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The Århus integral of rational homology 3-spheres I:

A highly non trivial flat connection on S3
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Abstract. Path integrals do not really exist, but it is very useful to dream that they do and
figure out the consequences. Apart from describing much of the physical world as we now know it,
these dreams also lead to some highly non-trivial mathematical theorems and theories. We argue
that even though non-trivial flat connections on S3 do not really exist, it is beneficial to dream
that one exists (and, in fact, that it comes from the non-existent Chern-Simons path integral).
Dreaming the right way, we are led to a rigorous construction of a universal finite-type invariant
of rational homology spheres. We show that this invariant is equal (up to a normalization) to the
LMO (Le-Murakami-Ohtsuki,[LMO]) invariant and that it recovers the Rozansky and Ohtsuki
invariants.

This is part I of a 4-part series, containing the introductions and answers to some frequently
asked questions. Theorems are stated but not proved in this part. Part II of this series is titled
“Invariance and Universality”, part III “The Relation with the Le-Murakami-Ohtsuki Invariant”,
and part IV “The Relation with the Rozansky and Ohtsuki Invariants”.
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This series has two introductions. The first is philosophical and non-rigorous. We
recommend reading it first. The second introduction and the rest of the series are
fully rigorous and can be read independently of the first part.

1. Philosophical introduction

1.1. What if there were?

Suppose there was some highly-non-trivial flat connection A on S3. Well, of course
there are no non-trivial flat connections on S3; in recent years there has been no
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significant debate over that. But we wrote “highly-non-trivial flat connection”,
meaning that the object that we are going to talk about is neither a connection nor
is it flat (and possibly, does not even exist). But we will see that it is beneficial to
assume that such an A does exist, and that it has some fixed good properties. We
will make some deductions and guess some formulas, and later on we will prove
that they work, with no reference to A.

We claim that given a well-behaved highly-non-trivial flat connection A on S3,
we can construct (under some mild conditions) a link invariant ÅA that respects
the Kirby moves, and hence an invariant of 3-manifolds. Just constructing a link
invariant is easy; simply consider the holonomy hA(L) of the connection A along
a link L. The invariance under small deformations (that do not pass through
self-intersections) of an embedding of L follows from the flatness of A. The non-
invariance under full homotopy comes from the fact that A is highly-non-trivial. If
hA(L) were invariant under homotopy, it would have been rather dull, for all links
of a fixed number of components are homotopic.

The construction of ÅA(L) from hA(L) is extremely simple, and can be sum-
marized by a single catchy motto:

Motto 1. Integrate the Holonomies

Let’s try to make sense out of this. Suppose A is a g-connection for some metrized
Lie algebra g. The holonomy of A along a single path is roughly the product
of the values of A seen along the path. Namely, it is a certain long product of
elements of g. So it is naturally valued in Û(g), a certain completion of the universal
enveloping algebra of g. By the Poincaré-Birkhoff-Witt theorem, Û(g) is isomorphic
to Ŝ(g), a completion of the symmetric algebra of g, via the symmetrization map
β : Ŝ(g) → Û(g) (see e.g. [Di, Paragraph 2.4.10]). The algebra Ŝ(g) is the algebra of
power series on g?, and those power series that are convergent are called functions
and can sometimes be integrated. It is in this sense that one should interpret
Motto 1, only that in the case of an X-marked link (a link whose components
are in a bijective correspondence with some n-element set of labels X = {xi}n

i=1,
with a base point on each component, to make the holonomies well defined) the
holonomies are in Û(g)⊗n, and thus the integration is over n copies of g?, with one
integration variable (also denoted xi) for each component of the link:

Definition 1.1. The Århus integral ÅA for the non-trivial flat connection A is the
integral

ÅA(L) = N
∫

g?⊕...⊕g?

hA(L)(x1, x2, . . . , xn) dx1 dx2 . . . dxn,

where hA(L)(x1, x2, . . . , xn) is the holonomy hA(L) regarded as a function of
(x1, . . . , xn) ∈ g? ⊕ . . . ⊕ g?, the symbol dx denotes the measure on g? induced
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by its metric, and N denotes additional normalizations that may be ignored on the
philosophical level.

Let us get to the main point as quickly as possible. Why is ÅA invariant under
the second and more difficult Kirby move [Ki]? Not worrying too much about the
important issue of framing (we’ll do that later, in Section 2), the second Kirby
move is the operation of ‘sliding’ one component of the link along a neighboring
one. See Figure 1.

x y x y
zz

L1 L2

Figure 1. The second Kirby move.

