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Abstract. A sequence of polynomials in several variables is recurrent if it satisfies a linear
recursion with fixed polynomial coefficients. The Newton polytope of a recurrent sequences
of polynomials is quasi-linear. Our goal is to give examples of recurrent sequences of poly-
nomials that appear in 3-dimensional topology, classical and quantum.
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1. Introduction

1.1. Recurrent sequences of polynomials. A sequence of polynomials in several vari-
ables is recurrent if it satisfies a linear recursion with fixed polynomial coefficients. In other
words, if R = Q[x±1

1 , . . . , x±1
r ], then a sequence Qn ∈ R (for n = 0, 1, 2, . . . ) is recurrent if

there exists a natural number d and ck ∈ R for k = 0, . . . , d with cd 6= 0, such that for all
n ∈ N we have:

(1)

d∑

k=0

ckQn+k = 0
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The Newton polytope of a polynomial is the convex hull of the exponents of its nonzero mono-
mials. In [Gar13] it was shown that the Newton polytope of a recurrent sequence of poly-
nomials is quasi-linear. Quasi-linear polytopes appear in the theory of stable-commutator
length studied by Calegari-Walker [CW13]. The number of lattice points of quasi-linear poly-
topes is a quasi-polynomial as shown by Chen-Li-Sam [CLS12] generalizing work of Ehrhart
[Ehr62]. In the present paper we will not discuss the important notion of quasi-linearity.
Instead, our goal is to show that examples of recurrent sequences of polynomials (in one or
several variables), appear naturally in 3-dimensional topology, classical and quantum. In all
our examples, the variable n comes from Dehn filling.

1.2. Dehn filling. The result of −1/n Dehn filling along an unknot C which bounds a disk
D replaces a string that meets D with n full twists, right-handed if n > 0 and left-handed if
n < 0; see Figure 1 and [Kir78].

= = = =

Figure 1. The effect of Dehn filling on a link.

Consider the 3-component seed link L of Figure 2, which contains a 2-component un-
link C = (C1, C2). For integers m1, m2, let K(m1, m2) denote the knot obtained by
(−1/m1,−1/m2) filling on C. The 2-parameter family of (2-fusion) knots K(m1, m2) was
studied in [GvdV14] and [DG12]. It is easy to see that K(m1, m2) is the closure of the
3-string braid βm1,m2

, where
βm1,m2

= ba2m1+1(ab)3m2

where s1 = a, s2 = b are the standard generators of the braid group B3 of 3-strands. There
is a symmetry

(2) K(m1, m2) = −K(1 − m1,−1 − m2)

where −K denotes the mirror of K.

1.3. The Alexander polynomial of a 2-parameter family of knots. Let ∆K(z) ∈ Z[z2]
denote the Conway polynomial of a knot K [Kau87]. Note that ∆K(t1/2 − t−1/2) ∈ Z[t±1] is
the Alexander polynomial of a knot K. Let us abbreviate ∆(m1, m2) = ∆K(m1,m2)(z). We
will explain the proof of the next proposition in Section 2.

Proposition 1.1. ∆(m1, m2) satisfies the recursion relations

(3a) ∆(m1 + 2, m2) − (2 + z2)∆(m1 + 1, m2) + ∆(m1, m2) = 0

(3b)
∆(m1, m2+3)−(3+9z2+6z4+z6)∆(m1, m2+2)+(3+9z2+6z4+z6)∆(m1, m2+1)−∆(m1, m2) = 0

as well as

(4) ∆(m1, m2) − ∆(1 − m1,−1 − m2) = 0
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Figure 2. The seed link L (left) and the 2-fusion knot K(m1,m2) (right).

with initial conditions

(5)

(
∆(0, 0) ∆(0, 1)
∆(1, 0) ∆(1, 1)

)
=

(
1 z6 + 5z4 + 5z2 + 1
z2 + 1 z8 + 7z6 + 14z4 + 8z2 + 1

)
.

