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Abstract. The paper contains a combinatorial theorem (the sequence of Newton polygons
of a reccurent sequence of polynomials is quasi-linear) and two applications of it in classical
and quantum topology, namely in the behavior of the A-polynomial and a fixed quantum
invariant (such as the Jones polynomial) under filling. Our combinatorial theorem, which
complements results of Calegari-Walker [CW10] and the author [Gar11a], occupies the bulk
of the paper and its proof requires the Lech-Mahler-Skolem theorem of p-adic analytic
number theory combined with basic principles in polyhedral and tropical geometry.
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1. Introduction

1.1. Filtered chain complexes versus holonomy. Filtered chain complexes and their
associated spectral sequences and exact triangles are standard tools of Homological Algebra
that have found numerous applications in the deep categorification theories of Khovanov,
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Kronheimer-Mrowka, Ozsváth-Szábo and many others; see [Kho00, KM04, OS04]. For in-
stance the genus of a knot in 3-space can be effectively computed by the Knot Homology of
[OS04].

On the other hand, one has the TQFT invariants of knotted 3-dimensional objects, and a
good example to keep in mind is the famous Jones polynomial of a knot; see [Jon87]. There
are several known and conjectured connections between the (colored) Jones polynomial of
a knot and the geometry and topology of the knot complement. In particular, the colored
Jones polynomial determines the Alexander polynomial ([BNG96, GL11]), and is conjectured
to determine

(a) the Volume of the knot ([Kas97, MM01]),
(b) the A-polynomial of the knot via the AJ-Conjecture ([Gar04]),
(c) at least two boundary slopes of incompressible surfaces of the knot complement via

the Slope Conjecture ([Gar11a]), and
(d) the invariant trace field of a hyperbolic knot, via the subleading asymptotics to the

Volume Conjecture ([Gar08, DGLZ09, GZ])

Knot Homology and TQFT have their own strengths. A major advantage of Knot Homology
is its functorial nature, which numerical TQFT invariants (such as the Jones polynomial)
lack. What concept plays the role of functoriality in TQFT? We argue that the notions
of holonomy and q-holonomy play this role in TQFT. We illustrate this principle with two
independent results.

• We study the behavior of the A-polynomial and quantum invariants (such as the
Jones or Alexander polynomials) under 1-parameter fillings of a 2-cusped manifold,
see Theorems 1.1 and 1.2 below. In the A-polynomial case, it divides a holonomic
sequence of polynomials in 2-variables, and in the quantum invariant case, it is a
holonomic sequence of polynomials in one variable.

• We prove that the Newton polygon Nn of a holonomic sequence of polynomials is
quasi-linear; see Theorem 1.3. This complements results of [CW10] and [Gar11a].

Holonomy (and q-holonomy) was studied extensively by Zeilberger; see [Zei90]. q-holonomic
sequences of polynomials in one variable appeared in Quantum Topology in [GL05], where
it was shown that the colored Jones function of a knot and an arbitrary simple Lie algebra
is q-holonomic; see [GL05, Thm.1].

Holonomic sequences of multivariable polynomials are easier to analyze, and they appear
naturally when one studies geometrically similar families of knots, such as those that arise
from filling of all but one components of a link. This is not difficult to prove, but it is not
widely known. Let us recall what is a holonomic sequence following Zeilberger; see [Zei90].
Let K = Q(x1, . . . , xr) denote the field of rational functions in r variables x1, . . . , xr.

Definition 1.1. We say that a sequence of rational functions Rn ∈ K (defined for all
integers n) is recurrent (or, constant coefficient holonomic) if it satisfies a linear recursion
with constant coefficients. In other words, there exists a natural number d and ck ∈ K for
k = 0, . . . , d with cd 6= 0 such that for all integers n we have:

(1)

d
∑

k=0

ckRn+k = 0
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Depending on the circumstances, one can restrict attention to sequences indexed by the
natural (rather than the integer) numbers. Please note that the coefficients of the recursion
(1) are constant, independent of n. If we allow them to polynomially depend on n, the corre-
sponding sequence is by definition holonomic. Our two applications discussed in Theorems
1.1 and 1.2 below concern reccurent sequences.

