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ABSTRACT 

We conjecture an exact formula for the Kontsevich integral of the 
unknot, and also conjecture a formula (also conjectured independently 
by Deligne [De]) for the relation between the two natural products on 
the space of uni-trivalent diagrams. The two formulas use the related no- 
tions of "Wheels" and "Wheeling". We prove these formulas 'on the level 
of Lie algebras' using standard techniques from the theory of Vassiliev 
invariants and the theory of Lie algebras. In a brief epilogue we report on 
recent proofs of our full conjectures, by Kontsevich [Ko2] and by DBN, 
DPT, and T. Q. T. Le, [BLT]. 
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1. I n t r o d u c t i o n  

1.1. THE CONJECTURES. Le t  us s t a r t  w i t h  t he  s t a t e m e n t s  of  our  con jec tu res ;  

t he  res t  of  t he  p a p e r  is c o n c e r n e d  w i t h  m o t i v a t i n g  and  j u s t i f y ing  t h e m .  We  

a s s u m e  s o m e  f ami l i a r i t y  w i th  t he  t h e o r y  of  Vassi l iev invar iants .  See e.g. [B-N1, 

Bi,  BL,  G o l ,  Go2,  K o l ,  V a s l ,  Vas2] and  [B-N2]. 

Very  briefly, reca l l  t h a t  any  c o m p l e x - v a l u e d  k n o t  invar ian t  V can  be  e x t e n d e d  

to  an  inva r i an t  of  kno t s  w i t h  doub le  po in t s  ( s i n g u l a r  k n o t s )  v i a  t h e  f o r m u l a  

V(  ~.( ) --  V(  ~ ) - V(  ~ ). An  invar ian t  of  kno t s  (or f r a m e d  knots )  is ca l led  a 

V a s s i l i e v  i n v a r i a n t ,  or  a f i n i t e  t y p e  i n v a r i a n t  o f  t y p e  m,  if i ts  e x t e n s i o n  to  

s ingu la r  kno t s  vanis tms w h e n e v e r  e v a l u a t e d  on a s ingular  k n o t  t h a t  has  m o r e  t h a n  
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m double points. Vassiliev invariants are in some senses analogues to polynomials 

(on the space of all knots), and one may hope that they separate knots. While this 

is an open problem and the precise power of the Vassiliev theory is yet unknown, 

it is known (see [Vo]) that Vassiliev invariants are strictly stronger than the 

Reshetikhin-Turaev invariants ([RT]), and in particular they are strictly stronger 

than the Alexander-Conway, Jones, HOMFLY, and Kauffman invariants. Hence 

one is interested in a detailed understanding of the theory of Vassiliev invariants. 

The set V of all Vassiliev invariants of framed knots is a linear space, filtered 

by the type of an invariant. The fundamental theorem of Vassiliev invariants, 

due to Kontsevich [Kol], says that the associated graded space grV of V can 

be identified with the graded dual .4* of a certain completed graded space .4 of 

formal linear combinations of certain diagrams, modulo certain linear relations. 

The diagrams in .4 are connected graphs made of a single distinguished directed 

line (the skeleton), some number of undirected internal  edges, some number 

of trivalent external  vertices in which an internal edge ends on the skeleton, 

and some number of trivalent internal  vertices in which three internal edges 

meet. It is further assumed that the internal vertices are oriented: that for each 

internal vertices one of the two possible cyclic orderings of the edges emanating 

from it is specified. An example of a diagram in .4 is in Figure 1. The linear 

relations in the definition of .4 are the well-known AS, IHX, and STU relations, 

also shown in Figure 1. The space .4 is graded by half the total number of trivalent 

vertices in a given diagram. 

degree=3 degree=7 

Figure 1. A diagram in A, a diagram in B (a uni-trivalent diagram), and 

the AS, IHX, and STU relations. All internal vertices shown are oriented 

counterclockwise. 

