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Abstract. The slope conjecture relates the degree of the colored Jones polynomial of a
knot to boundary slopes of incompressible surfaces. We develop a general approach that
matches a state-sum formula for the colored Jones polynomial with the parameters that
describe surfaces in the complement. We apply this to Montesinos knots proving the slope
conjecture for Montesinos knots, with some restrictions.
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1. Introduction

1.1. The slope conjecture and the case of Montesinos knots. The slope conjecture
relates one of the most important knot invariants, the colored Jones polynomial, to in-
compressible surfaces in the knot complement [Gar11b]. More precisely, the growth of the
degree as a function of the color determines boundary slopes. Understanding the topolog-
ical information that the polynomial detects in the knot is a central problem in quantum
topology. The conjecture suggests the polynomial can be studied through surfaces, which
are fundamental objects in 3-dimensional topology.

Our philosophy is that the connection follows from a deeper correspondence between
terms in an expansion of the polynomial and surfaces. This would potentially lead to a
purely topological definition of quantum invariants. The coefficients of the polynomial should
count isotopy classes of surfaces, much like in the case of the 3D-index [?]. As a first test of
this principle, we focus on the slope conjecture for Montesinos knots. In this case Hatcher-
Oertel [HO89] provides a description of the set of incompressible surfaces of those knots.
In particular they give an effective algorithm to compute the set of boundary slopes of
incompressible surfaces in such knots.

We provide a state-sum formula for the colored Jones polynomial, that allows us to match
the parameters of the terms of the sum that contribute to the degree of the polynomial with
the parameters that describe the locally incompressible surfaces. The key innovation of our
state sum is that we are able to identify those terms that actually contribute to the degree.
The resulting degree function is piecewise-quadratic, allowing application of quadratic integer
programming methods.

We interpret the curve systems on a Conway sphere enclosing a rational tangle in terms
of these degree-maximizing skein elements in the state sum. In this paper we carry out
the matching for Montesinos knots but the state-sum (10) is valid in general. In fact using
this framework, one could determine the degree of the colored Jones polynomial and find
candidates for corresponding incompressible surfaces in many new cases beyond Montesinos
knots.

While the local theory works in general, fitting together the surfaces in each tangle to
obtain a (globally) incompressible surface has yet to be done. The behavior of the colored
Jones polynomial under gluing of tangles has similar patterns, which may be explored in
future work.

The Montesinos knots are those which together with some well-understood algebraic knots
have small Seifert fibered 2-fold branched cover [Mon73, Zie84]. For our purposes, we will
not use this abstract definition, and instead construct Montesinos links by inserting rational
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tangles into pretzel knots. More precisely, a Montesinos link is the closure of a list of rational
tangles arranged as in Figure 1 and concretely in Figure 2. See Definition 2.4.

r0 r1 rm

Figure 1. A Montesinos link.

Figure 2. The Montesinos link K(−1
3
,− 3

10
, 1

4
, 2

7
).

Rational tangles are parametrized by rational numbers, see Section 2.1, thus a Mon-
tesinos link K(r0, r1, . . . , rm) is encoded by a list of rational numbers rj ∈ Q. Note that
K(r0, r1, . . . , rm) is a knot if and only if either there is only one even denominator, or, there
is no even denominator and the number of odd numerators is odd. When ri = 1/qi is the
inverse of an integer, the Montesinos link K(1/q0, . . . , 1/qm) is also known as the pretzel link
P (q0, . . . , qm).

1.2. Our results. Recall the colored Jones polynomial JK,n(v) ∈ Z[v±2] of a knot K colored
by the n-dimensional irreducible representation of sl2 [Tur88]. Our variable v for the colored
Jones polynomial is related to the skein theory variable A [Prz91] and to the Jones variable

q [Jon87] by v = A−1 = q−
1
4 . With our conventions, if 31 = P (1, 1, 1) denotes the left-hand

trefoil, then J31,2(v) = v18 − v10 − v6 − v2. For the n-colored unknot we get JO,n = v2n−v−2n

v2−v−2 .
Let δK(n) denote the maximum v-degree of the colored Jones polynomial JK,n(v). It

follows that δK(n) is a quadratic quasi-polynomial [Gar11a]. In other words, for every knot
K there exists an NK ∈ N such that for n > NK :

δK(n) = jsK(n)n2 + jxK(n)n+ cK(n) (1)

where jsK , jxK , and cK are periodic functions.

Conjecture 1.1. (The strong slope conjecture)
For any knot K and any n, there is an n′ and an essential surface S ⊂ S3 \ K with |∂S|
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boundary components, such that the boundary slope of S equals jsK(n) = p/q (reduced to

lowest terms and with the assumption q > 0), and 2χ(S)
q|∂S| = jxK(n′) of S.

The number q|∂S| is called the number of sheets of S, and χ(S) is the Euler characteristic
of S. See the discussion at the beginning of Section 6 for the definition of an essential surface
and boundary slope. We call a value of the function jsK a Jones slope and a value of the
function jxK a normalized Euler characteristic. The original slope conjecture is the part of
Conjecture 1.1 that concerns the interpretation of jsK as boundary slopes [Gar11b], while the
rest of the statement is a refinement by [KT15]. The reader may consult these two sources
[Gar11b], [KT15] for additional background. By considering the mirror image K of K and
the formula JK,n(v−1) = JK,n(v), the strong slope conjecture is equivalent to the statement
in [KT15] that includes the behavior of the minimal degree.

The slope conjecture and the strong slope conjecture were established for many knots
including alternating knots, adequate knots, torus knots, knots with at most 9 crossings,
2-fusion knots, graph knots, near-alternating knots, and most 3-tangle pretzel knots and 3-
tangle Montesinos knots [Gar11b, FKP11, GvdV16, LvdV16, MT17, Lee, LLY, How]. How-
ever the general case remains intractable and most proofs simply compute the quantum side
and the topology side separately, comparing only the end results.

Since the strong slope conjecture is known for adequate knots [Gar11b, FKP11, FKP13], we
will ignore the Montesinos knots which are adequate. Note that when m ≥ 2, the only non-
adequate Montesinos knots K(r0, r1, . . . , rm) have precisely one negative or positive tangle
[LT88, p.529]. Without loss of generality we need only to consider jsK(n) and jxK(n) for a
Montesinos knot with precisely one negative tangle. The positive tangle case follows from
taking mirror image.

Before stating our main result on Montesinos knots we start with the case of pretzel knots
as they are the basis for our argument. In fact Theorem 1.2 is the bulk of our work. For
P (q0, . . . , qm) to be a knot, at most one tangle has an even number of crossings, and if each
tangle has an odd number of crossings, then the number of tangles has to be odd. In the
theorem below, the condition on the parities of the qi’s and the number of tangles may be
dropped if one is willing to exclude an arithmetic sub-sequence of colors n.

Theorem 1.2. Fix an (m + 1)-vector q of odd integers q = (q0, . . . , qm) with m ≥ 2 even
and q0 < −1 < 1 < q1, . . . , qm. Let P = P (q0, . . . , qm) denote the corresponding pretzel knot.
Define rational functions s(q), s1(q) ∈ Q(q):

s(q) = 1 + q0 +
1∑m

i=1(qi − 1)−1
, s1(q) =

∑m
i=1(qi + q0 − 2)(qi − 1)−1∑m

i=1(qi − 1)−1
. (2)

For all n > nK we have:
(a) If s(q) < 0, then the strong slope conjecture holds with

jsP (n) = −2s(q), jxP (n) = −2s1(q) + 4s(q)− 2(m− 1). (3)
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(b) If s(q) = 0, then the strong slope conjecture holds with

jsP (n) = 0, jxP (n) =

{
−2(m− 1) if s1(q) ≥ 0

−2s1(q)− 2(m− 1) if s1(q) < 0
. (4)

(c) If s(q) > 0, then the strong slope conjecture holds with

jsP (n) = 0, jxP (n) = −2(m− 1). (5)

Next, we consider the case of Montesinos knots. Recall that by applying Euclid’s al-
gorithm, every rational number r has a unique positive continued fraction expansion r =
[b0, . . . , b`′ ], see (7), with `′ <∞, b0 ∈ Z, |bj| ≥ 1 for 1 ≤ j ≤ `′−1, |b`′ | ≥ 2, and bj’s all of the
same sign as r. From this we define an even length continued fraction expansion [a0, . . . , a`r ]
of r to be equal to [b0, . . . , b`′ ] if `′ is even, and we define it to be equal to [b0, . . . , b`′ − 1, 1]
(resp. [b0, . . . , b`′ + 1,−1]) if `′ is odd and r > 0 (resp. r < 0) . Note [a0, . . . , a`r ] is
well-defined. We will call [a0, . . . , a`r ] the unique even length positive continued fraction
expansion for r. Define r[j] = aj for j = 0, . . . , `r. Let

〈r〉e =
`r∑

j=3, j=even

r[j], 〈r〉o =
`r∑

j=3, j=odd

r[j], 〈r〉 = 〈r〉e + 〈r〉o .

For example, the fraction 63/202 = [0, 3, 4, 1, 5, 2] has the unique even length positive contin-
ued fraction expansion [0, 3, 4, 1, 5, 1, 1]. Adding up all the partial quotients of the continued
fraction expansion with even indices ≥ 3, we get 〈63/202〉e = 5 + 1 = 6. Similarly, adding
up all the partial quotients with odd indices ≥ 3, we get 〈63/202〉o = 1 + 1 = 2.

Given a Montesinos knot K(r0, . . . , rm), define DK to be the diagram obtained by sum-
ming rational tangles corresponding to the unique even length positive continued fraction
expansion for each ri, and then taking the numerator closure. See Section 2.1 for how a
rational tangle diagram is assigned to a continued fraction expansion of a rational number
and definitions for the tangle sum and numerator closure.

By the classification [?], [BZ03] and the existence of reduced diagrams of Montesinos links
[LT88], we will further restrict to Montesinos knots K(r0, . . . , rm) where |ri| < 1 for all
0 ≤ i ≤ m. See Section 2.2 for the discussion of why we may do so without loss of generality.
Again, the condition on the parities of the qi’s and the number of tangles may be dropped
if one is willing to exclude an arithmetic sub-sequence of colors n, thus proving a weaker
version of the conjecture for all Montesinos knots.

Let (r0, . . . , rm) ∈ Qm+1 denote a tuple of rational numbers, and let (q0, . . . , qm) ∈ Zm+1

denote the associated tuple of integers where qi = ri[1] + 1 for i > 0 and

q0 =

{
r0[1] + 1 if `r0 = 2 and r0[2] = 1.

r0[1] otherwise

for the unique even length positive continued fraction expansion of ri’s.

Theorem 1.3. Let K = K(r0, r1, . . . , rm) be a Montesinos knot such that r0 < 0, ri > 0 for
all 1 ≤ i ≤ m, and |ri| < 1 for all 0 ≤ i ≤ m with m ≥ 2 even. Suppose q0 < −1 < 1 <
q1, . . . , qm are all odd, and q′0 is an integer that is defined to be 0 if r0 = 1/q0, and defined
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to be r0[2] otherwise. Let P = P (q0, . . . , qm) be the associated pretzel knot, and let ω(DK),
ω(DP ) denote the writhe of DK, DP with orientations. Then the strong slope conjecture
holds. For all n > NK we have:

jsK(n) = jsP (n)− q′0 − 〈r0〉 − ω(DP ) + ω(DK) +
m∑
i=1

(ri[2]− 1) +
m∑
i=1

〈ri〉,

jxK(n) = jxP (n)− 2
q′0
r0[2]

+ 2〈r0〉o − 2
m∑
i=1

(ri[2]− 1)− 2
m∑
i=1

〈ri〉e.

Example 1.4. Consider the Montesinos knot K = K(− 46
327
, 35

151
, 5

31
, 16

35
, 1

5
). Applying Theo-

rem 1.2 and 1.3, we compute the Jones slope jsK(n) by using Euclid’s algorithm to obtain the
unique even length continued fraction expansion for each rational number in the definition
of K. We have for the first rational number −46/327,

− 46

327
= 0 +

1

−327
46

= 0 +
1

−7 + (− 5
46

)
= 0 +

1

−7 + 1
− 46

5

= 0 +
1

−7 + 1
−9+(− 1

5
)

= [0,−7,−9,−5].

This is of odd length, so the unique even length continued fraction expansion for − 46
327

is

− 46

327
= [0,−7,−9,−4,−1].

The rational numbers together with their unique even length continued fractions expansions
are

− 46

327
= [0,−7,−9,−4,−1],

35

151
= [0, 4, 3, 5, 2],

5

31
= [0, 6, 5],

16

35
= [0, 2, 5, 2, 1],

1

5
= [0, 4, 1].

The associated pretzel knot is P (−7, 5, 7, 3, 5). Theorem 1.2 applied to the pretzel knot gives
that

s(q) = −36

7
< 0 and s1(q) = −32

7
.

So

jsP (n) = (−2)(−36

7
) =

72

7
and jxp(n) = −2(−32

7
) + 4(−36

7
)− 2(4) = −122

7
.

Dunfield’s program [Dun01], which computes the boundary slope and other topological prop-
erties of essential surfaces for a Montesinos knot based on Hatcher and Oertel’s algorithm,
produces an essential surface S whose boundary slope is equal to −2s(q) = 72/7, and such
that 2χ(S)/(7|∂S|) = −122/7. Now we compute jsK(n) and jxK(n) using Theorem 1.3. To
aid in presentation, we replace each symbol in the theorem by the number computed from
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the example. We have

jsK(n) = jsP (n)︸ ︷︷ ︸
72/7

− r0[2]︸︷︷︸
−9

− 〈r0〉︸︷︷︸
−4+−1

−ω(DP )︸ ︷︷ ︸
−13

+ω(DK)︸ ︷︷ ︸
−43

+
m∑
i=1

(ri[2]− 1)︸ ︷︷ ︸
2+4+4

+
m∑
i=1

〈ri〉︸ ︷︷ ︸
(5+2)+(2+1)

=
100

7
.

jxK(n) = jxP (n)︸ ︷︷ ︸
−122/7

−2 + 2 〈r0〉o︸︷︷︸
−4

−2
m∑
i=1

(ri[2]− 1)︸ ︷︷ ︸
2+4+4

−2
m∑
i=1

〈ri〉e︸ ︷︷ ︸
2+1

= −374

7
.

For the Montesinos knot, Dunfield’s program also produces an essential surface S which
realizes the strong slope conjecture, with boundary slope 100/7 and 2χ(S)/7|∂S| = −374/7.

1.3. Plan of the proof. We divide the proof of Theorem 1.2 and Theorem 1.3 into two
parts, first concerning the claims regarding the degree of the colored Jones polynomial, and
the second concerning the existence of essential surfaces realizing the strong slope conjecture.

First we use a mix of skein theory and fusion, reviewed in Section 2.3, to find a formula for
the degree of the dominant terms in the resulting state sum for the colored Jones polynomial
in Section 3. Using quadratic integer programming techniques we determine the maximal
degree of these dominant terms in Section 4, and this is applied to find the degree of the
colored Jones polynomial for the pretzel knots we consider in 4.3. In Section 5 we determine
the degree of the colored Jones polynomial for the Montesinos knots we consider in Theorem
1.3 by reducing to the pretzel case. Finally, we work out the relevant surfaces using the
Hatcher-Oertel algorithm in Section 6, and we match the growth rate of the degree of the
quantum invariant with the topology, using the analogy drawn between the parameters of
the state sum and the parameters for the Hatcher-Oertel algorithm by Lemma 6.3. We
explicitly describe the essential surfaces realizing the strong slope conjecture in Sections 6.5
and 6.7, and the proofs of Theorem 1.2 and Theorem 1.3 are completed in Section 6.6 and
Section 6.8, respectively.

2. Preliminaries

2.1. Rational tangles. Let us recall how to parametrize rational tangles by rational num-
bers and their continued fraction expansions. Originally studied by John Conway [Con70],
this material is well-known and may be found for instance in [KL04, BS]. An (m,n)-tangle
is an embedding of a finite collection of arcs and circles into B3, such that the endpoints of
the arcs lie in the set of m + n points on ∂B3 = S2. We consider tangles up to isotopy of
the ball B3 fixing the boundary 2-spheres. The integer m indicates the number of points on
the upper hemisphere of S2, and the integer n indicates the number of points on the lower
hemisphere. We may isotope a tangle so that its endpoints are arranged on a great circle of
the boundary 2-sphere S2. A tangle diagram is then a regular projection of the tangle onto
the plane of this great circle. We represent tangles by tangle diagrams, and we will refer to
an (m,m)-tangle as an m-tangle. Our building blocks of rational tangles are the horizontal
and the vertical 2-tangles shown below, called elementary tangles in [KL04].