1.2. The behavior of the A-polynomial under filling. The A-polynomial AM of an
oriented hyperbolic 3-manifold M with one cusp was introduced in [CCG+94]. We will
assume that AM parametrizes a geometric component of the SL(2, C) character variety. AM

is a 2-variable polynomial which describes the dependence of the eigenvalues of a meridian
and longitude under any representation of π1(M) into SL(2, C). The A-polynomial plays a
key role in two problems:

• the deformation of the hyperbolic structure of M ,
• the problem of exceptional (i.e., non-hyperbolic) fillings of M .

Knowledge about the A-polynomial (and often, of its Newton polygon) is translated directly
into information of the above problems, and vice-versa. This key property was explained and
exploited by Culler-Shalen and Gordon-Luecke in [CGLS87, CCG+94, Gor09]. Technically,
the SL(2, C) character variety of M has several components, and the unique discrete faith-
ful PSL(2, C) representation of the oriented manifold M always lifts to as many SL(2, C)
representations as the order of the finite group H1(M, Z/2); see [Cul86]. When M is a com-
plement of a hyperbolic knot in an oriented integer homology sphere, the A-polynomial of
M is defined to be the SL(2, C) lift of the geometric PSL(2, C) component of M .

Our first goal is to describe the behavior of the A-polynomial under filling one of the cusps
of a 2-cusped hyperbolic 3-manifold. To state our result, consider an oriented hyperbolic
3-manifold M which is the complement of a hyperbolic link in a homology 3-sphere. Let
(µ1, λ1) and (µ2, λ2) denote pairs of meridian-longitude curves along the two cusps C1 and
C2 of M , and let Mn denote the result of −1/n filling on C2. Let An(m1, l1) denote the
A-polynomial of Mn with the meridian-longitude pair (µ1, λ1) inherited from M .

Theorem 1.1. For every 3-manifold M as above, there exists a recurrent sequence Rn(m1, l1) ∈
Q(m1, l1) such that for all but finitely many integers n, An(m1, l1) divides the numerator of

Rn(m1, l1). In addition, a recursion for Rn can be computed explicitly via elimination, from

an ideal triangulation of M .

1.3. The behavior of Quantum Invariants under filling. In Section 1.2 we showed
how holonomic sequences arise in 1-parameter families of character varieties. In this section,
we will show how they arise in Quantum Topology. Consider two endomorphisms A, B of
a finite dimensional vector space V over the field Q(q). Let tr(D) denote the trace of an
endomorphism D. The next lemma is an elementary application of the Cayley-Hamilton

theorem.

Lemma 1.2. With the above assumptions, the sequence tr(ABn) ∈ Q(q) is recurrent.

We need to recall the relevant Quantum Invariants of links from [Jon87, Jan96, Tur88].
Fix a simple Lie algebra g, a representation V of g, a knot K, and consider the Quantum

Group invariant Zg

V,K(q) ∈ Z[q±1]. For instance,
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• When g = sl2, and V = C2 is the defining representation, Zg

V,K(q) is the Jones
polynomial of K.

• When g = gl(1|1) and V = C2, Zg

V,K(q) is the Alexander polynomial of K.

The quantum group invariant Zg

V,K(q) can be computed as the trace of an operator associated
to a braid presentation of K.

Let L denote a 2-component link in S3 with one unknotted component C2, and let Kn

denote the knot obtained by −1/n filling on C2. Since S3 \ C2 is a solid torus S1 × D2

and L is a knot in S1 × D2 it follows that L is the closure of an (r, r) tangle α. If β is a
braid representative of a full positive twist in the braid group of r stands, then it follows
that Kn is obtained by the closure of the tangle αβn. If A and B denote the endomorphism
of V corresponding to α and β and Q(n) denotes half of the negative of the writhe of αβn

multiplied by the quadratic Casimir value of g in V , then we have:

ZV,Kn
(q) = q−Q(n) tr(ABn)

Notice that Q(n) is a quadratic function of n, and its presence in the above formula is
required if we insist that Kn is a zero-framed knot. The next theorem follows from the above
discussion, Lemma 1.2 and Theorem 1.3.

Theorem 1.2. Fix a simple Lie algebra g and a representation V of g. With the above

assumptions, the sequence qQ(n)Zg

V,Kn
(q) ∈ Q(q) is recurrent.