The most difficult part of the currently known proofs of the isomorphism 

`4* ~ gr ]2 is the construction of a universal Vassiliev invariant: an A-valued 

framed-knot invariant ~ that satisfies a certain universality property which im- 

plies that its adjoint ~*: A* -+ V is well defined and induces an isomorphism 

A* ~ gr ];, as required (see e.g. [BS]). Such a universal Vassiliev invariant is not 

unique; the set of universal Vassiliev invariants is in a bijective correspondence 
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with the set of all filtration-respecting maps l) --+ gr)) that  induce the identity 

map gr )2 -+ gr Y. But it is a noteworthy and not terribly well understood fact 

that  all known constructions of a universal Vassiliev invariant are either known to 

give the same answer or are conjectured to give the same answer as the f r a m e d  

K o n t s e v i c h  i n t e g r a l  Z (see Section 2.2), the first universal Vassiliev invariant 

ever constructed. Furthermore, the Kontsevich integral is well behaved in several 

senses, as shown in [B-N1, BG, Kas, Kol ,  LMMO, LM1, LM2]. 

Thus it seems that  Z is a canonical and not an accidental object. It  is therefore 

surprising how little we know about it. While there are several formulas for 

computing Z, they are all of limited use beyond the first few degrees. Before this 

paper was written, no explicit formula for the value of Z on any knot was known, 

not even the unknot! 

Our first conjecture is about the value of the Kontsevich integral of the unknot. 

We conjecture a completely explicit formula, written in terms of an alternative 

realization of the space A, the space 13 of u n i - t r i v a l e n t  d i a g r a m s  ("Chinese 

characters", in the language of [B-N1]). The space B is also a completed graded 

space of formal linear combinations of diagrams modulo linear relations: the 

diagrams are the so-called uni-trivalent diagrams, which are the same as the dia- 

g rams  in J[ except that  a skeleton is not present, and instead a certain number of 

univalent vertices are allowed (the original connectivity requirement is dropped, 

but one insists that  every connected component of a uni-trivalent diagram would 

have at least one univalent vertex). An example of a uni-trivalent diagram is 

in Figure 1. The relations are the AS and I H X  relations that  appear in the 

same figure (but not the STU relation, which involves the skeleton). The degree 

of a uni-trivalent diagram is half the total number of its vertices. There is a 

natural  isomorphism X: B --~ .4 which maps every uni-trivalent diagram to the 

average of all possible ways of placing its univalent vertices along a skeleton line 

(see [B-N1], but notice that  a sum is used there instead of an average). In a sense 

that  we will recall below, the fact that  X is an isomorphism is an analog of the 

Poincare-Birkhoff-Witt  (PBW) theorem. We note that  the inverse map a of X 

is more difficult to construct and manipulate. 

CONJECTURE 1 (Wheels): The framed Kontseyich integral of the unknot, z ( o ) ,  

expressed in terms of uni-trivalent diagrams, is equal to 

o o  

(1) ~t = expw E b2nw2n. 
n = l  

The notation in (1) means: 



Vol. 119, 2000 WHEELS, WHEELING, AND THE UNKNOT 

�9 The 'modified Bernoulli numbers' b2n are defined by the 

expansion 
power 

221 

series 

1 sinh x/2 
(21 Zb2nx2n = 21~ x/2 

n~--O 

These numbers are related to the usual Bernoulli numbers B2n and to the 

values of the Riemann C-function on the even integers via (see e.g. lAP, 

Section 12.12]) 

B2n (-i) n+i 

zn(zr)  ~,, 

The first three modified Bernoulli numbers are b2 = 1/48, b4 = -1/5760, 

and b6 = 1/362880. 

�9 The '2n-wheel' w2~ is the degree 2n uni-trivalent diagram made of a 2n-gon 

with 2n legs: 

(with all vertices oriented counterclockwise).* We note that the AS relation 

implies that  odd-legged wheels vanish in B, and hence we do not consider 

them. 

* expu means 'exponential in the disjoint union sense'; that is, it is the formal- 

sum exponential of a linear combination of uni-trivalent diagrams, with the 

product being the disjoint union product. 

Let us explain why we believe the Wheels Conjecture (Conjecture 1). Recall 

([B-N1]) that  there is a parallelism between the space A (and various variations 

thereof) and a certain part of the theory of Lie algebras. Specifically, given a 

metrized Lie algebra g, there exists a commutative square (a refined version is in 

* Wheels have appeared in several noteworthy places before: [Ch, CV, KSA, Vail. 
Similar but slightly different objects appear in Ng's beautiful work on ribbon 
knots [Ng]. 
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Theorem 3 below): 

x T. Ugt 
/ ' the  g-invariant par t  of  the~  

g) [ c o m p l e t e d  universal  enve lop- ]  
k ing  algebra of g ] 

the g-invariant par t  of  the'~ 
comple ted  symmetr ic  a l g e b r a )  
of  g 

