcs under the plane in the standard way.
Fix a basepoint for 71(S%\ K) in the unbounded region near one strand of K. We distinguish four
kinds of loops in 71 (5% \ K).

(1) A Wirtinger arc follows the double of A through k crossings with 1 < k < 2n and then
returns to the basepoint through either the upper or lower half-space.

(2) A Wirtinger loop starts at the basepoint, travels in either the upper (resp. lower) half-space
to pass through a region R of A, passes through a region adjacent to R, and then returns
through the upper (resp. lower) half-space to the basepoint. We forbid the short loop around
the strand near the basepoint, which is manifestly a meridian.

(3) A Dehn arc starts at the basepoint, travels in the upper (resp. lower) half-space through a
region of A and then returns to the basepoint through the lower (resp. upper) half-space
without passing through the projection plane.

(4) A short arc follows the double of A from the basepoint until some crossing, where it jumps
to the other strand in the crossing and then follows the double back to the basepoint.

There four types of arc are illustrated in Figure 1.
These arcs are denoted by the letters A, B, C and D in [SY].

Theorem 1.3. If A is a prime, reduced, alternating projection of a non-torus knot K, then all
Wirtinger arcs, Wirtinger loops, Dehn arcs and short arcs are non-peripheral.

Theorem 1.1 immediately follows from Theorem 1.3, since all of the arcs that appear in any of
the decompositions in Theorem 1.1 are of one of the four types in Theorem 1.3.

The proof of Theorem 1.3 uses the small cancellation property of the Dehn presentation of
hyperbolic alternating knots. Curiously, our proof uses an explicit solution to the conjugacy problem
of the Dehn presentation of a prime reduced alternating planar projection A. See Remark 2.17
below. More generally, we emphasise that the approach we take in this paper is an algorithmic one.
Moreover our algorithms run in polynomial-time (in the length of the word).

Acknowledgements. A first draft of this paper was written in 2002 and was completed in 2007,
but unfortunately remained unpublished. During a conference in Waseda University in 2016 in
honour of the 20th anniversary of the Volume Conjecture, an alternative proof of the results of
our paper (using cubical complexes) was announced by Sakuma-Yokota [SY], and with the same
motivation as ours. We thank Sakuma-Yokota for their encouragement to publish our results, and
the organisers of the Waseda conference (especially Jun Murakami) for their hospitality.
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FigurEe 1. Four types of loop in a knot complement.

2. SMALL CANCELLATION THEORY

2.1. The (augmented) Dehn presentation of a knot group. We begin with a discussion of the
augmented Dehn presentation of a knot diagram. As it turns out, the augmented Dehn presentation
(defined below) is a small cancellation group and this structure provides a quick and implementable
solution to its word problem. Background on small cancellation groups and combinatorial group
theory can be found in [LS77].

Throughout this paper we implicitly symmetrize all group presentations. This means that when
we write a set of relators R, we actually mean the set of all relators which can be obtained from R
by inversion and cyclic permutation.

Let A be a n crossing planar diagram of a link L. Of the n+ 2 regions of the diagram A, exactly
n + 1 of these regions are bounded. Assign a unique label 1,2,...,n 4+ 1 to each of these bounded
region and the label 0 to the unbounded region. We identify each region with its label.

We obtain a group presentation from the labelled diagram A as follows. Take one generator X;
for each region ¢ = 0,1,2,...,n+1 of A. Take one relator R; for each of the n crossings of A which
is read from the diagram thus

— o~ XX XX

If we choose a base point above the projection plane, and we choose a point p; in the interior of each
region i. Then the generator X; can be described geometrically by a loop in the knot complement
which passes from the base point, downwards through the region p; then back up to the base point
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through the point pg which lies in the unbounded region. Dehn showed that
d
DA™ (X0, X1,..., Xns1 | Ri,Ra, ... Ry, Xo)
is a presentation for the knot group m1(S%\ L). We call this the Dehn presentation of w1 (S \ L)
read from the diagram A. In what follows, we use a minor modification of the Dehn presentation
which has better small cancellation properties.
The augmented Dehn presentation, Aa, of A is the group presentation
d
Ax Y (X0, X1, Xni1 | R Ro,.. Ry).

The augmented Dehn presentation arises as a Dehn presentation of a link. Given a labelled link
diagram A, construct a new labelled link diagram A U O by adding a zero-crossing component O,
which bounds A. This is called the augmented link diagram. The augmented Dehn presentation of
A is a presentation for the for the augmented link group 71 (S3\ (K U 0)), i.e.,

(1) Apr 2 Davo 2 m(SP\K)*7Z.