• A horizontal tangle has n horizontal half-twists (i.e., crossings) for n ∈ Z.
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2 −2 0

• A vertical tangle has n vertical half-twists (i.e., crossings) for n ∈ Z.

1
2

−1
2 1/0

The horizontal tangle with 0 half-twists will be called the 0-tangle, and the vertical tangle
with 0 half-twists will be called the ∞-tangle.

Definition 2.1. A rational tangle is a 2-tangle that can be obtained by applying a finite
number of consecutive twists of neighboring endpoints to the 0-tangle and the ∞-tangle.

For 2m-tangles we define tangle addition, denoted by⊕, and tangle multiplication, denoted
by ∗, as follows in Figure 3. We also define the numerator closure of a 2m-tangle as a knot
or link obtained by joining the two sets of m endpoints in the upper hemisphere, and by
joining the two sets of m endpoints in the lower hemisphere.

T S

T ⊕ S

T

S

T ∗ S

T T

N(T )

mm

m

m

mm

mm

mm

mm

m m

m m

m

m

Figure 3. 2m-tangle addition, multiplication, and numerator closure.

The following theorem is paraphrased from [KL04] with changes in notations for the
elementary rational tangles.

Theorem 2.2. [KL04, Lemma 3] Every rational tangle can be isotoped to have a diagram in
standard form, obtained by consecutive additions of horizontal tangles only on the right (or
only on the left) and consecutive multiplications by vertical tangles only at the bottom (or
only at the top), starting from the 0-tangle or the ∞-tangle.

More precisely, every rational tangle diagram maybe be isotoped to have the algebraic pre-
sentation

(((a` ∗
1

a`−1

)⊕ a`−2) ∗ · · · ∗ 1

a1

)⊕ a0, (6)

where aj ∈ Z.
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Recall the notation of the positive continued fraction expansion [KL04, BS]:

[a0, . . . , a`] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·+
1

a`

(7)

for integers aj > 0 for 1 ≤ j ≤ ` and a0 ∈ Z. We define the rational number r associated to
a rational tangle in standard form with algebraic expression (6) to be

r = [a0, . . . , a`].

Conversely, given a positive continued fraction expansion of a rational number r = [a0, . . . , a`]
we may obtain a diagram of a rational tangle given by the corresponding algebraic expression
(6). See Figure 4 for an example.

Figure 4. A rational tangle diagram T associated to the continued fraction
expansion [0, 2, 1, 3, 3] = 13/36.

A rational tangle is determined by their associated rational number to a standard diagram
by the following theorem.

Theorem 2.3. [Con70] Two rational tangles are isotopic if and only if they have the same
associated rational number.

See [KL04, Theorem 3] for a proof of this statement.

Definition 2.4. A Montesinos link K(r0, r1, . . . rm) is a link that admits a diagram obtained
by summing rational tangles

((Tc0 + Tc1) + Tc2) · · ·+ Tcm ,

where ci for each 0 ≤ i ≤ m is a choice of positive continued fraction expansion of rj, then
taking the numerator closure.

Note that a different choice of a positive continued fraction expansion for each ri produces a
different diagram of the same knot by Theorem 2.3. To simplify our arguments, we will choose
a specific diagram for the Montesinos knot K(r0, r1, . . . , rm) outside the family of adequate
Montesinos knots by specifying the choice of a positive continued fraction expansion for each
rational number ri.
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2.2. Classification of Montesinos links. The book [BZ03] has a complete account of the
classification of Montesinos links, originally due to Bonahon [?].

Theorem 2.5. [BZ03, Theorem 12.29] Let K(r0, . . . , rm) be a Montesinos link such that
m ≥ 3 and r0, . . . , rm ∈ Q \ Z. Then K is determined up to isomorphism by the rational
number

∑m
i=0 rm and the vector ((r0 mod 1), (r1 mod 1), . . . , (rm mod 1)), up to cyclic

permutation and reversal of order.

Note that requirement for the ri’s to be in Q \ Z rules out the case where an integer
rational tangle can be absorbed into another one in the tangle sum defining the Montesinos
knot. We will work with reduced diagrams for Montesinos knots as studied by Lickorish and
Thistlethwaite [LT88]. Here we follow the exposition of [FKP13, Chapter 8].

Definition 2.6. Let K be a Montesinos link. A diagram is called a reduced Montesinos
diagram of K if it is the numerator closure of the sum of rational angles T0, . . . , Tm corre-
sponding to rational numbers r0, . . . , rm with m ≥ 2, and both of the following hold:

(1) Either all of the ri’s have the same sign, or 0 < |ri| < 1 for all i.
(2) For each i, the diagram of Ti comes from a positive continued fraction expansion of

ri.

It follows as a consequence of the classification theorem that every Montesinos linkK(r0, . . . , rm)
with m ≥ 2 has a reduced diagram. For example, if ri < 0 while rj ≥ 1, we can subtract 1
from rj and add 1 to ri until condition (1) is satisfied. This does not change the link type
of the Montesinos link by Theorem 2.5. Since we are focused on Montesinos links with ri’s
of different signs, we may assume that 0 < |ri| < 1. Thus ri[0] = 0 for all 0 ≤ i ≤ m.

2.3. Skein theory and the colored Jones polynomial. We consider the skein module
of link diagrams on an oriented surface F with a finite (possibly empty) collection of points
specified on the boundary ∂F . This will be used to give a definition of the colored Jones
polynomial from a diagram of a link. For the original reference for skein modules see [Prz91].
We will follow the approach of Lickorish [Lic97, Section 13] except for the variable substitu-
tion (our v is his A−1 to avoid confusion with the A for a Kauffman state). See [?] for how
the skein theory gives the colored Jones polynomial, also know as the quantum sl2 invariant.
The word “color” refers to the weight of the irreducible representation where one evaluates
the invariant.

Definition 2.7. Let v be a fixed complex number. The linear skein module S(F ) of F is
a vector space of formal linear sums over C, of unoriented and properly-embedded tangle
diagrams in F , considered up to isotopy of F fixing ∂F , and quotiented by the relations

(i) D t = (−v−2 − v2)D, and
(ii) = v−1 + v .

Here denotes the unknot and D t is the disjoint union of the diagram D with an
unknot. Relation (ii) indicates how we can write a diagram as a sum of two diagrams with
coefficients in v by locally replacing a crossing by the two splicings on the right.

We consider the linear skein module S(D2, n, n′) of the disc D2 with n+n′-points specified
on its boundary, where the boundary is viewed as a rectangle with n marked points above
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and n′ marked points below. From the skein relations in Definition 2.7, every element
in S(D2, n, n′) is generated by crossingless matchings between the n points on top and n′

points below. For crossingless matchings D1 ∈ S(D2, n, n′), and D2 ∈ S(D2, n′, n′′), there is
a natural multiplication operation D1×D2 defined by identifying the bottom boundary of D1

with the top boundary of D2 and matching the n′ common boundary points. Extending this
by linearity to all elements in S(D2, n, n) makes it into an algebra TLnn, called Temperley-Lieb
algebra. For the original references see [TL71], [KL94]. We will simply write TLn. There is
a natural identification of 2n-tangles with diagrams in TL2n.

As an algebra, TLn is generated by a basis |n, e1
n, . . . , e

n−1
n , where |n is the identity with

respect to the multiplication, and ein is a crossing-less tangle diagram as specified below in
Figure 5.

Suppose that v4 is not a kth root of unity for k ≤ n. There is an element, which we will
denote by n, in TLn called the nth Jones-Wenzl idempotent, which is uniquely defined by
the following properties. For the original reference where the idempotent was defined and
studied, see [Wen87]. Whenever n is specified we will simply refer to this element as the
Jones-Wenzl idempotent.

n1 2 1 i i+ 1 n

|n ein

Figure 5. An example of the identity element 1n and a generator ein of TLnn
for n = 5 and i = 2.

(i) n × ein = ein × n = 0 for 1 ≤ i ≤ n− 1.
(ii) n − |n belongs to the algebra generated by {e1

n, e
2
n, . . . , e

n−1
n }.

(iii) n × n = n.
(iv) The image of n in S(R2), obtained by embedding the disc D2 in the plane and then

joining the n boundary points on the top with those on the bottom with n disjoint
planar parallel arcs outside of D2, is equal to

(−1)n(v−2(n+1) − v2(n+1))

v−2 − v2
· the empty diagram in R2.

We will denote the rational function multiplying the empty diagram by 4n.

Definition 2.8. Let D be a diagram of a link K ⊂ S3 with k components. For each
componentDi for i ∈ {1, . . . , k} take an annulus Ai via the blackboard framing. Let S(S1×I)
be the linear skein module of the annulus with no points marked on its boundary. Let

fD : S(S1 × I)× · · · × S(S1 × I)︸ ︷︷ ︸
k times

→ S(R2)

be the map which sends a k-tuple of elements (s1, . . . , sk) to S(R2) by immersing in the
plane the someion of annuli containing the skeins such that the over- and under-crossings of
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D are the over- and under-crossings of the annuli. For n ≥ 1, the n+ 1th unreduced colored
Jones polynomial JK,n+1(v) may be defined as

JK,n+1(v) := (−v)ω(D)(n2+2n)(−1)n

〈
fD

(
n

,
n

, · · · ,
n

)
︸ ︷︷ ︸

k times

〉
,

where 〈D〉 for a linear skein element in S(R2) is the polynomial in v multiplying the empty
diagram after resolving crossings and removing disjoint circles of D using the skein relations
of Definition 2.7. This is called the Kauffman bracket of D. To simplify notation, we will
write

Dn = fD

(
n

,
n

, · · · ,
n

)
.

A Kauffman state [Kau87], which we will denote by σ, is a choice of the A- or B-resolution
at a crossing of a link diagram.

A-resolution B-resolution

Figure 6. A- and B-resolutions of a crossing.

Definition 2.9. Let σ be a Kauffman state on a skein element with crossings, define

sgn(σ) = (# of B-resolutions of σ)− (# of A-resolutions of σ).

Definition 2.10. Given a skein element S with crossings in S(R2), the σ-state denoted by Sσ
is the set of disjoint arcs and circles, possibly connecting Jones-Wenzl idempotents, resulting
from applying a Kauffman state σ to S. The σ-state graph SGσ is the set of disjoint arcs and
circles, possibly joining Jones-Wenzl idempotents, resulting from applying a Kauffman state
σ to S along with segments recording the original locations of the crossings.

We summarize standard techniques and formulas for computing the colored Jones polyno-
mial using Definition 2.8 that are relevant to this paper. Given a diagram Dn decorated with
a single Jones-Wenzl idempotent from a link, a state sum for the Kauffman bracket 〈Dn〉 of
Dn is an expansion of 〈Dn〉 into a sum over skein elements resulting from all the possible
choices of Kauffman states on a subset of crossings in Dn. As an example, one can compute
the second colored Jones polynomial of the trefoil knot by writing down the following state
sum.
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=

1

v−3〈 〉+

v〈 〉+

v−1〈 〉+ v3〈 〉

v〈 〉+

v−1〈 〉+v〈 〉

v−1〈 〉+

+

=
∑

σ a Kauffman state

vsgn(σ)〈(Dn)σ〉.
where the choice of Kauffman states is taken over all the crossings of the diagram. We are
left with disjoint arcs and circles connecting the Jones-Wenzl idempotent. These may be
removed by applying skein relations and by applying properties of the idempotent.

Since we are interested in bounding degrees of the Kauffman brackets of skein elements in
the state sum, we will define a few more relevant combinatorial quantities and gather some
useful results.

Let Sσ be a skein element coming from applying a Kauffman state σ to a skein element
S with crossings and decorated by Jones-Wenzl idempotents in S(R2), then Sσ is the set of
disjoint circles obtained from Sσ by replacing all idempotents with the identity. Let Aσ be
the set of crossings of S on which σ chooses the A-resolution. Define o(Aσ) to be the number
of circles in Sσ.

Definition 2.11. A sequence s of states starting at σ1 and ending at σf on a set of crossings
in a skein element S is a finite sequence of Kauffman states σ1, . . . , σf , where σi and σi+1

differ on the choice of the A- or B-resolution at only one crossing x, so that σi+1 chooses the
A-resolution at x and σi chooses the B-resolution.

Let s = {σ1, . . . , σf} be a sequence of states starting at σ1 and ending at σf In each step
from σi to σi+1 either two circles of Sσi merge into one or a circle of Sσi splits into two. When
two circles merge into one as the result of changing the B-resolution to the A-resolution, the
number of circles of the skein element decreases by 1 while the sign of the state decreases by
2. More precisely, let Sσ be the skein element resulting from applying the Kauffman state
σ, we have

sgn(σi+1) + deg〈Sσi+1
〉 = sgn(σi) + deg〈Sσi〉 − 4 ,

when a pair of circles merges from Sσi to Sσi+1
. This gives the following immediate corollary.
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Lemma 2.12. Let s = {σ1, . . . , σf} be a sequence of states on a skein element S with
crossings, then

sgn(σ1) + deg〈Sσ1〉 = sgn(σf ) + deg〈Sσf 〉
if and only if a circle is split from Sσi to Sσi+1

for every 1 ≤ i ≤ f − 1. Otherwise

sgn(σ1) + deg〈Sσ1〉 > sgn(σf ) + deg〈Sσf 〉.

We will also use standard fusion and untwisting formulas involving skein elements deco-
rated by Jones-Wenzl idempotents for which one can consult [Lic97] and the original reference
[MV94].

=
∑

c:(a,b,c)
admissible

4c
θ(a,b,c)

ab
ab

ab

c

c

(8)

Figure 7. fusion formula: the skein element which locally looks like the left-
hand side is equal to the sum of skein elements on the right-hand side with
corresponding local replacements.

= (−1)
a+b−c

2 va+b−c+a2+b2−c
2

a b

c

a b

c (9)

Figure 8. Untwisting formula: the skein element which locally looks like the
left-hand side is equal to the skein element on the right-hand side with the
local replacement.

We say that a triple (a, b, c) of non-negative integers is admissible if a+ b+ c is even and
a ≤ b+ c, b ≤ c+ a, and c ≤ a+ b. For k a non-negative integer, let 4k! := 4k4k−1 · · ·41,
with the convention that 40 = 1. In the pictures above, the function θ(a, b, c) is defined by

θ(a, b, c) =
4x+y+z!4x−1!4y−1!4z−1!

4y+z−14z+x−1!4x+y−1!
,

where x, y, and z are determined by a = y + z, b = z + x, and c = x+ y.
The degree of a rational function L(v) is the maximum power of v in the formal Laurent

series expansion of L(v) with finitely many positive degree terms.
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3. The colored Jones polynomial of pretzel knots

From this point on we will always consider the standard diagram when referring to the
pretzel knot K = K(1/q0, . . . , 1/qm), with |qi| > 1. Throughout the section the integer n ≥ 2
is fixed, and we will illustrate graphically using the example K(−1/5, 1/3, 1/3, 1/3, 1/5).

The colored Jones polynomial for a fixed n of a knot is by Definition 2.8 the Kauffman
bracket of the n-blackboard cable of a diagram of K decorated by a Jones-Wenzl idempo-
tent, multiplied by a monomial in v raised to the power of the writhe of the diagram with
orientation. We write the colored Jones polynomial as JK,n+1 = (−1)n(−v)ω(K)n(n+2)〈Kn〉.

The Jones-Wenzl idempotent is a sum of tangle diagrams with coefficients rational func-
tions of v in the algebra TLn. A skein element in TLnn′ decorated by Jones-Wenzl idempotents
is thus also a sum of tangle diagrams with coefficients rational functions of v by locally re-
placing idempotent with its sum. We extend the tangle sum operation ⊕ to skein elements
S decorated by Jones-Wenzl idempotents in TL2n, written

S =
∑

T∈TL2n

s(v)T,

as

S ⊕ S ′ =
∑

T,T ′∈TL2n

s(v)s′(v)T ⊕ T ′.

Graphically, this is will be the same as joining the top right and bottom right 2n-strands
of S to the top left and bottom left 2n-strands to S ′, with the presence of the idempotent
indicating that this is actually a sum of such diagrams in TL2n. Similarly, we extend the
numerator closure to skein elements in TL2n.

