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We study q-holonomic sequences that arise as the colored
Jones polynomial of knots in 3-space. The minimal-order re-
currence for such a sequence is called the (noncommutative)
A-polynomial of a knot. Using the method of guessing, we
obtain this polynomial explicitly for the K p = (−2, 3, 3 + 2p)
pretzel knots for p = −5, . . . , 5. This is a particularly interest-
ing family, since the pairs (K p, −K−p) are geometrically similar
(in particular, scissors congruent) with similar character varieties.
Our computation of the noncommutative A-polynomial comple-
ments the computation of the A-polynomial of the pretzel knots
done by the first author and Mattman, supports the AJ conjecture
for knots with reducible A-polynomial, and numerically com-
putes the Kashaev invariant of pretzel knots in linear time. In a
later publication, we will use the numerical computation of the
Kashaev invariant to numerically verify the volume conjecture
for the above-mentioned pretzel knots.

1. THE COLORED JONES POLYNOMIAL:
A q-HOLONOMIC SEQUENCE
OF NATURAL ORIGIN

1.1. Introduction

The colored Jones polynomial of a knot K in 3-space is
a q-holonomic sequence of Laurent polynomials of nat-
ural origin in quantum topology [Garoufalidis and Lê
Thang 05]. As a canonical recurrence relation for this
sequence we choose the one with minimal order; this is
the so-called noncommutative A-polynomial of a knot
[Garoufalidis 04]. Using the computational method of
guessing with undetermined coefficients [Kauers 09a,
Kauers 09b] combined with a carefully chosen exponent
set of monomials (given by a translate of the Newton
polygon of the A-polynomial), we compute very plausi-
ble candidates for the noncommutative A-polynomial of
the (−2, 3, 3 + 2p) pretzel knot family for p = −5, . . . , 5.
Our computations of the noncommutative A-polynomial

(a) complement the computation of the A-polynomial of
the pretzel knots [Garoufalidis and Mattman 11],
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(b) support the AJ conjecture of [Garoufalidis 04]
(see also [Gelca 02]) for knots with reducible A-
polynomial,

(c) give an efficient linear-time algorithm for comput-
ing numerically the Kashaev invariant of the pretzel
knots (with a fixed accuracy).

In [Garoufalidis and Zagier 12], we use the latter al-
gorithm to numerically verify the volume conjecture of
Kashaev [Kashaev 97, Murakami and Murakami 01] for
the above-mentioned pretzel knots.

For an introduction to the polynomial invariants of
knots that originate in quantum topology, see [Jones 87,
Turaev 88,Turaev 94] and the book [Jantzen 96], where
all the details of quantum group theory can be found. For
up-to-date computer calculations of several polynomial
invariants of knots, see [Bar-Natan 05]. For an introduc-
tion to q-holonomic sequences, see [Zeilberger 90, Wilf
and Zeilberger 92, Petkovšek et al. 96]. For the
appearance of q-holonomic sequences in quantum topol-
ogy, see [Garoufalidis and Lê Thang 05,Garoufalidis and
Sun 06,Garoufalidis and Sun 10] and also [Garoufalidis
and Koutschan 11].

1.2. Fusion and the Colored Jones Polynomial
of Pretzel Knots

Consider the 1-parameter family of pretzel knots Kp =
(−2, 3, 3 + 2p) for an integer p:

where an integer m inside a box indicates the number
|m| of half-twists, right-handed (if m > 0) or left-handed
(if m < 0), according to the following figure:

The pretzel knots Kp are interesting from many points of
view, discussed in detail in [Culler et al. 87,Garoufalidis
and Mattman 11, Garoufalidis 10a, Garoufalidis and
Zagier 12]:

� In hyperbolic geometry, Kp is the torus knot 51, 819 ,
10124 when p = −1, 0, 1, and Kp is a hyperbolic knot
when p �= −1, 0, 1.

� The pairs (Kp,−K−p) (where −K denotes the mir-
ror of K) are geometrically similar for p ≥ 2. In par-
ticular, their complements are scissors congruent,
with equal volume, and with Chern–Simons invari-
ants differing by torsion [Garoufalidis 10a].

� The knots Kp appear in the study of exceptional
Dehn surgery [Culler et al. 87].

� In quantum topology, the knots Kp have differ-
ent Jones polynomial and different Kashaev invari-
ants, which numerically verify the volume conjec-
ture [Garoufalidis and Zagier 12].