We will solve the word problem in Da by solving it in Aa. For completeness, let us say a
few words about why it is sufficient to solve the word problem in Aa. This is a consequence of
some standard facts about group presentations that can be found in, for example, |[LS77]. Let
Pa =(g1,---,9k | r1,...7;) and Pg = (h1,...,h; | s1,...5m) be presentations for groups G and
H respectively. Then the standard presentation, which we denote by Pg * Py, for the free product
G H is

Pg*PH = <gl,...,gk,h1,...,hl ‘ Tl,...Tj,Sl,...8m>.
A standard consequence of the normal form for free products (again see [LS77]) is that with Pg, Py
and Pg * Pp as above, if w is a word in the generators g1, ..., gr and their inverses, then w =g 1
if and only if w =g«y 1. Thus, by (1), the word problem in Da = 71(5%\ K) can be solved by the
word problem in Ax = m(S?\ K) * Z.
An an explicit isomorphism of the augmented Dehn presentation with a standard presentation
for the free product 7 (93 \ K) * Z is given by

(2) ¢: Axn — Dax (Y] )
where
Y ifi=0
¢ Xir— { X,;Y~ ! otherwise
Geometrically, ¢ corresponds to isotoping the component O of the augmented link in S® away from
the subdiagram A so that it bounds a disc in the projection plane.

Remark 2.1. Let ¢ : Dao — Da * (Y| ) denote the natural inclusion. Given a projection [ of a loop
¢ € m(S%\ K) in the diagram A, we can read off a representative ¢~ (¢(w)) as follows: follow the
loop [ from its basepoint in the direction of its orientation. When [ “passes downwards” through a
region i of A assign a generator X;; and whenever [ “passes upwards” through a region i of A assign
a generator X, !, The word thus obtained clearly represents the loop £. Thus, w Fm(s3\k) 1 if and

only if ¢~ (e(w)) #4, 1.

2.2. Square and grid presentations. The augmented Dehn presentation of a prime, reduced,
alternating knot diagram has small cancellation properties, as was first observed by Weinbaum in
[WeiT1].

Let G = (X|R) be a symmetrized group presentation. We call a non-empty word r a piece with
respect to R if there exist distinct words s,t € R such that s = ru and t = rv.

Definition 2.2. (a) A symmetrized presentation (X|R) is called a square presentation if it satisfies
the following two small cancellation conditions:
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Condition C"(4). All relators have length four and no defining relator is a product of fewer than
four pieces.

Condition T'(4) . Let 1,7 and r3 be any three defining relators such that no two of the words are
inverses to each other, then one of 7179, ror3 or r3ry is freely reduced without cancellation.

(b) A symmetrized presentation (X|R) is called a grid presentation if it is a square presentation
and in addition X is colored by two colors (black or white) and every relator alternates in the two
colors and in taking inverse.

Remark 2.3. There does not appear to be a standard terminology of the above definition. In [Wei71],
Weinbaum calls square presentations C”(4) —T'(4) presentations. In [Joh97, Joh00]|, Johnsgard uses
the term parity to denote the black/white coloring of a grid presentation. In [Wis06, Defn.3.1] and
[Wis07, Defn.2.2], Wise uses the terms squared presentations and VH presentations for our square
presentations and grid presentations.

We may depict a relator 7 of a grid presentation by a Fuclidean square as follows:
C

abted ! —— d b

a

It is easy to see that in a grid presentation the following holds:

e Relator squares have oriented edges, labelled from X. There are two sinks and two sources
in each relator square.

e We call a two letter subword of a relator a pair. The C”(4) condition says that a pair
uniquely determines a relator up to cyclic permutation and inversion.

e T'(4) says that if ab and b~'c are pairs then ac is not.

e If a, b and c are letters such that ab and b~!c are both pairs (with b # ¢), then the word ac
is called a sister-set. By the T'(4) condition, no pair is a sister-set.

e The edges of a relator square have an additional coloring: they are vertical or horizontal.
Moreover, going around a relator square we alternate between black and white.

e We can invoke a convention that the black and white colorings correspond to horizontal and
vertical line placement in our drawings of relator squares.

e A rotation or reflection of a relator square corresponds to the cyclic permutation or inversion
of a relator.

We can now state Weinbaum’s theorem.

Theorem 2.4. [Wei7l| The augmented Dehn presentation of a prime, reduced, alternating knot
diagram is a grid presentation.

In [LS77| Lyndon and Schupp show that square and grid presentations have have solvable word
and conjugacy problems. Since the appearance of that work, polynomial time algorithms have been
given for the word (see [Joh97, Sec.7])) and conjugacy problems ([Joh97]) of these groups. We use
these more efficient algorithms here.