Let us analyze the behavior of ÅA under the second Kirby move. The only
difference is that the holonomy along the component labeled y changes, and (with
an appropriate choice of basepoints) the change is rather simple: it gets multiplied
by the holonomy around the component labeled z. In formulas valid in Û(g)⊗3,
this amounts to saying that

hA(L2) = (1⊗×U ⊗ 1)(1⊗ 1⊗∆)hA(L1), (1)

where ∆ : Û(g) → Û(g)⊗ Û(g) is the co-product, which in (1) takes the group-like
holonomy of A along z and “doubles” it, and ×U : Û(g) ⊗ Û(g) → Û(g) is the
product, which takes one of the copies of the holonomy along z and multiplies it
into the holonomy along y.

Truth 1.2. β : Ŝ(g) → Û(g) is a co-algebra map.

Almost Truth 1.3. β : Ŝ(g) → Û(g) is an algebra map as well.

Together, 1.2 and 1.3 say that (1) is also valid in Ŝ(g). Identifying Ŝ(g) with the
space F (g?) of functions on g?, the product ×S of Ŝ(g) becomes the diagonal map
f(x, y) 7→ f(x, x), the co-product ∆ becomes the map f(x) 7→ f(x + y), and (1)
becomes

hA(L2)(x, y, z) = hA(L1)(x, y, y + z).

But now it is clear why ÅA is invariant under the second Kirby move — on
holonomies, the second Kirby move is just a change of variables, which does not
change the value of the integral!

Let us now see why the “almost” in almost truth 1.3 is harmless in our case.

Definition 1.4. A differential operator is said to be pure with respect to some
variable y if its coefficients are independent of y and every term in it is of positive
order in ∂/∂y. We allow infinite order differential operators, provided they are
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“convergent” in a sense that will be made precise in the context in which they will
be used.

If D is pure with respect to y, then the fundamental theorem of calculus shows
that the integral of Df with respect to y vanishes (at least when f is appropriately
decreasing; the f ’s we will use below decrease like Gaussians, which is more than
enough). With this in mind, the following claim and remark explain why the
“almost” in almost truth 1.3 is harmless:

Claim 1.5. When the native product ×S of Ŝ(g) and the product ×U it inherits
from Û(g) via β are considered as products on functions on g?, they differ by some
differential operator D′

BCH : F (g?)⊗ F (g?) = F (g? ⊕ g?) → F (g? ⊕ g?), composed
with the diagonal map ×S:

×U −×S = ×S ◦D′
BCH.

Proof (sketch). A hint that claim 1.5 should be true is already in the more common
formulation of the Poincaré-Birkhoff-Witt theorem (see e.g. [Di, Paragraph 2.3.6]),
saying that the symmetric algebra S(g) is isomorphic as an algebra to the associated
graded grU(g) of the universal enveloping algebra U(g). This means that if f and
g are homogeneous polynomials, then f ×S g and f ×U g differ by lower degree
terms, and these lower degree terms come from applying differential operators. As
a typical example, let’s look at the term of degree one less. If f =

∏
α aα ∈ S(g)

and g =
∏

β bβ ∈ S(g), then

f ×U g = f ×S g +
1
2

∑
γ,δ

[aγ , bδ]
∏
α6=γ

aα

∏
β 6=δ

bβ

= f ×S g +×S ◦D1(f, g) (mod lower degrees),

where (from this formula) the operator D1 can be written in terms of a basis {li} of
g as D1 = 1

2

∑
i,j (([li, lj ]⊗ 1))·

(
∂

∂li
⊗ ∂

∂lj

)
. Written in full, D′

BCH is an infinite sum
of operators Dk, where each Dk is of bounded degree and involves k applications
of the Lie bracket [·, ·]. Below it will be justified to think of the bracket as “small”,
and hence the sum D′

BCH is convergent. ¤
Remark 1.6. The reader may show that D = (D′

BCH ⊗ 1) ◦ (1 ⊗ ∆) is a pure
differential operator on the space F (g?)⊗ F (g?) = F (g? ⊕ g?), with respect to all
variables in the second copy of g?.

Remark 1.7. (Compare with [Å-II, Corollary 5.5]). The reader may use the
Baker-Campbell-Hausdorff formula (see e.g. [Ja, Section V.5]) to find explicit for-
mulas for the operators D′

BCH and D.