1.4. The Jones polynomial of a 2-parameter family of knots. Let JK(q) ∈ Z[q±1] de-
note the Jones polynomial of a knot K [Jon87]. Let us abbreviate J(m1, m2) = JK(m1,m2)(q).
We will explain the proof of the next proposition in Section 2. Similar recursions hold for
the colored Jones polynomial of K(m1, m2) (for any fixed color) as well as for every quantum
group invariant of K(m1, m2).

Proposition 1.2. J(m1, m2) satisfies the recursion relations

(6a) J(2 + m1, m2) − (q + q3)J(1 + m1, m2) + q4J(m1, m2) = 0

(6b) J(m1, 2 + m2) − (q3 + q6)J(m1, 1 + m2) + q9J(m1, m2) = 0

(6c) J(m1, m2)(q) − J(1 − m1,−1 − m2)(q
−1) = 0

with initial conditions

(7)

(
J(0, 0) J(0, 1)
J(1, 0) J(1, 1)

)
=

(
1 −q8 + q5 + q3

−q4 + q3 + q −q10 + q6 + q4

)
.

1.5. The A-polynomial of some 1-parameter families of knots. We now discuss recur-
rence relations of A-polynomials. The A-polynomial AM(m, l) ∈ Z[m±1, l±1] of an oriented
3-manifold M with a torus boundary component equipped with a meridian and longitude
was introduced in [CCG+94]. Roughly speaking, it parametrizes SL(2, C) representations
of the fundamental group of M , restricted to the boundary torus, where a fixed merid-
ian and longitude have eigenvalues m and l. An important example is the case when M
is a hyperbolic manifold. In that case, there is a distinguished component of the charac-
ter variety of PSL(2, C) representations which contains the diescrete faithful representation,
[Thu77, NZ85]. This component lifts to several components of the SL(2, C) character variety
(see [Cul86]) defined by the vanishing of a polynomial Ageom

M (m, l). In general, this polyno-
mial has at most four factors of the form p(±m,±l), discussed in detail in Champanerkar’s
thesis [Cha03, Sec.2.1.3]. Fixing an orientation on M , reduces the above factors to at most
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two of the form p(±m, l). In the case of 2-bridge knots and (−2, 3, 3 + 2n) pretzel knots, we
further have p(−m, l) = p(m, l).

Consider three seed links of Figure 3.

Figure 3. The Whitehead link (left), the twisted Whitehead link (middle) and the pretzel

link (right).

Let Kn denote the twist knot obtained by −1/n filling on a component of the Whitehead
link. Hoste-Shanahan show that AKn

(m, l) is a recurrent sequence for n > 0 or n < 0; see
[HS04, Thm.1]. Likewise, if K ′

n denote the knot obtained by −1/n surgery on a component of
the twisted Whitehead link, Hoste-Shanahan shown that AK ′

n
(m, l) is recurrent when n > 0

or n < 0. Here, AKn
and AK ′

n
denotes the A-polynomial of all non-abelian components, each

with multiplicity one, and the recursion (one for n > 0 and another for n < 0) is of order 2.
Similarly, let Pn = (−2, 3, 3 + 2n) denote the pretzel knot obtained by −1/n surgery on

the pretzel link. The author and Mattman show that APn
(i.e., all non-abelian components

each with multiplicity one) is recurrent for n > 0 or n < 0; see [GM11, Thm.1.3]. The
recursions are of order 4.

In Section 3 we will explain a general theorem regarding the behavior of the geometric
component of the A-polynomial under filling.

2. The behavior of quantum invariants under filling

In this section, we explain how recurrent sequences of polynomials arise in Quantum
Topology. Consider two endomorphisms A, B of a finite dimensional vector space V over
the field Q(q). Let tr(D) denote the trace of an endomorphism D. The next lemma is an
elementary application of the Cayley-Hamilton theorem.