1.4. The sequence of Newton polygons of a recurrent sequence of polynomials.

Often one is interested in the Newton polygon of the A-polynomial; for instance the slopes of
its sides are boundary slopes of incompressible surfaces as follows by Culler-Shalen theory;
see [CS84, CS83]. This is one motivation of our next result. Recall that a quasi-polynomial

p(n) =
∑d

j=0 aj(n)nj is a polynomial in one variable n with coefficients aj(n) periodic func-

tions of n. We will call p(n) quasi-linear (resp. quasi-quadratic) if d ≤ 1 (resp., d ≤ 2).
Quasi-polynomials appear in Enumerative Combinatorics (see [Sta97]), and also in the lattice
point counting problems via Ehrhart’s theorem [Ehr62]. Quasi-polynomials have appeared
recently in the work of Calegari-Walker (see [CW10]) and also in Quantum Topology in
relation to the Slope Conjecture; see [Gar11b, Gar11a].

Definition 1.3. We say that a sequence Nn of polygons is linear (resp. quasi-linear) if the
coordinates of the vertices of Nn are polynomials (resp. quasi-polynomials) of degree at most
one. Likewise, we say that a sequence Nn of polygons is quadratic (resp. quasi-quadratic) if
the coordinates of the vertices of Nn are polynomials (resp. quasi-polynomials) of degree at
most two.

The next theorem is of independent interest and explains the first part of the title of the
paper. Its proof follows from first principles of Polyhedral and Tropical Geometry, and the
Lech-Mahler-Skolem theorem of Analytic Number Theory.

Theorem 1.3. Let Nn be sequence of Newton polygons of a holonomic sequence Rn ∈
Q[x±1

1 , . . . , x±1
r ] \ {0}. Then, for all but finite many integers n, Nn is quasi-linear.

The next corollary of Theorem 1.3 follows from some recent results of Chen-Li-Sam which
generalize the Ehrhart theory; see [CLS10].
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Corollary 1.4. Under the hypothesis of Theorem 1.3, the volume and the number of lattice
points of Rn is a quasi-polynomial function of n.

Remark 1.5. The hypothesis that Rn 6= 0 for all n in Theorem 1.3 is not as strict as it
seems (and is trivially satisfied in its application to Theorems 1.1 and 1.2). Indeed, the
Skolem-Mahler-Lech theorem implies that the zero set of any holonomic sequence in a field
of characteristic zero vanishes on a finite union of full arithmetic progressions minus a finite
set. See Theorem 3.1 below.

Remark 1.6. The reader may have noticed that Theorems 1.1 and Theorem 1.3 are valid
for all but finitely many integers n. There are two independent sources for this exception.
In Theorem 1.1, the exception comes from the Hyperbolic Dehn filling theorem of Thurston
(see [Thu77] and also [NZ85]), which implies that all but finitely many fillings in one cusp
of a hyperbolic 3-manifold gives a hyperbolic manifold. The finite set of exceptional fillings
are the focus of the problem of exceptional Dehn surgery of [CGLS87]. In Theorem 1.3, the
exceptions come from the Skolem-Mahler-Lech theorem, which states that the zeros of a
sequence of rational numbers that satisfies a constant coefficient recursion relation are full
sets of arithmetic progressions, up to a finite exceptional set. Is there a connection between
exceptional Dehn surgery and the LMS theorem?

1.5. Application in character varieties. Theorems 1.1 and 1.3 are general, but in fa-
vorable circumstances more is true. Namely, consider a family of knot complements Kn,
obtained by −1/n filling on a cusp of 2-component hyperbolic link L in S3, with linking
number f . Let An(m, l) denote the A-polynomial of Kn with respect to the canonical merid-
ian and longitude (µ, λ) of Kn.

Definition 1.7. We say that two component hyperbolic L link in S3 with linking number
f is favorable if An(m, lm−f2n) ∈ Q[m±1, l±1] is holonomic, for all but finitely many values
of n.

The shift l 7→ lm−f2n in the above coefficients is due to the fact that the canonical
meridian-longitude pair of Kn differs from the corresponding pair of the unfilled component
of L due to the nonzero linking number.

Remark 1.8. If Nn is a sequence of Newton polygons in R2 (with coordinates (m, l) which is
quasi-linear, then the sequence of polygons obtained by applying the transformation (m, l) 7→

(m, lm−f2n) to Nn is quasi-quadratic. Indeed, there is a finite set I and quasi-linear functions
si(n), ti(n) for i ∈ I such that Nn is the convex hull of (si(n), ti(n)) for i ∈ I. The monomial

transformation (m, l) 7→ (m, lm−f2n) is the linear map (a, b) 7→ (a − f 2bn, b) of R2 which
sends (si(n), ti(n)) to (si(n)−f 2ti(n)n, ti(n)). Since si and ti are quasi-linear, it follows that
si(n) − f 2ti(n)n and ti(n) are quasi-quadratic.