Here are some more relevant facts:
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Fact 1.8. The Århus integral ÅA is invariant under reversal of orientation of any
component of the link (better be that way, for the Kirby calculus is about unoriented
links).

Proof. On the level of F (g?), reversal of the orientation of a component acts by
negating the corresponding variable, say, hA(L)(x, y, z) → hA(L)(x,−y, z). This
operation does not change the integral of hA(L). ¤
Fact 1.9. Å is independent of the choice of the base points on the components.

Proof. Moving the base point on one of the components amounts to acting on the
corresponding Û(g) by some group element g. This translates to acting on the
corresponding variable of hA(L)(x, y, . . . ) by Ad g. But the adjoint action Ad g
acts by a volume preserving transformation, and hence the integral of hA(L) does
not change. ¤

We leave it for the reader to check that the normalization N in Definition 1.1
can be chosen so as to make ÅA invariant under the easier “first” Kirby move,
shown in Figure 2. The solution appears in Section 2.1.4.

∼ ∅ ∼

Figure 2. The first Kirby move: an unknotted unlinked component of framing ±1 can be removed.

1.2. There are not, but we can do without

Rather than using a single highly non-trivial flat connection A, we use the average
holonomy of many not-necessarily-flat connections, with respect to a non-existent
measure, and show that the resulting averaged holonomies have all the right prop-
erties. Namely, we replace hA(L) by hg,k(L) :=

∫
hB(L)dµk(B), where dµk(B) is

the famed Chern-Simons [Wi] measure on the space of g-connections, depending
on some integer parameter k:

dµk(B) = exp
(

ik

4π

∫
S3

tr B ∧ dB +
2
3
B ∧B ∧B

)
DB

(DB denotes the path integral measure over the space of g-connections). In other
words, we set

Åg(L) = N
∫

g?⊕...⊕g?

(∫
hB(L)(x1, . . . , xn)dµk(B)

)
dx1 . . . dxn.

Let us see why hg,k(L) has all the right properties:
• Flatness: We only need to know that hg,k(L) is a link invariant. In-

deed it is, by the usual topological invariance of the Chern-Simons path
integral [Wi].
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• Non-triviality: If hg,k(L) were a trivial link invariant, so would have been
Åg. Fortunately the Chern-Simons path integral is not trivial.

We divide the second Kirby move into two steps: first a component is dou-
bled, and then we form the connected sum of one of the copies with some third
component. So two more properties are needed:

• Behavior under doubling: We need to know that if L2 is obtained from
L1 by (say) doubling the first component, then hg,k(L2) = (∆ ⊗ 1 ⊗ · · · ⊗
1)hg,k(L1). This property holds for every individual B, and it is a linear
property that survives averaging.

• Behavior under connected sum: For notational simplicity, let us restrict to
knots. If C1 and C2 are two knots and C1#C2 is their connected sum, we
need to know that hg,k(C1#C2) = hg,k(C1)×U hg,k(C2). With the proper
normalization, this is a well known property of the Chern-Simons path
integral, and a typical example of cut-and-paste properties of topological
quantum field theories.

We should note that in part II of this series ([Å-II]) we will recombine these last
two properties again into one, whose proof, due to Le, H. Murakami, J. Murakami,
and Ohtsuki [LMMO], is rather intricate and ingenious.

1.3. The diagrammatic case: formal Gaussian integration

It may or may not be possible to make sense of the ideas outlined in sections 1.1
and 1.2 as stated, per Lie algebra g and per integer k. We do not know though
we do want to know. Anyway, our approach is different. We do everything in the
k →∞ limit, where the Chern-Simons path integral has an asymptotic expansion
in terms of Feynman diagrams. Furthermore, as is becoming a standard practice
among topological perturbativites (see e.g. [B-N1], [Ko2], [BT], [Th], [AF]), we
divorce the Lie algebras from the Feynman diagrams and work in the universal
diagrammatic setting. In this case, the Chern-Simons path integral is valued in the
space A(ªX) of diagrams as in Figure 3 modulo the STU relations, whose precise
form is immaterial here (though it appears in Figure 10).

x y z

Figure 3. Diagrams in A(ª{x,y,z}) are trivalent graphs made of 3 oriented circles labeled x, y, and

z, and some number of additional “internal” edges. “Internal vertices”, in which three internal

edges meet, are “oriented” - a cyclic order on the edges emanating from such a vertex is specified.
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Choosing a base point on each oriented circle (akin to our choice of a base point
on each link component, in Section 1.1) and cutting the circles open, we get a sum
of diagrams, deserving of the name h∞(L), in the space A(↑X). A typical element
of that space appears in Figure 4.

x y z

Figure 4. A diagram in A(↑{x,y,z}). Here and below, internal trivalent vertices are always

oriented counterclockwise, and quadrivalent vertices are just artifacts of the planar projection.