Lemma 2.1. With the above assumptions, the sequence tr(ABn) ∈ Q(q) is recurrent. More-
over, a recursion depends only on the characteristic polynomial of B.

We now recall the relevant quantum invariants of links from [Jon87, Jan96, Tur88, Tur94].
Fix a simple Lie algebra g, a representation V of g, a knot K, and consider the Quantum

Group invariant Zg

V,K(q) ∈ Z[q±1/d], Here, d ∈ N depends on g, [Le00, Jan96] but not on V
or K. In particular,

• When g = sl2, and V = C2 is the defining representation, Zg

V,K(q) is the Jones
polynomial of K.
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• When g = gl(1|1) and V = C2, Zg

V,K(q) is the Alexander polynomial of K.

In what follows, we will not need the full formalism of quantum groups and ribbon caterogies.
Instead, all we need to know is the fact that the quantum group invariant Zg

V,K(q) can be
computed as the (quantum) trace of an operator associated to a tangle presentation of K.

Let L denote a 2-component link in S3 with one unknotted component C2, and let Kn

denote the knot obtained by −1/n filling on C2. Since S3 \ C2 is a solid torus S1 × D2 and
L is a knot in S1 × D2 it follows that L is the closure of an (r, r)-tangle α. Without loss of
generality, we can assume that the writhe of α is zero. Choose an orientation on K. Let D
denote a disk with boundary C2. After isotopy, the intersection of L with D consists of r+

positively oriented points and r− negatively oriented ones, where r+ + r− = r. For example,
for (r+, r−) = (2, 1) the intersection of L and D looks like

Let βr+,r− denote the (r, r) tangle which is a 0-framed full twist on r strands. Kirby’s
calculus [Kir78] implies that the 0-framed knot Kn is obtained by the closure of the tangle
αβn

r+,r−
. If A and Br,s denote the endomorphism of V ⊗r ⊗ (V ∗)⊗s corresponding to α and

βr,s, then we have:

ZV,Kn
(q) = tr(ABnµ⊗r+ ⊗ µ−⊗r−)

where µ = uv−1 and u is the Drinfeld element and v is the ribbon element of [Tur88, Sec.3].
The next theorem follows from the above discussion and Lemma 2.1.

Theorem 2.1. Fix a simple Lie algebra g and a representation V of g. With the above

assumptions, the sequence Zg

V,Kn
(q) ∈ Z[q1/d] is recurrent.

Moreover, the minimal polynomial of βr+,r−, gives a recurrence relation for Theorem 2.1.
In practice, if we know the degree of the characteristic polynomial of βr+,r−, and several
values of the quantum group invariant, we can compute the recurrence of Theorem 2.1. This
is how Equations (3a)-(3b) and (6a)-(6b) where obtained using β2,0 and β3,0. Equations (4)
and (6c) follow from (2) and the fact that Zg

V,−K(q) = Zg

V,K(q−1) for all g, V and K, where
−K denotes the mirror of K. Finally, the initial conditions (5) and (7) were obtained by a
direct computation using the KnotAtlas; [BN05].

3. The behavior of the A-polynomial under filling

In this section we describe a general theorem regarding the behavior of the geometric
component of the A-polynomial under filling.

Fix and oriented hyperbolic 3-manifold M which is the complement of a hyperbolic link
with two components in a homology 3-sphere. Let (µ1, λ1) and (µ2, λ2) denote pairs of
meridian-longitude curves along the two cusps C1 and C2 of M , and let Mn denote the result
of −1/n filling on C2. Thurston proved that for all but finitely many n, Mn is hyperbolic;
[Thu77, NZ85]. Let Ageom

n (m1, l1) denote the geometric component of the A-polynomial of
Mn with the meridian-longitude pair (µ1, λ1) inherited from M .
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Theorem 3.1. With the above conventions, there exists a recurrent sequence Rn(m1, l1) ∈
Z[m1, l1] such that for all but finitely many integers n, Ageom

n (m1, l1) divides Rn(m1, l1). In

addition, a recursion for Rn(m1, l1) can be computed explicitly via elimination given an ideal

triangulation of M .