Our next corollary gives a natural source of sequences of quasi-quadratic polytopes that
come from classical topology, i.e., character varieties of knot complements. As discussed in
[CW10], this class of polytopes is a natural generalization of the sequence nP of scalings of
a fixed rational polytope P .

Corollary 1.9. If a two component link L is favorable, then for all but finitely many n, the
Newton polygon of An(m, l) is quasi-quadratic.
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Favorable links are more common than one might think. Let us show three favorable links

the Whitehead link (in the left), the twisted Whitehead link (in the middle) and the pretzel
link (in the right). The first two links were shown to be favorable by Hoste-Shanahan (see
[HS04]) and surgeries gives rise to two families of twist knots. The last link was shown to
be favorable in [GM11] and surgeries gives rise to the family of (−2, 3, 3+ 2n) pretzel knots.

1.6. Acknowledgment. The author wishes to thank N. Dunfield, T.T.Q. Le, T. Mattman
and J. Yu for useful conversations.

2. Proof of Theorem 1.1

Fix an oriented hyperbolic 3-manifold M with two cusps C1 and C2 and choice of meridian-
longitude (µi, λi) on each cusp for i = 1, 2. Let Kn denote the result of −1/n filling on C2.
We consider two cases: M has strongly geometrically isolated cusps, or not. For a definition
of strong geometric isolation, see [NR93] and also [Cal01, CW10]. When M is strongly
geometrically isolated, Dehn filling on one cusp does not change the shape of the other. This
implies that An is constant (and therefore, holonomic), for all but finitely many integers n.
Thus, we may assume that M does not have strongly geometrically isolated cusps.

Let X denote the geometric component of the SL(2, C) character variety of M . The
hyperbolic Dehn filling theorem of Thurston implies that X is a complex affine surface; see
[Thu77] and also [NZ85]. So, the field F of rational functions on X has transendence degree
2. Now X has four known nonconstant rational functions: the eigenvalues of the meridians
m1, m2 and the longitudes l1, l2 around each cusp. So, each triple {m1, l1, m2} and {m1, l1, l2}
of elements of F is polynomially dependent i.e., satisfies a polynomial equation

(2) P (m1, l1, m2) = 0 Q(m1, l1, l2) = 0

where P (m1, l1, m2) ∈ Q(m1, l1)[m2] and Q(m1, l1, l2) ∈ Q(m1, l1)[l2] are polynomials of
strictly positive (by hypothesis) degrees dP and dQ with respect to m2 and l2. The geometric
component Xn of the character variety of K is the intersection of X with the Dehn-filling
equation m2l

−n
2 = 1 [Thu77]. So, on Xn we have P (m1, l1, l

n
2 ) = 0. Let p(m1, l1) and

q(m1, l1) denote the coefficient of mdP

2 and l
dQ

2 in P (m1, l1, m2) and Q(m1, l1, l2) respectively.
Let Rn(m1, l1) ∈ Q(m1, l1) denote the resultant of P (m1, l1, l

n
2 ) and Q(m1, l1, l2) (both are

elements of Q(m1, l1)[l2]) with respect to l2; see [Lan02, Sec.IV.8]. It follows that

Rn(m1, l1) = p(m1, l1)
dQ

∏

l2:Q(m1,l1,l2)=0

P (m1, l1, l
n
2 ) ∈ Q(m1, l1)
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Since Rn(m1, l1) is a Q(m1, l1) linear combination of P (m1, l1, l
n
2 ) and Q(m1, l1, l2) (see

[Lan02, Sec.IV.8]) and since P (m1, l1, l
n
2 ) and Q(m1, l1, l2) vanish on the irreducible curve

Xn, it follows that An(m1, l1) divides the numerator of Rn(m1, l1). Moreover, by the above
equation, Rn(m1, l1) is a Q(m1, l1)-linear combination of the n-th powers of a finite set of
elements l2 algebraic over Q(m1, l1). Section 3.3 below implies that Rn satisfies a linear
recursion with constant coefficients in Q[m1, l1]. This recursion is valid for all integers n and
concludes the proof of Theorem 1.1. �

3. Proof of Theorem 1.3

3.1. The support function of a polytope. Let us review some standard facts of Polyhe-

dral Geometry regarding the support function hP of a convex body P in Rr. For a detailed
discussion, see [Sch93, Sec.1.7]. The latter is defined by

hP : Rr \ {0} −→ R, hP (u) = sup{u · x |x ∈ P}

where u · v denotes the standard inner product of two vectors u and v of Rr. Given a unit
vector u, there is a unique hyperplane with outer normal vector u that touches P , and
entirely contains P in the left-half space. The value hP (u) of the support function is the
signed distance from the origin to the above hyperplane. This is illustrated in the following
figure:

Let us list some useful properties of the support function:

• hP uniquely determines the convex body P . This is the famous Minkowski recon-

struction theorem. For a detailed proof, see [Sch93, Thm.1.7.1] and also [Kla04].
• hP is homogeneous and subadditive.
• When P is a convex polytope with vertex set VP , then

(3) hP (u) = max{u · v |v ∈ VP}

In particular, hP is a piece-wise linear function.
• The projection of P to the line Ru is the line segment [−hP (−u), hP (u)]. See the

above figure for an illustration.

Now, consider a polynomial

R(x) =
∑

α∈A

cαxα

in r variables (x1, . . . , xr) where A ⊂ Zr is a finite set of exponents, and cα 6= 0. As usual, we
abbreviate xα =

∏

i x
αi

i . Let P denote the Newton polytope of R. If ω ∈ Qr \ {0}, consider
the specialization of variables given by

(4) ǫω(x1, . . . , xr) = (tω1 , . . . , tωr)
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Consider the corresponding Laurent polynomial

Rω(t) = R(ǫω(x)) =
∑

α∈A

cαtω·α

For generic weight ω, the Newton polygon of Rω(t) equals to the projection of P to the line
Rω. It follows that for generic ω, the Newton polygon of Rω(t) is given by [−hP (ω), hP (ω)],
where hP is piece-wise linear function of ω.

3.2. Generalized power sums and their zeros. Generalized power sums play a key role
to the LMS theorem. For a detailed discussion, see [vdP89] and also [EvdPSW03]. Recall
that a generalized power sum an for n = 0, 1, 2, . . . is an expression of the form

(5) an =

m
∑

i=1

Ai(n)αn
i

with roots αi, 1 ≤ i ≤ m, distinct nonzero quantities, and coefficients Ai(n) polynomials of
degree mi − 1 for positive integers mi, 1 ≤ i ≤ m. The generalized power sum an is said to
have order

d =
m
∑

i=1

mi

and satisfies a linear recursion with constant coefficients of the form

an+d = s1an+d−1 + · · · + sdan

where

s(x) =
m
∏

i=1

(1 − αix)mi = 1 − s1x − . . . sdx
d.

It is well-known that a sequence is recurrent i.e., satisfies a linear recursion with constant
coefficients if and only if it is a generalized power sum. Observe that the monic polynomial
polynomial s(x) of smallest possible degree is uniquely determined by (an).

The LMS theorem concerns the zeros of a generalized power sum.

Theorem 3.1. [Sko35, Mat02, Lec53] The zero set of a generalized power sum is the union

of a finite set and a finite set of arithmetic progressions.

A detailed proof of this important theorem is discussed in [vdP89], for recurrent sequences
with values in an arbitrary field of characteristic zero. In the next section we will need a
slightly stronger form of the LMS theorem. We say that a recurrent sequence (an) is non-

degenerate if the ratio of two distinct roots of (an) is not a root of unity; see [EvdPSW03,
Sec.1.1.9].

The LMS theorem in the case of number fields follows from the following two theorems.

Theorem 3.2. [EvdPSW03, Thm.1.2] If (an) is reccurrent sequence there exists M ∈ N

such that for every r with 0 ≤ r ≤ M − 1, the subsequence (anM+r) is either zero or non-

degenerate.

In fact, if (an) takes values in a number field K, there are absolute bounds for M in terms
of the degree of K/Q and the order of (an).
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Theorem 3.3. [EvdPSW03, Cor.1.20] If (an) is non-degenerate recurrent sequence with

values in a number field K, then it has finitely many zero terms.

In fact, the number of zeros is bounded above by the degree of K/Q and the order of (an);
see [ESS02, Eqn.1.18].