In this square the left column is the above mentioned formal PBW isomorphism 

X, and the right column is the symmetrization map fl~: S(g) -4 U(g), sending 

an unordered word of length n to the average of the n! ways of ordering its 

letters and reading them as a product in U(g). The map flo is a vector space 

isomorphism by the honest PBW theorem. The left-to-right maps T~ are defined 

as in [B-N1] by contracting copies of the structure constants tensor, one for each 

vertex of any given diagram, using the standard invariant form (., .) on g (see 

citations in section 2.2 below). The maps Tg seem to 'forget' some information 

(some high-degree elements on the left get mapped to 0 on the right no matter 

what the algebra g is, see [Vo]), but at least up to degree 12 they are faithful (for 

some Lie algebras); see [Kn]. 

THEOREM 1: Conjecture 1 is "true on the level of semi-simple Lie algebras". 
Namely, 

= 

conjecture. Let B' = s p a n  { ~ ( D } / ( A S ,  IHX)  We now formulate our second 
be the same as B, only dropping the remaining connectivity requirement so that 

we also allow connected components that have no univalent vertices (but each 

with at least one trivalent vertex). The space B' has two different products, and 

thus is an algebra in two different ways: 

�9 The disjoint union C1uC2 of two uni-trivalent diagrams Ci,2 is again a 

uni-trivalent diagram. The obvious bilinear extension of U is a well defined 

product B' x B' -4 B', which turns B' into an algebra. For emphasis we 

will call this algebra B~.. 

�9 B' is isomorphic (as a vector space) to the space 

,4' = span { Or~qh= }/(AS, IHX,  STU) 
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of diagrams whose skeleton is a single oriented interval (like A, only that  

here we also allow non-connected diagrams). The isomorphism is the map 

X: B ~ --+ A ~ that maps a uni-trivalent diagram with k "legs" (univalent 

vertices) to the average of the k! ways of arranging them along an oriented 

interval (in [B-N1] the sum was used instead of the average). A' has a well 

known "juxtaposition" product x, related to the "connect sum" operation 

on knots: 

(4) ~ -  x O~-h~ = ~ O ~ _ .  

The algebra structure on A ~ defines another algebra structure on B ~. For 

emphasis we will call this algebra B~. 

As before, A ~ is graded by half the number of trivalent vertices in a diagram, B t 

is graded by half the total number of vertices in a diagram, and the isomorphism 

)~ as well as the two products respect these gradings. 

Definition 1.1: If C is a uni-trivalent diagram without struts (components like 

f ' h ) ,  let C: B' -+ B ~ be the operator defined by 

d(c') = { 

For example, 

0 
the sum of all ways of gluing 
all the legs of C to some (or 
all) legs of C ~ 

if C has more legs than C ~, 

otherwise. 

~44(w2)=0; ~ ( w 4 ) = 8 ~ + 4 ~ .  

If C has k legs and total degree m, then C is an operator of degree m - k. By 

linear extension, we find that  every C E B J without struts defines an operator 

C: B J -+ B ~. (We restrict to diagrams without struts to avoid circles arising from 

the pairing of two struts and to guarantee convergence.) 

As Q is made of wheels, we call the action of the (degree 0) operator 

"wheeling". As f/ begins with 1, the wheeling map is invertible. We argue 

below that  fl is a diagrammatic analog of the Duflo isomorphism S g (g) --~ S ~ (g) 

(see [Du] and see below). The Duflo isomorphism intertwines the two algebra 

structures that S g (g) has: the structure it inherits from the symmetric algebra 

and the structure it inherits from US(g) via the PBW isomorphism. One may 

hope that  l'~ has the parallel property: 
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CONJECTURE 2 (Wheeling*): Wheeling intertwines the two products on uni- 

trivalent diagrams. More precisely, the map ~: B~ --4 B~x is an algebra isomor- 

phism. 

There are several good reasons to hope that Conjecture 2 is true. If it is true, 

one would be able to use it along with Conjecture 1 and known properties of 

the Kontsevich integral (such as its behavior under the operations of change of 

framing, connected sum, and taking the parallel of a component as in [LM2]) to 

get explicit formulas for the Kontsevich integral of several other knots and links. 