Theorem 3.1 is general, but in favorable circumstances more is true. Namely, consider a
family of knot complements Kn, obtained by −1/n filling on a cusp of 2-component hyper-
bolic link L in S3, with linking number f . Let Ageom

n (m, l) denote the geometric component
of the A-polynomial of Kn with respect to the canonical meridian and longitude (µ, λ) of
Kn.

Definition 3.1. We say that two component hyperbolic L link in S3 with linking number
f is favorable if Ageom

n (m, lm−f2n) ∈ Q[m±1, l±1] is recurrent, for all but finitely many values
of n.

The shift l 7→ lm−f2n accommodates the difference between the canonical meridian-
longitude pair of Kn and the corresponding pair of the unfilled component of L.

In [Gar13] the author proved that the Newton polytope N(Rn) of a recurrent sequence of
polynomials Rn ∈ Q[x±1

1 , . . . , x±1
r ] is quasi-linear, i.e., there exists a finite set J and periodic

functions sj,i : N −→ Qr for j ∈ J and i = 0, 1 such that for all but finitely many n we have:

N(Rn) = conv{sj,1(n)n + sj,0(n) |j ∈ J}

where conv(S) denotes the convex hull of a subset S of Rr.

Corollary 3.2. If L is favorable, then N(Ageom
Kn

(m, l)) is quasi-quadratic.

Proof. If

N(Ageom
Kn

(m, lm−f2n)) = conv

{(
uj,1(n)n + uj,0(n)
vj,1(n)n + vj,0(n)

)
|j ∈ J

}

for periodic functions uj,i, vj,i : N −→ Q, then

N(Ageom
Kn

(m, l)) = conv

{(
uj,1(n)n + uj,0(n)

f 2n2uj,1(n) + (f 2uj,0(n) + vj,1(n))n + vj,0(n)

)
|j ∈ J

}

�

Remark 3.3. The Whitehead link, the twisted Whitehead link and the pretzel link of
Figure 3 are favorable; see [HS04, GM11]. The corresponding Newton polygons are indeed
quadratic: generically hexagons the twist knots [HS04, Fig.3] and for the pretzel knots
[GM11, Thm.1.3,Fig.2].

4. Proof of Theorem 3.1

Fix an oriented hyperbolic 3-manifold M with two cusps C1 and C2 and choice of meridian-
longitude (µi, λi) on each cusp for i = 1, 2. Let Kn denote the result of −1/n filling on C2,
a hyperbolic manifold for all but finitely many n; [Thu77, NZ85]. Let Ageom

n (m1, l1) denote
the A-polynomial of Kn with the conventions of Section 1.5.

We consider two cases: M has strongly geometrically isolated cusps, or not. For a definition
of strong geometric isolation, see [NR93] and also [Cal01, CW13].
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When M is strongly geometrically isolated, Dehn filling on one cusp does not change the
shape of the other. This implies that Ageom

n (m1, l1) is independent of n (for all but finitely
many n) and certainly recurrent.

If M does not have strongly geometrically isolated cusps, consider the geometric com-
ponent of the PSL(2, C) character variety of M , which lifts to a union X ′ of finitely many
components of SL(2, C) character variety of M . Consider a finite covering X ′′ of X ′ such that
the eigenvalues of the meridians and longitudes are rational functions on X. The hyperbolic

Dehn filling theorem of Thurston implies that X is a complex affine surface; see [Thu77]
and also [NZ85]. We will work with each component X of X ′′ separately. So, the field F of
rational functions on X has transendence degree 2. Now X has four nonconstant rational
functions: the eigenvalues of the meridians m1, m2 and the longitudes l1, l2 around each cusp.
So, each triple {m1, l1, m2} and {m1, l1, l2} of elements of F is polynomially dependent i.e.,
satisfies a polynomial equation