This diagram is a cut-open of the diagram in Figure 3.

At this point, we are in very good shape. There is a well known parallelism
between spaces of diagrams such as A(↑X) and various spaces that pertain to Lie
algebras, such as U(g)⊗n. We have a “holonomy” living in the former space, and a
technique (Motto 1) living in the latter. All we have to do is to imitate the Lie-level
technique on the diagram level. To do that, let us first summarize the technique
of Section 1.1 in one line:

hA(L) ∈ U(g)⊗n PBW- S(g)⊗n
∫

- C

The parallelism: (The primary reference for points 1 to 4 below is [B-N2]. See
also [B-N3], [LM].)

(1) The parallel of U(g)⊗n is, as already noted, A(↑X). Their affinity is first
seen in the existence of a structure-respecting map Tg : A(↑X) → U(g)⊗n.
Very briefly, Tg is defined by mapping all internal vertices to copies of the
structure constants tensor, all internal edges the metric of g, and the vertical
arrows to the ordered products of the Lie algebra elements seen along them,
namely to elements of U(g).

Notice that the parallel of the Lie bracket [·, ·] is a vertex. Thus iterated
brackets correspond to high-degree diagrams, which are “small” in the sense
of the completed space A(↑X). This justifies the last sentence in the proof
of claim 1.5.

(2) The parallel of S(g)⊗n is the space B(X) of “X-marked uni-trivalent di-
agrams”1, the space of uni-trivalent graphs whose trivalent vertices are
oriented and whose univalent vertices are marked by the symbols in the set
X (possibly with omissions and/or repetitions), modulo the AS and IHX
relations, whose precise form is immaterial here (though it appears in Fig-
ure 9). An example appears in Figure 5. There is a structure-respecting

1 Called “Chinese characters” in the culturally insensitive [B-N2].
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map Tg : B(X) → S(g)⊗n; it maps uni-trivalent diagrams with k external
legs to degree k elements of S(g)⊗n.

x

y y

w z

y

Figure 5. An {x, y, z, w}-marked uni-trivalent diagram.

(3) The parallel of the Poincaré-Birkhoff-Witt isomorphism U(g)⊗n → S(g)⊗n

is a map σ : A(↑X) → B(X), which is more easily described through its
inverse χ. If C ∈ B(X) is an X-marked uni-trivalent diagram with kx legs
marked x for x ∈ X, then χ(C) ∈ A(↑X) is the average of the

∏
x kx!

ways of attaching the legs of C to n labeled vertical arrows (labeled by the
elements of X), attaching legs marked by x only to the x-labeled arrow, for
all x ∈ X.

(4) The parallel of C is the set of uni-trivalent diagrams that Tg maps to degree
0 elements of S(g)⊗n — namely, it is the space called A(∅) of “manifold
diagrams” — uni-trivalent diagrams with no external legs. An example
appears in Figure 6.

Figure 6. A connected manifold diagram. All vertices are oriented counterclockwise.

(5) Last, we need a parallel
∫ FG : B(X) → A(∅) for the partially defined

integration map
∫

: S(g)⊗n → C. This is a new and (hopefully) amusing
ingredient, so let us say a bit more.

The new
∫ FG better be defined on σh∞(L). To ensure this, we first need some

knowledge about the structure of σh∞(L), and the following easy claim suffices:

Claim 1.10. If (lxy) is the n × n linking matrix of L (that is, lxy is the linking
number of the component x with the component y, and lxx is the self-linking of the
component x — the linking number of that component with its framing), then

σh∞(L) = exp∪·

(
1
2

∑
x,y

lxy
x_y +

(connected uni-trivalent diagrams
that have trivalent vertices

))
︸ ︷︷ ︸

I’m Gaussian!

. (2)
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Here exp∪· denotes power-series exponentiation using the disjoint union product on
B(X), and x_y denotes the only connected uni-trivalent diagrams that have no
trivalent vertices — solitary edges whose univalent ends are marked i and j.

