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ABSTRACT. We show that the tree-level part of a theory of finite type in
variants of 3-manifolds (based on surgery on objects called claspers, Y-graphs 
or clovers) is essentially given by classical algebraic topology in terms of the 
Johnson homomorphism and Massey products, for arbitrary 3-manifolds. A 
key role of our proof is played by the notion of a homology cylinder, viewed 
as an enlargement of the mapping class group, and an apparently new Lie 
algebra of graphs colored by ifi(E) of a closed surface S, closely related to 
deformation quantization on a surface [AMR1, AMR2, Ko3] as well as to 
a Lie algebra that encodes the symmetries of Massey products and the John
son homomorphism. In addition, we give a realization theorem for Massey 
products and the Johnson homomorphism by homology cylinders. 
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1. Introduction 

1.1. A brief summary. In this paper we investigate relations between three 
different phenomena in low-dimensional topology: 

(a) Massey products on the first cohomology H1^) with integer coefficients 
of 3-manifolds M. 

(b) the Johnson homomorphism on the mapping class group of an orient able 
surface 

(c) the Goussarov-Habiro theory of finite-type invariants of 3-manifolds. 
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174 STAVROS GAROUFALIDIS AND JEROME LEVINE 

A key point of the connection between (a) and (b) is the notion of a homology 
cylinder, i.e., a homology cobordism between an orientable surface and itself. This 
notion generalizes the mapping class group of a surface (in that case the cobordism 
is a product). We will construct an extension of the Johnson homomorphism to 
homology cylinders and use it to completely determine, in an explicit fashion, the 
possible Massey products at the first non-trivial level in a closed 3-manifold (as
suming that the first homology Hi is torsion-free)—see Theorem 1, Corollary 2.2 
and Theorem 4. 

This generalizes the known relationship between the Johnson homomorphism 
and Massey products in the mapping torus of a diffeomorphism of a surface to the 
more general situation of homology cylinders—see Theorems 2, 3 and Remark 4.12. 

For historical reasons, we should mention early work of Sullivan [Su] on a 
relation between (a) and (b), and, for an alternative point of view, work of Turaev 
[Tu]. 

With regards to the connection between (b) and (c), the main idea is to consider 
Massey products as finite-type invariants of 3-manifolds, and to interpret them by 
a graphical calculus on trees—see Theorem 7—in much the same way that Vassiliev 
invariants of links have a graphical representation and that Milnor's /i-invariants 
are known to be exactly the Vassiliev invariants of (concordance classes of) string 
links which are represented by trees, see [HM]. A by-product of this investigation 
is a curious Lie algebra structure on a vector space of the graphs which describe 
finite type invariants of homology cylinders—see Proposition 2.8 and Theorem 5— 
that corresponds to the stacking of one homology cylinder on top of another, and is 
closely related to deformation quantization on a surface [AMR1, AMR2, Ko3]. 

1.2. History. Years ago, Johnson introduced a homomorphism (the so-called 
Johnson homomorphism) which he used to study the mapping class group, [Jol, 
Mo4]. Morita [Mol] discovered a close relation between the Johnson homomor
phism and the simplest finite type invariant of 3-manifolds, namely the Casson 
invariant; this relation was subsequently generalized by the authors [GL1, GL2] 
to all finite type invariants of integral homology 3-spheres (i.e., 3-manifolds M 
with Hi (M, Z) = 0). This generalization posed the question of understanding the 
Johnson homomorphism (crucial to the structure of the mapping class group) from 
the point of view of finite type invariants. Unfortunately, this question is rather 
hard to answer if we confine ourselves to invariants of integral homology 3-spheres. 
This difficulty is overcome by using a theory of finite type invariants based on the 
notion of surgery on F-links, see [Gul, Gu2, Hb, Oh, GGP]. Using this theory 
we will show that the Johnson homomorphism is contained in its tree-level part, 
and we conjecture that an extension of the Johnson homomorphism to homology 
cylinders (i.e., 3-manifolds with boundary that homologically look like the product 
of a surface with [0,1]), which we define below, gives the full tree-level part; thus 
answering questions raised by Hain and Morita [Ha, Mo4]. 

En route to answering the above question, we were led to study this theory of 
invariants for homology cylinders (studied also from a slightly different perspective 
by Goussarov [Gul, Gu2] and Habiro [Hb]) and discovered an apparently new 
Lie algebra of graphs colored by i^i(S) of a closed surface E, closely related to 
deformation quantization on a surface [AMR1, AMR2], and to the curious graded 

group D(A) = Ker(A 0 L(A) —> L(A)), (where L(A) denotes the free Lie ring of 
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TREES, 3-MANIFOLDS, MASSEY PRODUCTS AND JOHNSON'S HOMOMORPHISM 175 

a torsion-free abelian group A) studied independently by several authors with a 
variety of motivations [Jo2, Mo2, Ih, Dr , Ko l , Ko2, O l , 0 2 , HM]. 

It turns out that Massey products of 3-manifolds naturally take values in D(^4), 
and so does the Johnson homomorphism, which is also closely related to Massey 
products— a fact well-known to Johnson [Jo2], and later proved by Kitano [Ki]. 
However it is now known that the Johnson homomorphism cannot realize all ele
ments of D(A), but we will see that one can achieve this realizability by replacing 
surface diffeomorphisms by homology cylinders. 

The generalized Johnson homomorphism actually provides universally-defined 
invariants of homology cylinders, lifting the only partially-defined Massey products. 
These are our explicit candidates for the full tree-level part of the Goussarov-Habiro 
theory (for homology cylinders). This phenomenon was already observed when one 
replaces 3-manifolds by string-links up to homotopy, see Bar-Natan [B-N] or by 
string-links up to concordance, see Habegger-Masbaum [HM]. On the other hand, 
Massey products apply to more general manifolds and they should provide partially-
defined finite-type invariants. 

2. S ta tement of the results 

2.1. Conventions. F will always stand for a free group and H for a torsion-
free abelian group. The lower central series of a group G is inductively defined 
by G\ — G and Gn+i = [G,Gn]. A group homomorphism p : K —> G is called 
an n-equivalence if it induces an isomorphism K/Kn = G/Gn. All manifolds will 
be oriented, and all maps between them will preserve orientation, unless otherwise 
mentioned. The boundary of an oriented manifold is oriented with the "outward 
normal first" convention. 

2.2. Massey products. Recall the notion of Massey product, as formulated 
in [Dw] (also see [FS]). Suppose a i , . . . , a n are cohomology classes in H*(X). A 
defining set for (a^ , . . . , an) is a collection of cochains a^ for 1 < i < j < n, except 
for i — 1, j = n, satisfying: 

• an is a cocycle representing o^, 

• Sctij = z2k=i aik ^ a/c+i,j-

It is useful to picture the a^ as entries of an n x n upper triangular matrix. Then 
Y^kZi aik w &fc+i,n is a cocycle whose cohomology class is called the value of this 
defining set. The Massey product ( a i , . . . , an) is defined if there exists at least one 
defining set, and is the set of all values of defining sets. If c^ has dimension di then 
the dimension of any value is d\ H h dn + 2 — n. One can see from the definition 
that ( a i , . . . , an) is defined if and only if each (o^i,..., d^,... an) is defined and 
contains 0. 

In this work we will only be interested in Massey products of length n > 2 in 
H2(n) , i.e. ( a i , . . . , an) G H2(TT) for c^ G ^ ( T T ) , which are defined assuming that 
the ones of length n — 1 are defined and vanish. We have the following theorem on 
universal Massey products: 

THEOREM 1. (i) Given a connected topological space X and 2-equivalence p : 
def 

F —>• 7r = 7Ti(X), then X has vanishing Massey products of length less than n if 
and only if p is an n-equivalence. 
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176 STAVROS GAROUFALIDIS AND JEROME LEVINE 

(ii) In that case, we have a short exact sequence1 

H2{X,Z) -+ L n(#i(X,Z)) ^ ^n/7rn+l - 0, 

where the first map determines and is determined by all length n Massey products 
(for a precise expression, see Corollary J^.S) and the second is induced by the Lie 
bracket. 
(Hi) In addition, we have that 

OLi ^ ( a 2 , . . . , a n + i ) = (c*i,..., an) ^ a n + i G H2(TT), 

for any a±,..., a n + i G H1 (ir). 

REMARK 2.1. For the dependence of the short exact sequence in the above 
theorem on the map p, see Remark 4.4. If X satisfies the hypothesis of Theorem 1 
we have dually, over Q: 

0 - ^nhn+l)q ~+ Ln{H\X,®)) - H2(X,Q). 

Note that the first part of Theorem 1 appears in [02, Lemma 16], and that the exact 
sequence above was first suggested by Sullivan in [Su] for n = 2, and subsequently 
proven by Lambe in [La] for n — 2 using different techniques involving minimal 
models. 

def 
COROLLARY 2.2. Given an n-equivalence p : F —• ix = TTI(M), where M is a 

closed 3-manifold, we have the exact sequence 
i T ^ L n ( f O ^ 7 T n / 7 T n + i - + 0 

where H — H\(M, Q). If fin(M,p) G H 0 \-n(H) denotes the first map (abbreviated 
by /j,n(M) if p is clear), then we have that 

/ i n ( M , p ) G D n ( # ) . 

In particular, fin(M,p) = 0 if and only if p : F —» n is an (n + 1)-equivalence. 

Given an integer n and a torsion-free abelian group ii", it is natural to ask which 
elements of Dn(H) are realized by 3-manifolds as above. For this see Theorem 4 
below. 

2.3. The Johnson homomorphism. We now discuss the relation between 
Massey products and the Johnson homomorphism. 

Let r P i i denote the mapping class group of a surface Eg?i of genus g with 
one boundary component (i.e., the group of surface diffeomorphisms that pointwise 
preserve the boundary), and let r^?1[n] denote its subgroup that consists of surface 
diffeomorphisms that induce the identity on 7r/7rn+i, where n = 7TI(EP JI) . In [Jol], 
Johnson defined a homomorphism 

Tn:r9il[n]->Dn+1(H), 

where H — ii"i(Ep?i, Z), which he further extended to the case of a closed sur
face. We recall the definition of rn (see [Jol], [Mo2] for more detail). Let 
# i , . . . , xg, 2/1,... yg be the canonical basis of n. If (j) G T^.ifn], then we can write 

<j>(xi) = x{az (f)(yi) = yl(3i 

Note that 7rn denotes the nth commutator subgroup of TTI(X) and not the nth homotopy 
group of X. 
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where c^, A G 7Tn+i. Let a ,̂ &i be the elements of Ln + i( if) corresponding to a^, /^ 
under the identification Ln+i(i7) = 7rn+i/7rn+2- Then rn(0) is defined to be 

y^jxj ® &i - & ® di) 
i 

where x^yi are the homology classes of £;,yi. It is proved in [Mo2] that rn((j)) E 
Dn + 1( iJ) . 