3.3. Proof of Theorem 1.3. Fix a holonomic sequence Rn(x1, . . . , xr) ∈ Q[x±1
1 , . . . , x±1

r ]
(non-zero, for all but finitely many n) with Newton polytope Nn. Thus,

(6)

d
∑

k=0

ckRn+k = 0

where ck ∈ Q[x±1
1 , . . . , x±1

r ] for all k = 0, . . . , d and cd c0 6= 0. Suppose first that r = 1. Let
us abbreviate x1 by x. Consider the characteristic polynomial p(z, x) of (6)

p(z, x) =

d
∑

k=0

ck(x)zk = cd(x)
∏

j

(z − λj(x))mj

Its roots λj(x) (each, with multiplicity mj) are nonzero distinct algebraic functions of x. The

field E = Q(x) of algebraic functions of x has a valuation v∗ (resp. v) given by the minimum

degree (resp. maximum degree) with respect to x of a polynomial of x, and then extended
by additivity to the field of rational functions of x, and further uniquely extended to E, the
field of Puiseux series of x; see [Wal78]. Note that if R ∈ E, then v∗(R) is given by by the
lowest power of x in the series expansion of R(x) at x = 0. Likewise, v(R) is given by the
negative of the lowest power of x in the series expansion of R(1/x) at x = ∞. For example,

v∗(x2 + x7) = 2, v(x2 + x7) = 7

Now, the general solution of a linear recursion with constant coefficients is of the form

Rn(x) =
∑

j

Pj(x, n)λj(x)n

where Pj(x, n) ∈ E[n] is a nonzero polynomial of n of degree mj − 1. Moreover, the Newton
polygon Nn of Rn(x) is a line segment [v∗(Rn), v(Rn)].

Let us concentrate on the valuation v∗. The series expansion of λj(x) and Pj(x, n) at
x = 0 is given by

λj(x) = αjx
ωj

(

1 +

∞
∑

k=1

cj,kx
k/r′

)

Pj(x, n) = xβj

∞
∑

k=0

dj,k(n)xk/r′

where ωj = v∗(λj(x)) and βj = v∗(Pj(x, n)). We partition the indexing set {j = 1, . . . , d} =
J1 ⊔ J2 · · · ⊔ Js such that v∗(λj(x)) = ωi for all j ∈ Ji where ω1 < ω2 · · · < ωs. Without loss
of generality, we assume that r′ = 1 and βj = 0 for all j, and that the coefficients of the
above power series are defined over a number field K. Observe that we can expand
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(

1 +
∞
∑

k=1

ckx
k

)n

= 1 + nc1x +

(

nc2 +
n(n − 1)

2
c2
1

)

x2+

(

nc3 + n(n − 1)c1c2 +
n(n − 1)(n − 2)

6
c3
1

)

x3 + . . .

(7)

into power series in x, where the coefficients are polynomials in n. It follows that

Rn(x) =
s
∑

i=1

∞
∑

k=0

xnωi

(

∑

j∈Ji

αn
j cj,k(n)

)

xk

=
∑

(i,k)∈S

ai,k(n)xnωi+k

where
S = {1, . . . , s} × N

and

cj,k(n) = coeff

(

Pj(x, n)

(

λj(x)

αjxωj

)n

, xk

)

∈ K[n]

ai,k(n) =
∑

j∈Ji

αn
j cj,k(n)

Observe that for every (i, k) ∈ S, (ai,k(n)) is a generalized power sum with roots in a subset
{α1, . . . , αd} of K∗. It follows that there exists a natural number M such that for every r
with 0 ≤ r ≤ M − 1 and every (i, k) ∈ S, the recurrent sequence ai,k(nM + r) is either zero
or non-degenerate. It suffices to show that for every r with 0 ≤ r ≤ M − 1, v∗(RnM+r(x)) is
a linear function of n, for all but finitely many n.

Introduce the well-ordering of S as follows: (i, k) < (i′, k′) if i < i′ or i = i′ and k < k′.
Since

(8) RnM+r(x) =
∑

(i,k)∈S

ai,k(nM + r)x(nM+r)ωi+k

is nozero for all but finitely many n, it follows that there is a smallest (i, k) ∈ S such
that (ai,k(nM + r)) is not identically zero as a function of n. Since (ai,k(nM + r)) is non-
degenerate, Theorem 3.3 implies that {n ∈ N |ai,k(nM + r) = 0} is a finite set, and for all n
in its complement, Equation (8) implies that

v∗(RnM+r(x)) = (nM + r)ωi + k .