We will represent the diagram Kn = N(Kn
− ⊕ Kn

+) as the numerator closure of two 2n-
tangles decorated by Jones-Wenzl idempotents, with the label n indicating the number of
parallel strands. This decomposition of Kn reflects the original splitting of K = N(K−⊕K+)
into two 2-tangles K− and K+. A twist region is a vertical tangle with a nonzero number
of crossings all of the same sign. Let K− be the negative twist region consisting of −q0

crossings, and K+ the rest of the diagram K. For a fixed n double the idempotents in Kn so
that four are framing the n-cable of the negative twist region consisting of −q0 crossings, and
four are framing the n-cable of the rest of the knot diagram. The 2n-tangle Kn

− is the n-cable
of K− along with the four idempotents, and Kn

+ is the rest of Kn, which is the n-cable of
K+, also decorated with four idempotents. See the middle figure in Figure 9.
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Kn
+

Kn
−

Kn
+

k0

n n

n

Ik0

Kn

k0

n n

nn

Figure 9. From left to right: Kn, doubling the idempotents and the splitting
Kn = N(Kn

−⊕Kn
+) , and N(Ik0⊕Kn

+)σB , where σB is the Kauffman state that
chooses the B-resolution on all the crossings in Kn

+. The dotted boxes enclose
the skein elements in S(D2, 2n, 2n), which are sums of 2n-tangles.

It is convenient to compute the bracket of these 2n-tangles first. For any tangle T write
〈T n〉 to mean cabling each component by a JW idempotent of order n and evaluating in the
Temperley-Lieb algebra TL2n.

We write 〈Kn
−〉 =

∑
k0
Gk0(v)Ik0 for tangles Ik0 with four JW idempotents of size n con-

nected in the middle to a JW idempotent of size 2k0 arranged in an I-shape using the fusion
and untwisting formulas. Apply the fusion formula to two strands of Kn

− going into (or
coming out of) the n-cable negative twist region. Then, apply the untwisting formula to

get rid of all the negative crossings. The function Gk0(v) =
42k0

θ(n,n,2k0)
(−1)n−k0v2n−2k0+n2−2k20

is a rational function that is the product of two coefficient functions in v multiplying the
replacement skein elements. The other tangle Kn

+ is expanded into a state sum by taking
Kauffman states over all the crossings in Kn

+, leaving the four JW idempotents of size n:
Let (Kn

+)σ denote the skein element resulting from applying a Kauffman state σ to all the

crossings of Kn
+. Then, 〈Kn

+〉 =
∑

σ v
sgn(σ)(Kn

+)σ. The state sum we consider is indexed by
pairs (k0, σ) and we write

〈Kn〉 =
∑

(k0,σ)

Gk0(v)vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉. (10)

See the rightmost figure of Figure 9 for an example of N(Ik0 ⊕ (Kn
+)σ). Using the notion of

through strands, we collect like terms together in our state sum.

Definition 3.1. Consider the Temperley-Lieb algebra TLnn′ with n inputs and n′ outputs.
Let T be an element of TLnn′ with no crossings. Viewing ∂D2 as a square, an arc in T with
one endpoint on the top boundary of the disc D2 defining TLnn′ and another endpoint on the
bottom boundary is called a through strand of T .

We can organize states (k0, σ) according to the number of through strands at various levels.
The global number of through strands of σ, denoted by c = c(σ), is the number of through
strands of (Kn

+)σ in TL2n inside the box framed by four idempotents in Kn
+, see Figure 10

for an example.
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Figure 10. An example of (Kn
+)σ with c(σ) = 4. When restricting σ to the

4th twist region, we have c4(σ) = k4(σ) = 2. In the last picture we show an
example of a state σ where c4(σ) = 1 and therefore k4(σ) = 1.

We will also define ci(σ) to be the number of ith local through strands when restricting σ
to the ith twist region, that are also global through strands. The parameter corresponding

to a Kauffman state σ for each twist region, ki, will be defined as ki(σ) = d ci(σ)
2
e. The

intuition for these parameters is that they will be used to bound the degrees of each term in
the state sum relative to each other, which is crucial to determining the degree of the nth
colored Jones polynomial JK,n+1.

With the notation k = (k0, . . . , km) we set

Gc,k =
∑
k0

∑
σ:ki(σ)=ki,c(σ)=c

Gk0(v)vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉. (11)
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We prove the following theorem.
Note 0 ≤ ki ≤ n and define the parameters c, k to be tight if k0 = k1 + · · ·+ km = c

2
.

Theorem 3.2. Assume |qi| > 1 and write 〈Kn〉 =
∑

c,k Gc,k using (10) and (11). For tight

c, k we have Gc,k = (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1)vδ(n,k) + l.o.t.1 and δ(n, k) =

−2

(
(q0 + 1)k2

0 +
m∑
i=1

(qi − 1)k2
i +

m∑
i=1

(−2 + q0 + qi)ki −
n(n+ 2)

2

m∑
i=0

qi + (m− 1)n

)
(12)

If c, k are not tight then there exists a tight pair c′, k′ (coming from some Kauffan state) such
that degv Gc,k < degv Gc′,k′.

This theorem will be used in the next section to find the actual degree of JK,n+1 using
quadratic integer programming.

3.1. Outline of the proof of Theorem 3.2. Let st(c, k) be the set of states (k0, σ) with
c(σ) = c and ki(σ) = ki for all i such that the parameters c, k are tight. A state in st(c, k) is
said to be taut if its term Gk0(v)vsgn(σ)〈N(Ik0⊕(Kn

+)σ)〉 in (11) maximizes the v-degree within
st(c, k). For any fixed tight c, k we plan to construct all taut states. The first examples of
we construct will be minimal states, from which we will derive all taut states. A state in
st(c, k) is minimal if it has the least number of A-resolutions.

We will first show that minimal states are characterized by having a certain configuration
on the set of crossings where they choose the A-resolution, called pyramidal. This will also
be used to show that c, k not tight implies degv Gc,k < degv Gc′,k′ for some tight pair c′, k′.

Then, with the construction of all taut states from minimal states, we show that δ(n, k)
is the maximal degree of a taut state with parameters k, and

Gtautc,k tight = (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1)vδ(n,k) + l.o.t.,

where Gtautc,k tight is the double sum of Gc,k only over taut states with tight c, k. This will lead
to

Gc,k tight = (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1)vδ(n,k) + l.o.t.

and conclude Theorem 3.2.

Conventions for representing a Kauffman state. Throughout the rest of Section 3,
we will indicate schematically a crossing-less skein element Sσ, resulting from applying a
Kauffman state to a skein element S with crossings, by the following convention. Let SB be
the result of applying the all-B state on the crossings of S. For a Kauffman state σ let Aσ
be the set of crossings of S on which σ chooses the A-resolution. The skein element Sσ is
represented by SB with colored edges, such that the edge in SB corresponding to a crossing
in Aσ is colored red, and all other edges remain black. The skein element Sσ may then be
recovered by a local replacement of two arcs with a dashed segment. See Figure 11 below.

1The abbreviation l.o.t. means lower order terms in v.
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Figure 11. A red edge indicates the state where the B-resolution replaces
the A-resolution for a Kauffman state σ.

3.2. Simplifying the state sum and pyramidal position for crossings. We will denote
by S(k0, σ) the skein element N(Ik0 ⊕ (Kn

+)σ) as in (11).

Lemma 3.3. Fix (k0, σ) determining a skein element S(k0, σ) with ki = ki(σ) and c = c(σ).
If k0 >

∑m
i=1 ki, then S(k0, σ) = 0.

Proof. Note that
∑m

i=1 ki ≥
c
2
. Thus if k0 >

∑m
i=1 ki, then k0 >

c
2
, and the lemma follows

from [Lee, Lemma 3.2]. �

With the information of through strands c(σ) and {ki(σ)}, we describe the structure of Aσ
for a Kauffman state σ. It is necessary to introduce a labeling of the crossings with respect
to their positions in the all-B Kauffman state graph S(k0, B) = N(Ik0 ⊕ (Kn

+)B).
We first further decompose Kn

+ = St ×Sw ×Sb where × is the multiplication by stacking
in TL, and let the crossings contained in those skeins be denoted by Ct, Cw, and Cb,
respectively. See Figure 12 for an example.

St

Sw

Sb

Kn
+

2k0

n

Figure 12. Skein element S = Ik0 · (St × Sw × Sb) of the pretzel knot
K(−1/5, 1/3, 1/3, 1/3, 1/5). We have St ∈ TL2n

2mn, Sw ∈ TL2mn, and Sb ∈
TL2mn

2n .

See Figure 13 for a guide to the labeling. The skein element TB consists of n arcs on top
in the region defining St, n arcs on the bottom in the region defining Sb, and qi − 1 sets of
n circles for the ith twist region in the region defining Sw. The n upper arcs are labeled
by Su1 , . . . , S

u
n, and the n lower arcs are labeled by S`1, . . . , S

`
n, respectively. Cu

j is the set of
crossings whose corresponding segments in TB lie between the arcs Suj and Suj+1. Similarly

we define C`
j by reflection.
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For the crossings in the region defining Sw, we divide each state circle into upper and lower
half arcs as also shown in Figure 12, and use an additional label s for 1 ≤ s ≤ qi. Thus,
the notation C`,s

i,j , where 1 ≤ s ≤ qi for each twist region with qi crossings and 1 ≤ j ≤ n

indicating a circle in the n-cable, means the crossings between the state circles S`,si,j and

S`,si,j+1, see Figure 13.

......

Su
4

Su
3

Su
2

Su
1

Cu
3

Cu
2

Cu
1

Cu
4

S`,1
1,2

S`,1
1,1

S`,1
1,3

S`,1
1,4 C `,12,3

C `,12,2C `,12,1

s = 1

......

s = q1 s = q2

s = 1

S`
1

S`
2

Su,q1
1,1
Su,q1
1,2

.

.

.

.

.

.

.

.

.

C`
3

S`
3

S`
4

C`
2

C`
1

Figure 13. Labeling of crossings, arcs, and circles from applying the all-B
state on T n. In this example n = 4.

It is helpful to see a local picture at each n-cabled crossing in T n.
The goal of this subsection is to prove the following theorem.

Theorem 3.4. Suppose a skein element S(k0, σ) has parameters ki = ki(σ) and c = c(σ).
Then there is a subset A′σ ⊆ Aσ of crossings on which the Kauffman state σ chooses the
A-resolution, such that we have A′σ = Atσ ∪ Awσ ∪ Abσ denoting the crossings in the regions
determining St, Sw, and Sb, respectively, and

(i) |Awσ | =
∑m

i=1(qi−2)k2
i . The set Awσ = ∪mi=1∪

qi
s=1∪

ki
j=1(usi,j∪`si,j) is a union of crossings

with usi,j ⊂ Cu,s
i,j and `si,j ⊂ C`,s

i,j , such that
– For each n− ki + 1 ≤ j ≤ n, usi,j, `

s
i,j each has j − n+ ki crossings.

– For each n−ki+2 ≤ j ≤ n and a pair of crossings x, x′ in usi,j (resp. `si,j) whose
corresponding segments e, e′ in TB are adjacent (i.e., there is no other edge in
usi,j between e and e′), there is a crossing x′′ in usi,j−1 (resp. `si,j−1), where the
end of the corresponding segment e′′ on Ssi,j lies between the ends of e and e′.
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n

xn

Su
3

S`
3

Su
1

S`
1

Cu
3 = C`

3

C
u

2

C
`

1

C
u

1

C
`

2

Upper

Lower

S`
2

Su
2

Figure 14. Local labeling of n2 crossings on the all-B state of an n-cabled
crossing. In this example n = 3.

(ii) |Atσ| = |Abσ| =
c2/4−c/2+

∑m
i=1(k2i+ki)

2
. The set Atσ = ∪nj=n−c/2+1uj is a union of crossings

uj ⊂ Cu
j , and the set Abσ = ∪nj=n−c/2+1`j is a union of crossings `j ⊂ C`

j satisfying:

– For n− c
2

+ 1 ≤ j ≤ n, uj (resp. `j) has j − n+ c
2

crossings.
– For each n− c

2
+ 2 ≤ j ≤ n and a pair of crossings x, x′ in uj (resp. `j) whose

corresponding segments e, e′ in TB are adjacent (i.e., there is no other crossing
in uj whose corresponding segment is between e and e′), there is a crossing x′′

in uj−1 (resp. `j−1), where the end of the corresponding segment e′′ on Suj (resp.

S`j) lies between the ends of e and e′.

It follows that |A′σ| = |Atσ|+ |Awσ |+ |Abσ| = c2

4
− c

2
+
∑m

i=1(k2
i + ki) +

∑m
i=1(qi − 2)k2

i . The
set of crossings A′σ is said to be in pyramidal position.

Proof. Statement (i) is a direct application to every set of n-cabled crossings in each twist
region of Sw of the following result from [Lee].

Lemma 3.5. [Lee, Lem. 3.7] Let S be a skein element in TL2n consisting of a single n-cabled
positive crossing xn with labels as shown in Figure 14.

If Sσ for a Kauffman state σ on xn has 2k through strands, then σ chooses the A-resolution
on a set of k2 crossings Cσ of xn, where Cσ = ∪nj=n−k(uj ∪ `j) is a union of crossings uj ⊆ Cu

j

and `j ⊆ C`
j , such that

• For each n− k + 1 ≤ j ≤ n, uj, `j each has j − n+ k crossings.
• For each n − k + 2 ≤ j ≤ n, and a pair of crossings x, x′ in uj (resp. `j) whose

corresponding segments c, c′ in the all-B state of xn are adjacent (i.e., there is no
other edge in Cσ between c and c′), there is a crossing x′′ in uj−1 (resp. `j−1), where
the end of the corresponding segment c′′ on Suj (resp. S`j) lies between the ends of c
and c′.
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The same proof applies to the crossings in the strip St, see Figure 15. Reflection with
respect to the horizontal axis will show (ii) for Sb.

. . .n

n n

n n n

n n

Figure 15. The arrow indicates the direction from left to right of the cross-
ings in St.

�

We will now apply what we know about the crossings on which a state σ chooses the A-
resolution from Theorem 3.4 to construct degree-maximizing states for given global through
strands c(σ) and parameters {ki(σ)}. See Figure 16 for an example of a pyramidal position
of crossings.

Figure 16. A minimal state τ is shown with n = 3 and c(τ) = 6 global
through strands. From the representation on the left one can see the pyramidal
position of the crossings A′τ as described by Theorem 3.4. The skein element
S(k0, τ) with k = (k0, 0, 0, 2, 1) resulting from applying τ is shown on the right.

3.3. Minimal states are taut and their degrees are δ(n, k). The contribution of the
state (k0, σ) to the state sum is Gk0(v)vsgn(σ)〈N(Ik0 ⊕ (Kn

+)σ)〉 as in (11). We denote its
v-degree by d(k0, σ).

Recall the skein element S(k0, σ) = N(Ik0 ⊕ (Kn
+)σ). Also recall Aσ denotes the set of

crossings on which σ chooses the A-resolution, and |Aσ| is the number of crossings in Aσ.
A minimal state with tight parameters c, k (k0 = k1 + · · · + km = c

2
) has the least |Aσ|.

Let o(Aσ) denote the number of circles of S(k0, σ), which is the skein element obtained by
replacing all the JW idempotents in S(k0, σ) by the identity, respectively.

Lemma 3.6. A minimal state (k0, τ) with c(τ) through strands and tight c, k has Aτ in
pyramidal position as specified in Theorem 3.4 and distance |Aτ | from the all-B state given
by

|Aτ | = 2

(
(
m∑
i=1

ki)
(
∑m

i=1 ki − 1)

2
+

m∑
i=1

ki(ki + 1)

2

)
+

m∑
i=1

(qi − 2)k2
i .

Moreover,

Gk0(v)vsgn(σ)〈Ik0 · T nσ 〉 = (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1)vδ(k,n) + l.o.t. (13)

Proof. Observe that minimal states τ have corresponding crossings Aτ in pyramidal position.
Moreover, if Aτ is pyramidal, then |Aτ | determines the number of circles o(Aτ ). The skein
element S(k0, τ) is adequate as long as k0 ≤

∑m
i ki, thus by [Arm13, Lem. 4], we have

deg vsgn(τ)〈S(k0, τ)〉 = deg vsgn(τ)〈S(k0, τ)〉 ,
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and we simply need to determine the number of circles in S(k0, τ) and sgn(τ) in order to
compute the degree of the Kauffman bracket. This is completely specified by the pyramidal
configuration of Aτ by just applying the Kauffman state. With the assumption that k0 =∑m

i=1 ki = c
2

since c, k is tight, the degree is then

d(k0, τ) =
m∑
i=1

qin
2 − 2(2

(
(
∑m

i=1 ki) ((
∑m

i=1 ki)− 1)

2
+

m∑
i=1

ki(ki + 1)

2

)
+

m∑
i=1

(qi − 2)k2
i )︸ ︷︷ ︸

sgn(τ)

+ 2

(
2n− (

(
m∑
i=1

ki

)
− k0) +

m∑
i=1

(n− ki)(qi − 1)

)
︸ ︷︷ ︸

2o(Aτ )

+ q0(2n− 2k0 +
2n2 − 4k2

0

2
) + 2k0 − 2n︸ ︷︷ ︸

fusion and untwisting

.