Johnson was well-aware of the relation between his homomorphism and Massey 
products on mapping torii, i.e., on twisted surface bundles over a circle; see [Jo2, p. 
171], further elucidated by Kitano [Ki]. In the present note, we extend this relation 
to Massey products that come from an arbitrary pair (E, M) of an imbedding i : 
E ^ M of a closed surface (not necessarily separating) in a 3-manifold. Fix a closed 

3-manifold M and an (n + 1)-equivalence F —» IT = TTI(M). Given a pair (E,M), 
and 4> G T[n], let M<p denote the result of cutting M along E, twisting by the element 
(j) of its mapping class group and gluing back. In this case, there exists a canonical 
cobordism N^ between M and M^ such that the maps TTI(M) —> 7Ti(N(f)) <— 7ri(M^) 
(induced by the inclusions M, M^ ^ Ar^) are (n +Inequivalences; thus by Theorem 
1, M^ has vanishing Massey products of length less than n + 1. The ones of length 
n + 1 on M^ are determined in terms of those of M and the Johnson homomorphism 
as follows: 

THEOREM 2. With the above assumptions, we have 

/ in + l(M^) = / i n + i (M) + 6*Tn(0). 

See also Remark 4.12. 

2.4. Homology cylinders and realization. It is well known [Mo3, Ha] 
that the Johnson homomorphism rn is not onto, in other words not every element 
of Dn+i(i7) can be realized by surface diffeomorphisms. Generalizing surface diffeo-
morphisms to a more general notion of homology cylinders (defined below) allows us 
to define an ungraded version of the Johnson homomorphism, which then induces, 
on the associated graded level, generalizations of the Johnson homomorphisms. We 
will show that all of these are onto, see Theorem 3. As an application of this re
sult, we will show that we can realize every element in Dn(H) by 3-manifolds as 
in Corollary 2.2 and, in addition give a proof, free of spectral sequences, of the 
isomorphism (1), as mentioned above. 

Let EP)i denote the compact orient able surface of genus g with one boundary 
component. A homology cylinder over Ep?i is a compact orient able 3-manifold 
M equipped with two imbeddings i~,i+ : Ep?i —> dM so that i + is orientation-
preserving and i~ is orientation-reversing and if we denote E ± = Imi± (E p ? i ) , then 
dM = E+ U £ " and E+ n E~ = <9E+ = <9E~. We also require that i ± be homology 
isomorphisms. We can multiply two homology cylinders by identifying E~ in the 
first with E + in the second via the appropriate z±. Thus Hg^1 the set of orientation-
preserving diffeomorphism classes of homology cylinders over E^i is a semi-group 
with an obvious identity. 

There is a canonical homomorphism Tg^ —» Tlg,i that sends (j) to (I x E^i , 0 x 
id, 1 x 0 ) . Nielsen showed that the natural map Tg^ —* AQ(F) is an isomorphism, 
where F is the free group on 2g generators {x^, ^ } , identified with the fundamental 
group of E^i (with base-point on 9E^ ;1), and Ao(-F) is the group of automorphisms 
of F which fix the element uog = [xi,y\] • • • [xg,yg], representing the boundary of 
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178 STAVROS GAROUFALIDIS AND JEROME LEVINE 

£0,1. It is natural to ask whether there exists an analogous isomorphism for the 
semigroup 7Y5,i. Below, we construct for every n a homomorphism an : H9ii —> 
Ao(F/Fn) , where Ao(F/Fn) is the group of automorphisms 0 of F/Fn such that a 
lift of cj) to an endomorphism 0 of F fixes ujg mod Fn+i. It is easy to see that this 
condition is independent of the lift. For example A$(F / F2) = Sp(g,Z). 

Given (M, i+ ,z~) G 7~Lgii consider the homomorphisms if : F —> 7Ti(M), where 
the base-point is taken in 9 E + = <9E~. In general, if are not isomorphisms— how
ever, since v^ are homology isomorphisms, it follows from Stallings [St] that they 
induce isomorphisms if : F/Fn —> 7Ti(M)/7Ti(M)n. We then define an(M,i±) = 
(z~)_ 1 o if. It is easy to see that an(M,i±) e A0(F/Fn). 

THEOREM 3. The map an : Hg,i —> Ao(F/Fn) is surjective. 

REMARK 2.3. We can convert 7ig,i into a group Hgi by considering homology 
cobordism classes of homology cylinders. The inverse of an element is just the 
reflection in the / coordinate. It is easy to see that the invariants crn just depend 
on the homology bordism class and so define homomorphisms 7ic

g x —» Ao(F/Fn). 
The natural homomorphism Tg^ —» TLC

 x is seen to be injective by the existence of 
the an and the fact that the homomorphism T^i —> AQ(F) is an isomorphism. 

In addition, we can combine the maps crn, for all n, to a single map <7ml : 
Hg,i —> Ao(Fml), where F m l is the nilpotent completion of F. Unlike a, aml is not 
one-to-one, i.e., flnKercrn 7^ {1}. For example, if P is any homology sphere, then 
the connected sum (/ x EP5i)jJP defines an element in the kernel. Also ani1 is not 
onto, even though each an is. To identify the image of crni1 we have to consider the 
algebraic closure F C F m l , see [Le2]. Using the arguments of [Le2], we can show 
that any element of Im(crml) restricts to an automorphism of F and, by arguments 
similar to the proof of Theorem 3, it can be proved that Im(crml) consists precisely 
of those (f) £ 74o(^ml) which restrict to an automorphism of F and such that the 
element of H2(F) associated to 0 (see the proof of Theorem 3) is zero. But since 
we do not know whether H2(F) — 0, this result does not seem very useful at this 
time. 

REMARK 2.4. The {an} can be described by numerical invariants if we consider 
the coefficients of the Magnus expansion of <jn(M)(xi),an(M)(yi). This is analo
gous to the definition of the //-invariants of a string link. We can refer to these as 
ji-invariants of homology cylinders. 

It will be useful for us to consider the filtration defined by the maps an , namely 
we define a decreasing weight filtration on Hg,i and on Hgl by setting Hg^[n] = 
Ker(crn). 

PROPOSITION 2.5. We have an exact sequence 

1 -> Dn(H) -> A 0 (F /F n + 1 ) -+ A0(F/Fn) -* 1 

and a commutative diagram 

Dn(H) 

- Wo.iH 
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where the map sn, induced by an, is onto. It follows that 

0 ^ Tic
g<1 [n + 1] -> nc

gtl[n] ^ Dn(H) -> 0 

is exact. 

REMARK 2.6. A major problem in the study of the mapping class group is to 
determine the image of the Johnson homomorphism rn , which largely determines 
the algebraic structure of the mapping class group since nnrP j i[n] = 1. In con
trast, Theorem 3 largely determines the structure of 'Hg,i/'Hg,i[oo\, but in this case 
Hg,i[oc] — nn7ig^i[n] is not trivial—see Question 7 at the end of the paper. 

REMARK 2.7. It is instructive to consider the analogy between, on the one 
hand, the mapping class group, homology cylinders and the invariant an and the 
Johnson homomorphism, and, on the other hand, the pure braid group, string links 
and the Milnor /i-invariants. There is an injection of the pure braid group on g 
strands into the mapping class group T^i, first defined by Oda and studied in 
[Le2], which preserves the weight nitrations and induces a monomorphism of the 
associated graded Lie algebras. This can, in fact, be generalized to an injection of 
the semi-group Sg of string links on g strands into the semi-group Hg,i (and of the 
string-link concordance group Sg into Hg?1), under which an and the /i-invariants 
correspond. We will explain this in a future paper. 

THEOREM 4. Every element in Dn(H) is realized by an n-equivalence F —-> 
7Ti(M3), for some closed 3-manifold M, as in Corollary 2.2. In addition, a 2-
equivalence F —>• H gives rise to a map H^(F/Fn) —> H <S> Ln{H) inducing the 
isomorphism of Equation (1). 

We will give two different proofs of this theorem. One approach is to apply 
results of Orr [Ol] and Igusa-Orr [IO] on Hs(F/Fn) and, in particular, the isomor
phism 

(1) cok(iJ3(F/Fn + 1) -+ HS(F/Fn)) = Dn(H). 

A very similar argument appears in [CGOj. 
Alternatively we will see that this realizability is a consequence of Theorem 3. 

This approach has the advantage of being "spectral-sequence-free" and also gives 
another proof of (1). 

2.5. Homology cylinders and finite type invariants of 3-manifolds. 
Goussarov and Habiro [Gul, Gu2, Hb] have studied two rather dual notions: an 
n-equivalence relation among 3-manifolds, and a theory of invariants of 3-manifolds 
with values in an abelian group. Since their work is recent and not yet fully written, 
we will, for the benefit of the reader, give a short introduction using terminology 
and notation from [GGP] (to which we refer the reader for detailed proofs). Both 
notions are intimately related to that of surgery Mr along a F-link T in a 3-
manifold M, i.e., surgery along an imbedded link associated to an imbedding of 
an appropriately oriented, framed graph with trivalent and univalent vertices so 
that the univalent ones end in "leaves" (explained below). Two manifolds are n-
equivalent if one can pass from one to the other by surgery on a F-link associated 
to a connected Y-graph of degree (i.e., number of trivalent vertices) at least n. For 
example a theorem of Matveev [M] says that two closed manifolds are 1-equivalent 
if and only if there is an isomorphism between their first homology groups which 
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preserves the linking form on the torsion subgroups. Similarly, a finite type invariant 
A ought to be the analog of a polynomial on the set of 3-manifolds, in other words 
for some integer n it satisfies a difference equation 

y j ( _ l ) | r ' l A ( M r ) = 0 
r ' c r 

where T is a F-link in M of more than n components and the sum is over all 
Y-sublinks V of T. In view of the above definition, it is natural to consider the 
free abelian group M generated by homeomorphism classes of closed oriented 3-
manifolds, and to define a decreasing filtration TY J\A on A4 in such a way that A 
is an invariant of type n if and only if it vanishes on T^^hA. Thus the question of 
how many invariants of degree n there are translates into a question about the size 

of the graded quotients Q^M = TYA4/'J-^+iM.. One traditionally approaches 
this problem by giving independently an upper bound and a lower bound, which 
hopefully match. In this theory, an upper bound has been obtained in terms of 
an abelian group of decorated graphs as follows. One observes first that surgery 
along F-links preserves the homology and linking form of 3-manifolds, as well as 
the boundary. Define an equivalence relation on compact 3-manifolds: M ~ N 
if there exists an isomorphism p : H\(M) —» H\{N) inducing an isometry of the 
linking forms, and a homeomorphism dM —> dN consistent with p. Thus if we let 
A4(M) denote the subgroup of M. generated by equivalent 3-manifolds, we have a 
direct sum decomposition M = 0 ^ M(M) (and also, TYM = ©^ Ty'M(M)), 
where the sum is over a choice of one manifold M from each equivalence class. In 
fact for closed 3-manifolds Matveev's theorem tells us that QY Ai{M) = Z. After 
we fix a 3-manifold M, and an oriented link b in M that represents a basis of 
Hi(M, Z)/torsion, together with a framing of b (i.e., a choice of a trivialization of 
the normal bundle of each component of b), it turns out that there is a map2 

(2) WZ:An(M)^GZM(M), 

which is onto over Q (actually, onto over Z[l/(2|torsion|)]), where A(M) is the group 
generated by graphs with univalent and trivalent vertices, with a cyclic order along 
each trivalent vertex, decorated by an element of Hi(M, Z) on each univalent vertex, 
modulo some relations, see [GGP]. Here An(M) is the subgroup generated by 
graphs of degree n, i.e., with n trivalent vertices; thus we have A(M) = (&nAn(M) = 
A\M) © Al(M), where At(M) (resp. Al(M)) is the subgroup of A(M) generated 
by trees (resp. graphs with nontrivial first homology). For a detailed discussion of 
the map Wb, see also Section 3. 