(8) P (m1, l1, m2) = 0 Q(m1, l1, l2) = 0

where P (m1, l1, m2) ∈ Q(m1, l1)[m2] and Q(m1, l1, l2) ∈ Q(m1, l1)[l2] are polynomials of
strictly positive (by hypothesis) degrees dP and dQ with respect to m2 and l2. The union
Xn of the geometric components of the SL(2, C) character variety of Kn is the intersection
of X with the Dehn-filling equation m2l

−n
2 = 1 [Thu77]. This is a surprising fact since Dehn

filling imposes an SL(2, C) matrix condition which a priori involves 3 polynomial equations
and not one as stated above. The Dehn filling equation m2l

−n
2 = 1 is necessary, but not (in

general) sufficient to cut out nongeometric components of the SL(2, C) character variety of
Kn from those of the character variety of M .

So, on Xn we have P (m1, l1, l
n
2 ) = 0. Let p(m1, l1) and q(m1, l1) denote the coefficient

of mdP

2 and l
dQ

2 in P (m1, l1, m2) and Q(m1, l1, l2) respectively. Let Rn(m1, l1) ∈ Q(m1, l1)
denote the resultant of P (m1, l1, l

n
2 ) and Q(m1, l1, l2) (both are elements of Q(m1, l1)[l2]) with

respect to l2; see [Lan02, Sec.IV.8]. It follows that

Rn(m1, l1) = p(m1, l1)
dQ

∏

l2:Q(m1,l1,l2)=0

P (m1, l1, l
n
2 ) ∈ Q(m1, l1)

Since Rn(m1, l1) is a Q(m1, l1)-linear combination of P (m1, l1, l
n
2 ) and Q(m1, l1, l2) (see [Lan02,

Sec.IV.8]) and since P (m1, l1, l
n
2 ) and Q(m1, l1, l2) vanish on the curve Xn, it follows that

Ageom
n (m1, l1) divides the numerator of Rn(m1, l1). Moreover, by the above equation, Rn(m1, l1)

is a Q(m1, l1)-linear combination of the n-th powers of a finite set of elements l2 algebraic
over Q(m1, l1). It follows that Rn(m1, l1) satisfies a linear recursion with constant coefficients
in Q[m1, l1]. Lemma 4.1 below implies that there exists r(m1, l1), s(m1, l1) ∈ Q[m1, l1] such
that rsnRn ∈ Q[m1, l1] is recurrent. Since Rn = (rsnRn)/(rsn), it follows that the numer-
ator of Rn is a divisor of rsnRn ∈ Q[m1, l1], a recurrent sequence. And Ageom

n divides the
numerator of Rn, hence divides rsnRn. Theorem 3.1 follows. �

Lemma 4.1. If Rn ∈ Q(x) is recurrent, x = (x1, . . . , xr) then there exist r, s ∈ Q[x] such
that srnRn ∈ Q[x] is recurrent.
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Proof. Rn satisfies a linear recursion

d∑

k=0

ckRn+k = 0

for some d ∈ N and ck ∈ Q[x] with cd 6= 0. Let r = cd and define R̃n = rnRn. It follows that

R̃n satisfies the linear recursion

d∑

k=0

ckr
d−1−kR̃n+k = 0

The above recursion is monic (since cdr = 1) and has coefficients in Q[x]. Hence R̃n ∈

Q[x][R̃0, . . . , R̃d−1]. Choose s ∈ Q[x] such that sR̃k ∈ Q[x] for k = 0, . . . , d − 1. Then

sR̃n ∈ Q[x] is recurrent. �

Acknowledgment. The author wishes to thank N. Dunfield, T.T.Q. Le and T. Mattman
for useful conversations.
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