2.3. The word problem for square presentations. In this section we recall the solution to the
word problem of square presentations. To any group presentation G = (X|R) we can associate
a standard 2-complex K in the usual way: K consists of one O-cell, one labelled 1-cell for each
generator and one 2-cell for each relator, where the 2-cell D, representing the relator r € R is
attached to the 1-skeleton, K1), by a continuous map which identifies the boundary 9D, with a
loop representing r in the 1-skeleton. We impose a piece-wise Euclidean structure on the standard
2-complex and set all 1-cells to be of unit length.
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A word w represents the identity in G if and only if there is a simply connected planar 2-complex
A, and amap ¢ : (D,0D) — (K, K() such that the 0-cells are mapped to 0-cells, open i-cells are
mapped to open i-cells, for i = 1,2 and dD is mapped to the loop representing w in K. Such a
2-complex, labelled in the natural way, is called a Dehn diagram.

Throughout this text we use two concepts of labels of edge-paths of the standard 2-complex,
peripheral complex (introduced below) or Dehn diagram. The label of an edge-path is the sequence
of letters determined by the edge-path, where travelling along an edge labelled a contributes the
letter a. This is distinct from the word labelling an edge-path, which is the word in the group
determined by the path, where travelling along an edge labelled a against the orientation contributes
the letter a~!, and travelling with the orientation, the letter a.

A word in a group presentation is said to be geodesic if it contains the least number of letters over
all representatives of the same word, i.e., w is geodesic if |w| = min{|w'| | w =¢ w'}. A geodesic
word represents the identity if and only if it is the empty word. A word in a group presentation is
geodesic if and only if it labels a geodesic edge-path in the standard two complex of the presentation.

A key result of small cancellation theory is the following Geodesic Characterisation Theorem; see
[Joh97, Sec.3] and also [Kap97, Lem.3.2].

Theorem 2.5. A word in a square presentalion is geodesic if and only if it is freely reduced and
contains no subword xy ...x, which is part of a chain:

X9 x3 Tn-1

T T

The word x1 ...xy, 1s called a chain word.

Remark 2.6. Observe that the Geodesic Characterisation Theorem immediately provides a quadratic
time solution for the word problem in square presentations: Given a word w, freely reduce it to
obtain a word w’. If w’ is the empty word then w =¢ 1, otherwise search w’ for a chain word. If w’
does not contain a chain word then w’ #¢ 1. If w’ does contain a chain word, replace it with the
shorter word which bounds the “other side” of the chain to obtain a shorter word w”. Repeat the
above process with the word w” in place of w.

2.4. The peripheral complex. A reduced, prime, alternating, oriented knot diagram gives rise to
a grid presentation with solvable word problem; see Theorems 2.4 and 2.5. This grid presentation
contains a peripheral Z?-subgroup generated by the meridian m and the longitude [ of the knot. Of
course, a peripheral subgroup does not exist for a general grid presentation.

Theorem 1.3 requires us to solve the peripheral word problem. Following Johnsgard (see [Joh97,
Sec.7|), we consider the (rather overlooked) peripheral complezr, and we discuss how it solves the
peripheral word and conjugacy problem.

Let A be a reduced, prime, alternating, oriented knot diagram with n crossings, and let Aa be
its augmented Dehn presentation. Each relator of Aa is a word of length four whose exponents
alternate in sign. We may think of the relators as 1 x 1 Fuclidean squares with directed and labelled
edges. For convenience, we impose some conventions upon our construction. We discuss the effect
of these conventions in Remark 2.9 below.

From the base point of A and in the direction of the orientation, walk around the diagram and
label the n crossings of A with ¢1,ca,.. ., ¢y in the order we meet them and in such a way that the
label c; is assigned to the first under crossing we meet. For example, for the 52 knot we have:



8 STAVROS GAROUFALIDIS, TAIN MOFFATT, AND DYLAN P. THURSTON

We construct a 2n x 1 rectangle made out of 2n relator squares inductively as follows. Position
the relator square C; on the Euclidean plane in such a way that the label of the edge-path from
(0,0) to (1,1) describes a loop which follows the knot through the undercrossing at ¢; (on the left
is shown the crossing ¢; and on the right is shown the relator square Ct):

c b
a b
—> > d b or a C
d &
a d

Suppose we have placed a relator square Cj (which arises from the crossing cx). The relator
squares C and Cyy1 have exactly two edge-labels in common (since the diagram A is prime and
reduced). Identify the right edge of Cy with the unique edge of Cy,1 which has the same label in
a way that preserves the orientation of the edges. This gives a (k+ 1) x 1 rectangle. Continue this
process until we have added the relator square Coy,.

We call such a 2n x 1 rectangle of relator squares a fundamental block of A. For example, the
fundamental block of the 59 knot above is

6 0 6 0 1 6 0 6 0 1

1 6 0 6 0 1 6 0 6 0

Observe that the fundamental block has oriented edges and its vertices are either sinks or sources.
We will often simplify figures by drawing sinks as thickened black vertices. This determines the
orientations of the edges.