Note that change of framing and connect sum act on the Kontsevich integral 

multiplicatively using the product in A, but the conjectured formula we have for 

the Kontsevich integral of the unknot is in B. Using Conjecture 2 it should be 

possible to perform all operations in B. Likewise, using Conjectures 1 and 2 and 

the hitherto known or conjectured values of the Kontsevich integral, one would 

be able to compute some values of the LMO 3-manifold invariant [LMO], using 

the "/~rhus integral" formula of [/~-I, .&-II,/~-III]. 

Perhaps a more important reason is that, in essence, .4 and B capture that part 

of the information about U(g) and S(g) that can be described entirely in terms of 

the bracket and the structure constants. Thus a proof of Conjecture 2 would yield 

an elementary proof of the intertwining property of the Duflo isomorphism, whose 

current proofs use representation theory and are quite involved. We feel that the 

knowledge missing to give an elementary proof of the intertwining property of 
the Dufio isomorphism is the same knowledge that is missing to give a proof of 

the Kashiwara-Vergne conjecture ([gv]). 

THEOREM 2: Conjecture 2 is "true on the level of semi-simple Lie algebras". A 

precise statement is in Proposition 2.1 and the remark following it. 

Remark 1.2: As semi-simple Lie algebras "see" all of the Vassiliev theory at 

least up to degree 12 [B-N1, Kn], Theorems 1 and 2 imply Conjectures 1 and 2 

up to that degree. It should be noted that semi-simple Lie algebras do not "see" 

the whole Vassiliev theory at high degrees, see [Vo]. 

Remark 1.3: We've chosen to work over the complex numbers to allow for some 

analytical arguments below. The rationality of the Kontsevich integral [LM1] and 

the uniform classification of semi-simple Lie algebras over fields of characteristic 

0 implies that Conjectures 1 and 2 and Theorems 1 and 2 are independent of the 

(characteristic 0) ground field. 

* Conjectured independently by Deligne [De]. 
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1.2. THE PLAN. Theorem 1 and Theorem 2 both follow from a delicate as- 

sembly of widely known facts about Lie algebras and related objects; the main 

novelty in this paper is the realization that these known facts can be brought 

together and used to prove Theorems 1 and 2 and make Conjectures 1 and 2. 
The facts we use about Lie-algebras amount to the commutativity of a certain 
monstrous diagram. In Section 2 below we will explain everything that appears 
in that diagram, prove its commutativity, and prove Theorem 2. In Section 3 we 
will show how that commutativity implies Theorem 1 as well. We conclude this 
introductory section with a picture of the monster itself: 

THEOREM 3 (definitions and proof in Section 2): The foJ1owing monster diagram 

is commutative: 

K: F 

B• %h 
' ~ ~  ~- S(g)~XD( [ [ h ] ] j ~ ,  

7:. h 
B~. ~ -S(g)~[[h]] 

. 

P(g* 

P(g*)g[[h]] 

Remark 1.4: Our two conjectures ought to be related--one talks about ~, and 
another is about an operator ~ made out of ~, and the proofs of Theorems 1 
and 2 both use the Duflo map (D(j 1/2) in the above diagram). But looking 
more closely at the proofs below, the relationship seems to disappear. The proof 

of Theorem 2 uses only the commutativity of the face labeled ~ x  , while the 

proof of Theorem 1 uses the commutativity of all faces but ~ . No further 

relations between the conjectures are seen in the proofs of our theorems. Why is 

it that the same strange combination of uni-trivalent diagrams ~ plays a role in 

these two seemingly unrelated affairs? See the epilogue (Section 4) for a partial 
answer. 
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1 .3 .  A C K N O W L E D G E M E N T .  Much of this work was done when the four of us 

were visiting/~rhus, Denmark, for a special semester on geometry and physics, 

in August 1995. We wish to thank the organizers, J. Dupont, H. Pedersen, 

A. Swann and especially J. Andersen for their hospitality and for the stimulating 

atmosphere they created. We wish to thank the Institute for Advanced Studies 

for their hospitality, and P. Deligne for listening to our thoughts and sharing 

his. His letter [De] introduced us to the Duflo isomorphism; initially our proofs 