It follows that the restriction of v∗(Rn(x)) to each arithmetic progression MN + r is a linear
function of n (for all but finitely many n), thus, v∗(Rn(x)) (and likewise, v(Rn(x)) is quasi-
linear for all but finitely many values of n.

We now reduce the general case of Theorem 1.3 to the case of r = 1. Consider a holonomic
sequence Rn(x1, . . . , xr) ∈ Q[x±1

1 , . . . , x±1
r ] nonzero for all but finitely many n, and let Nn

denote the Newton polytope of Rn. Fix a general weight vector ω = (ω1, . . . , ωr) ∈ Qr \ {0},
and consider the specialization Rω,n(t) = Rn(ǫω(x)).
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To state our next lemma, recall the notion of a fan, i.e., a finite collection of rational
polyhedral cones with vertex at the origin, whose union of their closures covers a fixed
vector space, and whose interiors are pairwise disjoint; see [Zie95]. Fans are also known as
constant coefficient tropical varieties; see [SS09].

Lemma 3.1. There exists a fan in Rr such that for every j, the restriction of ω 7→
v∗(λj(ǫω(x)) and ω 7→ v(λj(ǫω(x)) to the interior of each maximal cone is a linear func-
tion.

Proof. Without loss of generality, we will work with v∗. Write the characteristic polynomial
p(z, x) in terms of its monomials:

p(z, x) =
∑

(α,β)∈Zr×N

cα,βxαzβ

where the sum is finite and cα,β 6= 0. Let λj(x) satisfy p(λj(x), x) = 0. Then, it follows that
for each generic ω,

min
α,β

{α · ω + βv∗(ǫω(λj(x)))}

is achieved at least twice. The result follows. �

Continuing with the proof of Theorem 1.3, it is easy to see that for generic ω (for example,
when cd(ǫω(x)) 6= 0 in Equation (6)), the sequence Rω,n(t) is holonomic, and its Newton
polygon is given by [−hNn

(−ω), hNn
(ω)], where hNn

is the support function of Nn. This
follows from the discussion of Section 3.1. Let ω lie in the interior of a fixed maximal cone
of the fan of Lemma 3.1. Lemma 3.1 and the proof of the case of r = 1 implies that for all
n sufficiently large we have

(9) − hNn
(−ω) = δ∗(n) · ω, hNn

(ω) = δ(n) · ω

where δ∗(n) and δ(n) are r-vectors of quasi-linear functions. Of course, δ∗ and δ depend on
the maximal cone of the above fan. Now, fix a large enough n = n0. Then, Equations (3)
and (9) imply that for all ω in the interior of a maximal cone of the fan we have:

hNn
(ω) = δ(n) · ω = max{ω · v |v ∈ VNn

}

Both are piecewise linear functions of ω and the one on the right jumps at a hyperplane
normal to a facet (i.e., a maximal face) of Nn. It follows that the set of normal vectors of
the facets of Nn is a subset of the set of rays of the fan of Lemma 3.1. The latter is a finite
set independent of n.

Consequently, Nn is a sequence of polytopes with normal vectors in a fixed finite set, and
with h-function that satisfies Equation (9), which is a locally (with respect to ω) quasi-
linear with respect to n. It follows from the Minknowski recustruction theorem that the
coordinates of every vertex of Nn are quasi-linear functions of n, for all but finitely many n.
This concludes the proof of Theorem 1.3. �

Remark 3.2. The LMS theorem is used in the same way both in the proof of Theorem 1.3,
and in the proof of [Gar11a, Thm.1]. This is not a coincidence. In fact, a holonomic sequence
Rn(q) ∈ Q(q) of one variable is also a q-holonomic sequence in the sense of [Zei90, Gar11a],
since it satisfies a linear recursion with constant coefficients. The degree of a q-holonomic
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sequence is a quadratic quasi-polynomial (see [Gar11a]), however in the case of constant
coefficients the slopes of the corresponding tropical curve are zero, and the degree is a linear
quasi-polynomial. Thus, the r = 1 case of Theorem 1.3 follows from [Gar11a, Thm.1]. For
completeness, we gave a proof of Theorem 1.3 when r = 1 that avoids the general machinery
of [Gar11a].
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