Proof (sketch). There is a co-product ¤ : B(X) → B(X) ⊗ B(X), mapping every
uni-trivalent diagram to the sum of all possible ways of splitting it by its connected
components. A simple argument shows that Z = σh∞(L) satisfies ¤Z = Z ⊗ Z,
and thus Z = exp(¤-primitives). The ¤-primitives of B(X) are the connected uni-
trivalent diagrams, and hence Z = exp(connected characters). (This is a variant
of a standard argument from quantum field theory, saying that the logarithm of
the partition function can be computed using connected Feynman diagrams). All
that is left is to determine the coefficients of the simplest possible connected uni-
trivalent diagrams, the x_y’s. These correspond to degree 1 Vassiliev invariants,
namely, to linking numbers. ¤

Equation (2) says “I’m Gaussian!”.Remembering that Tg maps leg-count to
degree and thinking of trivalent vertices as “small” and hence of the second term
in (2) as a perturbation, we see that Tgσh∞(L) is indeed a Gaussian! Thus the
standard Gaussian integration technique of Feynman diagrams applies (a refresher
is in Section 4). But this is a diagrammatic technique, and hence it can be applied
straight at the diagrammatic level of σh∞(L). It takes two steps:

(1) Splitting the quadratic part out, negating and inverting it, getting

exp∪·

(
−1

2

∑
x,y

lxy
∂x

^∂y

)
,

where (lxy) is the inverse matrix of (lxy) and we’ve introduced a new set of
“dual” labels ∂X = {∂x : x ∈ X}.

(2) Putting the inverted quadratic part back in and gluing its legs to all other
legs in all possible ways, making sure that the markings match.

These steps together with all previous steps are summarized in the commutative
diagram in Figure 7 and in a more graphical form in Figure 8.

One last comment is in order. While the Chern-Simons h∞ is perfectly good on
the philosophical level, it is a bit difficult to work with. Thus we replace it by a sub-
stitute whose properties we understand better, a variant Ž due to [LMMO] of the
Kontsevich integral [Ko1], [B-N2] (which by itself is a holonomy, of the Knizhnik-
Zamolodchikov connection). It is conjectured that the original Kontsevich integral
is equal to h∞.
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h∞(L)
(or Ž(L))

∈A(↑X) σ−−−−→ B(X)
∫ F G

−−−−−−−−−−−→
(partially defined)

A(∅)3 Å(L)

Tg

y Tg

y Tg

y
U(g)⊗n PBW−−−−→ S(g)⊗n

∫
−−−−−−−−−−−→
(partially defined)

C

Figure 7. The bottom row is where the nonsensical Section 1.1 lives. It is also were Section 1.2

lives, both in the finite k case (which we do not consider below) and in the k → ∞ limit. The

top row leads to a well defined and interesting invariant, and is the main focus of the rest of this

series of papers.

The eternal
Chern-Simons

path integral for
links

(or a substitute)

h∞: formal−−−−−−−−−−−−−−→
perturbation theory

(or a substitute)

σ:
formal
PBW

y removing the
skeleton ↑↑↑

and gluing trees

(coefficient ∝
∏

(−lxy)’s)

splitting, negating←−−−−−−−−−−−−−
and inverting

the quadratic part

(coefficient ∝
∏

lxy ’s)

gluing
top to
bottom

y in all ways with
matching
markings

normalize−−−−−−−−→
as necessary

the Århus
integral Å(L).

Figure 8. Introduction for the graphically oriented. All diagrams here are representatives of big

sums of diagrams.
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2. Rigorous introduction

In this section, our goal is very modest: to give the precise definition of an invariant
Å of rational homology spheres, and to state its main properties. The proofs of
these properties of Å (and even the fact that it is well defined), though mostly
natural and conceptual, will be postponed to the later parts of this series.

2.1. Definition of the Århus integral

All (3-dimensional) rational homology spheres are surgeries on algebraically regular
framed links in S3 (“regular links” throughout this series, precise definition below),
and all regular links are closures of algebraically regular framed pure tangles (“reg-
ular pure tangles”, precise definition below). All that we do in this section is to
define a certain invariant Å of regular pure tangles, following the philosophical ideas
of Section 1. In part II of this series ([Å-II]) we follow the same philosophical ideas
and show that these ideas lead to simple proofs that Å descends to an invariant of
regular links and then to an invariant of rational homology spheres.