Notice in the example above that the word labelling the top edge of the fundamental block is a
cyclic permutation of the word labelling the bottom edge of the fundamental block, and that the
labels and orientations on the left and right edges coincide. This observation holds in general and
it allows us to piece together the fundamental blocks in a way that tiles the plane.

Lemma 2.7. In the fundamental block of a reduced, prime, alternating, oriented knot diagram A,

(1) the label and orientation of the rightmost and leftmost vertical edges of the fundamental block
coincide;

(2) the label and orientation on the top of the relator square C; is the same as the label and
orientation on the bottom of the relator square Ci41, where the indices are taken modulo 2n.

We defer the proof of this lemma until the end of Section 2.5.
Using Lemma 2.12 we can piece together together the fundamental blocks according to the fol-
lowing pattern,
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and tile the whole plane by relator squares.

Definition 2.8. We call the resulting 2-dimensional CW complex the peripheral complez.

For example, a portion of the peripheral complex for the 5o knot is given by:

2 5 2 3 4 5 2 5 4 3 2

3 2 5 2 3 4 5 2 5 4 3

Remark 2.9. Several choices and conventions were made in the construction of the peripheral com-
plex. Namely the choice of base point on A, the label ¢; was assigned to the first under crossing
we met, and the positioning of the first relator square Cy. It is clear from the construction of
the complex that a different choice of base point (as well as orientation) and a different placement
of C'1 on the Euclidean plane would result in a peripheral complex which is isometric to the one
constructed here. We discuss this in more detail in Section 2.8.

All of the arguments presented here can be made with any construction of the peripheral complex,
however the directions specified in the statements of results and proofs in this paper may change.

2.5. Some properties of the peripheral complex. By construction, the peripheral complex
embeds in the standard 2-complex of the augmented Dehn presentation. In fact it embeds geodesi-
cally:

Lemma 2.10. The peripheral complex of A embeds geodesically in the standard 2-complex of the
augmented Dehn presentation Aa. In particular, the word labelling any geodesic edge-path in the
peripheral complex is a geodesic word in the augmented Dehn presentation.

Proof. The proof uses the Geodesic Characterisation Theorem (Theorem 2.5). Since any two paths
in the peripheral complex with common beginning and ending represent the same word in Aa,
it suffices to show that a path p that goes horizontally ¢ steps and then vertically r steps in the
peripheral complex is geodesic in the standard 2-complex.

Consider an edge-path p in the peripheral complex that goes horizontally ¢ steps and then ver-
tically r steps. Such a path has at most one pair subword, since a sister-set is never a pair by the
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T(4) condition. Thus we see that the label of the edge-path cannot contain a chain word, as this
requires two pairs. (Recall the definitions of pairs and sister sets from Section 2.2.)

It remains to show that the label of the edge-path is freely reduced. To see why this is we begin
by observing that since A is reduced, four distinct regions of A meet at every crossing and therefore
every relator square has four distinct labels. Now suppose that ab is a subword of the word labelling
the edge-path p. If the subword belongs to the horizontal path, then it labels the bottom of two
relator squares D; and D,y in the peripheral complex. By Lemma 2.7, the bottom label of D;4q
is also a label of the top of the relator square D;. This means that b cannot label the bottom of D;
and therefore a # b and ab is freely reduced.

If the letter a comes from a horizontal edge and b from a vertical edge of p, then the subword ab
labels two sides of a relator square and is therefore freely reduced.

Finally, If the subword belongs to the vertical path, then it labels the right hand side of two relator
squares D; and D;y1 in the peripheral complex. By the periodicity of the peripheral complex, the
right hand label of D; is also the label of the left hand side of the relator square D;; 1. This means
that b cannot label the right of D;;1 and therefore a # b and ab is freely reduced. O

Proof of Lemma 2.7. Since the exponents of the relators of the augmented Dehn presentation alter-
nate in sign, all of the orientations of the edges of the fundamental block are of the form required
by the lemma.

It remains to show that the edge labels are of the required form. First we show that the label on
the top of the relator square C; is the same as the label on the bottom of the relator square C;1q
fori=1,...,n.

Consider the relator square C; positioned as

d Cl a

c

By convention the labels a and b also appear in Cy (since the regions a and b of A are incident
with the crossings ¢; and c¢g). Therefore Cy has one of the following forms

al Oy or al (O

These two relators have edge-paths b~'a and ab™! respectively. By the small cancellation conditions,
a pair uniquely determines a relator, so the word ab~! cannot appear in Cy (as it appears in C as
(ab=1)~1). Therefore b must be the label on the bottom of Cs.