The sign of the leading term is given by

(−1)

q0(n− k0) + n+ k0︸ ︷︷ ︸
fusion and untwisting

+o(Aτ )

= (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1).

�

Lemma 3.7. Minimal states are taut. In other words, given c, k tight, we have

max
σ:c(σ)=c,ki(σ)=ki

d(k0, σ) = d(k0, τ),

where τ is a minimal state with c(τ) = c and ki(τ) = ki.

Proof. Note that for any state σ with corresponding skein element S(k0, σ)

Aτ ⊆ Aσ

for a minimal state τ with the same parameter set (c, k) by Theorem 3.4 and d(k0, τ) =
d(k0, τ

′) for two minimal states τ, τ ′ with the same parameters c(τ) = c(τ ′) and ki(τ) = ki(τ
′)

by Lemma 3.6. This implies d(k0, σ) ≤ d(k0, τ). �

3.3.1. Constructing minimal states.

Lemma 3.8. A minimal state exists for any tight c, k, where c is an even integer between 0
and 2n and k0 =

∑m
i=1 ki = c

2
.

Proof. It is not hard to see that at an n-cabled crossing xn in a twist region with qi crossings,
for any 0 ≤ ki ≤ n there is always a minimal state giving 2ki through strands. For an n-
cabled crossing xn in St or Sb, it is also not hard to see that we may take the pyramidal
position P for the minimal state for the bottom half (or upper half, for Sb) of the crossings

in xn in Cu
n and C`,1

i,j for each twist region.
What remains to be shown is that a minimal state always exists, given the set of parameters
{ki} and c total through strands for crossings in the top and bottom strips delimited by
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{Suj }nj=1 and {S`j}nj=1. To see this, we take the leftmost configuration with {ki} through
strands for the bottom half of the crossings in xn for each twist region, which we already know
to exist. Given two crossings x and x′ in Cu

n whose corresponding segment in S(k0, B) has
ends on Sun we can always find another crossing x′′ in Cu

n−1 , the end of whose corresponding
segment on Sun lies between those of x and x′, because the previously chosen crossings in Cu

n

are leftmost. Pick the leftmost possible and repeat to choose crossings in Cu
j for n− k+ 1 ≤

j ≤ n− 2. We pick crossings in the bottom strip by reflection. �

Lemma 3.9. Let σ be a state with c = c(σ) and ki = ki(σ) which is not tight, that is,∑m
i=1 ki >

c
2

or k0 <
c
2
, then d(k0, σ) < d(k0, τ) , where τ is a minimal state with c(τ) = c

through strands.

Proof. For the case
∑m

i=1 ki >
c
2
, we can apply Theorem 3.4 to conclude that there is a

minimal state τ (there may be multiple such states) such that

Aτ ⊂ Aσ,

with ki(τ) ≤ ki(σ) for each i. There must be some i for which ki(τ) < ki(σ). Applying the
B-resolution to the additional crossings to obtain a sequence of states from τ to σ, we see
that it must contain two consecutive terms that merge a pair of circles.

If k0 <
c
2

with similar arguments we can see that o(Aσ) < o(Aτ ). �

3.4. Enumerating all taut states. By Lemma 3.7, we have shown that every taut state
contains a minimal state. Next we show that every taut state is obtained from a unique
such minimal state τ by changing the resolution from B-to A-on a set of crossings Fτ . We
show that any taut state σ with c(σ) = c(τ) and ki(σ) = ki(τ) containing τ as the leftmost
minimal state, to be defined below, satisfies Aσ = Aτ ∪ p, where p is any subset of Fτ .

All the circles here in the definitions and theorems are understood with possible extra
labels u, `, s, i, j indicating where they are in the regions defining St,Sw, and Sb. To simplify
notation we do not show these extra labels.

Definition 3.10. For each x ∈ Aτ between Sj−1 and Sj, let Rx be the set of crossings to
the right of x between Sj−1 and Sj, but to the left of any x′ ∈ Aτ between Sj−2 and Sj−1,
and any x′′ ∈ Aτ between Sj and Sj+1. We define the following possibly empty subset Fτ of
crossings of Kn.

Fτ := ∪x∈AτRx .

See Figure 17 and 18 for examples.

x
Sj−1

Sj

Sj+1

Sj−2

Figure 17. Only the blue edge is in Rx because of the presence of the top
and bottom red edges.
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Figure 18. An example of Fτ with edges shown in blue with the minimal
state τ shown as red edges.

Definition 3.11. Given a set of crossings C of Kn, a crossing x ∈ C, and 1 ≤ j ≤ n, define
the distance |x|C of a crossing x ∈ C from the left to be

|x|C := For x ∈ Cj, the # of edges in S(k0, B) to the left of x between Sj and Sj+1,

the distance of the set C from the left is ∑
x∈C

|x|C .

Given any state σ with tight parameters c, k, we extract the leftmost minimal state τσ
where Aτσ ⊆ Aσ, i.e., there is no other minimal state τ ′ such that Aτ ′ ⊂ Aσ, and the distance
of Aτ ′ from the left is less than the distance of Aτσ from the left.

Figure 19. On the left, a taut state having the same degree as a minimal
state but is not equal to it. We have c = 6, k1 = 0, k2 = 0, k3 = 2 and
k4 = 1 as the minimal state in Figure 16, and the thickened red edges indicate
the difference from a minimals state with the same parameters. Choosing the
B-resolution at each of the thickened red edges splits off a circle.

Lemma 3.12. A Kauffman state σ with tight parameters c(σ), {ki(σ)} is taut if and only
if Aσ may be written as

Aσ = Aτσ ∪ p
where τσ is the leftmost minimal state from σ such that Aτσ ⊆ Aσ, and p is a subset of
Fτσ . See Figure 19 for an example of a taut state that is not a minimal state, and how it is
obtained from the leftmost minimal state that it contains.

Proof. By construction, if a state σ is such that

Aσ = Aτσ ∪ p
where p is a subset of Fτσ , then σ is a taut state.

Conversely, suppose by way of contradiction that σ is taut, which means that it has the
same parameters (c, k) as its leftmost minimal state τσ with the same degree, but that there
is a crossing x ∈ Aσ and x /∈ Fτσ . Then there are two cases

(1) x is to the left or to the right of all the edges in Aτσ .
(2) x ∈ Cj is between x′, x′′ ∈ Cj in Aτσ for some j.
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In both cases we consider the state σ′ where

Aσ′ = Aτ ∪ {x} ,

and we assume that taking the A-resolution on x splits off a circle from the skein element
S(k0, σ) otherwise by Lemma 2.12,

deg vsgn(σ)〈S(k0, σ)〉 < deg vsgn(τσ)〈S(k0, τσ)〉 ,

a contradiction to σ being taut.
In case (1), the state σ′ has parameters (c, k′) such that

∑m
i=1 k

′
i <

∑m
i ki. If each step of

a sequence from σ′ to σ splits a circle in order to maintain the degree, then the parameters
for σ, and hence the number of global through strands of S(k0, σ) will differ from S(k0, τσ),
a contradiction.

In case (2), we have that x /∈ Fτσ must be an edge of the following form between a pair of
edges x′, x′′ as indicated in the generic local picture shown in Figure 20, since τσ is assumed
to be leftmost.

xx′ x′′

Figure 20. The crossing x corresponds to the green edge.

Choosing the A-resolution at x merges a pair of circles which means that d(k0, σ) <
d(k0, τσ), a contradiction. �

3.5. Adding up all taut states in st(c, k). Note that in general there may be many taut
states σ with fixed parameters k.

Theorem 3.13. Let c, k = {ki}mi=1 be tight. The sum∑
σ taut:c(σ)=c,ki(σ)=ki

vsgn(σ)〈S(k0, σ)〉 = (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1)vd(k0,τ) + l.o.t., (14)

where τ is a minimal state in the sum.

We are finally ready to prove Theorem 3.13.

Proof. Every minimal state with parameters c, k may be obtained from the leftmost minimal
state of the entire set of minimal states M by transposing to the right. Now we organize
the sum (14) by putting it into equivalence classes of states indexed by the leftmost minimal
state τσ. We may write

∑
σ taut:c(σ)=c,ki(σ)=ki

vsgn(σ)〈S(k0, σ)〉 =
∑

τ minimal

∑
σ : τσ=τ

vsgn(σ)〈S(k0, σ)〉.
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By Lemma 3.12, this implies

∑
σ taut:c(σ)=c,ki(σ)=ki

vsgn(σ)〈S(k0, σ)〉 =
∑

τ minimal

|Fτ |∑
j=0

(
n

j

)
vsgn(τ)−2j(−v2 − v−2)o(Aτ )+j .

If Fτ 6= ∅, then by a direct computation,

deg

 |Fτ |∑
j=0

(
n

j

)
vsgn(τ)−2j(−v2 − v−2)o(Aτ )+j

 = sgn(τ) + 2o(Aτ )− 4|Fτ |

< deg
(
vsgn(τ)〈S(k, τ)〉

)
= δ(n, k)

by Lemma 3.6.
Every taut state can be grouped into a nontrivial canceling sum except for the rightmost

minimal state. Thus it remains and determines the degree of the sum. �

3.6. Proof of Theorem 3.2. Recall that JK,n+1 =
∑

c,k Gc,k and

Gc,k =
∑
k0

Gk0(v)
∑

σ:ki(σ)=ki,c(σ)=c

vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉

By the fusion and untwisting formulas we have

Gk0(v) = (−1)q0(k0+n) 42k0

θ(n, n, 2k0)
vq0(2n−2k0+n2−k20).

We apply the previous lemmas to compute for each c, k the v-degree of the sum∑
σ:ki(σ)=ki,c(σ)=c

vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉.

When c, k is tight the top degree part of the sum is Gtautc,k . By Theorem 3.13, we have that the
coefficient and the degree of the leading term are given by a minimal state τ with parameters
c, k. The degree is computed to be δ(n, k) in Lemma 3.6, which also determines the leading
coefficient.

When σ is a state such that c, k is not tight, and k0 ≥ c(σ) or k0 ≥
∑m

i=1 ki(σ), Lemma
3.3 says that S(k0, σ) is zero. Otherwise, Lemma 3.9 says that there exists a taut state

corresponding to a tight c̃, k̃ that has strictly higher degree. �

4. Quadratic integer programming

In this section we collect some facts regarding real and lattice optimization of quadratic
functions.
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4.1. Quadratic real optimization. We begin with considering the well-known case of real
optimization.

Lemma 4.1. Suppose that A is a positive definite m ×m matrix and b ∈ Rm. Then, the
minimum

min
x∈Rm

1

2
xtAx+ b · x (15)

is uniquely achieved at x = −A−1b and equals −1
2
btAb.

Proof. The function is proper with the only critical point at x = −A−1b which is a local
minimum since the Hessian of A is positive definite. �

For a vector v ∈ Rm, we let vi for i = 1, . . . ,m denote its ith coordinate, so that v =
(v1, . . . , vm). When vi’s are nonzero for all i, we set v−1 = (v−1

1 , . . . , v−1
m ).

The next lemma concerns optimization of convex separable functions f(x), that is, func-
tions of the form

f(x) =
m∑
i=1

fi(xi), fi(xi) = aix
2
i + bixi (16)

where ai > 0 and bi are real for all i. The terminology follows Onn [Onn10, Sec.3.2].

Lemma 4.2. (a) Fix a separable convex function f(x) as in (16) and a real number t ∈ R.
Then the minimum

min{f(x) |
∑
i

xi = t, x ∈ Rm} (17)

is uniquely achieved at x∗(t) where

x∗i (t) =
a−1
i t+ 1

2

∑
j(bj − bi)a

−1
i a−1

j∑
j a
−1
j

, (18)

and

f(x∗(t)) =
1

1 · a−1
t2 +

b · a−1

1 · a−1
t+ s0(a, b) (19)

where 1 ∈ Zm denotes the vector with all coordinates equal to 1, and s0(a, b) is a rational
function in coordinates a1, . . . , am and b1, . . . , bm.
(b) If t� 0, then the minimum

min{f(x) |
∑
i

xi = t, x ∈ Rm, 0 ≤ xi, i = 1, . . . ,m} (20)

is uniquely achieved at (18) and given by (19).

Note that the coordinates of the minimizer x∗(t) are linear functions of t for t � 0; we
will call such minimizers linear. It is obvious that the minimal value is then quadratic in t
for t� 0.

Proof. Let f(x) =
∑

j ajx
2
j + bjxj and g(x) =

∑
j xj and use Lagrange multipliers.{

∇f = λ∇g
g = t .
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So, 2ajxj + bj = λ for all j, hence xj + bj/(2aj) = λ/(2aj) for all j. Summing up, we get

t+
∑

j bj/(2aj) = λ
∑

j 1/(2aj). Solving for λ, we get λ =
2t+

∑
j bja

−1
j∑

j a
−1
j

and using

xi =
λ− bi

2ai
=

2t+
∑

j(bj − bi)a
−1
j

2ai
∑

j a
−1
j

=
a−1
i t+ 1

2

∑
j(bj − bi)a

−1
i a−1

j∑
j a
−1
j

,

Equation (18) follows. Observe that x∗(t) is an affine linear function of t. It follows that
f(x∗(t)) is a quadratic function of t. An elementary calculation gives (19) for an explicit
rational function s0(a, b).

If in addition t� 0 observe that x∗(t) = t
1·a−1a

−1 +O(1), therefore x∗(t) is in the simplex
xi ≥ 0 for all i and

∑
i xi = t. The result follows. �

4.2. Quadratic lattice optimization. In this section we discuss the lattice optimization
problem

min{f(x) | Ax = t, x ∈ Zm, 0 ≤ x ≤ t} (21)

for a nonnegative integer t, where A = (1, 1, . . . , 1) is a 1 ×m matrix and f(x) is a convex
separable function (16) with a, b ∈ Zm with a > 0. We will follow the terminology and
notation from Onn’s book [Onn10]. In particular the set x ∈ Zm satisfying the above
conditions Ax = t and 0 ≤ xi ≤ t is called the feasible set. Lemma 3.8 of Onn [Onn10] gives
a necessary and sufficient condition for a lattice vector x to be optimal. In the next lemma,
suppose that a feasible x ∈ Zm is non-degenerate, that is, xi < t and xj > 0 for all i, j.
Note that this is not a serious restriction since otherwise the problem reduces to a lattice
optimization problem of the same shape in one dimension less.

Lemma 4.3. [Onn10] Fix a feasible x ∈ Zm which is non-degenerate. Then it is optimal
(i.e., a lattice optimizer for the problem (21)) if and only if it satisfies the certificate

2(aixi − ajxj) ≤ (ai + aj)− (bi − bj) . (22)

Proof. Lemma 3.8 of Onn [Onn10] implies that x is optimal if and only if f(x) ≤ f(x + g)
for all g ∈ G(A) where G(A) is the Graver basis of A. In our case, the Graver basis is given
by the roots of the Am−1 lattice, i.e., by

G((1, 1, . . . , 1)) = {ej − ei |1 ≤ i, j ≤ m, i 6= j}.

Let g = ej − ei ∈ G(A) and f(x) as in (16). Then f(x) ≤ f(x+ g) is equivalent to (22). �

Below, we will call a vector quasi-linear if its coordinates are linear quasi-polynomials.

Proposition 4.4. (a) Every non-degenerate lattice optimizer x∗(t) of (21) is quasi-linear of
the form

x∗i (t) =
a−1
i∑
j a
−1
j

t+ ci(t) (23)

for some $-periodic functions ci, where

$ =
∑
i

∏
j 6=i

aj . (24)



30 STAVROS GAROUFALIDIS, CHRISTINE RUEY SHAN LEE, AND ROLAND VAN DER VEEN

(b) When t� 0 is an integer, the minimum value of (21) is a quadratic quasi-polynomial

1

1 · a−1
t2 +

b · a−1

1 · a−1
t+ s0(a, b)(t) (25)

where s0(a, b) is a $-periodic function.

Note that in general there are many minimizers of (21). Comparing with (18) it follows
that any lattice minimizer of (21) is within O(1) from the real minimizer.

Proof. Let Ai =
∏

j 6=j aj = a1 . . . âj . . . am, then $ = A1 + · · ·+Am. Suppose x∗ satisfies the

optimality criterion (22) and Ax∗ = t where A = (1, 1, . . . , 1). Let x∗∗ = x∗ + (A1, . . . , Am).
Since aiAi − ajAj = 0 for i 6= j, it follows that

2(aix
∗
i − ajx∗j) = 2(aix

∗∗
i − ajx∗∗j ) .