Let JK,n (q) denote the colored Jones polynomial of a
knot K colored by the n-dimensional irreducible repre-
sentation of sl2 , framed by zero and normalized to be 1
at the unknot [Turaev 88, Turaev 94]. So, JK,1(q) = 1
for all knots and JK,2(q) is the Jones polynomial of
K [Jones 87]. Our starting point is an explicit formula
for the colored Jones polynomial Jp,n (q) of Kp . This
comes from a theorem of [Garoufalidis 10b], which has
two parts. The first part identifies the pretzel knots Kp

with members of a 2-parameter family of 2-fusion knots
K(m1 ,m2) for integers m1 and m2 , drawn here

and discussed in detail in [Garoufalidis 10b]. The sec-
ond part gives an explicit formula for the colored Jones
polynomial of K(m1 ,m2). To state it, we need to recall
some notation. The quantum integer [n] and the quantum
factorial [n]! of a natural number n are defined by

[n] =
qn/2 − q−n/2

q1/2 − q−1/2 , [n]! =
n∏

k=1

[k]!,

with the convention that [0]! = 1. Let[
a

a1 , a2 , . . . , ar

]
=

[a]!
[a1 ]! · · · [ar ]!

denote the q-multinomial coefficient of natural numbers
ai such that a1 + · · · + ar = a. We say that a triple
(a, b, c) of natural numbers is admissible if a + b + c is
even and the triangle inequalities hold. In the formu-
las below, we use the following basic trivalent graphs
U,Θ,Tet colored by one, three, and six natural numbers
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FIGURE 1. The U, Θ, and Tet graphs colored by an admissible coloring.

(one at each edge of the corresponding graph) such that
the colors at every vertex form an admissible triple.

If a coloring of a graph is not admissible, its evaluation
vanishes. When the colorings of the graphs in Figure 1
are admissible, their evaluations can be computed by the
following functions:

µ(a) = (−1)aqa(a+2)/4 ,

ν(c, a, b) = (−1)(a+b−c)/2q−(a(a+2)−b(b+2)+c(c+2))/8 ,

U(a) = (−1)a [a + 1],

Θ(a, b, c) = (−1)(a+b+c)/2
[
a + b + c

2
+ 1

]

×
[

a+b+c
2

−a+b+c
2 , a−b+c

2 , a+b−c
2

]
,

Tet(a, b, c, d, e, f) =
min Sj∑

k=max Ti

(−1)k [k + 1]

×
[

k

S1 − k, S2 − k, S3 − k, k − T1 , k − T2 , k − T3 , k − T4

]
,

where

S1 =
1
2
(a + d + b + c), S2 =

1
2
(a + d + e + f),

S3 =
1
2
(b + c + e + f),

and

T1 =
1
2
(a + b + e), T2 =

1
2
(a + c + f),

T3 =
1
2
(c + d + e), T4 =

1
2
(b + d + f).

An assembly of the five building blocks can com-
pute the colored Jones function of any knot. Consider
the rational convex planar polygon P with vertices
{(0, 0), (1/2,−1/2), (1, 0), (1, 1)} in Q 2 :

Theorem 1.1. [Garoufalidis 10b]

(a) For every integer p, we have Kp = K(p, 1).

(b) For every m1 ,m2 ∈ Z and n ∈ N , we have

JK (m 1 ,m 2 ),n+1(1/q) (1–1)

=
µ(n)−w (m 1 ,m 2 )

U(n)

×
∑

(k1 ,k2 )∈nP ∩Z2

ν(2k1 , n, n)2m 1 +2m 2

× ν(n + 2k2 , 2k1 , n)2m 2 +1

× U(2k1)U(n + 2k2)
Θ(n, n, 2k1)Θ(n, 2k1 , n + 2k2)

× Tet(n, 2k1 , 2k1 , n, n, n + 2k2),

where P is as above and the writhe of K(m1 ,m2) is
given by w(m1 ,m2) = 2m1 + 6m2 + 2.

1.3. Our Results

Recall that a q-holonomic sequence (fn (q)) for n ∈ N is a
sequence (typically of rational functions fn (q) ∈ Q (q) in
one variable q) that satisfies a linear recurrence relation
of the form

ad(qn , q)fn+d(q) + · · · + a0(qn , q)fn (q) = b(qn , q)
(1–2)

for all n ∈ N , where aj (u, v) ∈ Q [u, v] for all j = 0, . . . , d

and b(u, v) ∈ Q [u, v] [Zeilberger 90]. As is custom, one
can phrase (1–2) in operator form, by considering the
operators M and L that act on a sequence (fn (q)) by

(Lf)n (q) = fn+1(q), (Mf)n (q) = qnfn (q).

It is easy to see that the operators M and L satisfy the
q-commutation relation

LM = qML.
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Thus, we can write (1–2) in the form

Pf = b, P =
d∑

j=0

aj (M, q)Lj , b = b(qn , q)1.

We will call a q-holonomic bi-infinite sequence fn (q)
palindromic if either fn (q) = f−n (q) for all integers n, or
fn (q) = −f−n (q) for all integers n. Given a palindromic
sequence fn (q), we will call a recurrence relation (1–2)
(and the corresponding operator (P, b)) palindromic if
(1–2) holds for all integers n.