We should point out that for M = S3 (i.e., for integral homology 3-spheres) 
one can construct sufficiently many invariants of integral homology 3-spheres to 
show that Wb is an isomorphism, over Q, see [LMOj. The same is true for finite 
type (i.e., Vassiliev) invariants of links in 5 3 , over Q, see [Ko2]. However, it is at 
present unknown whether the map (2) is one-to-one (and thus, an isomorphism), 
over Q, for all 3-manifolds. 

We now discuss a well-known isomorphism [Ih, 0 2 , Dr , HM], over Q, for a 
torsion-free abelian group A: 

(3) ^n:A
t
n(A)^QDn+1(A), 

'a more precise notation, which we will not use, would be Wn 
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a 

X 
z b 

—~[c, [a,b]], 

a b 

V 
c 

which will help us relate the Johnson homomorphism to the tree-level part of finite 
type invariants of 3-manifolds. This map is defined as follows: Fix an oriented 
uni-trivalent tree T of degree n (thus with n -f- 2 legs, i.e., univalent vertices) and 
let c : Leg(T) —• A be a coloring of its legs. Given a leg I of T, (T, I) is a rooted 
colored tree to which we can associate an element (T, /) of Ln+i(A). Due to the 
IHX relation (see Figure 1), the function 

T - , ] T  c ( 0 ® ( T , Z ) 

JeLeg(T) 

descends to one A^n{A) —» A®Ln+i(A) so that its composition with ^40l_n+i(^4) —> 
Ln+2(-^) vanishes, thus defining the map \£n. There is a map .A0l_n+i(^4) —> ^ ( ^ 4 ) 
(defined by sending a (8) 6 G ̂ 4 0 Ln+i(A) to the rooted tree with one root colored 
by a and n additional legs colored by c), which shows that \I/n is one-to-one; and 
by counting ranks it follows that it is in fact a vector space isomorphism. It is 
unknown to the authors whether \£n is an isomorphism over Z[l/6]. 

- a 0 [c, b] + c 0 [6, a] + b 0 [a, c] 

Figure 1 . O n the  left , the  ma p fro m roote d vertex-oriente d tree s to the 
free  Lie  algebra ; on the  righ t the  ma p \£ i . 

It turns out that a skew-symmetric form c : A <g> A —* Q equips A1 (A) with the 
structure of a graded Lie algebra, by defining the Lie bracket 

(4) [ r , r ' r = ]Tc(a,&)(rQgiuer6), 
a, b 

where the sum is over each leg a of T and b of Tf and ragluer£ is the graph obtained 
by gluing the legs a and b of T and V respectively, with the understanding that the 
sum over an empty set is zero. In other words, [r, Tf]c is the sum of all contractions 
of a leg of T with a leg of V. This Lie bracket is not new, it has been observed and 
used by Morita [Mo2] and Kontsevich [Kol] on a close relative of A1 (A), namely 

D;(A) = A" 0 L(A) (which carries a bracket of degree —1). 
We now explain the Lie bracket on At(A) from the point of view of finite 

type invariants of 3-manifolds. Fixing a compact surface E^i of genus g with one 
boundary component, it follows by definition that A^(EPsi x / ) is generated by 
homology cylinders over E^i and is a ring with multiplication Mi * M^ defined by 
stacking Mi below M2. Fix a framed oriented link b in S ^ x I that represents a 
basis of ifi(Ep?i x / ; Z) and consider the associated onto map Wb : *A(EP)i x I) —» 
QYM(Tjg^i xl) from (2), which is expected to be an isomorphism. Thus, ^4(E55i xl) 
should be equipped with a ring structure. This is the content of the following 

PROPOSITION 2.8. (i) b induces a homomorphism 

(•,•)" : i f 1 ( S 9 , 1 , Z ) ® f f 1 ( S 9 , 1 , Z ) ^ Z 

satisfying 
(a,b)b -(b,a)b = a • b, 

(•, -)b will often be denoted by (•, •) if b is clear from the context. 
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182 STAVROS GAROUFALIDIS AND JEROME LEVINE 

where is the natural symplectic form on i7 i (E^i ,Z) . 
(ii) A(TJ9^I x I) is a ring with * -multiplication (depending on b) defined as follows: 
forT,T'eA(^gtlxI), 

oo 

r * r ' = ^ ( r , r ' ) « , 
1=0 

where 
i 

(r,T')i = ( - i ) ' £ n < ° < A > b ( r « s l u e r / > ) 
a,b i=l 

is the sum over all ordered subsets a = ( a i , . . . , a/) and & = (&i,..., &/) of the set of 
legs ofT and Tf respectively, Tagluer^ is the graph obtained by gluing the ai-leg of 
F to the bi-leg ofV, for every i, with the understanding that a sum over the empty 
set is zero (thus the multiplication * is a finite sum). 
(Hi) Ac{TJgii x I) is a Lie subring of A(T,g^ x I) with bracket defined by 

oo 

[r, r7] = r * r7 - r7 * r = ] £ < r , r7) , - (r7, r>,. 
i=i 

(iv) Over Q, there is an algebra isomorphism \J(Ac(T>g^ x I)) = Q A(T,g^ x I), 
where U is the universal enveloping algebra functor. 

REMARK 2.9. The leading term (•, -)i of the ^multiplication that involves con
tracting a single leg is independent of b (see also part (iii) of Theorem 5), whereas 
the subleading terms (•,•)/ for I > 2 depend on b. This is a common phenome
non in mathematical physics, analogous to the fact that differential operators such 
as the Laplacian or the Dirac depend on a Riemannian metric, but have symbols 
independent of it. 

REMARK 2.10. It is interesting to compare (a, b)b to the Seifert matrix of a knot. 
Both notions depend on "linking numbers" of "stacked" curves, i.e. curves pushed in 
a positive or negative direction and the relation of (•, -)b and the Seifert matrix to the 
symplectic structure on Hi(E) is the same. The noncommutativity of the stacking is 
reflected by the fact that the form (•, -)b is not symmetric. For a related appearance 
of this noncommutativity, see also [AMRl , AMR2]. Over Q, the Lie algebra 
Ac(Tjg^i x I) is closely related to a Lie algebra of chord diagrams on E considered 
by Andersen-Mattes-Reshetikhin in relation to deformation quantization, loc. cit. 
We will postpone an explanation of this relation to a subsequent publication. 

The ring structure on A(T*g,i x I) would be of little interest were it not com
patible with the one of QY JV[(J]gi x I) and ^ ( E ^ i x / ) ; this is the content of the 
following 

THEOREM 5. (i) The map Wb : A(T>9il x I) -* SYM(^g,i x I) preserves the 
ring structure. 
(ii) Al(E9ii x I) is a Lie ideal of Ac(Y,g^ x I). 
(iii) The Lie bracket of the quotient v4c(E x I)/Al{Eg^ x I) = At(T,g^ x I) is equal 
to ( —l) d es - 1 times the Lie bracket of Equation (4) using the symplectic form on 
Hi(T,g^i x I) = Hi(E9ii). In particular, it is independent of the basis b. 

From now on, we will work over Q. We now show that the Johnson homomor-

phism r : QTg^\ —+ ^ ( E ^ i x / ) , or rather its signed version r = ( —l)d e g _ 1r, can be 
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recovered from the Lie algebra structure on Ac(T,g^ x J), where Tg^{n) C r^si[n] is 
the subgroup of the Torelli group generated by n-fold commutators, and QnTg^ de
notes the quotient Tg^{n)/Tg^{n-\- 1). Recall the map T5)i ^ Ai(S9)i x / ) defined 
by changing the parametrization of the top part of homology cylinders, its linear 
extension (ITg^)n —>• J7^ M(T,g^ x I) , where ITg,\ is the augmentation ideal of the 
group ring QT^i, and the induced algebra map GTg,i —> QYM(Yig^ x I). The the
orem below explains the statement that the Johnson homomorphism is contained 
in the tree-level part of a theory of invariants in E^i x I. 

THEOREM 6. Given a surface E^i as above of genus at least 6, there exists a 
map $ : QTg^ —> ,4c(£P)i x / ) and commutative diagrams of graded Lie algebras: 

*4c(£5,i x / ) —- A\^g,i x / ) 

and 

Ac(EgA x / ) ^ gYM{'Lg,l x / ) 

where the left horizontal map is the natural projection on the tree part. In other 
words, for (j) G Tg^(n) we have 

$n(0) = ( - l ) n " 1 r n ( ^ ) + loops 

4C(S<M x / ) . 

REMARK 2.11. For a closed surface £ 5 of genus g, there is an identical version 
of Proposition 2.8 and Theorem 5 above. As for Theorem 6, given a closed surface 
Tjg of genus at least 6, there exists commutative diagrams 

QTa 

Ac{Hg x I)/Tu — A^Hg x / ) / r f c 

and 

AC{Z M(Zg,l X / ) 

where T^ is the ideal of A(T,g x I) which is generated by all elements of the form 
Yli^Xi,yi,a where {xi,yi} is a standard symplectic basis of Hi(Eg), a G Hi(T,g) 
and Tfj^d denote the degree 1 graph 

Oyc 

d 

with counterclockwise orientation. 

It is natural to ask for a statement of the above theorem involving general 
(closed) 3-manifolds M. How does one construct elements in TYM(M)1 Given 
an imbedding t : E c-> M of a closed surface E and <fi G T(n), it was shown in 
[GGP] that M - M^ G T^M(M). The following theorem relates the Johnson 
homomorphism and the tree-level part of finite type invariants of 3-manifolds. 

THEOREM 7. With the above assumptions, we can find c^ n G Al
n(M) so that 

we have in Q^M(M): 

W n
b ( * - V f „ M + c * ) = M - M 0 
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The above theorem should be compared with [HM, Theorem 6.1], where they 
show that if a string link L has vanishing /x-invariants of length less than n, then 
the degree n tree-level part of the Kontsevich integral of L is given by the degree n 
/i-invariants of L. Note that these //-invariants are Massey products on the closed 
3-manifold obtained by 0-surgery along the closure of the string link. 