Hence x∗ satisfies the optimality criterion (22) if and only if x∗∗ does. Moreover, Ax∗∗ =
Ax∗+$ = t+$. Since a−1

i /(
∑

j a
−1
j ) = Ai/$, it follows that every minimizer x∗(t) satisfies

the property that x∗i (t) −
a−1
i∑
j a
−1
j

t is a $-periodic function of t. Part (a) follows. For part

(b), write x∗(t) = t
1·a−1a

−1 + c(t) and use the fact that Ac(t) = 0 to deduce that f(x∗(t)) is
a quadratic quasi-polynomial of t with constant quadratic and linear term given by (2) �

4.3. Application: the degree of the colored Jones polynomial. Recall that our aim
is to compute the maximum of the degree function δ(k) = δ(k, n) of the states in the state
sum of the colored Jones polynomial with tight parameters k0 =

∑m
i=1 ki, see Theorem 3.2.

Here k = (k0, k1, . . . , km) and q = (q0, q1, . . . , qm) are (m+ 1)-vectors and we make use of the
assumption that qi is odd for all 0 ≤ i ≤ m. We will compute the maximum in two steps,

Step 1: We will apply Proposition 4.2 to the function δ(k) (divided by −2, and ignoring
the terms that depend on n and q but not on k):

− 1

2
δ(k) =

m∑
i=1

(qi − 1)k2
i + (q0 + 1)

( m∑
i=1

ki

)2

+
m∑
i=1

ki(−2 + q0 + qi) . (26)

under the usual assumptions that q0 < 0, qi > 0 for i = 1, . . . ,m. We assume that k =
(k1, . . . , km) ∈ Zm. Restricting δ(k) to the simplex ki ≥ 0 and t = k1 + · · · + km and using
Proposition 4.4, it follows that

min
ki≥0∑
i ki=t

δ(k) = Q0(t), where Q0(t) = s(q)t2 + s1(q)t+ s0(q)(t) , (27)

and s(q), s1(q) are given by (2) and s0(q) is a $-periodic function of t where $ is the
denominator of s(q).

Step 2: Since

min
ki≥0∑
i ki≤n

δ(k) = min
0≤t≤n

Q0(t) ,

it remains to compute the minimum

min
0≤t≤n

Q0(t)
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of a quadratic function of t (the fact that this is a quasi-polynomial whose constant term is a
periodic function of t does not affect the argument, since we can work in a fixed congruence).
It follows thatQ0(t) is positive definite, degenerate, or negative definite if and only if s(q) > 0,
s(q) = 0, or s(q) < 0, respectively.

Case 1: s(q) < 0. Then Q0(t) is negative definite and the minimum is achieved at the
boundary t = n (since this has lower value than that of t = 0). It follows that

min
ki≥0∑
i ki≤n

δ(k) = s(q)n2 + s1(q)n+ s0(q)(n) .

Case 2a: s(q) = 0, s1(q) 6= 0. Then Q0(t) is a linear function of t and the minimum is
achieved at t = 0 or t = n depending on whether s1(q) ≥ 0 or s1(q) < 0, so we have

min
ki≥0∑
i ki≤n

δ(k) =

{
s0(q)(n) if s1(q) ≥ 0

s1(q)n+ s0(q)(n) if s1(q) < 0 .

Case 2b: s(q) = 0 = s1(q). Now t = 0 and t = n both contribute equally so cancellation
may occur. It does not because the sign of the leading term is constant due to the parity of
the qi’s.

Case 3: s(q) > 0. Then Q0(t) is positive definite and Proposition 4.4 implies that the
lattice minimizers are near −s1(q)/(2s(q)) or at 0, when s1(q) < 0 or s1(q) ≥ 0 and the
minimum value is given by:

min
ki≥0∑
i ki≤n

δ(k) =

{
− s1(q)2

2s(q)
if s1(q) < 0

s0(q)(n) if s1(q) ≥ 0 .

Again cancellation of multiple lattice minimizers is ruled out because the signs of the leading
terms are always the same due to the assumption on the parity of the qi’s.

Remark 4.5. For future reference it may be of interest to note that there are very few pretzel
knots with s(q) ≥ 0 and s1(q) = 0. These are cases 2b and 3 above where cancellations might
occur if we had no control on the sign of the leading coefficients. The case P (−3, 5, 5) is
mentioned in [LvdV] for its colored Jones polynomial with growing leading coefficient.

Lemma 4.6. (Exceptional Pretzel knots)
The only pretzel knots with q0 ≤ −2 < 3 ≤ q1, . . . qm for which s(q) ≥ 0 and s1(q) = 0 are

(1) P (−3, 5, 5), P (−3, 4, 7), P (−2, 3, 5, 5), with s(q) = 0.
(2) P (−2, 3, 7), with s(q) = 1

2
.

Proof. Changing variables to fi = qi − 1 turns the two equations s(q) ≥ 0 and s1(q) = 0
into: f0(f−1

1 + · · · + f−1
m ) + m = 0 and 2 + f0 + 1

f−1
1 +···+f−1

m
= c for some c ≥ 0. Solving for

f0 yields f0 = (c − 2) m
m−1

. Since f0 ≤ −3 we must have 0 ≤ c ≤ 2 − 3m−1
m

. This means

there can only be such c when m = 2 or 3. Suppose m = 2 then c = 0 or c = 1
2
. In the first

case we find f2 = 2f1
f1−2

so the positive integer solutions are (f1, f2) ∈ {(3, 6), (4, 4), (6, 3)}.
In the case c = 1

2
we find f2 = 3f1

2f1−3
so (f1, f2) ∈ {(2, 6), (3, 3), (6, 2)}. Finally the case

m = 3, c = 0, f0 = −3 yields (f1, f2, f3) ∈ {(2, 4, 4), (2, 3, 6), (3, 3, 3)} and permutations. �
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5. The colored Jones polynomial of Montesinos knots

In this section we will extend Theorem 3.2 to the class of Montesinos knots. For a Mon-
tesinos knot K = K(r0, r1, . . . , rm), we always consider the standard diagram coming from
the unique continued fraction expansion of even length in each tangle as in the case of pret-
zel knots. To build the diagram from simpler diagrams we introduce the tangle replacement
move (in short, TR-move), and study its effect on the state-sum formula for the colored Jones
polynomial.

5.1. The TR-move. The TR-move is a local modification of a link diagram D. Suppose
D contains a twist region T . Viewing T as a rational tangle T = 1

t
for some integer t we

may consider a new diagram D1 obtained by replacing T by the rational tangle T1 = r ∗ 1
t

for some non-zero integer r with the same sign as t. Alternatively, viewing T as an integer
tangle t we replace it with T2 = 1

r
⊕ t, also with r having the same sign. Collectively these

two operations are referred to as the TR-move. Recall from Section 2.1, Equation (6) that
we can reconstruct a diagram of any rational tangle by a combination of TR-moves, see also
Figure 21 and 22. We extend this to n-cabled tangle diagrams by labeling each arc in the
diagram by n.

r

1
t1

t

t t

1
r

r ∗ 1
t

1
r
⊕ t

Figure 21. Two types of TR-move.

r′′ > 0

1
r′
> 0

r > 0

1
t
> 0

Figure 22. Any rational tangle is produced by a combination of TR-moves.
In the picture shown, we have performed three TR-moves: first on 1/t, then r,
then 1/r′.

We will use the TR-moves to reduce a Montesinos knot to a pretzel knot.
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5.2. Special Montesinos knot case. We start by considering the case of Montesinos knots
K(r0, . . . , rm) where `ri = 2 for all i ≥ 0. This includes the pretzel knots by choosing the
unique even length continued fraction expansion with ri[2] = 1. We call these knots special
Montesinos knots. We will prove the main theorem for such special Montesinos knots where
the ri[1]’s are even for all 0 ≤ i ≤ m and r0[2] = 1.

K− K+

Figure 23. The special case K(− 1
2+ 1

1

, 1
3+ 1

2

, 1
3+ 1

1

).

As in the case of pretzel knots we use a customized state sum to compute the colored
Jones polynomial, splitting K = N(K− ⊕ K+). In this case K− is the single twist region
1/(r0[1] + 1) and K+ is the 2-tangle that is the rest of the diagram. As before we apply the
fusion (8) and untwisting formulas (9) to K− and the usual Kauffman state sum to K+ after
cabling with the Jones-Wenzl idempotent of size n for the nth colored Jones polynomial. See
Figure 23.

The methods used previously on the pretzel knots also apply to this case with minor
modifications. In particular the notion of global through strands c(σ) for a Kauffman state
σ on Kn

+ still makes sense and ki(σ) is still well defined by restricting σ to the ith-tangle. In
this case ci(σ) means the number of through strands of the ith tangle of Kn

+ that are also
global through strands, and as before ki = d ci

2
e. Let

Gc,k =
∑
k0

∑
σ:ki(σ)=ki,c(σ)=c

Gk0(v)vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉.

We prove the following theorem.

Theorem 5.1. Consider K = K( 1
r0[1]+ 1

1

, 1
r1[1]+ 1

r1[2]

, . . . , 1
rm[1]+ 1

rm[2]

). Assume |ri[1]| > 1,

ri[2] > 0, and let qi = ri[1] + 1 for 0 ≤ i ≤ m, q′i = ri[2] for 1 ≤ i ≤ m. Referring
to the above state sum 〈Kn〉 =

∑
c,k Gc,k we have the following. For a state σ, define the

parameters c = c(σ), k = k(σ) to be tight if k0 = k1 + · · · + km = c
2
. For tight c, k we have

Gc,k = (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1)vδ(n,k) + l.o.t.2 and −δ(n,k)

2
=

(q0+1)k2
0+

m∑
i=1

(qi−1)k2
i +

m∑
i=1

(−2+q0+qi)ki−
n(n+ 2)

2

m∑
i=0

qi+(m−1)n−n
2

2

m∑
i=1

(q′i−1). (28)

2The abbreviation l.o.t. means lower order terms in v.
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If c, k are not tight then there exists a tight pair c′, k′ (coming from some Kauffan state) such
that degv Gc,k < degv Gc′,k′.

Proof. The proof is analogous to that of Theorem 3.2 for pretzel knots. As in the pretzel
case we identify the minimal states and show that they maximize the degree and do not
cancel out. Since these arguments are exactly the same we focus on describing the minimal
states, one for each tight parameters of through strands c, k. [consider adding a figure
here.] The minimal states are produced by choosing a minimal state for the pretzel knot
P = K( 1

q0
, . . . , 1

qm
) and extending it to a Kauffman state of 〈Kn

+〉 by choosing a pyramidal

configuration on the remaining twist regions. The new pyramidal configuration has exactly
k2
i extra A-states for each i > 0, so the degree of the minimal pretzel state is increased by∑m
i=1 q

′
in

2 − 2k2
i in the new state sum. The number of additional circles in the pyramidal

configuration is
∑m

i=1 n− ki. Adjusting the degree accordingly concludes the proof. �

5.3. The general case. Given K = K(r0, r1, . . . , rm) = N(K− ⊕K+), where K− consists
of the negative twist region 1/r0[1] if r0[2] 6= 1, or 1/(r0[1] + 1) if r0[2] = 1 and `r0 = 2, we
further split K+ into K+ = D ∪ V where D is the set of rational tangles that is the union
ri[2] ∗ 1

ri[1]
of the first two (with respect to the continued fraction expansion) twist regions of

each rational tangle ri in K+ and V is the remaining tangle. See Figure 24 for an illustration.

L− L+

L+ = D ∪ V

D

V

Figure 24. Left: a Montesinos knot K = K(−1/3, 31/9 = 1
3+ 1

2+ 1

3+1
1

, 31/9) =

N(K− ⊕K+). Right: further decomposition of K+ into D ∪ V .

Let

q0 =

{
r0[1] + 1 if `r0 = 2 and r0[2] = 1.

r0[1] otherwise
.

L = K( 1
q0
, 1
r1[1]+ 1

r1[2]

, . . . , 1
rm[1]+ 1

rm[2]

) is a special Montesinos knot. We approach the general

case as insertion of the rational tangle V into this special Montesinos knot. The essential
feature of V n is that its all-B state acts like the identity on 〈Ln〉 plus some closed loops, see
Figure 25.
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Lemma 5.2. Take the standard diagram of a Montesinos knot K = K(r0, r1, . . . , rm) =
N(K− ⊕ (D ∪ V )), where L = K( 1

q0
, 1
r1[1]+ 1

r1[2]

, . . . , 1
rm[1]+ 1

rm[2]

) is a special Montesinos knot.

If q0 < −1 is odd, and qi − 1 = ri[1] > 1 is even for every i > 0, then we have

degv〈Kn〉 = degv〈Ln〉+ c(V )n2 + 2n o(VB),

where o(VB) is the number of disjoint circles resulting from applying the all-B state to V .

Proof. Applying quadratic integer programming to the formula of Theorem 5.1 for the degree-
maximizing states of 〈Ln〉, discarding any terms that depend only on qi and n, we see that
there are minimal states of the state sum of any special Montesinos knot that attain the
maximal degree. Fix one such minimal state τ . Denote the skein element resulting from
applying such a state to Ln by S(k0, τ), and the degree by δ(n, k) = d(k, τ).

Now we consider the effect of inserting V n into Ln to obtain Kn. Taking the all-B state
on V n preserves the states of Ln. Because V is a disjoint union of alternating tangles, we
have

degGk0(v)vsgn(σ)+sgn(BV )〈S(k0, σ) ∪ (V n)B〉 > degGk0(v)vsgn(σ)+sgn(σ′)〈S(k0, σ) ∪ (V n)σ′〉,
where σ′ is any other state on V n and VB indicates the all-B state on V n. Thus for a minimal
state τ maximizing the degree in the state sum 〈Ln〉, the term Gk0(v)vsgn(τ)〈S(k0, τ)∪(V n)B〉
also maximizes the degree in the new Montesinos state sum. The leading terms all have the
same sign because of the assumption on the parity of the qi’s and Theorem 5.1. Thus there is
no cancellation of these maximal term, and we can determine degv〈Kn〉 relative to degv〈Ln〉
by counting the number of disjoint circles o(VB), giving the formula in the lemma. �

It is useful to reformulate the above lemma in a more relative sense, pinpointing how the
degree changes as a result of applying a TR-move. For our purposes it is more convenient to
work with the composite moves TR−2 (T ) = ( 1

r1
⊕ r2) ∗ T , and TR+(T ) = (r1 ∗ 1

r2
)⊕ T .

1
r1

r2

1
t

r1

1
r2

t

Figure 25. Examples of applying the all-B state and the resulting disjoint
circles for moves sending tangles 1

t
to ( 1

r1
⊕ r2)∗ 1

t
and sending t to (r1 ∗ 1

r2
)⊕ t.

[indicate where V is in this picture.]

Lemma 5.3. Suppose two standard diagrams K,L of Montesinos links satisfying the condi-
tions of Lemma 5.2 where K is obtained from L by applying one of the moves TR−1 ,TR

−
2 ,TR

+,
locally replacing tangle (T )n by (T ′)n, then the degree of the colored Jones polynomial
changes as follows. See Figure 25 for examples of the moves TR−2 , TR+.

TR−1 move: Suppose r, t < 0, and T = 1
t

is a vertical twist region, and T ′ = r ∗ 1
t
, then

deg〈Kn〉 = deg〈Ln〉 − rn2 + 2(−r − 1)n.
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TR−2 move: Suppose r1, r2, t < 0, T = 1
t

is a vertical twist region, and T ′ = ( 1
r1

+ r2) ∗ 1
t
, then

deg〈Kn〉 = deg〈Ln〉 − (r1 + r2)n2 − 2r2n.

TR+ move: Suppose r1, r2, t > 0, T = t is a horizontal twist region, and T ′ = (r1 ∗ 1
r2

) + t, then

deg〈Kn〉 = deg〈Ln〉+ (r1 + r2)n2 + 2r2n.

Proof. Applying Lemma 5.2 we may simply count the number of crossings and state circles
added to the degree in applying the all-B state to the newly added tangle V in each of these
cases. �

We use Lemma 5.3 to prove the part of Theorem 1.3 concerning the degree of the colored
Jones polynomial for the Montesinos knots that we consider.