We proceed inductively. Suppose that we have shown that the label on the top of Ci_; coincides
with the label on the bottom of Cj. Since the crossing ci shares two incident regions with ¢;_1 and
two with cx11, the relator square Cj share two labels with C_1 and two with Ciy1. By hypothesis,
C}, shares the labels on the bottom and left-hand edges with Cy_1, so it shares the labels on the
top and right-hand edges with Cy41.

Suppose the word on the edge-path which follows the right-hand and then top edge of Cy is rs™
or r~1ts. We will deal with each case separately.

If the path is 7s~!. Then Cj; also has edges labelled r and s and must contain the word sr~! or
r~1ls. Since a pair determines a relator and C, # Cj1, we have that Cj,1 must contain the word
r~1s (since sr~! = (rs71)7!). The only way this can happen is if the letter s is on the bottom of
Ck+1.

1
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Similarly, if the path is 7~'s. Then Cj; also has edges labelled r and s and must contain the
word s~!7 or rs~!. Since a pair determines a relator and Cj # Cj,1, we have that Cy,; must
contain the word rs~!. The only way this can happen is if the letter s~! is on the bottom of Cj;.
We have shown that the label on the top of the relator square C; is the same as the label on the
bottom of the relator square Cjy1 for i =1,...,n.
To complete the proof, consider the relator square Cy, in the fundamental block. Cy, is of the

form

p OQTL r

q

where the labels p and ¢ are shared with Co,_; and r and s are shared with C} (since ¢; and ¢,
share incident regions of A). But again, the small cancellation conditions say that a pair uniquely
determines a relator and Cy,, # C1, therefore we must have s = ¢ and r = d, where ¢ and d are the
labels of C as shown above. This completes the proof of the lemma. O

Lemma 2.11. In the fundamental block of a reduced, prime, alternating, oriented knot diagram A,

(1) the label of an edge-path from the bottom-right to top-left corner of Ca, describes a curve
homotopic to a meridional loop, or its inverse, of the knot through the base point of A;

(2) the label of an edge-path from the bottom left to top right corner of Coi1, i = 1,...,n
describes a loop which follows the under-crossing of the knot at co;—1;

Proof. The relator square Ca, comes from a crossing of the form

a b
—>
d c

and, since b and c¢ are also labels of (], it must appear in the fundamental block in one of the
following forms

a

In either case we see that the edge-path bottom-right to top-left corner describes a meridian or its
inverse. This proves the first statement of the lemma.

We now prove the second statement. The relator square Cy;_1 appears in the fundamental block
with orientation

and at co;—1 we travel along an undercrossing of the form
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a b
—>
d &

which contributes the relator ab~led™!. Therefore Cy;_; is of one of the four forms

c a d b

a c b d
(these are all possible ways that the relator can fit the orientation of Cy;_1). But, by the construction
of the fundamental block, a or d must label the vertical left edge of Co;_1. This eliminates two of the
four possible labellings of Cy;_1 above, and it is easily seen that in the remaining two possibilities,

the label of an edge-path from the bottom left to top right corner describes a loop which follows
the under-crossing of the knot at cg;_1, as required. O

Let n denote the number of crossings of A. Further, let A\ denote the double of the diagram A
determined by the blackboard framing, and based at a point xg. Let p be the meridian of A based
at xg. The orientations of yu and A are determined by the orientation of A. A peripheral element of
the knot group 71 (S® — K) is then a product A\*u’, a,b € Z. The curves A and x in A also determine
canonical elements ¢~1(¢(\)) and ¢~ *(¢(12)) of the augmented knot group G = 71(S® — (K U O)).
We abuse notation and also denote these elements by A and u respectively. We say that an element
of the (augmented) knot group is peripheral if it represents the element A%’ for some a,b € Z.

Lemma 2.12. Let w be a word which labels an edge-path from the point (0,0) to the point (an —
b,an + b) in the peripheral complex of A, where a,b € Z and n is the number of crossings of A.
Then w is peripheral and represents the element \u®. Conversely, every peripheral element \°ub
has a representative as the label of an edge-path from the point (0,0) to the point (an —b,an+b) in
the peripheral complex.

Proof. We show that there exists one word [%m? labelling the edge-path from (0,0) to (an—b, an+b)
in the peripheral complex which represents A\®u?, for each choice of a and b. Since the peripheral
complex complex embeds in the standard 2-complex of the augmented Dehn presentation, it follows
that any word which labels a edge-path from the point (0,0) to the point (an — b, an + b) represents
the peripheral element [%m?.

Label the crossings of A by ci,...,co, according to the conventions in Subsection 2.4. We can
find a representative [ of A in the augmented Dehn presentation A as follows: take a framed double
A of A. Begin by taking [ to be the empty word. Walk once around A and concatenate a subword
Xo X, ! to the right of [ whenever we pass under an arc of A from a region labelled a to a region
labelled b. The word [ obtained clearly represents .