With our normalizations, the colored Jones polyno-
mial JK,n (q) of a knot, defined for n ≥ 1, extends to a
palindromic sequence defined by JK,n (q) = JK,−n (q) for
n < 0 and JK,0(q) = 1.

Let Ap(M,L) ∈ Q [M 2 , L] denote the A-polynomial
of the pretzel knot Kp , given in [Garoufalidis and
Mattman 11]. Let εp(M) ∈ Q [M ] denote the M -factors
given in Section 5. Let ∆p(t) ∈ Z[t±1 ] denote the Alexan-
der polynomial of Kp [Kauffman 87]. Then ∆p satisfies
the linear recurrence relation

∆p+2 − (t + t−1)∆p+1 + ∆p = 0 (1–3)

for all p ∈ Z, with initial conditions

∆0 =
1
t3

− 1
t2

+ 1 − t2 + t3 ,

∆1 =
1
t4

− 1
t3

+
1
t
− 1 + t − t3 + t4 .

Theorem 1.2.

(a) Consider the operators (Ap(M,L, q), bp(M, q)) of
Section 5 for p = −5, . . . , 5. Then, we have

Ap(M,L, 1) = Ap(M 1/2 , L)εp(M)

in accordance with the AJ conjecture [Garoufa-
lidis 04].

(b) (Ap(M,L, q), bp(M, q)) is palindromic.

(c) We also have

Ap(M, 1, 1)
bp(M, 1)

= ∆p(M) (1–4)

for p �= −3. When p = −3 we have A−3(M, 1, 1) =
b−3(M, 1) = 0 and

A−3,q (M, 1, 1)
∆−3(M)

− A−3,L (M, 1, 1)M
∆′

−3(M)
∆−3(M)2

= b−3,q (M, 1),

where primes indicate partial derivatives. This is in
accordance with the loop expansion of the colored
Jones polynomial [Garoufalidis 08]. For a definition
of the loop expansion, see [Rozansky 98].

Conjecture 1.3. We conjecture that

Ap(M,L, q)Jp,n (q) = bp(qn , q) (1–5)

for p = −5, . . . , 5 and all n ∈ Z.

2. CONSISTENCY CHECKS

Three consistency checks of Conjecture 1.3 were already
mentioned in Theorem 1.2. In this section we discuss four
independent consistency checks regarding Conjecture 1.3.

2.1. Consistency with the Height

In this section we discuss the height of (1–5). For fixed
integers p and natural numbers n, both sides of (1–5) are
Laurent polynomials in q with integer coefficients.

In general, the minimum and maximum degrees of
a q-holonomic sequence of Laurent polynomials are
quadratic quasipolynomials [Garoufalidis 11a]. In [Garo-
ufalidis 10b], the first author studied the minimum and
maximum degrees of the colored Jones polynomial of
the 2-fusion knots K(m1 ,m2). For the case of pretzel
knots Kp , the maximum degree of Jp,n (q) is a quadratic
quasipolynomial of n, and the minimum degree is a lin-
ear function of n. It follows that the terms on the left-
hand side of (1–5) are polynomials in q of minimum
degree a linear function of n and maximum degree a
quasipolynomial quadratic function of n. Explicitly, for
the case of K2 = K(2, 1), it was shown in [Garoufa-
lidis 10b, Garoufalidis 11b] that J2,n (q) is a polynomial
in q of minimum degree δ∗(n) and maximum degree δ(n)
given by

δ(n) =
[
37
8

n2 +
3
4
n − 31

8

]
=

37
8

n2 +
3
4
n − 31

8
+ ε(n),

δ∗(n) = 5(n − 1),

where ε(n) is periodic of period 4 given by 1/8, 0, 1/8,
1/2 as n ≡ 0, 1, 2, 3 mod 4 respectively.

Keep in mind that JK,n (q) denotes the colored Jones
polynomial of K colored by the n-dimensional irreducible
representation of sl2 . It follows that for p = 2, the left-
hand side of (1–5) is a polynomial in q of minimum degree
60n + O(1) and maximum degree 37/8n2 + 9/4n + O(1).
We computed J2,n (q) explicitly for 1 ≤ n ≤ 70 using The-
orem 1.1. For instance, J2,70(q) is a polynomial of

� minimum (respectively maximum) exponent 345
(respectively 22 606),

� maximum (in absolute value) coefficient
14 287 764 770 955, and
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� sum of absolute values of its coefficients
28 587 411 833 908 277.

It follows that that (1–5) for n = 70 (which actually
holds, by an explicit computation) involves the match-
ing of about 22 500 powers of q with coefficients 14-digit
integers. One can compare this to the modest size of
(A2(M,L, q), b2(M, q)) given in Section 4.