Theorem 5.4. Let K = K(r0, r1, . . . , rm) be a Montesinos knot such that r0 < 0, ri > 0 for
all 1 ≤ i ≤ m, and |ri| < 1 for all 0 ≤ i ≤ m with m ≥ 2 even. Suppose q0 < −1 < 1 <
q1, . . . , qm are all odd, and q′0 is an integer that is defined to be 0 if r0 = 1/q0, and defined
to be r0[2] otherwise. Let P = P (q0, . . . , qm) be the associated pretzel knot, and let ω(DK),
ω(DP ) denote the writhe of DK, DP with orientations. Then for all n > NK we have:

jsK(n) = jsP (n)− q′0 − 〈r0〉 − ω(DP ) + ω(DK) +
m∑
i=1

(ri[2]− 1) +
m∑
i=1

〈ri〉,

jxK(n) = jxP (n)− 2
q′0
r0[2]

+ 2〈r0〉o − 2
m∑
i=1

(ri[2]− 1)− 2
m∑
i=1

〈ri〉e.

Proof. Suppose K = K(r0, r1, . . . , rm) = N(K− ⊕ K+) is a Montesinos knot, then K is
obtained from a special Montesinos knot L = K( 1

q0
, 1
r1[1]+ 1

r1[2]

, . . . , 1
rm[1]+ 1

rm[2]

) = N(L−⊕L+)

by a combination of TR+ moves on the tangles in L+ following the unique even length
positive continued fraction expansions of ri for 1 ≤ i ≤ m. Each rational tangle diagram has
an algebraic expression of the form

(((ri[`ri ] ∗
1

ri[`ri − 1]
)⊕ ri[`ri − 2]) ∗ · · · ∗ 1

ri[1]
).

The diagram is obtained by applying successive TR+ moves to ri[j]∗1/ri[j−1], sending ri[j]
to ((ri[j + 2] ∗ 1/ri[j + 1])⊕ ri[j]) for each even 0 ≤ j ≤ `ri starting with j = 2.

The rational tangle in K− is constructed from the special Montesinos knot L by applying
the TR−2 moves to 1

r0[j]
, sending 1

r0[j]
to ( 1

r0[j+2]
⊕ r0[j+ 1]) ∗ 1

r0[j]
, for odd 0 ≤ j ≤ `r0 starting

with j = 1, with a final TR−1 -move sending 1
r0[`r0−1]

to ( 1
r0[`r0 ]

∗ 1
r0[`r0−1]

). These moves extend

to the n-cables of the tangle diagrams.
We have two cases for the degree of 〈Kn〉 relative to 〈Ln〉:
(1) r0 is the inverse of an integer = q0. In this first case, we count the change in the degree

of 〈Kn〉 given by Theorem 5.4 from applying TR+ to Ln+ of the special Montesinos
knot via Lemma 5.3. Each application of TR+ adds (ri[j+2]+ri[j+1])n2 +2ri[j+1]n
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from even j ≥ 2 for each 1 ≤ i ≤ m. We have

degv〈Kn〉

= degv〈Ln〉+ n2

m∑
i=1

〈ri〉+ 2n
m∑
i=1

〈ri〉o

Substituting (28) for degv〈Kn〉, we get

degv〈Kn〉

= −2((q0 + 1)k2
0 +

m∑
i=1

(qi − 1)k2
i +

m∑
i=1

(−2 + q0 + qi)ki −
n(n+ 2)

2

m∑
i=0

qi + (m− 1)n− n2

2

m∑
i=1

(q′i − 1))

+ n2

m∑
i=1

〈ri〉+ 2n
m∑
i=1

〈ri〉o.

Apply quadratic integer programming, ignoring the part of the degree function that
only depends on n, qi, and q′i’s, we see that as long as the qi’s for 0 ≤ i ≤ m satisfy
the hypothesis of the theorem,

degv〈Kn〉

= (jsP (n)− ω(Dp))n
2 − 2nω(Dp)− 2s1(q)(n)n+ s0(q)(n) + n2

m∑
i=1

(q′i − 1) + n2

m∑
i=1

〈ri〉+ 2n
m∑
i=1

〈ri〉o.

Gathering the coefficients multiplying n2 and accounting for the writhe of DK , we
get

jsK = jsP − ω(Dp) + ω(DK) +
m∑
i=1

(q′i − 1) +
m∑
i=1

〈ri〉

Note that q′i = ri[2], and q′0, 〈r0〉 are both 0 for this case, and so

jsK = jsP − q′0 − 〈r0〉+ ω(Dp) + ω(DK) +
m∑
i=1

(ri[2]− 1) +
m∑
i=1

〈ri〉.

Now we compute jxK by considering degv〈Ln−1〉 and collecting coefficients of n. This
gives me

jxK = jxP + 2
m∑
i=1

(q′i − 1) + 2
m∑
i=1

〈ri〉o − 2
m∑
i=1

〈ri〉

= jxP + 2
m∑
i=1

(q′i − 1) + 2
m∑
i=1

〈ri〉e.

(2) r0 is not the inverse of an integer. In this case, we account for the degree change
for the TR+ moves applied to Kn

+ in the same way as in case (1). It remains to
account for the change to the degree based on applying TR−2 moves with a final TR−1
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move to the negative tangle of the special Montesinos knot K. Each application of
the TR−2 -move adds −(r0[j + 2] + r0[j + 1])n2 − 2(r0[j + 1])n to the degree, and the
final application of the TR−1 -move adds −r0[`r0 ]n

2 + 2(−r0[`r0 ] − 1)n. We sum the
contribution over j odd and 1 ≤ j < `r0 .∑

j odd ,1≤j<`r0

−(r0[j + 2] + r0[j + 1])n2 − 2(r0[j + 1])n

= −(r0[2] + 〈r0〉 − r0[`r0 ])n
2 − 2(〈r0〉e − r0[`r0 ] + r0[2])n

When we plug in n− 1 for n, we get

= −(r0[2] + 〈r0〉 − r0[`r0 ])n
2 + 2(r0[2] + 〈r0〉 − r0[`r0 ])n− 2(〈r0〉e − r0[`r0 ] + r0[2])n

+ terms that do not grow with n.

= −(r0[2] + 〈r0〉 − r0[`r0 ])n
2 + (2〈r0〉o)n+ constant terms that do not grow with n.

(29)

For the purpose of computing jsK and jxK , we may ignore the constant terms that
don’t grow with n. We compute similarly the quadratic growth rate and the linear
growth rate of the final TR−1 -move.

− r0[`r0 ](n− 1)2 + 2(−r0[`r0 ]− 1)(n− 1)

= −r0[`r0 ]n
2 + 2(−r0[`r0 ])n+ 2(−r0[`r0 ]− 1)n+ constant terms that do not grow with n.

= −r0[`r0 ]n
2 + 2(−2r0[`r0 ]− 1)n+ constant terms that do not grow with n. (30)

When we add the coefficients multiplying n2 and the coefficients multiplying n from
(29), (30) from the moves on Kn

+, we get in this case

jsK =

(
jsP − ω(Dp) + ω(DK) +

m∑
i=1

(q′i − 1) +
m∑
i=1

〈ri〉

)
− (r0[2] + 〈r0〉) (31)

and

jxK = (jxP + 2
m∑
i=1

(q′i − 1) + 2
m∑
i=1

〈ri〉e) + 2〈r0〉o − 2
q′0
r0[2]

. (32)

�

[should probably remind overall that we are doing Jn+1 = 〈Kn〉. ]

6. Essential surfaces of Montesinos knots

Let Σ be a compact, connected, and properly embedded surface in a compact, orientable
3-manifold M that is not boundary parallel. We say that Σ is essential if the map on
fundamental groups ι∗ : π1(Σ) → π1(M) induced by inclusion is injective. The surface Σ is
incompressible in the 3-manifold M if for each disc D ⊂M with D∩Σ = ∂D, there is a disc
D′ ⊂ Σ with ∂D′ = ∂D. The surface Σ is called ∂-incompressible if for each disk D ⊂ M
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with D ∩ S = α, D ∩ ∂M = β (α and β are arcs), and α ∪ β = ∂D and α ∩ β = S0, there is
a disk D′ ⊂ S with ∂D′ = α′ ∪ β′ such that α′ = α and β′ ⊂ ∂Σ.

Given an essential surface Σ with nonempty boundary in a compact orientable manifold
M with torus boundary, consider the first homology class of [∂S] in H1(∂M). Write [∂S] =
pµ+ qλ where µ and λ are a meridian and longitude basis of the torus. The boundary slope
of S is the fraction p/q, reduced to lowest terms. Hatcher showed that the set of boundary
slopes of a compact orientable manifold is finite [Hat82].

An orientable surface is essential if and only if it is incompressible. On the other hand,
a non-orientable surface is essential if and only if its orientable double cover in the am-
bient manifold is incompressible. In an irreducible orientable 3-manifold whose boundary
consists of tori (such as a link complement), an orientable incompressible surface is either ∂-
incompressible or a ∂-parallel annulus [?]. Therefore, the problem of finding boundary slopes
for Montesinos knots may be reduced to the problem of finding orientable incompressible
and ∂-incompressible surfaces, and we will only consider such surfaces for the rest of the
paper.

In this section, we summarize the Hatcher-Oertel algorithm for finding all boundary slopes
of Montesinos knots [HO89], based on the classification of orientable incompressible and ∂-
incompressible surface of rational (2-bridge) knots in [HT85]. For every Jones slope that
we find in Section 4.3, we will use the algorithm to produce an orientable, incompressible
and ∂-incompressible surface, whose boundary slope, number of boundary components, and
Euler characteristic realize the strong slope conjecture. This completes the proof of Theorem
1.2 and Theorem 1.3.

We will follow the conventions of [HO89] and [HT85]. For further exposition of the al-
gorithm, the reader may consult [?]. It will be useful to introduce the negative continued
fraction expansion [BS, Ch.13]

[[a0, . . . , a`]] = [a0,−a1, . . . , (−1)`a`] = a0 −
1

a1 −
1

a2 −
1

a3 − · · · −
1

a`

. (33)

with ai ∈ Z and ai 6= 0 for i > 0.

6.1. Incompressible and ∂-incompressible surfaces for a rational knot. A notion
originally due to Haken [Hak61], a branched surface B in a 3-manifold M is a subspace
locally modelled on to the space as shown in the following figure. This means every point
has a neighborhood diffeomorphic to the neighborhood of a point in the model space. A
properly embedded surface Σ in M is carried by B if Σ can be isotoped so that it runs nearly
parallel to B.

Using branched surfaces, Hatcher and Thurston [HT85] classify all orientable, incompress-
ible and ∂-incompressible surfaces with nonempty boundary for a rational knot K(r) where
r ∈ Q ∪ {1/0} in terms of negative continued fraction expansions of r. For each nega-
tive continued fraction expansion [[b0, b1, . . . , bk]] of r as in (43) they construct a branched
surface Σ(b1, . . . , bk) and associated surfaces Sn(n1, . . . , nk) carried by Σ(b1, . . . , bk), where
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Figure 26. Left: local picture of a branched surface, with the blue lines
indicating the singularities. Right: a surface carried by the branch surface.

n ≥ 1 and 0 ≤ ni ≤ n. They show that every non-closed incompressible, ∂-incompressible
surface in S2 \K(r) is isotopic to Sn(n1, . . . , nk) for some n and ni’s . Furthermore, a surface
Sn(n1, . . . , nk) carried by Σ(b1, . . . , bk) is incompressible and ∂-incompressible if and only if
|bi| ≥ 2 for each i [HT85, Theorem 1.(b) and (c)].

In general, for a fixed branched surface B, all the boundary circles of surfaces carried by
B in the same torus boundary component of M are homologous [Hat82, Lemma 1]. Thus to
compute a boundary slope it suffices to specify a branched surface. Floyd and Oertel have
shown that there is a finite, constructible set of branched surfaces for every Haken 3-maniflold
which carries all the two-sided, incompressible and ∂-incompressible surfaces [FO84]. For
the general theory of branched surfaces applied to the question of finding boundary slopes in
a 3-manifold, interested readers may consult these references. We will continue to specialize
to the case of rational knots.

Of particular importance to us is their representation of a surface SM(M1, . . .Mk) carried
by a branched surface Σ(b1, . . . , bk) in terms of an edge-path on a one-complex D. Here, D is
the Farey ideal triangulation of H2 on which PSL2(Z) is the group of orientation-preserving
symmetries, see Figure 27. Recall that the vertices (in the natural compactification) of D
are Q∪∞ and we set∞ = 1

0
in projective coordinates. A typical vertex of D will be denoted

by 〈p
q
〉 for coprime integers p, q with q nonnegative. There is an edge between two vertices

〈p
q
〉 and 〈 r

s
〉, denoted by 〈p

q
〉 〈 r

s
〉, whenever |ps − rq| = 1. An edge-path is simply a path

on the 1-skeleton of D which may have endpoints on an edge rather than on a vertex.
Given a negative continued fraction expansion [[b0, . . . , bk]] of r, the vertices of the corre-

sponding edge-path are the sequence of partial sums

[[b0, b1, . . . , bk]], [[b0, b1, . . . , bk−1]], . . . , [[b0, b1]], [[b0]],∞.
Such an edge-path determines a candidate SM(M1, . . . ,Mk) for an incompressible and ∂-
incompressible surface in the exterior of K(r) as follows. We isotope the 2-bridge knot
presentation of K(r) so that it lies in S2 × [0, 1], with the two bridges intersecting S2 × {1}
in two arcs of slope∞, and the arcs of slope r lying in S2×{0}. See [HT85, p. 1 Fig. 1(b)].
The slope here is determined by the lift of those arcs to R2, where S2 × {i} \K is identified
with the orbit space of Γ, the isometry group of R2 generated by 180◦-degree rotation about
the integer lattice points.

Given an edge-path, with vertices {v}, choose heights {iv} ∈ [0, 1] respecting the ordering
of the vertices in the path. At S2 × {0}, we have 2M arcs of slope r, and at S2 × {1}
we have 2n arcs of slope ∞. For a fixed M , each vertex 〈v〉 of an edge-path determines a



THE SLOPE CONJECTURE FOR MONTESINOS KNOTS 41

curve system on S2×{iv}, consisting of 2M arcs of slope v with ends on the four punctures
representing the intersection with the knot. The surface SM(M1, . . . ,Mk) is constructed by
having its intersections with S2 × iv coincide with the curve system at 〈v〉. Between one
vertex 〈v〉 to another 〈v′〉, M saddles are added to change all M arcs of slope v to M arcs
of slope v′, with Mi indicating one of the two possible choices of such saddles. At the end
of the edge-path, 2M disks are added to the slope ∞ curve system corresponding to closing
the knot by the two bridges. For more details, see [HT85].

−3/1

2/31/1

−1/1

0/11/0

1/22/1

−2/1
−1/2

Figure 27. The 1-complex D.

6.2. Edge-paths and candidate surfaces for Montesinos knots. Hatcher and Oer-
tel [HO89] give an algorithm that provides a complete classification of boundary slopes of
Montesinos knots by decomposing K(r0, r1, . . . , rm) via a system of Conway spheres {S2

i }mi=1,
each of which contains a rational tangle Tri . Their algorithm determines the conditions under
which the incompressible and the ∂-incompressible surfaces in the exterior of each rational
tangle, as classified by [HT85] and put in the form as discussed in the previous section, may
be glued together across the system of Conway spheres to form an incompressible surface in
S3 \K(r0, r1, . . . , rm).

To describe the algorithm, it is now necessary to give coordinates to curve systems on a
Conway sphere. The curve system S ∩ S2

i for a connected surface S ⊂ S3 \K(r0, r1, . . . , rm)
may be described by homological coordinates Ai, Bi, and Ci as shown in Figure 28 [?].

Ai

Ai

Bi

Ci

Figure 28. The Conway sphere containing the tangle corresponding to ri
and the curve system on it.

Since an incompressible and ∂-incompressible surface S must also be incompressible and
∂-incompressible when restricting to a tangle inside a Conway sphere, the classification of
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[HT85] applies, and Hatcher and Oertel also represent such surfaces by specifying an edge-
path for each restriction of the surface. However, the edge-paths lie instead in an augmented
1-complex D̂ in the plane obtained by splitting open D along the slope∞ edge and adjoining
constant edge-paths 〈p

q
〉 〈p

q
〉. See [HO89, Fig. 1.3]. The additional edges in D̂ deal with

the new possibilities of curve systems that arise when gluing the surfaces following the tangle
sum.