Since the knot is alternating and, by our convention on the labelling of the crossing, the double
A of A passes under an arc of A at the crossings co;—1, for ¢ = 1,...,n. By Lemma 2.11, the two
letter subword contributed to I at the crossing co;—1 is exactly the label of an edge-path from the
bottom left to top right corner of a relator square Co;_1 in the peripheral complex. Therefore [ can
be described as an edge-path from the bottom left to the top right of the following complex:
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C3

Cy

Clearly, such a complex is embedded in the peripheral complex and the edge-path is a path from
(0,0) to (n,n). By the periodicity of the peripheral complex, it follows that the word {* is an
edge-path in the peripheral complex from (0,0) to (an,an) for all a € Z.

We have shown that powers of the longitude are contained in the peripheral complex. We now
show that powers of meridians and peripheral elements are also contained in the peripheral complex.

By Lemma 2.11 the label m of an edge-path from (0,0) to (—1, 1) represents the meridian p or its
inverse u~!. By the periodicity of the peripheral complex the label m® of an edge path from (0,0)
to (=b,b), b € Z, represents a power of the meridian and, again by the periodicity of the peripheral
complex (an,an) to (an — b,an + b), b € Z represents a power of the meridian for each a,b € Z.

Therefore the label of an edge-path from the point (0,0) to the point (an — b,an + b) in the
peripheral complex is [*m? and is peripheral. ([l

2.6. The peripheral word problem. The aim of this section is to solve the peripheral word
problem using the peripheral complex.

Theorem 2.13. Let w be a geodesic word in the augmented Dehn presentation of the n crossing
diagram A. Then w is peripheral and represents the element A*u® if and only if it labels a geodesic
edge-path from (0,0) to (an — b,an + b) in the peripheral complex of A for some a,b € Z.

To prove the theorem we need the following result from [Joh00] and [Kra94].

Theorem 2.14. Let w be a geodesic word in a square presentation of a group G all of whose
relators are of length four. Then w uniquely determines a tiling of relator squares bounded by (but
not necessarily filling) a rectangle in the Euclidean plane such that:

(1) the tiling embeds in the standard 2-complex of the group, i.e. it is a Dehn diagram;

(2) the word labels a geodesic edge-path from one corner of the rectangle to the opposite corner;
and

(3) if W' is a geodesic word then w' =g w if and only if W' labels a geodesic edge-path from one
corner of the rectangle to the opposite corner path homotopic to w.

The tiling produced by the theorem for a geodesic word w is called the geodesic completion of w.

Proof of Theorem 2.13. Let Ry, be the rectangle in the peripheral complex determined by the points
(0,0) and (an—b, an+b) for some integers a and b, and let wgp be the label of any geodesic edge-path
between these two points (for example the edge-path from (0,0) to (an — b,0) to (an — b,an + b)
will do). Then since the words labelling geodesic edge-paths in the peripheral complex are geodesic
words in the augmented Dehn presentation (by Lemma 2.10), wgp is a geodesic word.

Therefore, wqp is a geodesic word in a grid presentation which labels a geodesic edge-path between
two opposite corners of the rectangle Rgp. By Theorem 2.14, a geodesic word in the augmented Dehn
presentation represents the word wyg if and only if it is the label of a geodesic edge-path between
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(0,0) and (an — b,an + b). So all geodesic representatives of w,;, are words labelling geodesic edge-
paths from (0,0) and (an — b,an + b) in the peripheral complex. Finally, by Lemma 2.12, every
peripheral element is presented by a word wg, for some a,b € Z and the result follows. ([l

2.7. Proof of Theorem 1.3. Let A be a prime, reduced alternating projection of a knot K in S3.
Theorem 1.3 follows from the following lemma.

Lemma 2.15. (a) The Wirtinger arcs, Wirtinger loops, and Dehn arcs and conjugates of the short
arcs of A have explicit geodesic representatives in the peripheral complex.

(b) The above geodesic representatives of Wirtinger arcs, Wirtinger loops and Dehn arcs are non-
peripheral, and the above geodesic representatives of the short arcs are not conjugate to a peripheral
element.

Proof. We apply the notation and discussion from the last three paragraphs of Subsection 2.1.

Let w be a word representing a Wirtinger arc, Wirtinger loop, short arc or Dehn arc of A. Recall
the map ¢ from Equation (2) and the method for reading the a representative word ¢~ (¢(w)) in
the augmented Dehn presentation described in Remark 2.1. We use the peripheral complex to show
that its image ¢~ !(¢(w)) is non-peripheral.