relied more heavily on the Kirillov character formula. A. Others and A. Referee 

made some very valuable suggestions; we thank them and also thank J. Birman, 

V. A. Ginzburg, A. Haviv, A. Joseph, G. Perets, J. D. Rogawski, J. D. Stasheff, 

M. Vergne and S. Willerton for additional remarks and suggestions. 

2. T h e  m o n s t e r  d i a g r a m  

2.1. THE VERTICES. Let gR be the (semi-simple) Lie-algebra of some compact 

Lie group G, let 9 -- 9R | C, let b C igR be a Cartan subalgebra of g, and let 

W be the Weyl group of I~ in g. Let A+ C [}* be a set of positive roots of g, and 

let p ~ ig~ be half the sum of the positive roots. Let h be an indeterminate, and 

let C[[h]] be the ring of formal power series in h with coefficients in C. 

�9 )i~ F is the set of all framed knots in R 3. 

�9 ,41 is the algebra of not-necessarily-connected chord diagrams, as on 

page 218. 
�9 B~( and B~. denote the space of uni-trivalent diagrams (allowing 

connected components that have no univalent vertices), as on page 223, 

taken with its two algebra structures. 

�9 U(~)g[[h]] is the g-invariant part of the universal enveloping algebra U(g) 

of g, with the coefficient ring extended to be C[[h]]. 

�9 S(g)~ [[h]] and S(g)~[[h]] denote the g-invariant part of the symmetric alge- 

bra S(g) of g, with the coefficient ring extended to be C[[h]]. In S(g)~[[h]] 

we take the algebra structure induced from the natural algebra structure 

of the symmetric algebra. In S(g)~[[h]] we take the algebra structure in- 

duced from the algebra structure of U(g) g[[h]] by the symmetrization map 

/~: S(9)~ [[h]] --+ U(g)g[[h]], which is a linear isomorphism by the Poincare- 

Birkhoff-Witt theorem. 

�9 P ( h * )  W [[hi] is the space of Weyl-invariant polynomial functions on b*, with 

coefficients in C[[h]]. 
�9 P(g*)g[[h]] is the space of ad-invariant polynomial functions on g*, with 

coefficients in C[[h]]. 
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2.2. THE EDGES. 

�9 Z is the framed version of the Kontsevich integral for knots as defined 

in [LM1]. A simpler (and equal) definition for a framed knot K is 

Z(K) = e O ' w r i t h e ( K ) / 2  " S ( Z ( K ) )  E A C A', 

where O is the chord diagram ~ . ,  S is the standard algebra map A r -- 

~4 /<  O >-~ A defined by mapping O to 0 and leaving all other primitives 

of A in place, and Z is the Kontsevich integral as in [Kol]. 

�9 X is the symmetrization map B~< --4 A', as on page 220. It is an algebra 

isomorphism by [B-N1] and the definition of x. 

�9 f~ is the wheeling map as on page 223. We argue that it should be an 

algebra (iso-)morphism (Conjecture 2). 

�9 RT o denotes the Reshetikhin-Turaev knot invariant associated with the Lie 

algebra • IRe1, Re2, RT, Tu]. 

�9 Tg n (in all three instances) is the usual "diagrams to Lie algebras" map, as 

in [B-N1, Section 2.4 and exercise 5.1]. The only variation we make is that 

we multiply the image of a degree m element of A' (or B" or B~) by h m. 
In the construction of Tg n an invariant bilinear form on g is needed. We use 

the standard form (., .) used in [RT] and in [CP, Appendix]. See also [Kac, 

Chapter 2]. 

�9 The isomorphism/~ was already discussed when S(g)~ [[h]] was defined on 

page 226. 

�9 The definition of the "Duflo map" D(j~/2) requires some preliminaries. If 

V is a vector space, there is an algebra map D: P(V) -4 Diff(V*) between 

the algebra P(V) of polynomial functions on V and the algebra Diff(V*) of 

constant coefficients differential operators on the symmetric algebra S(V). 
The map D is defined on generators as follows: If a E V* is a degree 1 

polynomial on V, set D(a)(v) = a(v) for v E V C S(V), and extend D(c~) 

to be a derivation on S(V), using the Leibnitz law. A different (but less 

precise) way of defining D is via the Fourier transform: Think of S(V) 

as a space of functions on V*. A polynomial function on V becomes a 

differential operator on V* after taking the Fourier transform, and this 

defines our map D. Either way, if j C P(V) is homogeneous of degree k, 

the differential operator D(j) lowers degrees by k and thus vanishes on the 

low degrees of S(V). Hence D(j) makes sense even when j is a power series 

instead of a polynomial. This definition has a natural extension to the case 

when the spaces involved are extended by C[[h]], or even C((h)), the algebra 
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(5) 

of Laurent polynomials in h. 
, - , i  . i /2~ Now use this definition of D with V = g to define the Duflo map L, t3g ), 

where j~(X) is defined for X e g by 

('sinh ad X/2'~ 
j g ( X ) = d e t \  adX/2  ]" 