2.6. Plan of the proof. The paper consists of two, largely independent sec
tions; the reader could easily skip one of them without any loss of understanding 
df the results of the other. Two notions that jointly appear in Sections 3 and 4 are 
the Johnson homomorphism and the notion of homology cylinders. 

In Section 3, we use combinatorial techniques that are usually grouped under 
the name of finite type invariants (of knotted objects such as braids, links, string 
links or 3-manifolds) or graph cohomology. A key aspect is the introduction of a 
Lie algebra A(Y,9fi x I) of graphs and its relation to the Johnson homomorphism, 
via Proposition 2.8 and Theorems 5, 6 and 7. 

In Section 4, we use standard techniques from algebraic and geometric topology 
to prove Theorems 1 concerning Massey products in general spaces and closed 3-
manifolds,in particular, and Theorem 2 which relates the Johnson homomorphism 
to Massey products. In addition, we use standard surgery techniques adapted to 
homology cylinders to prove the two realization Theorems 3 and 4. 

Finally, in Section 5 we pose a set of questions that naturally arise in our 
present study. 

3. Finite type invariants of 3-manifolds 

This section concentrates on the proof of Theorems 2.8, 5, 6 and 7. The tech
niques that we use are a combination of geometric and combinatorial arguments. 

PROOF, (of Proposition 2.8) We only explain the first part. Statements (ii) and 
(iii) are obvious and (iv) follows by a theorem of Milnor-Moore [MM] regarding 
the structure of cocommutative graded connected Hopf algebras. 

First we arrange that the components of b project to immersions in E with 
transverse self-intersections and so that the framing has its first componenet vector 
field pointing in the / direction. We call such a link generic . Given a two-
component sublink {bi, b2} of the framed oriented link b in E^i x / , let {p(b\), pfo)} 
denote its projection on E x 0. Then p(bi) and p(b2) intersect transversely at double 
points. Define (61, b2)

b to be the sum with signs over all points in p{bi) Dp{b2) that 
p{b\) overcrosses p{b2), according to the convention 

+1 - 1 

If b\ — 62? then we define (fri,6i)b by counting the self-intersections of b\ in the 
above manner. Since b is a basis of Hi(Egii x 7,Z) = ifi(E,Z), this defines, by 
linearity, the desired map (•, -)b. 

Since p(b\) • p(b2) is the sum with signs over all points p{b\) Op(b2), it follows 
that (a, b) - (b, a) = a • b for a, b G # i ( E ,Z ) . • 

Before we proceed with the proof of Theorems 5 and 7, we need to recall the 
definition of the map Wb : A(M) —• QYM(M): Given a colored graph T, we will 
construct an imbedding of it in M in two steps. 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Tue Mar 17 18:10:13 EDT 2020for download from IP 195.37.209.189.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



TREES, 3-MANIFOLDS, MASSEY PRODUCTS AND JOHNSON'S HOMOMORPHISM 185 

First, we imbed the leaves, as follows. Given the decoration x G H\(M,Z), 
consider its projection x1^ G # i ( M , Z)/torsion and write xl$ = Xlbeb72^]' f° r 

integers rit>. Consider the oriented link Lx obtained by the union (over b) of rib 
parallel copies of fr, where parallel copies of a component of b are obtained by 
pushing off using the framing of b. Choose a basing for b, i.e., a set or meridians 
on each component of b together with a path to a base point. Join the components 
of Lx using this basing to construct a knot Kx in M. Apply this construction to 
every leaf of T. Of course, the resulting link depends on the above choices of basing 
and" joining. 

Second, imbed the edges of V arbitrarily in M. 
This defines an imbedding of T in M (which we denote by the same name) 

that also depends on the above choices; however the associated element [M, T] in 
gYM(M) , where 

[M,r] 
r ' c r 

( - l ) l r / 'Mr ' 

is the alternating sum over all Y-sublinks Tf of T, is well-defined, depending only 
on the framed link b. This follows from the following equalities in QYAi(M) (for 
detailed proofs see [Gu2, Hb] and also [GGP]): 

(5) 

(6) 

I I 
-CD 

I I 

(7) 

where in the above equalities [M, T] is abbreviated by [r]. Using further identities in 
QY.M(M), one can show loc.cit. that the map T —> [M, T] factors through further 
relations to define a map Wb : A(M) -> QYM(M). 

PROOF, (of Theorem 5) For the first part of the theorem, we begin by choosing 
b in Ep?i x / to be a generic link. Note that b can be recovered from its projection 
p(b) together with a knowledge of the signs at each overcrossing. 

Given T G A(Y,g^ x / ) , let Lb(T) be an associated Y-link in X^i x / such that 
PFb(r) = [Ep?i x 7,Lb(r)] . Without loss of generality, we can assume that the 
leaves £b(r) of Lb(T) form a generic link , and by abuse of notation, we can write 
that VFb(r) = [E^i x 7,p(Lb(r))], with the understanding that we have fixed the 
signs on the overcrossings of p(Lb(r)) . 

Now, given r , r ' G ̂ ( E ^ i x / ) , let L b(r) and Lb(r7) be the associated Y-links 
in E x [0,1/2] and E x [1/2,1] respectively, and let pt : E P J I x I —» E x {i} denote 
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the canonical projection. Then we have that 

wb(T)-wb(r') = [xg,ixi,po(ib(r))upi,2(ib{r'))] 

= [ ( E s , 1 x J ) c , p 0 a i ' ( r ) ) u p o a b ( r / ) ) ] 

= i(xgAxi)c,L
b(r)uLb(r>)} 

where C is a unit-framed trivial link in £^ i x / , whose components encircle some 
crossings of po(lb(T)) and po(lb(Tf)), so that surgery on C brings po(lb(F)) below 
Po(lb(Tf)). The following lemma implies that the result of changing an overcrossing 
of Lb(F) over Lb(T') to an undecrossing can be achieved as a difference of the 
disjoint union of two graphs minus the disjoint union of two graphs with a leg 
glued. Together with Equation (6) and the definition of the multiplication V * T', 
it implies that 

[ ( E s , I x / ) C ) L 6 ( r ) u L b ( r ' ) ] = wb(r*r>) 

which finishes the proof of the first part of Theorem 5. 

LEMMA 3.1. The following identity holds in QYM(Y*g)i x I): 

i i 
i i 
i i 

where the framing of the unknot on the left hand side of the equation is +1 and 
where we alternate with respect to the Y-links of the figure. The vertical arcs are 
arbitrary tubes. 

PROOF. This follows from the second equality above in QYM(J}g,i x I) and 
from 

I I 
I I 

o, 

see [GGP] • 
The second part of Theorem 5 is obvious from the definition of the Lie bracket. 
For the third part, notice that the Lie algebra structure on the quotient At(T,gt\ x 

/ ) ^ -4c(£S i l x I)/Al(EgA x / ) is given by 

[ r , r ' ] = < r , r ' > i - < r , r ' > i = - [ r , r r , 

where the last equality follows from the first part of Proposition 2.8 and where u 
is the symplectic form. • 

PROOF, (of Theorem 6 and Remark 2.11) For a surface E5ji of genus g > 3 with 
one boundary component, Johnson [Jol] introduced a homomorphism T\ '.Q\TQ,\ —• 
A3(i7), where, following the conventions of [Jol, Chapter 4], H = iJi(E5?i, Z) and 
Am(i7) is identified with a submodule of the ra-th tensor power Tk(H) by defining 

a\ A • Aart E 
TrGSym̂  

T(1) r(m)' 
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In subsequent work, Johnson showed that modulo 2-torsion his homomorphism 
coincides with the abelianization of Tg^, thus one gets, over Q, an onto map of Lie 
algebras L(A3(#)) - • QTg±. 

For the rest of the proof we will work over Q. In [Ha, Section 11] Hain proved 
that for genus g > 6, the above map of Lie algebras has kernel generated by 
quadratic relations R9ji (Hain's notation for QnTgii is ig,i(n)). Combining the 
proof of [Ha] Proposition 10.3 with Theorem 11.1 and Proposition 11.4], it follows 
thafc the relation set Rg^ is the symplectic submodule of L2(A3(i7)) = A2(A3(H)) 
generated by 

[xi A x2 A 2/2, %3 A x4 A y4] = 0 

in terms of a standard symplectic basis {#$, yi\ of H. 
Using the isomorphism A3(H) = A[(Tjg^xI) given by mapping aAbAc G A3(H) 

to the degree 1 graph Ta 5 c as in remark 2.11, we obtain a map of Lie algebras 
L(\3(H))^Ac(Eg,ixlj.' 

Since for every choice of a G {#i, £2,2/2} an<^ ^ ^ (x3> X^V^\ w e have a • b — 0, 
the first part of Proposition 2.8 implies for every basis b we have (a,b)b — (6, a)b. 
This implies, by definition, that [rxijX2)2/2,r:E3}CC4jy4 ] = 0 G A%(Z9ii x J), thus 
obtaining the desired map $ : GTgA ^ l(A3(H))/{RgA) -» Ac(Zg,i x J). 

Since QTg^ is generated by its elements of degree 1, the commutativity of 
the two diagrams follows by their commutativity in degree 1; the later follows by 
definition for the first diagram, and by the fact that surgery on a Y-link of degree 
1 with counterclockwise orientation and leaves decorated by a, 6, c is equivalent to 
cutting, twisting and gluing by an element of the Torelli group (of a surface of 
genus 3 with one boundary component, imbedded in E^i) whose image under the 
Johnson homomorphism is equal to a A b A c, see [GGP]. This concludes the proof 
of Theorem 6. 

We now prove the statements in Remark 2.11. For a closed surface E5 of genus 
g > 3, Johnson [Jol] gave a version of his homomorphism r± : QTg —> AQ(H) where 
AQ(H) is defined to be the cokernel of the homomorphism H —> A3(H) that sends 
x to UJ A x, where UJ — ^2i Xi A y% is the symplectic form of E^, for a choice of 
symplectic basis. Working, from now on, over Q, Johnson [Jol, Chapter 4] gave 
an identification of AQ(H) with Ker(C), where C : A3(H) —• H is given by 

C(x A y A z) = 2((x • 77)2: + (2/ • z)# + (z ' x)y) 

and • denotes the symplectic form. Explicitly, we will think of AQ(H) as the sub-
module of A3(H) which is generated by elements of the form 2(g — I)a — UJ A C(a) 
for a G A3(H). In [Ha, Theorems 1.1 and 10.1] Hain proved that for genus g > 6, 
there is an isomorphism of graded Lie algebras L(AQ(H))/(Rg) —>• QTg which, in 
degree 1, is the inverse of the Johnson homomorphism, where Rg is the symplectic 
submodule of L2(Ao(i7)) = A2(Af)(H)) generated by the relations 

[2(# — l)xi AX2 Ay2 — xi AOJ, 2(g — l)x^ A x4 A y4 — x% A UJ] = 0. 