2.1.1. Domain and target spaces. Let us start with the definitions of the
domain and target spaces of Å:

Definition 2.1. An (X-marked) pure tangle (also
called “string link”) is an embedding T of n copies
of the unit interval, I×{1}, . . . , I×{n} into I×C, so
that T ((ε, i)) = (ε, i) for all ε ∈ {0, 1} and 1 ≤ i ≤ n,
considered up to endpoint-preserving isotopies. We
assume that the components of the pure tangle are
labeled by labels in some n-element label set X. An
example is on the right.

x y z

Similarly to many other knotted objects, pure tangles can be “framed” (we omit
the precise definition), and similarly to braids, framed pure tangles can be closed
to form a framed link. By pullback, this allows one to define linking numbers and
self-linking numbers for framed pure tangles.

Definition 2.2. A framed link is called “algebraically regular” (“regular link”,
in short) if its linking matrix (with self-linkings on the diagonal) is invertible. A
framed tangle is called “algebraically regular” (“regular pure tangle”, in short), if
the same condition holds, or, alternatively, if its closure is a regular link. Let RPT
be the set of all (X-marked) regular pure tangles.

This completes the definition of the domain space of Å. Let’s turn to the target
space:
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Definition 2.3. A “manifold diagram” is a trivalent graph with oriented vertices
(i.e., a cyclic order is specified on the edges emanating from each vertex), such
as the one in Figure 6. The “degree” of a manifold diagram is half the number
of vertices it has. The target space of Å, called A(∅), is the graded completion
of the linear space spanned by all manifold diagrams modulo the IHX and AS
(antisymmetry) relations displayed in Figure 9.

IHX: −= AS: + = 0

Figure 9. The IHX and AS relations. Each equality here represents a whole family of

relations, obtained by completing each of the diagram-stubs shown to a full diagram in all possible

ways, but in the same way within each equality.

2.1.2. Intermediate spaces. Our map Å : RPT → A(∅) is a composition of
several maps. Let us now define the intermediate spaces we pass through:

Definition 2.4. An “X-marked pure tangle diagram” is a graph D made of the
following types of edges and vertices:

• Edges: n upward-pointing vertical directed lines marked by the elements
of X (whose union is “the skeleton of D”), and some number of undirected
edges, sometimes called “chords” or “internal edges”.

• Vertices: the endpoints of the skeleton, vertices in which an internal edge
ends on the skeleton, and oriented trivalent vertices in which three internal
edges meet.

The graph D should be “connected modulo its skeleton”. Namely, if the skeleton
of D is collapsed to a single point, the resulting graph should be connected. An
example appears in Figure 4. The “degree” of D is half the number of trivalent
vertices it has. The graded completion of the space of all X-marked pure tangle
diagram modulo the STU relations displayed in Figure 10 is denoted by A(↑X).
If X = {x} is a singleton, we set A = A(↑x) = A(↑X). We note that the STU
relations implies the IHX and AS relations, see [B-N2].

−=

Figure 10. The STU family of relations with only diagram-stubs shown.

Definition 2.5. An “X-marked uni-trivalent diagram” is a graph C made of undi-
rected edges and two types of vertices: oriented trivalent vertices (“internal ver-
tices”) and univalent vertices marked by elements of the label set X (the “legs”
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of C). The graph C should be connected modulo its univalent vertices. Namely, if
the univalent vertices of C are all joined, the resulting graph should be connected.
An example appears in Figure 5. The “degree” of D is half the total number of
vertices it has. The graded completion of the space of all X-marked uni-trivalent
diagrams modulo the IHX and AS relations of Figure 9 is denoted by B(X). The
space B(X) is an algebra with the bilinear extension of the disjoint union operation
∪· as a product.

2.1.3. Maps. The pre-normalized Århus integral Å0 is the following composition:

Å0 :

{
regular

pure

tangles

}
=

= RPT Ž -
the [LMMO]

version of the

Kontsevich integral

A(↑X) σ -
formal

PBW

B(X)
∫ F G

-
formal

Gaussian

integration

A(∅).

(3)

We just have to recall the definitions of the maps Ž and σ, and define the map
∫ FG.