The square root j~/2 ofjg is defined as in [Du] or [BGV, Section 8.2], and is a 

power series in X that begins with 1. We note that by Kirillov's formula for 

the character of the trivial representation (see e.g. [BGV, Theorem 8.4 with 
:1/2 

A = ip]), :1~ is the Fourier transform of the symplectic measure on Mip, 

where Mip is the co-adjoint orbit of ip in g~t (see e.g. [BGV, Section 7.5]): 

J~/2(X) = freM, p eir(X)dr" 

(We consider the symplectic measure as a measure on g~t, whose support 

is the subset M~p of g~. Its Fourier transform is a function on gR that can 

be computed via integration on the support Mip C 9~ of the symplectic 

measure.) Dufio [Du, th~or~me V.2] (see also [Gi]) proved that D(j~/2) is 

an algebra isomorphism. 

eg is the Harish-Chandra isomorphism U(g) g -+ p(f),)w extended by h. 

Using the representation theory of g, it is defined as follows. If z is in U(g) ~ 

and A E D* is a positive integral weight, we set r to be the scalar 
by which z acts on the irreducible representation of g whose highest weight 

is A - p. It is well known (see e.g. [Hu, Section 23.3]) that this partial 
definition of r extends uniquely to a Weyl-invariant polynomial (also 

denoted eg(z)) on D*, and that the resulting map eg: U(g) ~ -+ P(D*) W is 
an isomorphism. 

The two equalities at the lower right quarter of the monster diagram need 
no explanation. We note though that if the space of polynomials P(g*)9 [[hi] 

is endowed with its obvious algebra structure, only the lower equality is in 

fact an equality of algebras. 

~9 is the restriction map induced by the identification of D* with a subspace 

of g* defined using the form (., .) of g. The map ~9 is an isomorphism by 

Chevalley's theorem (see e.g. [Uu, Section 23.1] and [BtD, Section VI-2]). 

S~ is the extension by h of an integral operator. If p(A) is an invariant 

polynomial of A E g*, then 

S~(p)(A) - f p(A - ir)dr. 
J r  EMip 
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Sg can also be viewed as a convolution operator (with a measure concen- 

trated on Mp), and like all convolution operators, it maps polynomials to 

polynomials. 

2.3. THE FACES. 

�9 The commutativity of the face labeled ~ was proven by Kassel [Kas] 

and Le and Murakami [LM1] following Drinfel'd [Drl, Dr2]. We comment 

that it is this commutativity that makes the notion of "canonical Vassiliev 

invariants" [BG] interesting. 
�9 The commutativity of the face labeled [ ]  is immediate from the defini- 

tions, and was already noted in [B-N1]. 

�9 The commutativity of the face labeled [ ~  (notice that this face fully 

encloses the one labeled ~ ) is due to Duflo [Du, th~or~me V.1]. 

PROPOSITION 2.1: The face labeled x ~  is commutative. 

Remark 2.2: Recalling that D(j~/2) is an algebra isomorphism, this proposition 

becomes the precise formulation of Theorem 2. 

Proof  of Proposition 2.1: Follows immediately from the following two lemmas, 

taking C = f~ in (6). | 

LEMMA 2.3: Let ,r it --+ g* be the identification induced by the standard bilinear 

form (., .) of g. Extend ~ to all symmetric powers of g, and let ~ :  S(g)~[[h]] -+ 

s(g*)((h)) be denned for a homogeneous s e S(g)g[[h]] (relative to the grading of 
S(g)) by ,~a(s) -- h-degs,~(s). I f C  E B' is a uni-trivalent diagram, C : B' -~ B' 

is the operator corresponding to C as in Definition 1.1, and C' E B' is another 
uni-trivalent diagram, then 

(6) 7"~hC(C ') = D(~aT"~hC)7"ghC '. 