Of course, one can come up with operators that sat-
isfy parts (a), (b), and (c) of Theorem 1.2 and (1–5) for a
fixed natural number n (such as n = 70). This is simply a
problem of linear algebra with more unknowns than coef-
ficients that in fact has infinitely many solutions. On the
other hand, the operators given in Section 5 are of small
height, given the height of the input, as was illustrated
above. Note also that Theorem 1.2 could be proven rig-
orously if we knew a priori bounds for the M,L degrees
of the operators involved and if we were able to compute
enough values of the colored Jones polynomials, using the
formula of Theorem 1.1.

2.2. Consistency with the Loop Expansion
of the Colored Jones Polynomial

This section concerns the consistency of Conjecture 1.3
with the loop expansion of the colored Jones polynomial
of Kp . The latter was introduced in [Rozansky 98] and
has the form

JK,n (q) =
∞∑

k=0

PK,k (qn )
∆K (qn )2k+1 (q − 1)k ∈ Q [[q − 1]], (2–1)

where Pk (t) ∈ Z[t±1 ] are Laurent polynomials with
PK,0 = 1, and ∆K (t) ∈ Z[t±1 ] is the Alexander polyno-
mial of K. With some effort, one can compute the k-
loop polynomials PK,k (M) of a knot for various small
values of k. The loop expansion given by (2–1) highly
constrains the coefficients of (AK (M,L, q), bK (M, q)), as
was discussed in detail in [Garoufalidis 08]. The simplest
constraint for the knots Kp is given in (1–4), which in
fact is the first of a hierarchy of constraints. Each such
constraint gives a consistency check for Conjecture 1.3
and offers a practical way to compute the loop expan-
sion of the knots Kp . Consistency with the higher loop
constraints has also been checked. We plan to discuss the
details in a forthcoming publication.

2.3. Consistency with the AJ Conjecture

This section concerns the AJ conjecture of [Garoufa-
lidis 04] for the knots K±3 with reducible A-polynomial.
The A-polynomial Ap(M,L) of the pretzel knots Kp

was computed in [Garoufalidis and Mattman 11].

In [Mattman 02], it was shown that Ap(M,L) is irre-
ducible if 3 does not divide p and otherwise it is the
product of two irreducible factors when 3 divides p.
Explicitly, we have

A−3(M,L) = −(−1 + L)(L3 − L4 − 5L3M 2 + L4M 2 −
2L2M 4 − 2L4M 4 − LM 6 − 4L2M 6 + 3L3M 6 +
2L4M 6 − M 8 − 5LM 8 − 3L3M 8 + L4M 8 + LM 10 −
3L2M 10 − 5L4M 10 − L5M 10 + 2LM 12 + 3L2M 12 −
4L3M 12 − L4M 12 − 2LM 14 − 2L3M 14 + LM 16 −
5L2M 16 − LM 18 + L2M 18)

and

A3(M,L) = (−1 + LM 24)(−1 + LM 16 − LM 18 +
2LM 20 − 5LM 22 + LM 24 + 5L2M 40 − 4L2M 42 +
L2M 46 + L3M 62 + 3L3M 66 + 2L3M 68 − 2L4M 84 −
3L4M 86 + 3L4M 88 + 2L4M 90 − 2L5M 106 − 3L5M 108 −
L5M 112 − L6M 128 + 4L6M 132 − 5L6M 134 − L7M 150 +
5L7M 152 − 2L7M 154 + L7M 156 − L7M 158 + L8M 174).

Theorem 1.2 matches exactly with the above values
of the A-polynomials. The case of the knot K−3 is par-
ticularly interesting, since its SL2(C ) character variety
has three components: the geometric one, the abelian
L − 1 component, and an additional L − 1 component of
nonabelian representations. Theorem 1.2 and Conjecture
1.3 support the idea that the AJ conjecture captures the
multiplicity of the various components of the character
variety.

2.4. Consistency with the Volume Conjecture

This section concerns the consistency of Conjecture 1.3
with the computation of the Kashaev invariant of the Kp

knots. The Nth Kashaev invariant 〈K〉N of a knot K is
defined by [Kashaev 97,Murakami and Murakami 01]

〈K〉N = JK,N (e2πi/N ).