The slight difference of 2 in the relations that Hain gave and the ones mentioned 
above are due to the difference in the normalization of the A-product between Hain 
and Johnson. The restriction of the map L(A3(H)) - • Ac(J:g,i x I) ^ Ac(Zg x I) -> 
Ac(XgxI)/(rLJ) to 1{A3(H)) gives a map L(Ag(if)) -> Ac(J:g x / ) / ( r ^ ) which sends 
the relations Rg to zero (this really follows from the calculation of the surface with 
one boundary component together with the fact that a AUJ G A3(H) is sent into the 
ideal Tw of A{(T,g x / ) ) , thus inducing the desired map $ : QTg —• Ac(Tig x J)/(rcc;). 
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We claim that Wb{M) 
from the identity 

A{Y,g x I) —• gYM(^g x I) maps T^ to zero. This follows 

(TO |2flr-2 __ 
I T xi-i 'yi 

of Dehn twists on the mapping class group of Ep5i [Mol, Theorem 5.3], where x^ yi 
refer to the standard meridian, longitude pairs associated with a symplectic basis 
of i?i(E5 ji) and d is the boundary curve of E^i . Thus we have the relation 

1 n Ta\Tx 

on the mapping class group of Ep (where a, a' are simple closed curves in E^i 
with isotopic images in Ep), together with the fact surgery along the F-link Tx^yua 

corresponds to the Dehn twist Ta[TXi,Tyi]T~, in Tgi [GGP]. 
Since QTg is generated by its elements of degree 1, the commutativity of the 

two diagrams follows by their commutativity in degree 1; this is shown in the same 
way as for a surface with one boundary component. This concludes the proof of 
Remark 2.11. • 

PROOF, (of Theorem 7) For a closed surface E of genus at least 6, Theorem 
7 follows from Remark 2.11 and the following Lemma 3.3, perhaps of independent 
interest. For a closed surface E of genus less than 6, fix a disk and consider an 
imbedding of its complement to a surface E' in M of genus at least 6. Choose a 
lifting of (f) to a diffeomorphism of the punctured surface that preserves the bound
ary and extend it trivially to a diffeomorphism of 0' of E7. Since the Johnson 
homomorphism is stable with respect to increase in genus, and since M$ — M^, 
the result follows from the previous case. • 

LEMMA 3.2. IfTCM is an imbedded graph in M with a distinguished leaf that 
bounds a surface disjoint from the other leaves ofT, then [M, T] = 0 G QY Ai(M). 

P R O O F . First of all, recall that [M, T] = 0 if any leaf bounds a disk disjoint 
from the other leaves of I\ As explained in [GGP], an alternative way of writing 
Equation (6) is as follows: 

(8) 

for arbitrary disjoint imbeddings of two based oriented knots in M. Given a based 
knot a in M, let a denote the based knot obtained by a push-off of a in its normal 
direction (any will do) followed by reversing the orientation. 

The above identity implies that [M, IV] = - [M,T a ] in gYM(M), where TK is 
any imbedded graph in M with a distinguished leaf the based oriented knot K in 
M. 

Given T as in the statement of the lemma, it follows that its distinguished leaf 
is the connected sum of disjoint based knots of the form a^jJAtt^ttA? thus it follows 
from the above discussion that [M, r] = 0 in GYM(M). • 

LEMMA 3.3. Given an imbedding i : N —• M of (not-necessarily closed) 3-
manifolds, and links b(N) (resp. b(M)) in N (resp. M) representing a basis of 
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Hi(N) (resp. H\(M)), there is an induced map L* : A(N) —» A(M) induced by 
L* : H\ (N) —> Hi (M) on the colorings of the legs of the graphs and a diagram 

A{N) - A(M) 

wv w° 
t 

gYM(N) — - gYM(M) 

that commutes up to Wb^M\Al (M)). In particular, for T G Af(N) we have 

L*WbW(T) = WHM)(L,(T)) + loops. 

PROOF. Fix a graph T e At(N). Let TL (resp. TL>) denote the F-links in M 
(with leaves L (resp. L')) such that 

L*Wb(N\T) = [M,TL] and Wb^M\i,T) = [M,TL,]. 

It follows by definition that L and V are homologous links in M. After choosing 
a common base point for each pair (Li^L^) of components of L and V', it follows 
that the connected sum Li%L\ is nullhomologous in M and thus bounds a surface 
Tji in M. The surface E^ might intersect the other components of L or L ; at finitely 
many points; however by deleting disks around the points of intersection of E^ with 
L U L7, we can find a nullhomotopic based link L" and a surface E7 disjoint from 
LU L' with based boundary such that Li%L\ = L"j)d£^. Equation (8) and Lemma 
3.2 imply that [M, TL] — [M, r ^ ] is a sum of terms over Y-links FK in M which are 
trees, with at least one component K, being nullhomotopic. By choosing a sequence 
of crossing changes (represented by a unit-framed trivial link C(K)) that trivialize 
K and using Lemma 3.1, it follows that [M, TK] = [M, rtriviai] = 0 modulo terms 
that involve joining some legs of T (thus modulo terms that involve graphs with 
loops), which concludes the proof. • 

4. Massey products and the Johnson homomorphism 

4.1. Universal Massey products. In this section, homology will be with 
integer coefficients, unless otherwise stated. A useful tool in the proof of Theorem 
1 is a five-term exact sequence of Stallings [St]: given a short exact sequence of 
groups 1—> H ^ G —> if —» 1, there is an associated five-term exact sequence 

H2{G) -+ H2(K) -+ H/[G,H] -+ HX{G) -+ Hi(K) -+ 1. 

Applying the five-term sequence to the exact sequence 1 —+ R -+ F —» G —» 1, 
(where F is a free group) we get Hopf 's theorem [Ho] 

H2{G) = (RH [F,F])/[i?,F], and in particular, H2{F/Fn) 9* F n / F n + 1 . 

In the rest of this section, we will give a proof of Theorem 1 and its corollaries. 
We will follow a rather traditional notation involving local coordinates, [Ma, FS , 
Dw]. Let F denote the free group with basis ( x i , . . . , xm); we will denote by 
the same name the corresponding basis of H — Hi(F). Let (m,... ,um) be the 
dual basis of H1^) = i if1(F/Fn). The graded vector space 0 n Fn/Fn+i has the 
structure of a Lie algebra induced by commutator, and is naturally identified with 
the free Lie algebra 1(H) = © n ln(H). 
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We consider the Magnus expansion, [MKS]. Let Z [ t i , . . . , tm] denote the power 
series ring in non-commuting variable {£1,. . . , t m } . Define S : F —» Z | t i , . . . , t m ] 
to be the multiplicative map defined by S(xi) — 1 + t-i. This is an imbedding and 
induces imbeddings Sn : Ln(H) = Fn/Fn+i -> Z\tu . . . , t m J n , where Z [ t i , . . . ,tm]n 

is the subspace of homogeneous polynomials of degree n. 
We also recall the isomorphism H2{F/Fn) = Fn/Fn+i — Ln(H) from above. 

We now describe the Massey product structure on Hl(F/Fn). For a sequence 

/ *= ( i i , . . . , z r ) of numbers ij G { l , . . . , m } (of length |7| = r), we will let ui 
denote the sequence ( t^ 1 5 . . . , i^ r ) and, if each ui G i J 1 (F /F n ) we let (wj) denote 
the length r Massey product; we also let tj denote the element n*=i ^ • 

PROPOSITION 4.1. Any Massey product (ui) of F/Fn vanishes if \I\ < n. 
The action of any Massey product (m) on H2{F/Fn) = F n / F n + i = Ln(i7) C 
Zf t i , . . . , tmJ is determined by the formula 

, , f l if I — J and \I\ = n 
(9) («/) • tj = ^ . M 

I 0 otherwise 
In other words, the set {(ui)\\I\ = n} defines the basis of Z [ t i , . . . , t m ] * dual to 
{ti\\I\=n}. 

See [02] for a slightly less explicit version of this theorem. 

PROOF. This follows easily from [FS]. Suppose w G Fn is some n-fold com
mutator. Then consider the one-relator group G = F/(w) and the projection 
p : F/Fn —>• G. Consider I of length r < n. By induction we can assume that 
(uj) is uniquely defined in F/Fn and by [FS], it is well-defined in G. Moreover, by 
naturality under p*, they take the same value on w. If r < n this is zero by [FS]. 
Since this holds for all w it follows that (uj) = 0. If r = n Equation (9) follows 
directly from the formula in [FS]. • 

COROLLARY 4.2. Letp : F —> n be a 2-equivalence. Then p is an n-equivalence 
if and only if all Massey products in Hi (TT) of length less than n vanish. 

See also [CGO, Proposition 6.8]. 

PROOF. The "if" part follows directly from the above proposition. To prove 
the "only if" part we proceed by induction on n. The inductive step presents us 
with a map TT —> TTjixn^\ = F /F n _ i ; consider the diagram 

F/Fn 

y I 

y 
TT '— F/Fn-! 

The obstruction to lifting this map is the pullback of the characteristic class in 
i J 2 ( F / F n _ i ; F n _ i / F n ) of the central extension F n _ i / F n -» FjFn_x -> F/Fn. But 
Proposition 4.1 implies that H2(F/Fn-i) is generated by Massey products of length 
n — 1 and so the pullback is zero if and only if all Massey products of length n — 1 
vanish in H2(TT). Thus, we can inductively lift the map to TT —> F/Fni thus to a 
map TT/TTn —> F/Fn, which is still a 2-equivalence. 
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On the other hand, since p is a 2-equi valence, it induces an onto map F/Fn —> 
^l^n-) which is also a 2-equivalence. Composing with the map ixji\n —>• F/Fn, we 
get an endomorphism of F/Fn which is a 2-equivalence. Stalling's theorem [St] 
implies that this endomorphism of F/Fn is an isomorphism which implies that the 
map F/Fn —> 7r/7rn is one-to-one and thus an n-equivalence. • 

This proves the first assertion of Theorem 1. 

COROLLARY 4.3. Suppose p : F —> n is an n-equivalence. Then there is an 
exact sequence: 

H2(TT) -^ F n / F n + i ^ 7Tn/7Tn+i -» 0, 

where p is defined by the formula 

i 

where a G #2(71"), the summation is over I of length n, • : H* <g) H* —> Z is 
the evaluation map, and where the right hand side is asserted to lie in Ln(H) = 
Fn/Fn+1 C Z [ t i , . . . , t m J . 

PROOF. Apply Stallings five-term exact sequence to the short exact sequence 
of groups 1 —> 7rn —• 7T —> 7r/7rn —> 1 to obtain 

H2(TT) ~> H2{n/7Tn) -» 7Tn/7Tn+i -> 1. 