Proo~ If ~j is a tensor in Sk(g *) C g,| the k'th symmetric tensor power of 

9*, and j '  is a tensor in Sk'(g) C ~| then 

0 if k > k', 
the sum of all ways of contracting all 

(7) D(tcj)(j') -= the tensor components o f j  with some 
(or all) tensor components of j '  otherwise. 

By definition, the "diagrams to Lie algebras" map carries gluing to contraction, 

and hence carries the operation in Definition 1.1 to the operation in (7), namely, 

to D. Counting powers of h, this proves (6). | 
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LEMMA 2.4: ahTgh~ -1/2 J g  �9 

Isr. J. Math. 

Proof- It follows easily from the definition of T~ h and of gh that (ah~hwn)(X) = 
t r (adX) n for any X E g. Hence, using the fact that ~ao Tg a is an algebra 
morphism if B ~ is taken with the disjoint union product, 

c o  

(aaSh~)(X) = exp E b2n(at~ tiw2n)(X) 
n = l  

oo oo 

= exp E b2,~ tr(ad X) 2n = det exp E b2n(adX)2n" 
n = l  n = l  

By the definition of the modified Bernoulli numbers (2), this is 

sinh ad X/2 (sinh ad X/2~ 1/2 
detexp~log adX/2  = d e t \  ~ ] =jU2(X). | 

PROPOSITION 2.5: The face labeled ~ is commutative. 

Proof'. According to M. Vergne (private communication), this is a well known 

fact, but we could only find it in [Gi], where the language is somewhat different. 

For completeness, we present a short proof here, albeit with some analytical 

details omitted. We first modify the statement in three minor ways: 

�9 We ignore the extension of all spaces involved by h. This extension, needed 
in some other parts of this paper, makes no difference when it comes to 

�9 We strengthen the statement slightly by dropping the g invariance restric- 
tion from all spaces involved. 

�9 Instead of working with the symmetric algebra S(g) of g and the (equiv- 

alent) algebra P(g*) of polynomials on g*, we switch to working with the 

space F~(g~) of polynomials in a E g~ multiplied by the Gaussian e -~la12. 

It is clear that both S~ and D(j~/2) are defined on F~(g~), and that the equality 

D(j~/2) = S~ on F~(gR)* would imply the commutativity of ~ after taking 

the e --+ 0 limit. On the other hand, the functions in F~(g~) are smooth and 

rapidly decreasing, and hence the tools of Fourier analysis are available. 

We now prove the equality D(j]/2) = S~ on F~(g~). Conjugating by the 

Fourier transform (over gh), the differential operator D(jJ  2) becomes the op- 
erator of multiplication by jl/2(iX) on the space of rapidly decreasing smooth 

functions on gR (recall that in general the Fourier transform takes O/Ox to mul- 

tiplication by ix). Conjugating by the inverse Fourier transform, we see that 



Vol. 119, 2000 WHEELS, WHEELING, AND THE UNKNOT 231 

D(j 1/2) is the operator of convolution with the inverse Fourier transform of 

j~/2(iX) (recall that the Fourier transform intertwines between multiplication 
and convolution), which is the symplectic measure on Mp (see (5)). So D(j~/2) 
is convolution with that measure, as required. I 

3. P roo f  of  T h e o r e m  1 

We prove the slightly stronger equality 

(s) = 

Proof: We compute the right hand side of (8) by first computing 

SgL~-ICgRTg(G) and then using the commutativity of the monster diagram. 

It is known (see e.g. [Cp, example 11.3.10]) that if ~ - p C [~* is the highest 
weight of some irreducible representation Rx_p of g, then 

1 sinh h(~, c0/2 
(r  1-[ sinhh(p,a)/2' 

aEA+ 

where A+ is the set of positive roots of g and (-, .) is the standard invariant 

bilinear form on g. By the Weyl dimension formula and some minor arithmetic, 
we get (see also [LM2, section 7]) 

(9) (r -- I I  h(p, c~)/2 sinh h()~, c~)/2 
seA+ sinh h(p, a)/2 h(A, ~)/2 

We can identify 9 and g* using the form (., .), and then expressions like 'ad,k' 
make sense. By definition, if 9~ is the weight space of the root c~, then ad A acts 
as multiplication by (A, ~) on 9~, while acting trivially on I}. From this and (9) 
we get 

( adhp/2 ~1/2 [sinhadhA/2~l/2 
(r -- det \ s i ~ / 2 ]  �9 det \ ~--dh--~/2 ] 

= j l/2(hp). 