Definition 2.6. The map Ž was defined by Le, H. Murakami, J. Murakami, and
Ohtsuki in [LMMO]. It is the usual framed version of the Kontsevich integral Z
(see [LM], or a simpler definition in [BGRT, Section 2.2]2), normalized in a funny
way. Namely, let ν = Z(©) ∈ A be the Kontsevich integral of the unknot3, and let
∆X : A → A(↑X) be the “X-cabling” map that replaces the single directed line in
A by n directed lines labeled by the elements of X, and sums over all possible ways
of lifting each vertex on the directed line to its n clones (see e.g. [B-N4], [LM]). Set

Ž(T ) = ν⊗n ·∆X(ν) · Z(L) (4)

for any X-marked framed pure tangle L, using the action of A⊗n on A(↑X) defined
by sticking any n diagrams inA on the n components of the skeleton of a diagram in
A(↑X). In (4) the factor of ∆X(ν) is easily explained; it accounts for the difference
between the Kontsevich integral of pure tangles and of their closures. The other
factor, ν⊗n, is the surprising discovery of [LMMO]: it makes Ž better behaved
relative to the second Kirby move.

Definition 2.7. The map σ, first defined in [B-N3], is a simple generalization of
the formal PBW map σ : A → B of [B-N2]. It is more easily described through
its inverse χ. If C ∈ B(X) is an X-marked uni-trivalent diagram with kx legs

2 Strictly speaking, [BGRT] deals only with knots. But the generalization to links is obvious.
3 See [BGRT] for the conjectured value of this invariant, and [BLT] for the proof.
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marked x for any x ∈ X, then χ(C) ∈ A(↑X) is the average4 of the
∏

x kx! ways
of attaching the legs of C to n labeled vertical arrows (labeled by the elements of
X), attaching legs marked by x only to the x-labeled arrow, for all x ∈ X.

The new map,
∫ FG : B(X) → A(∅) is only partially defined. Its domain is the

set BFG(X) of “non-degenerate perturbed Gaussians”:

Definition 2.8. An element G ∈ B(X) is a “non-degenerate perturbed Gaussian”
if it is of the form

G = PG∪· exp∪·

(
1
2

∑
x,y

lxy
x_y

)

for some invertible matrix (lxy), where P : B(X) → B+(X) ⊂ B(X) is the natural
projection onto the space B+(X) of uni-trivalent diagrams that have at least one
trivalent vertex on each connected component, and x_y denotes the only connected
uni-trivalent diagrams that have no trivalent vertices. It is clear that the matrix
(lxy) is determined by G if G is of that form. Call (lxy) the “covariance matrix” of
G.

The last name is explained by claim 1.10. That claim also says that the following
definition applies to σŽ(T ) ∈ BFG(X) for any regular pure tangle L:

Definition 2.9. Let G be a non-degenerate perturbed Gaussian with covariance
matrix (lxy), and let (lxy) be the inverse covariance matrix. Set

∫ FG

G =

〈
exp∪·

(
−1

2

∑
x,y

lxy
∂x

^∂y

)
, PG

〉
.

Here the pairing 〈·, ·〉 : B(∂X)⊗B+(X) → A(∅) (where ∂X = {∂x : x ∈ X} is a set
of “dual” variables) is defined by

〈C1, C2〉 =
(

sum of all ways of gluing the ∂x-marked legs of C1 to
the x-marked legs of C2, for all x ∈ X

)
.

This sum is of course 0 if the numbers of x-marked legs do not match. If the
numbers of legs do match and each diagram has kx legs marked by x for x ∈ X,
the sum is a sum of

∏
x kx! terms.

2.1.4. Normalization. In part II of this series we will show how the philosophy
of Section 1.1 can be made rigorous, implying the following proposition:

4 Notice that the normalization is different than in [B-N2], [B-N3] where by careless design, a
sum was used instead of an average.
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Proposition 2.10 (Proof in [Å-II, Section 3]). regular pure tangle invariant Å0

descends to an invariant of regular links and as such it is invariant under the second
Kirby move (Figure 1).

If we want an invariant of rational homology spheres, we still have to fix Å0 to
satisfy the first Kirby move (Figure 2). This is done in a standard way, similar to
the way the Kauffman bracket is tweaked to satisfy the first Reidemeister move.
The trick is to multiply the relatively complicated Å0 by a much simpler invariant
of regular links, that has an opposite behavior under the first Kirby move and is
otherwise uninteresting. The result is invariant under both Kirby moves, and by
conservation of interest, it is as interesting as the original Å0:

Definition 2.11. Let U+ be the unknot with framing +1, and let U− be the
unknot with framing −1. Let L be a regular link, and let σ+ (σ−) be the number
of positive (negative) eigenvalues of the linking matrix of L (note that σ± are
invariant under the second Kirby move, which acts on the linking matrix by a
similarity transformation). Let the Århus integral Å(L) of L be

Å(L) = Å0(U+)−σ+Å0(U−)−σ−Å0(L),

with all products and powers taken using the disjoint union product of A(∅).
Theorem 1. (Proof in [Å-II, Section 3.3)]. Å is invariant under the first Kirby
move as well, and hence it is an invariant of rational homology spheres.