We deal with each type of loop separately. Throughout we let I = lilo---ls, be a geodesic
representative of A which was constructed in the proof of Lemma 2.12. It is given by an edge-path
following the sequence of relator squares C1,Cy,...,Co,—1. Each two letter subword lo;_1lo; of [
labels an edge path on C9;_1. Also let m = mymes be a geodesic representative of i in the augmented
Dehn presentation. By Theorem 2.13, [ and m are labels of edge paths from (0,0) to (n,n) and
(0,0) to (—1,1) respectively, in the peripheral complex.

Wirtinger arcs: Wirtinger arcs are loops which follow the double A of A returning to the base-
point after passing through fewer than 2n crossings. Therefore a Wirtinger loop is represented by a
subword l1ls - - - lap, wher 2p < 2n, of [. Moreover, l1ls - - - Iy, is represented by the label of any edge-
path from (0,0) to (p,p) for p < n. By Theorem 2.13, it follows that 1l - - - o, is non-peripheral as
it does not label a path between (0,0) and (an — b,an + b).

Wirtinger loops: We may move a Wirtinger loop close to some crossing ¢;. By the way that the
relators of the augmented Dehn presentation are read from A (see Subsection 2.1), we see that the
Wirtinger loop can be described by a geodesic edge-path between two opposite corners of D; (which
two opposite corners depends on the given Wirtinger loop). Let the label of this edge-path be w.

The word w is geodesic of length two. Therefore, if w is peripheral it must represent p*tl.
However, by Lemma 2.11, the only geodesic words which represent p*! arise as a path from (0,0)
to (F1,+1) in the peripheral complex, so w cannot be the label of such an edge-path since by the
definition of Wirtinger loops, w is not a representative of the meridian, which is described by a path
from (0,0) and (—1,1).

Dehn arcs: Suppose that a given Dehn arc intersects the bounded region a of A. Then it is
represented by X, X, 1in the augmented Dehn presentation. The word X X Lig geodesic since it
is freely reduced (a # 0) and clearly does not contain a chain subword (see Theorem 2.5).

The meridian p has exactly two geodesic representatives which label the edge-path (0,0) to (—1,1)
of Cay,. It is easily seen from the definition of Dehn arcs that neither of these words can be X, X L
Short arcs: Short arcs are found by walking around the double A of A, and at some point, jumping
to an adjacent arc of A\ and walking back to the base point in one of two ways. Short arcs are then
represented by words of the form

(3) Lily - lly -+ lop

(4) Iy« lply -1y
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These representatives of short arcs do not necessarily embed as edge-paths in the peripheral
complex. However, since [2 embeds in the complex as a path from (—n, —n) to (n,n), the conjugates

(5) Ly loplyly -+l
and
(6) Ly lilily -1y

both embed in the peripheral complex as paths from (—p, —p) to (k, k), for (5), and (q,q) to (r,7)
or (r,r) to (g,q), for (6), where ¢ = min{k,p} and r = maxz{k,p}. These paths travel along the
South-West to North-East axis.

Since these words in (3) and (4) are of length less that 2n, if they are peripheral, then they must
be equal to a power of the meridian m®. This will happen if and only if (3) and (4) represent

(7) (l1'~~lk)_1mb(l1-~lk),

for some integer b. This conjugate of m® embeds into the peripheral complex as a path from (k, k)
to (0,0) to (—b,b) to (k — b,k + b) which has a geodesic representative as a path from (k, k) to
(k — b,k + b). But this path travels along the South-East to North-West axis. Therefore, by
Theorem 2.14, the geodesic words in (3) and (4) cannot be equal to the words of the form in (7)
and the short arcs are non-peripheral. O

We conclude this subsection with three remarks on short arcs.

Remark 2.16. The argument above showing that short arcs are non-peripheral in fact proves a
stronger result. It shows that any loop in the knot complement that follows the double of A from
the basepoint, then at some point jumps (above the projection plane) to any other point on the
double, then follows it back to the basepoint in either direction is non-peripheral.

Remark 2.17. Notice that in the proof for the non-peripherality of short arcs we actually solved the
conjugacy problem. We could also have shown that these elements were non-peripheral by using
Johnsgard’s solution to the conjugacy problem [Joh97]: using Johnsgard’s algorithm, the fact that
the peripheral complex contains the geodesic completion of [, and the periodicity of the peripheral
complex, it is straight-forward to show that a geodesic word in the augmented Dehn presentation
is conjugate to a peripheral element [*m? if and only if it embeds as a geodesic path from (0, k) to
(an + k — b,an + b), for some integer k. It is easy to see that two words in (5) and (6) are not of
this form. We can use a similar argument for Wirtinger loops.

Also note that this characterisation of conjugates of peripheral elements as paths in the peripheral
complex provides a method for solving the peripheral conjugacy problem.