Again, an edge-path in D̂ is a path in the 1-skeleton of D̂ which may or may not end on
a vertex. It describes a surface in the complement of a rational tangle in K(r0, r1, . . . , rm)
consisting of saddles joining curve systems corresponding to vertices, as in the last paragraph
of Section 6.1. The main adjustment is that the endpoint of an edge-path describes a curve
system on the Conway sphere enclosing the tangle. In order for the curve system to represent
the intersection of an incompressible and ∂-incompressible surface, the endpoints must be
on an edge 〈p

q
〉 〈 r

s
〉 and has the form

K

M
〈p
q
〉+

M −K
M

〈r
s
〉,

for nonnegative integers K,M . If p
q
6= r

s
, this describes a curve system on a Conway sphere

consisting of K arcs of slope p/q, of (A,B,C) coordinates K(1, q − 1, p) and M − K arcs
of slope r/s, of (A,B,C) coordinates (M −K)(1, s − 1, r). If p

q
= r

s
, this describes a curve

system on a Conway sphere consisting of (M−K) arcs of slope p/q, of (A,B,C) coordinates
(M −K)(1, q− 1, p) = (M −K, (M −K)(q− 1), (M −K)p), and M −K circles of slope p/q,
of (A,B,C) coordinates K(0, q, p) = (0, Kq,Kp). The curve system coordinates (A,B,C)
corresponding to this point is obtained by adding the (A,B,C)-coordinates of 〈p

q
〉 and 〈 r

s
〉.

The algorithm is as follows.

(1) For each fraction ri, pick an edge-path γi in the 1-complex D̂ corresponding to a
continued fraction expansion

ri = [[b0, b1, . . . , bk]], bi ∈ Z,

or a constant edge-path.
(2) For each edge 〈p

q
〉 〈 r

s
〉 in γi, determine the integer parameters {Ki} ≥ 0, {Mi} ≥ 0

satisfying the following constraints.
(a) Ai = Aj and Bi = Bj for all the A-coordinates Ai and the B-coordinates Bi of

the point
Ki

Mi

〈p
q
〉+

Mi −Ki

Mi

〈r
s
〉.

(b)
∑m

i=0Ci = 0 where Ci is the C-coordinate of the point

Ki

Mi

〈p
q
〉+

Mi −Ki

Mi

〈r
s
〉.

The edge-paths chosen in (1) with endpoints specified by the solutions to (a) and
(b) determine a candidate edge-path system {γi}mi=0, corresponding to a connected
surface S in S3 \K(r0, r1, . . . , rm). We call this the candidate surface associated to a
candidate edge-path system.
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(3) Apply incompressibility criteria [HO89, Prop. 2.1, Cor. 2.4, Prop. 2.5-2.9] to de-
termine if a candidate surface is an incompressible and ∂-incompressible surface and
actually gives a boundary slope.

Remark 6.1. We would like to remark that Dunfield [Dun01] has written a computer pro-
gram implementing the Hatcher-Oertel algorithm, which will output the set of boundary
slopes given a Montesinos knot and give other information like the set of edge-paths repre-
senting an incompressible, ∂-incompressible surface, Euler characterstic, etc. The program
has provided most of the data we use in our examples in this paper. Interested readers may
download the program at his website https://faculty.math.illinois.edu/∼nmd/montesinos/
index.html.

We will write S({γi}mi=0) to indicate a candidate surface associated to a candidate edge-path
system {γi}mi=0. Note that for a candidate edge-path system, Mi is identical for i = 0, . . . ,m
by condition (2a) in the algorithm, so we will simply write M for Mi for a candidate surface
S.

We will mainly be applying [HO89, Corollary 2.4], which we restate here. Note that for
an edge 〈p

q
〉 k

m
〈p
q
〉+ m−k

m
〈 r
s
〉 with 0 < q < s, the ∇-value (called the “r-value” in [HO89])

is 0 if p
q

= r
s

or if the edge is vertical, and the ∇-value is q − s when p
q
6= r

s
.

Theorem 6.2. [HO89, Corollary 2.4] A candidate surface S({γi}mi=0) is incompressible un-
less the cycle of ∇-values for the final edges of the γi’s is of one of the following types:
{0,∇1, . . . ,∇m}, {1, 1, . . . , 1,∇m}, or {1, . . . , 1, 2,∇m}.

6.3. The boundary slope of a candidate surface. The twist number tw(S) for a candi-
date surface S = {γi}mi=0 is defined as

tw(S) :=
2

M

m∑
i=0

(s−i − s+
i ) = 2

m∑
i=0

(e−i − e+
i ),

where s−i is the number of slope-decreasing saddles of γi, s
+
i is the number of slope-increasing

saddles of γi, and M is the number of sheets of S. Let an edge be given by 〈p
q
〉 〈 r

s
〉, we say

that the edge decreases slope if r
s
< p

q
, and that the edge increases slope if r

s
> p

q
. In terms

of edge-paths, tw(S) can be written in terms of the number e−i of edges of γi that decreases
slope and e+

i , the number of edges of γi that increases slope as shown. For an interpretation
of the twist number in terms of the lifts of these arcs in R2/Γ, see [HO89, p. 460]. If γi has
a final edge 〈

p

q

〉
Ki

M

〈
p

q

〉
+
M −Ki

M

〈r
s

〉
.

Then the final edge of γi is called a fractional edge and counted as a fraction M−Ki
M

. Finally,
the boundary slope bs(S) of a candidate surface S is given by

bs(S) = tw(S)− tw(S0) (34)

where S0 is a Seifert surface that is a candidate surface from the Hatcher-Oertel algorithm.

https://faculty.math.illinois.edu/~nmd/montesinos/index.html
https://faculty.math.illinois.edu/~nmd/montesinos/index.html
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6.4. The Euler characteristic of a candidate surface. We compute the Euler charac-
teristic of a candidate surface S associated to an edge-path system {γi}mi=0, where none of
the γi’s are constant or end in 1/0 as follows. M is again the number of sheets of the surface
S. We begin with 2M disks which intersect S2

i × 0 in slope ri = pi
qi

arcs in each Bi.

• From left to right in an edge-path γi, each non-fractional edge 〈p
q
〉 〈 r

s
〉 is constructed

by gluing M of saddles that change 2M arcs of slope p
q

(representing the intersections

with S2
i × i p

q
) to slope r

s
(representing the intersections with S2

i × i r
s
), therefore

decreasing the Euler characteristic by M .
• A fractional final edge of γi of the form 〈p

q
〉 K

M
〈p
q
〉 + M−K

M
〈 r
s
〉 changes 2(M − K)

out of 2M arcs of slope p
q

to 2(M −K) arcs of slope r
s

via M −K saddles, thereby

decreasing the Euler characteristic by M −K.

This takes care of the individual contribution of an edge-path {γi}. Now the identification
of the surfaces on each of the 4-punctured sphere will also affect the Euler characteristic of
the resulting surface. In terms of the common (A,B,C)-coordinates of each edge-path, there
are two cases:

• The identification of hemispheres between neighboring balls Bi and Bi+1 identifies
2M arcs and Bi half circles. Thus it subtracts 2M +Bi from the Euler characteristic
for each identification.
• The final step of identifying hemispheres from B0 and Bm on a single sphere adds Bi

to the Euler characteristic.

6.5. Matching the growth rate to topology for pretzel knots. We consider two candi-
date surfaces from the Hatcher-Oertel algorithm whose boundary slope, Euler characteristic,
and number of sheets will be shown to match the growth rate of the degree of the colored
Jones polynomial from the previous section as predicted by the strong slope conjecture.

6.5.1. The surface S(M,x∗). For 1 ≤ i ≤ m write

x∗i =
a−1
i∑
j a
−1
j

and x∗i,0 =
1

2

∑
j(bj − bi)a

−1
i a−1

j∑
j a
−1
j

, (35)

where ai = qi−1 and bi = q0+qi−2. The x∗i ’s come from the coefficients of t in (19), and x∗i,1’s
come from the constant term. Let M be the least common multiple of the denominators of
{x∗i }mi=1, reduced to lowest terms. We will use x∗(M) to denote the vector (x∗0M+x∗0,0, x

∗
1M+

x∗1,0, . . . , x
∗
mM + x∗m,0). For example, suppose we have the pretzel knot P (−11, 7, 9), then

x∗1 =
1

7−1
1

7−1
+ 1

9−1

=
4

7
, x∗2 =

1
8

1
7−1

+ 1
9−1

=
3

7
,

and M is 7.

Lemma 6.3. Suppose q = (q0, q1, . . . , qm) is such that s(q) ≤ 0. There is a candidate surface
S(M,x∗) from the Hatcher-Oertel algorithm with M sheets and C-coordinates

{−M,Mx∗1,Mx∗2, . . . ,Mx∗m}.
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Proof. Directly from the proof of Lemma 4.1, the elements of the set {x∗i }mi=0 satisfy the
following equations.

x∗i (qi − 1) = x∗j(qj − 1), for i 6= j, and
m∑
i=1

x∗i = 1. (36)

Consider the edge-path systems determined by the following choice of continued fraction
expansions for {1/qi}mi=0.

1/q0 = [[−1,−2,−2, . . . ,−2︸ ︷︷ ︸
q0−1

]]

1/qi = [[0,−qi]], for i 6= 0.

Let Ki = Mx∗i for 1 ≤ i ≤ m, and 0 ≤ K0 ≤M , q0 ≤ −q ≤ −2 such that

K0 +M(q − 2) = K1(q1 − 1), (37)

We specify a candidate surface S(M,x∗) in terms of edge-paths {γi}mi=0:
The edge-path γ0 for q0 is

〈 1

q0

〉 〈 1

q0 + 1
〉 · · · K0

M
〈 1

−q
〉+

M −K0

M
〈 1

−q + 1
〉.

For i 6= 0, we have the edge-path γi:

〈 1

qi
〉 Ki

M
〈 1

qi
〉+

M −Ki

M
〈0
1
〉.

Provided that K0, q satisfying (45) exist, this edge-path system satisfies the equations
coming from (a) and (b) of Step (2) of the algorithm. Thus, there is a candidate surface
with {−M,Mx∗1,Mx∗2, . . . ,Mx∗m} as the C-coordinates in the tangle corresponding to ri.

It remains to show that the assumption s(q) ≤ 0 implies the existence of K0, q satisfying
(45). The positive integer M divides

∑m
i=1(qi − 1) by definition. Recall s(q) ≤ 0 means

1 + q0 +
1∑m

i=1(qi − 1)−1
≤ 0

1 + q0 +
Πm
i=1(qi − 1)∑m
i=1(qi − 1)

≤ 0.

Multiply both sides by M , we get

M(1 + q0) + Πm
i=1(qi − 1) ≤ 0,

where Πm
i=1(qi − 1) denotes the numerator in the reduced fraction

Πmi=1(qi−1)∑m
i=1(qi−1)

. This implies

that a pair of integers K0, q such that 0 ≤ K0 ≤ M , q0 ≤ q ≤ −2 exist such that (45) is
satisfied, since by definition

Πm
i=1(qi − 1) = K(q1 − 1).
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So if M > K(q1− 1), we can choose q = 2 and K0 = K1(q1− 1). Otherwise, we choose some
q0 ≤ −q ≤ −2 such that

0 ≤ K1(q1 − 1)−M(q − 2) ≤M.

Let K0 be the difference K1(q1 − 1)−M(q − 2). �

The twist number of S(M,x∗). With the given edge-path system in the proof of Lemma
6.3 and applying the formula for computing the boundary slope in Section 6.3, we compute
the twist number of S(M,x∗). For the edge-path γ0 of q0, since q0 < 0, each edge of the edge-
path is slope-decreasing. Similarly, each edge in γi for qi is slope-decreasing (since qi > 0,
the edge 〈1/qi〉 〈0/1〉 is decreasing). Each non-fractional path contributes +1, and then
the single fractional edge at the end contributes (M −K0)/M . Thus

tw(S(M,x∗))

2
= (−q − q0)︸ ︷︷ ︸

contribution of the non-fractional edges of γ0

+ M − K0

M︸ ︷︷ ︸
contribution of the single fractional edge at the end of γ0

.

+
m∑
i=1

M −Ki

M︸ ︷︷ ︸
contribution of the single fractional edge for each of the γi’s for i ≥ 1.

By construction,
∑m

i=1
Ki
M

= 1 and q + M−K0

M
= K1

M
(q1 − 1) + 2, so

tw(S(M,x∗)) = 2(−q0 − x∗i (q1 − 1) +m− 2). (38)

The Euler characteristic of S(M,x∗). With the given edge-path system and applying
the formula for computing the Euler characteristic in Section 6.4, we compute the Euler
characteristic over the number of sheets for S(M,x∗). We start with 2M disks for each tangle.
Each non-fractional edge of an edgepath in {γi}mi=0 subtracts M to the Euler characteristic,
while the final fractional edges adds

m∑
i=0

M −Ki.

At the final step of gluing surfaces across Conway spheres, we subtract 2M + Bi for each
identification out of m identifications, then add a single Bi back. We have, since Bi =
(qi − 1)Ki = Bj,

m∑
i=1

Bi = m(qi − 1)Ki.

Adding all these contributions, the Euler characteristic over the number of sheets of S(M,x∗)
is given by

2χ(S(M,x∗))

#S(M,x∗)
= 2

(
2M(m+ 1)

M
− (−q − q0)M + (

∑m
i=0M −Ki)

M
− 2m− m(qi − 1)Ki

M
+

(qi − 1)Ki

M

)
(39)
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Using the substitutions that we previously used for computing the twist number, we get

= 4− tw(S(M,x∗))− 2(m− 1)(x∗i − 1)(q1 − 1)

= 4− 2(−q0 − x∗i (q1 − 1) +m− 2)− 2(m− 1)x∗i (q1 − 1)

= 8− 2m+ 2q0 − 2(m− 2)x∗i (q1 − 1). (40)

The cycle of ∇-values of S(M,x∗). For i = 0, the last edge of the edge-path γ0 is

〈 1

−q
〉 K0

M
〈 1

−q
〉+

M −K0

M
〈 1

−q + 1
〉,

so the ∇-value for this edge-path is | − q − (−q + 1)| = 1. For 1 ≤ i ≤ m, the final edge of
the edge-path γi is of the form

〈 1

qi
〉 Ki

M
〈 1

qi
〉+

M −Ki

M
〈0
1
〉.

So the value of each 1 ≤ i ≤ m is qi − 1 following the discussion preceding Theorem 6.2.
The cycle of ∇-values for the edge-path system is (1, q1 − 1, q2 − 1, . . . qm − 1).

6.5.2. The reference surface R. Note that the sequence of parameters (0)mi=0 also trivially
satisfy the equations from Step 2(a) and 2(b) of the Hatcher-Oertel algorithm with the
choice of continued fraction expansion 1/qi = [[0,−qi]] for 0 ≤ i ≤ m, and therefore defines
a connected candidate surface in the complement of K(1/q0, . . . , 1/qm). We will call this
surface the reference surface R. By the Hatcher-Oertel algorithm, the reference surface is
incompressible except the ones for K(−1

2
, 1

3
, 1

3
), K(−1

2
, 1

3
, 1

4
), and K(−1

2
, 1

3
, 1

5
).

In the framework of the Hatcher-Oertel algorithm, the edge-path corresponding to the
reference surface has the following form for each qi:

〈 1

qi
〉 〈0〉 .

The twist number of R. With the exception of γ0, which has a single slope-increasing
edge, each γi is slope-decreasing of length 1, thus the twist number of the reference surface
R is

tw(R) = 2(m− 1) . (41)

The Euler characteristic of R. The surface R has 1 sheet and the Euler characteristic,
and therefore χ(R)/#R, is

χ(R)

#R
= 1−m. (42)

The cycle of ∇-values of R. The cycle of ∇-values of R is (−q0 − 1, q1 − 1, . . . , qm − 1).

6.5.3. Matching the Jones slope. The results of Section 4.3 applied to the class of pretzel
knots we consider gives the degree of the nth colored Jones polynomial. We show that the
quadratic growth rate with respect to n matches the boundary slope of an incompressible
surface. The claim is that the Jones slope is either realized by the surface S(M,x∗) or the
reference surface R in Section 6.5 depending on s(q) and s1(q). Note that both S(M,x∗)
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if (s(q) ≤ 0) and R are incompressible by an immediate application of Theorem 6.2, since
m ≥ 2 and |qi| > 2 for all i.

Instead of simply taking s(q), s1(q) from Section 4.3 and comparing them to the boundary
slopes and relevant topological quantities of S(M,x∗) and R, which may be computed from
their descriptions in terms of edge-paths, we will take a different approach. We will show
that these surfaces may be directly represented by skein elements in the state sum used in
Section 3 for certain choices of the color n.

For the pretzel knots that we consider, these skein elements “compete” for the maximum
of the degree in the state sum for these choices n. The winner determines the degree of
the colored Jones polynomial for the specific color. Quadratic integer programming shows
this pattern persists for other colors, where the quadratic growth rate s(q) and s1(q) remain
unchanged. Thus, we may also speak of “surfaces” competing with each other. This provides
some topological insight into the strong slope conjecture.