The volume conjecture of Kashaev states that if K is a
hyperbolic knot, then

lim
N →∞

|〈K〉N |
N

=
vol(K)

2π
,

where vol(K) is the volume of the hyperbolic knot K.
Since we are specializing to a root of unity, we might as
well consider the remainder τK,N (q) of JK,N −1(q) by the
Nth cyclotomic polynomial ΦN (q). In [Garoufalidis and
Zagier 12], it was shown that given a recurrence relation
for JK,N (q), there is a linear-time algorithm to numeri-
cally compute 〈K〉N . Using the guessed recurrence rela-
tion for K2 , we compute τK 2 ,N (q) for N = 1, . . . , 1000.
Figure 2 shows a sample computation.
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τK2,100(q) = −1420771679897311607360 − 1402034476570732425908q − 1377764083694494707679q2 − 1348056285420017550322q3

− 1313028324854995190830q4 − 1272818441358081463973q5 − 1227585324968178744317q6 − 1177507490130630983388q7

− 1122782571182284245313q8 − 1063626542375688303231q9 + 420498814366636734411q10 + 469062907903390306537q11

+ 515775824438145014436q12 + 560453209429428890901q13 + 602918741648741441924q14 + 643004829043136905736q15

+ 680553270138355921566q16 + 715415878390451489264q17 + 747455067013913965248q18 + 776544391967778302155q19

− 618202628922511743188q20 − 576608139973286430388q21 − 532738042123286363977q22 − 486765470606610517117q23

− 438871858158259827294q24 − 389246218987652812332q25 − 338084402821172432280q26 − 285588321971646221647q27

− 231965154488540570326q28 − 177426526516296620808q29 + 1298584002796105745794q30 + 1335567867823634101034q31

+ 1367280856639633305993q32 + 1393597812566394292363q33 + 1414414874600710903331q34 + 1429649887309469255114q35

+ 1439242725058651352936q
36

+ 1443155529298983637839q
37

+ 1441372857979981026638q
38

+ 1433901746491878528487q
39

FIGURE 2. Sample computation of τK 2 ,N (q).

Let

aN = 2π
log |〈K2〉N |

N
.

Since 〈K2〉N = τK 2 ,N (e2πi/N ), the above expression gives
the numerical value

a100 = 3.22309 . . . ,

which is a rather poor approximation of the volume
21(K2) = 2.8281220883307827 . . . of K2 . On the other
hand, for N = 990, . . . , 1000 we have the values shown
in Table 1.

A plot of the above data is shown in Figure 3. It nu-
merically fits the curve

2.82813 + 9.41764
log(n)

n
− 3.89193

1
n

,

which is a four-digit approximation to the volume. In
[Garoufalidis and Zagier 12], a more precise approxima-
tion to the volume and its correction is given.

3. THE COMPUTATION

We use the computer to guess the recur-
rences for the colored Jones polynomials Jp,n (q)
[Kauers 09a, Koutschan 09, Koutschan 10, Garoufalidis
and Koutschan 11]. By guessing, we mean the method
of making an ansatz with undetermined coefficients. The
first values of the sequence Jp,n (q) can be computed
explicitly using (1–1) (see Table 2 for an example). These
values are then plugged into an ansatz with undeter-
mined coefficients in order to produce an overdetermined

linear system of equations. The more equations are used
(note that at least as many equations as unknowns are
needed to obtain a reliable result), the higher is the cer-
tainty that the result is the recurrence for the sequence.
Alternatively, we can verify that the recurrence is satis-
fied for some values of the sequence that were not used
for guessing, gaining further confidence in the result.

For guessing q-difference equations, there are two dif-
ferent choices for the ansatz and the nature of its coeffi-
cients.

The first ansatz (we consider it the more classical one)
is of the form

∑
(α,β )∈S

cα,β MαLβ , (3–1)

where the unknown coefficients cα,β have to be deter-
mined in Q (q). We will refer to the finite set S ⊆ N 2 as
the structure set of the ansatz. It is easy to see that with
ansatz (3–1), at least the first (o + 1)(d + 2) − 1 (respec-
tively (o + 2)(d + 2) − 2) values of a sequence are needed
in order to guess a homogeneous (respectively inhomoge-
neous) recurrence of order o and coefficient degree d, i.e.,
when 0 ≤ α ≤ d and 0 ≤ β ≤ o. Table 3 illustrates how
fast the entries of the colored Jones polynomials grow,
and it becomes obvious that we cannot go very far with
this ansatz.

The second ansatz is of the form

∑
(α,β ,γ )∈S

cα,β ,γ qγ MαLβ , (3–2)

N 990 991 992 993 994 995 996 997 998 999 1000
aN 2.88981 2.88976 2.88971 2.88965 2.8896 2.88955 2.8895 2.88944 2.88939 2.88934 2.88929

TABLE 1. Numerical values of the normalized Kashaev invariant aN of K2 for N = 990, . . . , 1000.
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992 994 996 998 1000

2.8894

2.8895

2.8896

2.8897

2.8898

FIGURE 3. A plot of Table 1.

where the unknowns cα,β ,γ are elements of Q and S ⊆ N 3

is again a finite structure set. This alternative is particu-
larly promising when the q-degrees of the sequence grow
very fast, as is the case with the colored Jones polyno-
mials. On the one hand, we have many more unknowns
than in (3–1), but already the first 30 values of Jp,n (q)
suffice to generate thousands of equations. However, this
method has its limits, too, as can be seen from Table 4.
Guessing the last entry (p = 5) would require solving a
linear system over Q with 17 · 289 · 2175 (about 10 mil-
lion) unknowns.