The above expression (call it Z(A)) makes sense for all ~ E g*, and hence it is 
also ~g-Ir So we're only left with computing S~Z(A): 

EMip EMip 
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By (5), this is 

JrEMip Jr~EMip 

Isr. J. Math. 

~rr ! . i e za(r '~) f dr e ih(-ir''r) = J~l/2(liP) ' e M ,  p d r  J r E M ,  p " 

.1/2 Using (5) again, we find that the inner-most integral is equal to )g (hp) 
independently of r ~, and hence 

J~V / " / 
S~Z(A) = dr e ~h(r '~), 

tEMip  

and using (5) one last time we find that 

(10) = j 12(h ). 

The left hand side of (8) was already computed (up to duality and powers of h) 

in Lemma 2.4. Undoing the effect of aa there, we get the same answer as in (10). 
| 

4. Epilogue 

After the first version of this paper was circulating, Kontsevich [Ko2] proved the 
Wheeling Conjecture (Conjecture 2) using the 2-dimensional configuration-space 

techniques he developed for the proof of his celebrated "Formality Conjecture". 
At that time it was already known to DPT and T. Q. T. Le (see [BLT]) that the 
Wheeling Conjecture implies the Wheels Conjecture (Conjecture 1), and thus 

both conjectures were known to be true, though the proof of the implication 

Wheeling =v Wheels did not shed light on the fundamental relationship that 

ought to exist between the two conjectures (see Remark 1.4). 

In the summer of 1998, DBN and DPT found a knot-theoretic proof of the 

Wheeling Conjecture, which also sheds some more light on the relationship be- 

tween it and the Wheels Conjecture. We sketch these results here; the details 

will appear in [BLT]. We only present an idealized picture, in which a single 

theorem, Theorem 4 below, implies both conjectures. We admit that the truth is 

somewhat less clean: the proof of Theorem 4 in [BLT] involves a bootstrap pro- 

cedure that uses some results from this paper (at least implicitly) and in which 

the conclusions, Wheels and Wheeling, are proven first. 

Let ~ -  denote the long H o p f  link: the usual Hopf link, with one  compo- 

nent, labeled z, "opened up", and with the other component, labeled x, presented 
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by a round circle, so that the result looks precisely like its symbol. As well known, 

the framed Kontsevich integral has an extension to links, and when evaluated on 

~ - ,  it is valued in of .4 ~ similar that each diagrams a space to A, only diagram 
in A' has two skeleton components: a line labeled z and a circle labeled x. We 

then use a diagrammatic PBW theorem, similar to the one in (3), to map A' to 
a space .4" in which the x part of the skeleton is replaced by an unordered set 

of x-marked univalent vertices. 

THEOREM 4 (See [BLT]): In .A", 

I ) 

1 

: - -  + z 

where ~x denotes f~ with all univalent vertices marked x, and 0 denotes the 
empty (unit) diagram. 

It is clear that Theorem 4 and the simple behavior of the Kontsevich inte- 

gral with respect to dropping a link component implies the Wheels Conjecture. 

Simply drop the component labeled z from the left hand side of (11), and the 

skeleton component labeled z from the right hand side of that equation. What 

remains is precisely the Wheels Conjecture. 

The proof of the Wheeling Conjecture from Theorem 4 is elegant but a bit 
more involved. We start from the following 1 + 1 = 2 equality of links, 

x y 

(11) z - ~ - = z , 

which says that the connected sum of two copies of -V~-  is equal to the same 
v 

O -  with the doubled. The Kontsevich behaves x-component integral nicely 

with respect to the operations of connected sum [B-N1, Kol] and of doubling 

[LM2], and hence by computing the Kontsevich integral of both sides of (11), 

one can translate that equation to an equality between two sums of diagrams, 
presented schematically as 

[~t:Jexp~( J~2 ) ]~[~Uexp~(  A )] = ~ + y U e x p ~ (  ~ + u  ) 
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As explained in [BLT], this equality is combinatorially equivalent to the Wheeling 

Conjecture. 

j --J 

s ~ 3 3 H m  
F f~ ~x'/ v c) 
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[B-N2] 
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[Si] 
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