Suppose s(q) ≤ 0, so that by Lemma 6.3, there is a candidate incompressible surface
S(M,x∗). Fixing the color n = M , we associate to S(M,x∗) the skein element S(M, τ ∗),
where τ ∗ is a minimal state with through strands k(τ ∗) = x∗(M) such that δ(M,k(τ ∗)) =
δ(M,k). Note that by Lemma 3.8, we can construct this skein element. See below Definition
3.1 to recall the definition of k(τ ∗). To R we associate the skein element S(0, τ0), where τ0 is
the Kauffman state that chooses the B-resolution on all the crossings in Kn

+. The Kauffman
state τ0 is also minimal.

Let bs(R) denote the boundary slope of R and bs(S(M,x∗)) denote the boundary slope of
S(M,x∗). Let τ be a minimal state whose corresponding skein element realizes the degree
of the Mth colored Jones polynomial. Using the result of section 4.3 there exist numbers
s = s(q) and s1 = s1(q) and a periodic function s0(n) = s0(q)(n) such that

d(k0, τ) = δ(n, k) = sM2 + s1M + s0(M) .

Define

js(S(k0, τ)) = ω(K) + s

where ω(K) is the writhe of K.

Lemma 6.4. Suppose s(q) ≤ 0. Let R be the reference surface associated to S(0, τ0), and
S(M,x∗) the surface associated to the unique degree-maximizing skein element S(M, τ ∗)
from the minimal state τ ∗ with boundary slope bs(S(M,x∗)) and bs(R), respectively. If

js(S(M, τ ∗))− js(S(0, τ0)) = tw(S(M,x∗))− tw(R),

then js(S(M, τ ∗)) is the boundary slope of the surface S(M,x∗).

Proof. Note that

js(S(0, τ0)) = bs(R),

by [FKP11, Lemma 4], and

bs(R) = tw(R)− tw(S0)

where S0 is a Seifert surface from the Hatcher-Oertel algorithm by (34).
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Then by assumption,

js(S(M, τ ∗))− js(S(0, τ0)) = tw(S(M,x∗))− tw(R)

js(S(M, τ ∗)) = tw(S(M,x∗))− tw(R) + tw(R)− tw(S0)

js(S(M, τ ∗)) = tw(S(M,x∗))− tw(S0) = bs(S(M,x∗)).

�

Theorem 6.5. With the same assumptions as Lemma 6.4, We have:

js(S(M, τ ∗))− js(S(0, τ0)) = tw(S(M,x∗))− tw(R).

Proof. We have

js(S(M, τ ∗))− js(S(0, τ0)) = ω(K) + s(M,x∗)− (ω(K) + s(M, 0))

= s(M,x∗)− s(M, 0).

The reference surface R comes from the Kauffman state that chooses the A-resolution on all
the crossings in the n-cabled negative twist region with −q0 crossings and the B-resolution
everywhere else. Therefore,

s(M, 0) =
m∑
i=0

qi.

The number js(S(M, τ ∗)) is obtained by plugging in k(τ ∗) = x∗(M) into d(M, τ ∗) and
extracting the coefficient multiplying M2.

s(M,x∗) = −2

(
(q0 + 1) +

m∑
i=1

(qi − 1)(x∗i )
2 − 1

2

m∑
i=0

qi

)

Using (qi − 1)x∗i = (qj − 1)x∗j and
∑m

i=1 x
∗
i = 1, so this may be written as

= −2

(
(q0 + 1) + (qi − 1)x∗i

m∑
i=1

x∗i −
1

2

m∑
i=0

qi

)

= −2

(
(q0 + 1) + (qi − 1)x∗i −

1

2

m∑
i=0

qi

)
.

By Equations (38) and (41) for the twist numbers of R and S(M,x∗), respectively,

s(M,x∗)− s(M, 0) = tw(S(M,x∗))− tw(R).

�
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6.5.4. Matching the Euler characteristic. Again we write

d(k0, τ) = sn2 + s1n+ s0(n)

and define

jx(S(k0, τ)) = s1 − 2s.

It is also immediate from the description of the reference surface R in terms of a Kauffman
state and [FKP11, Lemma 4] that

jx(S(0, τ0)) = χ(R) =
χ(R)

#R
.

For the proof, see [Lee].

Lemma 6.6. We have

jx(S(M, τ ∗)) = 2
χ(S(M,x∗))

#S(M,x∗)
,

where χ(S(M,x∗)) is the Euler characteristic and #S(M,x∗) is the number of sheets M of
the surface S(M,x∗).

Proof. We have by (39),

2χ(S(M,x∗))

#S(M,x∗)
= 8− 2m+ 2q0 − 2(m− 2)x∗i (q1 − 1).

The quantity jx(S(M, τ ∗)) = s1(M,x∗) − 2s(M,x∗) is given by plugging in x∗(M) into
d(M, τ ∗) and extracting the coefficient multiplying M2 and M as in the proof of Theorem
6.5.

s1(M,x∗)− 2s(M,x∗)

= −4
m∑
i=1

(qi − 1)(x∗ix
∗
i,0)− 2

m∑
i=1

(−2 + q0 + qi)x
∗
i + 2

m∑
i=0

qi − 2(m− 1)

− 2(−2((q0 + 1) + (qi − 1)x∗i −
1

2

m∑
i=0

qi)).

From the definition of x∗i,0, we have that
∑m

i=1 x
∗
i,0 = 0, and we also have

∑m
i=1 x

∗
i = 1,

(qi − 1)x∗i = (qj − 1)x∗j . We simplify the equation to

s1(M,x∗)− 2s(M,x∗)

= −4(qi − 1)x∗i

m∑
i=1

x∗i,0︸ ︷︷ ︸
0

−2
m∑
i=1

(q0 − 1 + qi − 1)x∗i + 2
m∑
i=0

qi − 2(m− 1)

+ 4q0 + 4 + 4(qi − 1)x∗i − 2
m∑
i=0

qi.



THE SLOPE CONJECTURE FOR MONTESINOS KNOTS 51

Gathering terms and rearranging, we get

s1(M,x∗)− 2s(M,x∗)

= −2(q0 − 1)
m∑
i=1

x∗i︸ ︷︷ ︸
1

−2m(qi − 1)x∗i − 2(m− 1) + 4q0 + 4 + 4(qi − 1)x∗i

= 8− 2m+ 2q0 − 2(m− 2)(qi − 1)x∗i =
2χ(S(M,x∗))

#S(M,x∗)
.

�

6.6. Proof of Theorem 1.2. Now we prove Theorem 1.2. Fix odd integers q0, . . . , qm with
q0 < −1 < 1 < q1, . . . , qm. Let P = P (q0, . . . , qm) denote the pretzel knot K( 1

q0
, 1
q1
, . . . , 1

qm
).

By Theorem 6.2, both of the surfaces S(M,x∗) (if s(q) ≤ 0) and R are incompressible
by examining their edge-paths and computing their ∇-values. In Section 6.5, Theorem
6.5, Lemma 6.6, and previous work of [FKP11] say that js(S(M, τ ∗)) = bs(S(M,x∗)),

js(S(0, τ0)) = bs(R), jx(S(M, τ ∗)) = 2χ(S(M,x∗))
#S(M,x∗)

, and jx(S(0, τ0)) = 2χ(R)
#R

.

From Section 4.3, we have the following cases for the degree of the colored Jones polynomial
JP,n(v). The choice of the surface detected by the Jones slope swings between the surface
S(M,x∗) and the reference surface R.

Case 1: s(q) < 0. We have that the maximum of δ(n, k) is given by

δP (n) = −2s(q)n2 − 2s1(q)n− 2(m− 1)n+ (n2 + 2n)
m∑
i=0

qi − 2s0(q)(n),

where recall that s(q) and s1(q) are explicitly defined by (2) and s0(q)(n) is a periodic
function. By Lemma 4.2, we see that s(q) and s1(q) for any n are actually the same as when
n is equal to the multiple of M , where there is a unique minimal state τ ∗ with parameters
M,x∗ realizing δP (M). Thus the fact that js(S(M, τ ∗)) = bs(S(M,x∗)) and jx(S(M, τ ∗)) =

2χ(S(M,x∗))
#S(M,x∗)

verifies the strong slope conjecture in this case.

Case 2a: s(q) = 0, s1(q) 6= 0. If s1(q) > 0, the maximum −2s0(q)(n) of δ(n, k) has no
quadratic or linear term, and the reference surface R verifies the conjecture. If s1(q) < 0.
Then the maximum

−2s1(q)n− 2(m− 1)n+ (n2 + 2n)
m∑
i=0

qi − 2s0(q)(n)

of δ(n, k) is found at maximizers τ ∗ with parameters n, k∗, again all satisfying n = k∗0 =
k∗1 + · · ·+ k∗m. Thus the surface S(M,x∗) verifies the conjecture.

Case 2b: s(q) = s1(q) = 0. There is no quadratic or linear term of the maximum of
δ(n, k), thus the reference surface R verifies the conjecture.

Case 3: s(q) > 0. In this case the maximum of δ(n, k) also does not have quadratic/linear
terms, and the reference surface R verifies the conjecture.

Remark 6.7. With the analogy between the C-curve system coordinates Ki and the real
maximizers x∗ as established by Lemma 6.3, it is interesting to note that for n 6= M , the
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degrees of the terms in the state sum of the colored Jones polynomial seem to correspond to
disconnected surfaces with the same C-curve system coordinates. The boundary slope and
normalized Euler characteristic of the disconnected surfaces approximate the connected one
associated to the real maximizers when n = M .

6.7. Matching the growth rate to topology for Montesinos knots. Let K(r0, . . . , rm)
be a Montesinos knot satisfying the assumptions of Theorem 1.3, and let P (q0, . . . , qm) be
the associated pretzel knot. Similar to the case of pretzel knots, we define a surface S(M,x∗)
that corresponds to a real maximizer S(M, τ ∗) of δ(n, k) as in Theorem 5.1, when we apply
the method of Lagrange multipliers as in Lemma 4.2 to (28). We give the explicit description
of the surface in terms of edge-path systems from the Hatcher-Oertel algorithm below. We
will see that these surfaces are built from extending the surfaces of the associated pretzel
knots.

6.7.1. The surface S(M,x∗). The edge-path system of S(M,x∗) is described as follows.

For i = 0, say r0 = [0, a1, a2, . . . , a`r0 ] for ai < 0, we take the following continued fraction
expansion

[[−1,−2, . . . ,−2︸ ︷︷ ︸
−a1−1 times

, a2 − 1− 1,−2, . . . ,−2︸ ︷︷ ︸
−a3−1 times

, a2j − 1− 1, −2, . . . ,−2︸ ︷︷ ︸
−a2j+1−1 times

, . . .]], (43)

with corresponding edge-path〈
[[0, a1, a2, . . . , a`r0 ]]

〉
· · · 〈[[−1,−2,−2]]〉 〈[[−1,−2]]〉 〈−1〉 .

For 1 ≤ i ≤ m, say ri = [0, a1, a2, . . . , a`ri ] for ai > 0, we take the following continued fraction
expansion

[[0,−a1 − 1,−2, . . . ,−2︸ ︷︷ ︸
a2−1 times

,−a3 − 1− 1,−2, . . . ,−2︸ ︷︷ ︸
a4−1 times

,−a2j+1 − 1− 1,−2, . . . ,−2︸ ︷︷ ︸
a2j+2−1 times

, . . .]], (44)

with corresponding edge-path〈
[[0, a1, a2, . . . , a`ri ]]

〉
· · · 〈[[0,−a1 − 1,−2]]〉 〈[[0,−a1 − 1]]〉 〈0〉 .

We let n = M be the least common multiple of the denominators of {x∗i,1} as given below,
reduced to lowest terms. Write

x∗i (M) = x∗i,1M + x∗i,0, so x∗i,1 =
a−1
i∑
j a
−1
j

and x∗i,0 =
1

2

∑
j(bj − bi)a

−1
i a−1

j∑
j a
−1
j

.

where ai = qi and bi = q0 +qi−1. S(M,x∗) is the candidate surface from the Hatcher-Oertel
algorithm with M sheets and C-coordinates {−M,Mx∗1,Mx∗2, . . . ,Mx∗m}. [elaborate? ]

We similarly have

Lemma 6.8. Suppose q = (q0, q1, . . . , qm) is such that s(q) ≤ 0. There is a candidate surface
S(M,x∗) from the Hatcher-Oertel algorithm with M sheets and C-coordinates

{−M,Mx∗1,Mx∗2, . . . ,Mx∗m}.
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Proof. Let Ki = Mx∗i for 1 ≤ i ≤ m, and 0 ≤ K0 ≤M , q0 ≤ −q ≤ −2 such that

K0 +M(q − 2) = K1(q1 − 1), (45)

We specify a candidate surface S(M,x∗) in terms of edge-paths {γi}mi=0, by tacking onto the
existing edge-path system for the associated pretzel knot P (q0, q1, . . . , qm):

The edge-path γ0 for r0 is〈
[[0, a1, a2, . . . , a`r0 ]]

〉
· · · 〈 1

q0

〉 〈 1

q0 + 1
〉 · · · K0

M
〈 1

−q
〉+

M −K0

M
〈 1

−q + 1
〉.

For i 6= 0, we have the edge-path γi:〈
[[0, a1, a2, . . . , a`ri ]]

〉
· · · 〈 1

qi
〉 Ki

M
〈 1

qi
〉+

M −Ki

M
〈0
1
〉.

Provided that K0, q satisfying (45) exist, this edge-path system satisfies the equations com-
ing from (a) and (b) of Step (2) of the algorithm. We have already verified that K0, q exist
when s(q) ≤ 0 in Lemma 6.3. Thus, there is a candidate surface with {−M,Mx∗1,Mx∗2, . . . ,Mx∗m}
as the C-coordinates in the tangle corresponding to ri. �

We also define a reference surface R for K(r0, r1, . . . , rm) associated to the skein S(0, τ0),
where τ0 is the all-B state on Kn

+.

6.7.2. The reference surface R. For the reference surface R, we have for each ri, the edge-
path system corresponding to the following continued fraction expansion
For r0 = [0, a1, a2, . . . , a`r0 ] for ai < 0, we take the following continued fraction expansion.

[[0,−a1, a2 − 1,−2, . . . ,−2︸ ︷︷ ︸
−a3−1 times

, a4 − 1− 1,−2, . . . ,−2︸ ︷︷ ︸
−a5−1 times

, a2j − 1− 1, −2, . . . ,−2︸ ︷︷ ︸
−a2j+1−1 times

, . . .]], (46)

with corresponding edge-path〈
[[0, a1, a2, . . . , a`r0 ]]

〉
· · · 〈[[0,−a1]]〉 〈0〉 .

For 1 ≤ i ≤ m, say ri = [0, a1, a2, . . . , a`ri ] for ai > 0, we take the following continued
fraction expansion.

[[0,−a1 − 1,−2, . . . ,−2︸ ︷︷ ︸
a2−1 times

,−a3 − 1− 1,−2, . . . ,−2︸ ︷︷ ︸
a4−1 times

,−a2j+1 − 1− 1,−2, . . . ,−2︸ ︷︷ ︸
a2j+2−1 times

, . . .]], (47)

with corresponding edge-path〈
[[0, a1, a2, . . . , a`ri ]]

〉
· · · 〈[[0,−a1 − 1,−2]]〉 〈[[0,−a1 − 1]]〉 〈0〉 .

Again, both R and S(M,x∗) are incompressible by a direct application of Proposition 6.2.

6.8. Proof of Theorem 1.3. [Putting everything together we prove Theorem 1.3.

Proof. Theorem 5.4 gives jsK and jxK in terms of the Jones slope and the normalized Euler
characteristic of the associated pretzel knot P . The resulting formulas are matched with the
boundary slope and normalized Euler characteristic of incompressible surfaces by Lemma
??. �

]
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[Mon73] José M. Montesinos, Seifert manifolds that are ramified two-sheeted cyclic coverings, Bol. Soc.

Mat. Mexicana (2) 18 (1973), 1–32.
[MT17] Kimihiko Motegi and Toshie Takata, The slope conjecture for graph knots, Math. Proc. Cambridge

Philos. Soc. 162 (2017), no. 3, 383–392.
[MV94] Gregor Masbaum and Pierre Vogel, 3-valent graphs and the Kauffman bracket, Pacific J. Math.

164 (1994), no. 2, 361–381.
[Onn10] Shmuel Onn, Nonlinear discrete optimization, Zurich Lectures in Advanced Mathematics, Euro-

pean Mathematical Society (EMS), Zürich, 2010, An algorithmic theory.
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