The small instances in our family of problems can be
done with either technique and without further previous
knowledge. But for finding the larger recurrences pre-
sented in this paper, some optimizations are necessary.
What helped considerably in reducing the size of the
computations is the fact that certain properties of the
structure sets in (3–1) or (3–2) can be deduced a priori.
In particular, the AJ conjecture of [Garoufalidis 04] and
the Newton polygon of the A-polynomial of the pret-
zel knots Kp from [Mattman 02] allow us to guess the
exponents (α, β) that appear in (3–2), up to an overall
translation in the M -direction. The only missing link to
obtaining the structure set is how far we have to trans-
late the Newton polygon in the M -direction (this has to

p d(Jp,10 (q)) d(Jp,20 (q)) d(Jp,30 (q))
−5 453 1919 4400
−4 363 1546 3549
−3 282 1197 2735
−2 225 950 2175
−1 225 950 2175

0 265 1130 2595
1 330 1410 3240
2 406 1736 3991
3 491 2098 4821
4 579 2469 5671
5 667 2843 6529

TABLE 3. Size of the colored Jones polynomial at n = 10, 20, 30
for the pretzel knot family, where d(p) = d1 + d2 for a Laurent
polynomial p =

∑d2
i=−d1

ci q
i with c−d1 �= 0 and cd2 �= 0.

be found out by trial and error); see Figure 4. Obviously,
this translated Newton polygon has many fewer lattice
points than the rectangular box, and this helps consider-
ably in the computations.

The second trick that allows us to compute the large
recurrences listed in Table 4 is to use ansatz (3–1) in con-
nection with modular computations. This means that we
compute the sequence Jp,n (q) only for specific integers
q and modulo some prime number m. Then the mon-
strous Laurent polynomials (see Tables 2 and 3) shrink
to a natural number between 0 and m − 1. Thus we
can compute the first few hundred values of the col-
ored Jones sequence “easily” (i.e., in a few hours). The
guessing then is done efficiently, since only a single null-
space computation modulo m of a moderately sized ma-
trix (less than 1000 columns) is required. This proce-
dure has to be performed for many specific values of
q for us to be able to interpolate and reconstruct the
polynomial coefficients cα,β . In general, we also would
have to use several prime numbers in order to recover
the integer coefficients via Chinese remaindering and ra-
tional reconstruction. However, the integer coefficients
in the present problems are so small (see Table 4) that

n J0 ,n (q)
1 1
2 −q8 + q5 + q3

3 q23 − q22 + q20 − q19 − q16 − q13 + q12 + q9 + q6

4 −q43 + q41 + q40 − q39 + q37 − q35 + q33 − q31 + q29 − q27 − q26 + q25 − q23 − q22 + q21 − q19 + q17 +
q13 + q9

5 q70 − q69 + q65 − 2q64 + q60 − q59 + q57 + q55 − q54 + q52 − q49 + q47 − q44 + q42 − q39 + q37 − q35 −
q34 + q32 − q30 − q29 + q27 − q25 + q22 + q17 + q12

TABLE 2. The first elements of the colored Jones polynomial of the (−2, 3, 3) pretzel knot K0 .
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p −5 −4 −3 −2 −1 0 1 2 3 4 5
ByteCount 5.7 × 107 1.1 × 107 1.1 × 106 32032 1192 1616 1616 47016 2.3 × 106 1.9 × 107 8.6 × 107

L-degree 12 9 6 3 1 2 2 6 9 12 15
M -degree 125 66 27 12 6 13 16 58 114 191 288
q-degree 946 392 85 19 3 13 16 233 514 1151 2174
largest cf. 3.0 × 108 12345 33 4 1 2 2 6 118 386444 2.2 × 1011

translation 68 39 18 5 1 1 1 3 15 36 65

TABLE 4. Some data concerning the recurrence relations for the colored Jones polynomial of the pretzel knots Kp , p = −5, . . . , 5:
the size of the recurrence (in bytes, using the Mathematica command ByteCount), the order (or L-degree), the coefficient degree
(or M -degree), the degree of q in the coefficients, the largest integer coefficient, and how far the Newton polygon had to be
translated in order to find this recurrence.

a single prime suffices to recover the coefficients in Z.
Note that this strategy is perfectly suited for parallel
computations.