Remark 2.18. A different approach and proof to the non-peripherality of short arcs, as noted by
M. Thistlethwaite and A. Tsvietkova in [TT14], that uses the incompressibility of checkerboard sur-
faces can be found in C. Adams [Ada07|, and D. Futer, E. Kalfagianni and Efstratia and J.S. Pur-
cell [FKP14]. (In light of this alternative approach and the previous two remarks, it is notable that
short arcs are so amenable to both geometric and algorithmic approaches.) It might be that a proof
of the whole of Theorem 1.3 can be obtained by this approach. It would be interesting to see such
an argument and its connections with the more algorithmic approach taken here.

2.8. The peripheral complex and the Gauss code of an alternating knot. In our proof of
Theorem 1.3, the peripheral complex plays a key role, and encodes the peripheral structure of a
prime, reduced, alternating projection of a knot. In this section we discuss additional properties of
the peripheral complex and its relation with the Gauss code.
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In Subsection 2.4, we constructed the peripheral complex by placing relator squares of the aug-
mented Dehn presentation on the plane in a way determined by the oriented knot diagram. As
previously noted, some conventions were used in this construction. There is a way to construct
the peripheral complex directly from the relators of the augmented Dehn presentation without any
reference to the knot diagram:

(1) Choose any relator square from the augmented Dehn presentation of a prime, reduced,
alternating knot diagram, and place it in the Euclidean plane.

(2) Choose two diagonally opposite vertices of this relator square, call them a and b. Form a
“diagonal line” of relator squares by placing copies of the relator square in such a way that
each vertex a is identified with a vertex b and all of the relator squares are translations of
the first.

(3) Complete the tiling by adding relator squares from the augmented Dehn presentation in a
way consistent with the words labelling edge-paths. (Proposition 2.19 tells us that this can
be done in a unique way.)

The construction is indicated in Figure 2.8. Throughout this section we call this the unoriented
construction of the peripheral complex, and we refer to the complex constructed in Subsection 2.4
as the oriented construction. We will also refer to the resulting complexes as the unoriented and
oriented peripheral complexes respectively.

1 1 2 1 2 3
1 | — 1 — 1 2 — 1 2 3
1 1 2 1 2 3

The following proposition tells us that the complex just described exists and is the peripheral
complex.

Proposition 2.19. The unoriented construction of the peripheral complez described above, produces
a unique plane tiling of relator squares. Moreover, the resulting complex is isometric to the oriented
peripheral complex constructed in Subsection 2.4.

Proof. First of all, we note that if the complex exists, then it must be unique, since the corners
between pairs of relator squares in the “diagonals” used in the construction are labelled by pairs
and, in a grid presentation, a pair uniquely determines a relator.

To show existence, let T" be the relator square in the plane from the first step of the unoriented
construction above. Suppose also that 71" has the vertices a and b specified. Since every relator
square and the reflection of every relator square of the augmented Dehn presentation appears in the
fundamental block of the oriented peripheral complex, there is an isometry taking T to a relator
square of the peripheral complex which sends the vertices a and b to the top-left and bottom-right
vertices of that relator square. By uniqueness, this extends to an isometry of the complexes. ([l

The following proposition tells us that an unoriented knot can be recovered from its unoriented
peripheral complex, and an oriented knot from its oriented peripheral complex.

Proposition 2.20. Let A be a prime, reduced, alternating, oriented knot diagram. The Gauss code
of D can be recovered from the oriented peripheral complex; and the Gauss code of A or its inverse
—A can be recovered from the unoriented peripheral complez.
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Proof. We first prove the result for the oriented complex. Choose any 2n x 1 horizontal block of
the complex. Every relator square appears exactly twice in this block. By the construction of the
complex, this block is a cyclic permutation of a fundamental block, and therefore the order of the
relator squares in the block is precisely the order we meet the crossings as we travel around the knot
in the direction of the orientation from some base point. With this observation, it is straight-forward
to recover the Gauss code: label the relator squares Si1,S52, ..., 59, by reading along the strip from
left to right. Assign the number —1 to Sy if it has orientation

otherwise assign the number 41 to S;. Suppose you have assigned the number +j5 to the relator
square S;. If the relator square S;;1 has not been encountered previously assign the number F(j+1)
to it, if the relator square has been encountered previously and has been assigned the number +p,
then assign the number Fp to this square. The resulting sequence is the Gauss code.

To recover a Gauss code from an unoriented peripheral complex, we can use the same method.
However, since the 2n x 1 horizontal strip of the unoriented complex can be a reflection of a 2n x 1
horizontal strip of the oriented complex, we are unable to determine if the Gauss code obtained is
that of the knot diagram or its inverse. O
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