Combining this with the map p gives the commutative diagram 

H2(rc) • H2(7r/7Tn) —*• 7rn/7rn+i - 1 

H2(F/Fn) - ^ Fn/Fn+l 

This diagram yields the exact sequence of the corollary, where p is defined as 
the composition 

H2(TT) -+ H2(7r/7Tn) 2* H2(F/Fn) 9* F n / F n + 1 

To prove the formula for p first note that, for any a G H2(F/Fn) = Fn/Fn+i = 
ln(H) C Z [ t i , . . . , t m J n we have 

a = ^ ( ( w j ) -a) £/, 

as follows directly from Proposition 4.1. But now the corollary follows from the 
definition of p and naturality. • 

This proves the second assertion of Theorem 1 for K{it, 1) spaces. 

REMARK 4.4. Given two choices p,p' of maps as in Corollary 4.3, we get a 
commutative diagram: 

H2(TT) - Fn/Fn+i —- 7Tn/7Tn+i 0 

#2<» Fn/Fn+i —• 7Tn/7Tn+i • 0 
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where the middle map is the automorphism of Fn/Fn+i = H2(F/Fn) defined by 
the composition of isomorphisms 

H2(F/Fn) ^ H2(ir/irn) £ H2(F/Fn). 

In particular, if p' = p mod F2 then the two exact rows are identical. 

The third assertion of Theorem 1 for K(ir, 1) spaces follows from the following 

PROPOSITION 4.5. Let p : F —• TT be an n-equivalence and a i , . . . , a n + i G 
H1^). Then we have: 

Oil ^ {01.2, • • • , a n +i) = (QJI,. .. ,an) ^ an+i-

See also [Kr] for a related result. 

PROOF. We will use Dwyer's formulation [Dw] of the Massey products. Choose 
cocycles â  representing a^, for 1 < i < n + 1. Since we are assuming all Massey 
products of length less than n are defined and vanish, we can choose cochains a^, 
for 1 < i < j < n -f 2, with the exception of the three cases 

2 = l , j = n + l i = 2,j = n + 2 i = l , j = n + 2 

so that a^+i = â  and Sars = J2r<i<s ari ^ ais- ^ o r ^w o °^ ^he three exceptional 
cases the cochains 

frl,n+l — 2L/ ttli ^ a ^ + l an°^ ^2,n+2 = 2_^ &2i w 0<i,n+2 
Ki<n+1 2<i<n+2 

the &ij are cocycles but not necessarily coboundaries. In fact they represent the 
Massey products (a\,..., an) and (0^2,..., ctn+i) respectively. 

Thus ( a i , . . . , an) ^ c^n+i is represented by the cocycle &i,n+i ^ an + i ? n +2 and 
ot\ ^ ( a^ • • • 5 <^n+i) is represented by the cocycle a\i ^ &2,n+2-

Now consider the cochain 

C = y ^ a\i ^ air
 w ^r,n+2 

l<i<r<n+2 

By grouping the terms in one way we see that 

C = CL12 ^ ( 2 ^ a2r
 w ttr;n+2) + 2 ^ («li ^ ^ir ^ «r,n+2) 

2<r<n+2 2<i<r<n-\-2 

— CL12 ^ &2,n+2 + 2_^ (ai« w ^ai,n+2) 
2<i<r<n+2 

Grouping the terms in another way gives 

c = 2_^ ( a i i ^ ttir ^ ar,n+2) + ( 2^/ ttli ^ ai,n+l) w «n+l,n+2 
Ki<r<n+1 Ki<n+1 

= 2 ^ (5air ^ ar^n+2) + &l,n+l ^ ^n+l,n+2 
l<r<n+l 

Now subtracting these two formulae for c gives 

«12 ^ ^2,n+2 — &l,n+l w ttn+l,n+2 = J_^ 8a>lr ^ ar,n+2 ~ 2_^ Q>li ^ ^&i,n+2 
Kr<n+1 2<i<n+2 

= S( ^ au ^ a^,n+2) 
2<i<n+l 
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since a\2 and an + i ? n +2 are cocycles. Since the left side of this equation represents 

OL\ w («2, • • • , OLn+i) - (ai, . . . , QLn) ^ an+i 

and the right side is a coboundary the proof is complete. • 

This concludes the proof of Theorem 1 for K(jr,l) spaces. The general case 
follows from the fact that the canonical map X —» K(ir,l) induces an onto map 
H2(X)^H2(n). • 

PROOF, (of Corollary 2.2) The first part is immediate from Theorem 1, using 
the Poincare duality isomorphism H* = Hi(M,Q) = H2(M,Q). In local coordi
nates, it implies (see Corollary 4.3) that the Massey product 

fin(M) eH® ln(H) = Rom(H\M), Ln(M)) 

is given by 

(10) Hn(M)(u) = Y}M\ ~ fa ~ M) */> 
I 

where u G Hl(M), the summation is over I of length n, ^ indicates cup product 
and [M] ^ indicates cap product with the fundamental homology class of M. Let 
[•] : H 0 L(if) —• \-{H) be the Lie algebra bracket, defined by [a 0 b] = [a, b], for 
a e H,b e L(i7). If we regard L(iJ) C Z[£i , . . . , tm ] then [•] can be expressed by 
the formula 

[#i (8) c] = (1 + ti)c — c(l + t^) = t{C — cti. 

Equation (10) implies that 

i,I 

and so 
K ( M ) ] - ]T[M] - ( ^ - (W/)) (t2t7 - t / t i) . 

i,i 
Thus Corollary 2.2 follows from the third assertion of Theorem 1 (or its coordinate 
version, Proposition 4.5). • 

4.2. Realization results. 

PROOF, (of Theorem 3) Given an element <fi G Ao(F/Fn) we construct maps 
f± : E P J I —> K(F/Fn, 1), where / + : 7ri(Ep?i) —> F/Fn corresponds to the canonical 
projection p : F —> F / F n under the identification of ^ ( E ^ i ) with F , and / ~ = (pop. 
Since <j)*(ujg) = oog, we have /+ |9E^5 i ~ /~|<9E^i and so we can combine the two 
maps to define a map / : EPji —• K(F/Fn,l), where ESsi is the double of E^i . 
We would like to extend / to a map $ : M —• K(F/Fn,l), for some compact 
orient able 3-manifold with <9M = E^5i the obstruction to the existence of <£ is the 
element 0 G Vi2(F / Fn) = H2(F/Fn) represented by / , where Q*(F/Fn) are the 
oriented bordism groups of F/Fn. Since H2(F/Fn) ^ 0 we must be careful in our 
choices to assure that 0 = 0. Redo the construction of / + , / ~ and / but using 
K(F/Fn+i, 1) instead of K{F/Fn, 1) and using a lift of 0 to an automorphism 0 of 
F/Fn+i instead of 0. Our restriction on cj) assures that ^(oOg) — uog and so we obtain 
/ : E^i —• K(F/Fn+i, 1) and an obstruction element 0 G tt2(F/Fn+i). Now this 
element may not be zero, but since the projection map H2{F/Fn+i) —» H2(F/Fn) 
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is zero, and clearly 9 maps to 0, we conclude that 0 = 0. Thus / extends to the 
desired $ : M -» K{F/Fni 1). 

Let v^ : E55i —* dM be the obvious diffeomorphisms onto the domains of f±. 
It is clear that if M were a homology cylinder over £ + , then an(M) = </>. But this 
is not necessarily true and so we will perform surgery on the map 3>, adapting the 
arguments in [KM] to our situation. See also [Tu, Theorem 1] for similar surgery 
arguments which are used to show that any finite 3-dimensional Poincare complex 
is homology equivalent to a closed 3-manifold. 

LEMMA 4.6. Suppose a G Ker$* : H1(M) -> H. Then there exists a G TTI(M) 
such that a G Ker<l>* : TTI(M) —* F/Fn and a represents a. 

PROOF. If a G n\(M) is any representative of a, then 3>*(a) G F2/Fn. Choose 
an element (3 G 7r1(S+)2 SO that $*(/?) = ft(P) = «• T n e n < ^ - 1 £ Ker$* and 
a/3'1 represents a. D 

Thus for any a G Ker<I>* : H\(M) —> H we can do surgery on a curve repre
senting a and extend F over the trace of the surgery. 

The first step in killing Ker<£* will be to kill the torsion-free part. Note that 
H\{M) == i f i (S + ) © Ker3>*, since <£>* o i+ is an isomorphism, and so, under the 
canonical map Hi(M) -» ffi(M,9M), Ker$* maps onto #i(M,<9M). Choose 
an element a G Ker<£* which maps to a primitive element of Hi(M,dM). Now 
surgery on a simple closed curve C representing a will produce a new manifold M' 
so that, if (3 G H\(Mf) is the element represented by the meridian of C, then 

(11) Hl{M)/(a)^Hl{M')/{(3) 

(see [KM]). Since a is primitive in Hi(M,dM), there is a 2-cycle z in M whose 
intersection number with C is +1 . Thus the intersection of z with M' is a 2-chain 
whose boundary is /?. So, by Equation (11), H1(M

/) = H1(M)/(a). 
A sequence of such surgeries will kill the torsion-free part of Hi(M1 DM). But 

this implies that Ker^* is torsion by the following simple homology argument. 
Consider the exact sequence: 

0 -> H2{M) -> H2{M1dM) -> H^dM) -> # i ( M ) -> Hx(M,dM) -» 0 

Since rank# 2 (M) = rank# x (M, <9M) = 0 and # i (E+) imbeds into ifi(M), it 
follows that rank#2(M,<9M) = rankfl'i(M) > 2g. But, since rank#i(<9M) = 4#, 
we conclude that ranki?i(M) = 2g. Therefore 

2g = rankiJi(M) = rank H1 (S + ) + rank Ker$* 

and so rankKer3>* = 0. 
We now follow the argument in [KM] to kill the torsion group T — Ker<I>*. 