We have seen that the number of sequence entries that
we need to compute is determined by the number of un-
knowns in the ansatz, and the number of interpolation
points (specific values for q) by the q-degree of the coeffi-
cients in the recurrence. We mention some further tricks
for reducing these two parameters. The q-degree can be
decreased by considering a slight variation of the original
sequence f(n), namely g(n) := f(n + s) for some s ∈ Z.
Even more, a similar trick can be used to halve the num-
ber of unknowns, by exploiting the fact the there is an
s = t/2 for t ∈ Z such that the substitution n → n + s

in the coefficients of the recurrence reveals the following

symmetry:

cα,β =

{
cm−α,l−β for t even,

−cm−α,l−β for t odd,

where m is the M -degree and l is the L-degree of the re-
currence. The above symmetry is equivalent to the palin-
dromic property of the sought recurrence.

We want to remark that most of the computation time
was used to compute the data, which then later served
as input for the guessing. In the most difficult example
presented here, the recurrence for K5 , it took 1607 CPU
days to produce the first 744 entries of J5,n (q) for 700
different values of q. Since we ran this computation on a
cluster with several hundred processors, it finished within
a few days.

FIGURE 4. The Newton polygon for the (−3, 2, 9) pretzel knot K3 (left) and the structure set of the recurrence for its
colored Jones polynomial (right).
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4. THE RECURRENCE FOR K−2 AND K2

The operators A±2(M,L, q) and b±2(M, q) are given as
follows:1

A−2 (M, L, q) = −(q2M − 1)(q2M + 1)(q4M − 1)(q3M 2 − 1)
L3 − q(q3M − 1)2 (q3M + 1)(q3M 2 − 1)(q14M 5 − q11M 4 −
(q10 − q9 − q8 + q7 )M 3 + (q7 + q4 )M 2 + 2q3M − 1)L2 +
q7M 2 (q2M − 1)2 (q2M + 1)(q7M 2 − 1)(q11M 5 − 2q9M 4 −
(q8 + q5 )M 3 + (q6 − q5 − q4 + q3 )M 2 + q2M − 1)L −
q16M 7 (qM − 1)(q3M − 1)(q3M + 1)(q7M 2 − 1),
b−2 (M, q) = q6M 2 (q2M + 1)(q3M + 1)(q3M 2 − 1)
(q5M 2 − 1)(q7M 2 − 1),
A2 (M, L, q) = q59 (q2M − 1)(q3M − 1)(q7M − 1)
L6 − q112M 8 (q2M − 1)(q3M − 1)(q6M − 1)3L5 −
q167M 18 (q2M − 1)(q5M − 1)2 (q5M + q + 1)L4 + (q − 1)
(q + 1)q207M 27 (q2M − 1)(q4M − 1)2 (q6M − 1)L3 +
q240M 36 (q3M − 1)2 (q4M + q3M + 1)(q6M − 1)L2 +
q263M 45 (q2M − 1)3 (q5M − 1)(q6M − 1)
L − q279M 55 (qM − 1)(q5M − 1)(q6M − 1),

b2 (M, q) = q89M 5 (q192M 48 − q186 (q + 1)M 47 + q181M 46 −
q187M 45 + q181 (q + 1)M 44 − q176 (q7 + 1)M 43 + q177 (q4 +
q + 1)M 42 − q172 (q7 + q4 + q3 + 1)M 41 + q170 (q4 + q3 + 1)
M 40 + q168 (q6 − 1)M 39 − q168 (−q3 + q + 1)M 38 − q163 (q6 +
q3 + q2 − 1)M 37 + q160 (q4 + q3 + 1)M 36 − q158 (q5 + 1)
M 35 + q157 (q4 − q3 + q + 1)M 34 + q152 (q6 − q4 + q2 − 1)
M 33 − q149 (q3 − q + 1)M 32 − q148 (q3 + 1)M 31 + q142 (q3 + 1)
M 30 + q142 (q2 − 1)M 29 + q136 (q4 − q2 + 1)M 28 + q134

(q2 − 1)M 27 − q134M 26 − q124M 25 + 2q122M 24 − q116M 23 −
q118M 22 + q110 (q2 − 1)M 21 + q104 (q4 − q2 + 1)M 20 +
q102 (q2 − 1)M 19 + q94 (q3 + 1)M 18 − q92 (q3 + 1)M 17 −
q85 (q3 − q + 1)M 16 + q80 (q6 − q4 + q2 − 1)M 15 + q77 (q4 −
q3 + q + 1)M 14 − q70 (q5 + 1)M 13 + q64 (q4 + q3 + 1)M 12 −
q59 (q6 + q3 + q2 − 1)M 11 − q56 (−q3 + q + 1)M 10 + q48

(q6 − 1)M 9 + q42 (q4 + q3 + 1)M 8 − q36 (q7 + q4 + q3 + 1)
M 7 + q33 (q4 + q + 1)M 6 − q24 (q7 + 1)M 5 + q21 (q + 1)M 4 −
q19M 3 + q5M 2 − q2 (q + 1)M + 1).