The linking pairing I : T <8>T -+ Q/Z is non-singular since T = torsHi(M) maps 
isomorphically to to r s# i (M, dM) = Hi(M,dM). According to [KM, Lemma 6.3] 
if, for a G T, /(a, a) ^ 0, then we can choose the normal framing to any closed curve 
C representing a so that the element (3 G H\(M') is of finite order smaller than the 
order of a. Thus the torsion subgroup of Hi(Mf) is smaller than T. Continuing in 
this way we reach the point where all the self-linking numbers are 0. According to 
[KM, Lemma 6.5] this implies that T is a direct sum of copies of Z/2. Now choose 
any non-zero element a G T. We will show that surgery on a reduces the rank of 
Hi(M,dM;Z/2). Denote by V the trace of the surgery and M' the result of the 
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surgery. Then we have a diagram of homology groups (coefficients in Z/2) with 
exact row: 

H2(V,dMf) H2(V,M') — H1(M
,,dMf) — H^V.dM') 0 

H2(M,dM) 

Now H1(V,dM/) ^ H1(M,dM)/(a) and so has rank one less than ffi(M,9M). 
Since H2(VJ M') is generated by the transverse disk bounded by the meridian curve 
representing /3, the dotted arrow can be interpreted as the (Z/2) intersection num
ber with a. By Poincare duality this map is non-zero and so Hi(M',dM') = 
Hi(V,dMf), proving the claim. As in [KM] we can assume the normal framing 
chosen so that (3 has order 2 or oo. Thus the possibilities for Hi(M\dM';Z) are 
either Z ® ( s - 2)Z/2 or Z/4 © (s - 2)Z/2, where s = r ank# i (M, dM). We can 
then do a surgery to kill the Z factor, in the first case, or reduce the order of 
Hi(M'', dM'\ Z), in the second case. Continuing this way we eventually kill Ker $*, 
producing the desired (M, <£). D 

PROOF, (of Proposition 2.5) Let D^(H) denote the kernel of the natural projec
tion A 0 (F /F n + i ) -> A0(F/Fn). We first construct a map Dn : D*(il) -> Dn(i7) as 
follows. If h G D^(iJ) we can write /i(a) = aip(a), where -0(a) G Fn/Fn+i = Ln(il). 
Then, we define Dn(/i)([a]) = ^(a) , where [a] G i7 and a G F / F n is a lift of [a]. 
Using the isomorphism Hom(iif, Ln(H)) ~ H 0 Ln(i7) this defines a map (denoted 
by the same name) 

Da
n(H)^H®Ln(H) 

with corresponding description in local coordinates given by 

Dn(h) = Ylx*® ^ ) ~y*® ^ ( x » ) G H ® L ^(#) -

If /i G D* (# ) , as above, then n jM^i)* My*)] = E U ^ 2/*] m o d Fn+2 and so 

J J f o V ' O ^ ^ C z / i ) ] = J\[xi,yi]fy(xi),yi][xu^(yi)] mod F n + 2 

Therefore l\i[^(xz),yi}[xl^(yl)} G F n + 2 , which implies that Dn(h) G Dn(if). 
It is clear that Dn is one-to-one. We now show that it is onto. Suppose we 

have an element 0 = Yli(xi ® ai ~ Vi ® Pi) £ Dn(H). Lift o^,/^ into Fn (denoted 
by the same symbols) and define an endomorphism h of F by 

h(xi) = Xiat, h(yi) = yi(3l. 

It follows by St airing's theorem [St] that h induces an automorphism of F/Fn+i 
which restricts to the identity automorphism of FjFn. We note that 

i i i 

But njx«5 ai][Aj Vi] represents the image of theta under the Lie bracket H <8> 
\-n(H) -> Ln + i( iJ) , which vanishes since 0 G Dn(i l); thus H^ii <**][&> Vi\ G Fn+2-
This shows that h G A 0 (F /F n + i ) and clearly Dn(h) = 0. 

The fact that the projection Ao(F/Fn+i) —-> Ao(F/Fn) is onto follows immedi
ately from Theorem 3. It is not hard, however, to give a direct argument; we leave 
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this as an exercise for the reader. Finally, it is clear by the definitions that the 
diagram in Proposition 2.5 commutes, and that the sequence below it is exact. • 

REMARK 4.7. The action of A0{F/Fn) on D%(H) = Dn(H) induced by conju
gation by elements of Ao(F/Fn+i) coincides with the natural action of AQ(F/F2) = 
Sp(2#,Z) on Dn(H), via the projection A0{F/Fn) -> A0(F/F2). 

PROOF, (of Theorem 4) Let M G Hg,i and define S(M)° = T+UMUT_, where 
T-t are two copies of the solid handlebody T of genus g, which are attached to dM 
via the diffeomorphisms i ± so that, referring to a basis {xi, yi} of F corresponding 
to a symplectic basis of H, the {x{\ are represented by the boundaries of meridian 
disks in T. Thus 7Ti(T) = F'', the free group generated by {yi} (or, more precisely, 
their images in 7Ti(T)). S(M)° is a 3-manifold with boundary 5 2 , which we can 
fill-in to obtain a closed 3-manifold S(M). If M G WPji[n], then the inclusion 
T+ C S(M) induces an isomorphism p : F'jF'n ^ 7T1(S(M))/7r1(S(M))n and we 
can consider /j,n(S(M),p) G Dn(H

f)1 where H' = Hi(Ff). Suppose that crn+i(M) = 
h G Ao(F/F n + i ) . Set a$ = p(h(xi)) G F'n, where p : F —> F'is the projection defined 
by p{xi) = 1. Then p,n(S(M),p) = £ J ^ ] <g> [a,], where [yt] G H\ [at] G Ln(ff') are 
the classes represented by y^a^. This assertion is just the obvious generalization 
of Corollary 2.2 and the proof is the same. 

Now let 5 ĵ2/«] ® M ^ e a n arbitrary element in Dn(iJ'), where Â  G F'n^ i.e. 
Ylihli, Ai] G F n + 2 . We want to construct (AT,p) such that fin(N,p) = ]TJ^] ® M -
Consider the endomorphism h of F defined by 

h{xi) = XiXi 
( 1 2 ) u ^ x-i x 

Denote also by h the induced automorphism ofF/Fn+i. To see that h G Ao(F/Fn+i), 
we compute 

IJ[h(zi),M2/i)] = Y[(xiyix71K1yi~1^i) = Yl^yiliyuK1] = 1 1 ^ ' ^ m o d Fn+2-
i i i i 

Therefore, by Theorem 3, h = an(M) for some M G Wp,i. Since Â  G F'n we have 
h G D^(77) and so M G Wp i[n]. By the discussion above, jj,n(N,p) ~ Xwfe/i] ® 
M-. ' • 

For completeness, we close this section by a sketch of a more direct proof of 
Theorem 4 using the results of [Ol, IO]. Similar arguments can be found in [CGO]. 

LEMMA 4.8. For every a G H^{F/Fn) there is a closed 3-manifold M and an 
def 

n-equivalence p : F —» n = TTI(M) such that p*[M] = a. 
REMARK 4.9. Since tt3(F/Fn) = H3(F/Fn), it follows that every element a G 

def 
Qs(F/Fn) is represented by some closed 3-manifold M and map p : ix = ni(M) —» 
F/Fn so that p*[M] = a. The point is to arrange that p* : Hi{M) = H1(F/Fn), 
which would imply that p is an n-equivalence. 

PROOF. We apply the constructions and results of [Ol]. Consider the mapping 
cone Kn of the natural map K(F, 1) —> K(F/Fn, 1) of Eilenberg-MacLane spaces. 
Kn is constructed from K(F/Fnil) by adjoining 2-cells ef along the generators 
Xi G F -» F/Fn. Then Kn is simply-connected and Hi(Kn) = Hi(F/Fn) for i > 2. 
So we have the Hurewicz epimorphism p : 7T3(Kn) -» H^{Kn) = H^(F/Fn), where 
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7r3 denotes the third homotopy group. Suppose p{6) = a. Then the Pontrjagin-
Thom construction gives us a map / : S3 —> Kn representing 0, such that, if x\ G ef 
is some interior point, then f~l{xi) = Z^, a zero-framed imbedded circle in S3 , see 
[Ol]. Now let M 3 be the result of framed surgery on S3 along the {Li}. Then / 
induces a map p : M —• K(F/Fn) and it is clear that p*[M] = a. Finally we note 
that p* : ffi(M) ** HxiF/Fn). D 

From another viewpoint, we have defined a homomorphism //^ : H^{F/Fn) —> 
Dn(if) by the formula 

(13) /i^(a) = J ^ X i 0 (a ^ (iXi ^ (ix/»)t/ 

and so, by Corollaries 2.2 and 4.3 pn(M,p) = /i^(p*[M]). It follows from Theo
rem 1 that the kernel of p!n is precisely the image of Hz{F/Fn+i) —» H^(F/Fn)^ 
inducing, therefore, an injection cok(i / 3(F/F n + 1) —» H^{F/Fn)) >—• Dn(i7). But 
it is shown in [Ol, IO] that both sides are free finitely generated abelian groups 
of the same rank and so they are isomorphic. In fact K. Orr has pointed out to 
us that a straightforward examination of the spectral sequence of the group ex
tension Fn/Fn+i —» F / F n + i —> F/Fn shows that the rank of cok(if3(F/Fn + i ) —> 
H3{F/Fn)) is at least that of Dn(H). • 

4.3. Massey products and the Johnson homomorphism. In this sec
tion we will give a proof of Theorem 2. We first recall the definition of the Johnson 
homomorphism. Let A 0 (F/F n ) be as in Section 2.4. We define the Johnson homo
morphism 

Tn:A0(F/Fn)-+hom(H,Ln(H)) 

where H = # i ( F ) , as follows. If 0 G A 0 (F /F n ) , then rn(0) • [a] = a(j)(a~l) G 
Fn/Fn+i = Ln(U), where [a] G H is the homology class of a G F. Let K(<j>) C F 
be the normal closure of all elements of the form acj)(a~1) for a G F; note that 
#(<£) Q ^n if <t> e A 0 (F /F n ) . Let TT = F/K{4>). Then the projection F -> TT induces 
an isomorphism p^ : F/Fn -^ 7r/7rn and the homomorphism p^ defined (as p) in 
Corollary 4.3 is given by the composition 

H2(n) = K(4>)/[F,K(<{>)} -+ Fn/Fn+1 ^ Ln(H) 

The first isomorphism is given by Hopf's theorem. Now consider the natural ho
momorphism i : H —• H2{T:) defined by i([a]) = [a0(a)_ 1] , then 

(14) rn((f)) ^p^oi. 

Now let E be a compact orientable surface of genus g with one boundary component. 
Then 7Ti(E) = F , the free group on 2g generators. By Nielsen's theorem T^i C 
A(F) and so TgA[n\ = Tg^ n A 0 (F /F n ) . 

For (j) ETg define an associated closed 3-manifold T^ as follows. Let Tl be the 
mapping torus of 0, i.e. J x H with 1 xE identified with 0 x E by the homeomorphism 
(1, x) —» (0, </>(#)) for every x G E. Since </>|<9E = id there is a canonical identification 
of dT^ with the torus S1 x S1. T^ is defined by pasting in D2 x S1. Note that 
fl-iCfy) - F/K(<l>), where X(0) was defined above. 

A theorem of the following sort was first suggested by Johnson [Jol] and a 
proof (which we sketch, for completeness) was given in [Ki]. 
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PROPOSITION 4.10. rn(0) = ^(T^), where # i ( E ) and H1^) are identified 
by the string of isomorphisms 

F 1 ( T 0 ) ^ ^ 1 ( S ) - ^ i ( E ) 

induced by the inclusion E C T^ and Poincare duality for E. 