5. THE M-FACTORS

The M -factors εp(M) ∈ Q [M ] are given as follows for
p = −5, . . . , 5:
ε−5 (M ) = −(−1 + M )9 (1 + M )5 (1 + M + M 2 )(1 − 2M +
5M 2 + 6M 3 − 14M 4 + 20M 5 + 17M 6 − 48M 7 + 43M 8 +
40M 9 − 67M 10 + 40M 11 + 43M 12 − 48M 13 + 17M 14 +
20M 15 − 14M 16 + 6M 17 + 5M 18 − 2M 19 + M 20 )(12 −
32M + 34M 2 + 18M 3 − 171M 4 + 462M 5 − 680M 6 +
240M 7 + 1054M 8 − 2126M 9 + 1332M 10 + 1080M 11 −
3016M 12 + 2558M 13 − 227M 14 − 2256M 15 + 3187M 16 −
2256M 17 − 227M 18 + 2558M 19 − 3016M 20 + 1080M 21 +

1 The values of (Ap (M, L, q), bp (M, q)) for p = −5, . . . , 5 are
available from http://www.risc.jku.at/people/ckoutsch/pretzel/
or http://www.math.gatech.edu/∼stavros/publications/pretzel.
data/.

1332M 22 − 2126M 23 + 1054M 24 + 240M 25 − 680M 26 +
462M 27 − 171M 28 + 18M 29 + 34M 30 − 32M 31 + 12M 32 ),

ε−4 (M ) = (−1 + M )9 (1 + M )6 (1 + M 4 )2 (4 − 2M + 7M 2 +
10M 3 − 14M 4 + 34M 5 − 7M 6 + 6M 7 + 24M 8 + 6M 9 −
7M 10 + 34M 11 − 14M 12 + 10M 13 + 7M 14 − 2M 15 + 4M 16 ),

ε−3 (M ) = 2(−1 + M )5 (1+M )5 (1−M + M 2 )3 (1 + M + M 2 ),

ε−2 (M ) = −(−1 + M )3 (1 + M )2 ,

ε−1 (M ) = −1 + M,

ε0 (M ) = −1 + M,

ε1 (M ) = 1 − M,

ε2 (M ) = (−1 + M )3 ,

ε3 (M ) = 2(−1 + M )5 (1 + M )2 (1 + M + M 2 )2 (1 − 6M +
13M 2 − 6M 3 + M 4 ),

ε4 (M ) = −(−1 + M )7 (1 + M )3 (1 + M 2 )(1 − 4M + 4M 2 +
4M 3 − 8M 4 + 4M 5 + 4M 6 − 4M 7 + M 8 )(4 − 14M +
33M 2 + 12M 3 − 330M 4 + 328M 5 − 9M 6 + 226M 7 +
650M 8 + 226M 9 − 9M 10 + 328M 11 − 330M 12 + 12M 13 +
33M 14 − 14M 15 + 4M 16 ),

ε5 (M ) = (−1 + M )9 (1 + M )2 (1 + M + M 2 )(1 − 2M +
4M 2 − 2M 3 − M 4 − 109M 6 − 78M 7 + 406M 8 + 162M 9 −
417M 10 + 162M 11 + 406M 12 − 78M 13 − 109M 14 − M 16 −
2M 17 + 4M 18 − 2M 19 + M 20 )(12 − 88M + 318M 2 −
698M 3 + 381M 4 + 4924M 5 − 20623M 6 + 30440M 7 +
4694M 8 − 61074M 9 + 47268M 10 + 15096M 11 − 11350M 12 −
42702M 13 + 37078M 14 + 55502M 15 − 112131M 16 +
55502M 17 + 37078M 18 − 42702M 19 − 11350M 20 +
15096M 21 + 47268M 22 − 61074M 23 + 4694M 24 +
30440M 25 − 20623M 26 + 4924M 27 + 381M 28 − 698M 29 +
318M 30 − 88M 31 + 12M 32 ).

An explicit calculation shows that εp(M) are
palindromic polynomials, i.e., εp(M)/ep(1/M) = −Mδp ,
where δp is given by

{68, 39, 18, 5, 1, 1, 1, 3, 15, 36, 65}
for p = −5, . . . , 5. One factor of εp(M) is easy to spot:
it is the Alexander polynomial ∆p(M), in accordance
with the loop expansion; see (1–4). The other factors of
εp(M) are more mysterious, with no clear geometric def-
inition. Note, finally, that the values of δp given above
agree with the translation factor of the Newton poly-
gon of Kp given in the last row of Table 4. This agree-
ment is consistent with the fact that our computed recur-
rence relations (Ap(M,L, q), bp(M, q)) are palindromic
for p = −5, . . . , 5.
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