PROOF. It follows from the definitions that we need to establish the commu-
tativity of the following diagram 

- I 

where i is defined in equation (14), j : E C / x O C / x E — * T^ is the inclusion map 
inducing j * and the Gysin homomorphism j * , and 0 is the Hopf map H2{X) —» 
H2(7Ti(X)) when X = T+. 

Now suppose a G TTI(E) is represented by a 1-cycle z in E. since <p(z) is 
homologous to z, there exists a 2-chain c in E such that dc = (j)(z) — z. Consider 
the chain J x z i n / x E — ^ T ^ with boundary 1 x z — 0 x z. Since 0 x z is identified 
with 1 x (j)(z) in T^, the chain ( ^ I x z + l x c i s a 2-cycle in T^—let j3 denote its 
homology class in H2(T(f)). 

It follows from the definition of 0 that 0{(3) = i([ot\). On the other hand 
j*(/3) ~ [ci] since the 2-cycle £ intersects e x E transversely in the 1-cycle e x z, if 
0 < 6 < 1. This establishes the desired commutativity. • 

Combining Proposition 4.10 and Corollary 4.3 we have 

COROLLARY 4.11. If {xt} is a basis of H = # i ( E ) = H1^) and {ui} is the 
dual basis of HiiT^), then 

Tn(h) =^2xz® ([T0] ^ (Ui ^ (uj)))*J 
ij 

using the inclusion Ln(H) C Z[£i , . . . , t2g}n-

We now turn to the proof of Theorem 2. Fix an n-equivalence p : F —> 
7Ti(M), an imbedding i : E —> M of a (closed) surface in a (closed) 3-manifold 
M, and an element (j) G rp[n]. The homomorphisms / : TT\{M) —• F / F n + i and 
/^ : 7Ti(M^) —> F/Fn+i induced by the n-equivalence p (in the discussion be
fore the statement of the theorem) determine maps / : M —» K(F/Fn+i, 1) and 
/^ : M 0 -> K ( F / F n + i , l ) in the Eilenberg-MacLane space K(F/Fn,l). We will 
construct a cobordism F : V4 -^ K(F/Fnjri) between / and f^. 

First we push /.(E) in the positive and negative normal directions in M to obtain 
two copies of t(E), Ep and E n , respectively. Then we attach / x t(E) to M along 
its boundary by identifying 0 x *,(£) to E n by the homeomorphism (0, x) —» x, for 
x G ^(E), and 1 x t(£) to Ep by (l ,x) —» <fr(x). We can now thicken up / x L(E) 
and M to obtain a manifold W, see Figure 2. 

Note that the boundary of W consists of three components: M,M<j, and the 
mapping torus X^ of 0 on ^(E). We make one small modification to obtain V. 
Remove a disk D from *,(£) to obtain a surface E° with boundary and lift 0 to a 

H2(TT) 

^ ( T J - ^ ff2(T0) 
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M 

Figure 2 . Th e  manifol d W. Th e  handl e  show n represent s a  thickenin g 
of t (E) , show n as the  core . 

diffeomorphism (j)° of E°. Then S1 x D is naturally imbedded in X^, and so in the 
boundary of W. We attach D2 x D to I f along S1 x D to obtain V. 

The boundary of V is now given by dV = M^ — T^o — M. It is not difficult 
to check that the inclusions M —> V <— M^ are (n + 1)-equivalences since since 
(j) G Vg[n + 1]. Then / , fy extend to a map F : V —> K(F/Fn+i, 1). In addition the 
inclusions E° C T^o C V induces isomorphisms 

F/Fn+l = M^/M^ln+i = m(T*°)/m(T4o)n+1 * ^ ( y ) / ^ ( y ) n + 1 

So the bordism (F, V) implies that (/*).[M0] = /„[M] + (p*) .P>] e ft3(W»+i) = 
^ 3 ( F / F „ + 1 ) . 

Applying the map of Equation (1) concludes the proof of Theorem 2. • 

REMARK 4.12. Theorem 2 and Proposition 4.10 can be generalized easily to the 
context of homology cylinders, by essentially the same arguments. For any homol
ogy cylinder N there is an obvious notion of mapping torus T/v—then Proposition 
4.10 can be rephrased, replacing T^ by T/v, (j) G rPji[n] by N G Wp?i[n] and rn 

by <̂ n. For Theorem 2 we consider N G Hg,i and an imbedding E C M, where E 
is a closed orient able surface of genus p. We can cut M open along E and paste 
in TV—where N is obtained from TV by filling it in, in the obvious way, to get a 
homology cylinder over E—and so obtain a new manifold M^. Then Theorem 2 
can be rephrased, replacing M^ by Mjy. 

REMARK 4.13. We can consider another filtration of 1~Lg,i. Let /Hg^i{n) denote 
the set of all homology cylinders n-equivalent to E^i x I (see Section 2.5). Thus if 
M G Hg,i{n) then M - (E^i x I) e J ^ ( E ^ i x I). It is easy to see that Hg,i(ri) is 
a subsemigroup of Hg^. It is a natural conjecture that the quotient Hg^/Hg^n) 
is a group. 

According to [GGP] we get the same filtration if we ask that M be obtained 
from E9;i x I by cutting open along some imbedded closed orient able surface 
E' C E^i x / and reattaching by some element of Tn, the n-th lower central series 
subgroup of the Torelli group T of £' . It is clear that TLg,i{n) C Hg^[n] since 
the effect of cutting and reattaching in M by an element of Tn does not change 
7Ti(M)/7Ti(M)n. If GHg,i(*) and GHgii[*] denote the associated graded groups of 
these nitrations then we have a natural map G7~Lgii{*) —> G'Hg,i[*]- Note also that 
the natural homomorphism Tg,i —> T~lg,i induces maps (Tg,i)n —* /Hg,i(n) and so 
G{Ta,i).-+GHa,i{*). 

Putting this, and some of the other maps constructed in this paper, all together, 
we have a commutative diagram: 
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G(Tgtl)* - D,(ff) 

^ ( S ^ i x /) 

5. Questions 

It is well known that there is a set of moves that generates (string) link concor
dance, [TV]. These moves, together with the existence of the Kontsevich integral, 
were the key to the proof that the tree-level part of the Kontsevich integral of 
string-links is given by Milnor's invariants, or equivalently, by Massey products, 
see [HM]. 

QUESTION 1. Is there a set of local moves that generates homology cobordism 
of homology cylinders? 

QUESTION 2. Does Theorem 6 generalize to homology cylinders, using our 
extension of the Johnson homomorphism? See Remark 4.13. 

A positive answer to the above question would imply that the full tree-level 
part of the theory of finite type invariants on 3-manifolds is given by our extension 
of the Johnson homomorphism to homology cylinders. 

QUESTION 3. If (E^?1 x I) - M e T^(^gA x J), is M e Hg,i{n) ® Q? See 
Remark 4.13. When g = 0 the answer is yes—see [GL2]. Are the //-invariants of 
homology cylinders (see Remark 2.4) finite-type in the Goussarov-Habiro sense? 

We now consider the group Hgl of homology cobordism classes of homology 
cylinders defined in Remark 2.3. The subgroup Hg^[2] (see Proposition 2.5) is the 
analogue of the Torelli group, which we denote Tl-Lc

gl. We can consider the lower 
central series filtration (TTLc

g ^n and, just as in the case of the Torelli group (see 
[Mo3]), we have (THc

gA)n ^Uc
g^[n + 1]. Recall also that Hain [Ha] proved that, 

over Q, the associated graded Lie algebra of the lower central series filtration of the 
Torelli group maps onto the associated graded Lie algebra of the weight filtration 
of the Torelli group, and that these two filtrations are known to differ in degree 2 
by a factor of Q, [Ha, Mo4]. Whether they differ in degrees other than 2 is an 
interesting question. 

QUESTION 4. What is the relation between the filtrations {THg^)n and Hg^[n]l 

Notice that the answer to above question is not known for the group of con
cordance classes of string-links, see [HM], but it is known (in the positive) for the 
group of homotopy classes of string-links, see [HL], and for the pure braid group, 
see [Kh]. 

gYM(^gA x J) 

The dotted arrow denotes a conjectured lifting. 
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QUESTION 5. We have (Tg^)n C Tigl(n) (see Remark 4.13) and obviously 
(T5 i ) n C (TTi\g i)n- What is the relation between the flltrations W ^ ( n ) and 

We now consider the center Z(Tigl) of Tic
gl. This contains, at least, the 

group 0H of homology cobordism classes of homology 3-spheres (see Remark 2.3). 
Furthermore Z{Tic

 x) contains also the element TQ defined by a Dehn twist about 
the boundary of T,g^. For the mapping class group Tg it seems to be true (according 
to J. Birman and C. McMullen) that the center is trivial, at least for large g. 

QUESTION 6. Determine Z(Tic
gl). Is it generated by 6H and TQI 

We now consider the subgroup 7~^i[oo] C Hgl. This contains 6H x <S|[oo], 
where Sg [oo] denotes the subgroup of the string-link concordance group Sg consist
ing of string links with vanishing //-invariants (see Remarks 2.3 and 2.7). Sg[oo] 
contains, for example, all boundary string links and, in particular, the knot con
cordance group, which is an abelian group of infinite rank (see[Lei]). 

QUESTION 7. Determine Tic
g^[oo}. Is it equal to 0H x Sg[oo}7 

QUESTION 8. Is Z(Tigjl)/Z(Tig^)nTig^[oo} the infinite cyclic group generated 
by T81 

In [Mo4], Morita calculated the symplectic invariant part D(H)5p of D(H) 
in terms of a beautiful space of chord diagrams. The group Z(Tig i)/{Z(Tic

g i) H 
2(00]) is closely related to D(H)5p, since the image under the map on of The

orem 3 of an element in Z(Tic
 x) D Tic ̂ [n] lies in Dn(H)5p. Thus any element 

of Z{Tic
 x)/' Z{Tic

g ]_) fl Tig ifoc] provides a geometric construction of an element of 
D(#)SP.' 

The following question is important to the philosophical notion of finite type. 

QUESTION 9. Is Tigl finitely-generated? Is its abelianization finitely-generated? 
Note that both the mapping class group T9ii and the Torelli group 7^i are finitely-
generated. Note also that Sg and 0H are infinitely-generated abelian (see [F]) and, 
as for the analogous question for string-links, since the knot concordance group 
has infinite rank, the abelianization of the string-link concordance group (on any 
number of strings) has infinite rank. 

QUESTION 10. Let Tig denote the semigroup of homology cylinders over the 
closed surface E^ of genus g. The kernel of the obvious epimorphism Tig,i —> Tig is 
related to concordance classes of framed proper arcs in I x T,g. Describe this more 
explicitly and consider also the homology cobordism groups Tig. 

5.1. Note . The present paper was completed in 1999, and a related paper by 
the second author, which was completed later, appeared in [Le3]. 
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