2.2. Main properties of the Århus integral

2.2.1. First property of Å: it has a conceptual foundation. This property
was already proven in Section 1. It is the main reason why the proofs of all other
properties (and of Proposition 2.10) are relatively simple.

2.2.2. Second property of Å: it is universal. Like there are finite-type
(Vassiliev) invariants of knots (see e.g. [B-N2], [Bi], [Go1], [Go2], [Ko1], [Va1],
[Va2] and [B-N6]), so there are finite-type (Ohtsuki) invariants of integer homology
spheres (see e.g. [Oh3], [GO], [LMO], [Le1] and [B-N6]). These invariants have a
rather simple definition, and just as in the case of knots, they seem to be rather
powerful, though precisely how powerful they are we still do not know. We argue
that the Århus integral Å plays in the theory of Ohtsuki invariants the same role
as the Kontsevich integral plays in the theory of Vassiliev invariants. Namely, that
it is a “universal Ohtsuki invariant”. However, manifold invariants are somewhat
more subtle than knot invariants, and the proper definition of universality is less
transparent (see [Oh3], [GO], [Le1]):

Definition 2.12. An invariant U of integer homology spheres with values in A(∅)
is a “universal Ohtsuki invariant” if

(1) The degree m part U (m) of U is of Ohtsuki type 3m ([Oh3]).
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(2) If OGL denotes the Ohtsuki-Garoufalidis-Le map5, defined in Figure 11,
from manifold diagrams to formal linear combinations of unit framed alge-
braically split links in S3, and S denotes the surgery map from such links
to integer homology spheres, then

(U ◦ S ◦OGL)(D) = D + (higher degree diagrams) (in A(∅))

whenever D is a manifold diagram (we implicitly linearly extend S and U ,
to make this a meaningful equation).

Figure 11. The OGL map: Take a manifold diagram D, embed it in S3 in some fixed way of your

preference, double every edge, replace every vertex by a difference of two local pictures as shown

here, and put a +1 framing on each link component you get. The result is a certain alternating

sum of 2v links with e components each, where v and e are the numbers of vertices and edges of

D, respectively.

Theorem 2 (Proof in [Å-II, Section 4.2]). Restricted to integer homology spheres,
Å is a universal Ohtsuki invariant.

Corollary 2.13.

(1) Å is onto all degree-homogeneous subspaces of A(∅).
(2) All Ohtsuki invariants factor through the map Å.
(3) The dual of A(∅) is the associated graded of the space of Ohtsuki invariants

(with degrees divided by 3; recall from [GO] that the associated graded of
the space of Ohtsuki invariants vanishes in degrees not divisible by 3.).

In view of Le [Le1], this theorem and corollary follow from the fact (discussed
below) that the Århus integral computes the LMO invariant, and from the univer-
sality of the LMO invariant ([Le1]). But as the definitions of the two invariants are
different, it is nice to have independent proofs of the main properties.

5 Nomenclatorial justification: Ohtsuki [Oh3] implicitly considered a map similar to OGL, with

alternating summation over 2{edges} rather than over 2{vertices}. Later, Garoufalidis and
Ohtsuki [GO] introduced “white vertices”, which amount to an alternating summation over

2{edges}×2{vertices}. Finally, Le [Le1, Lemma 5.1] noticed that in this context the alternating

summation over 2{edges} is superfluous, leaving us with the definition presented here.
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From Corollary 2.13 and the computation of the low degree parts of A(∅) in [B-
N5] and [Kn] it follows that the low-degree dimensions of the associated graded
of the space of Ohtsuki invariants are given by the table below. The last row of
this table lists the dimensions of “primitives” — multiplicative generators of the
algebra of Ohtsuki invariants.

degree (3m) 0 3 6 9 12 15 18 21 24 27 30 33

dimension 1 1 2 3 6 9 16 25 42 50 90 146

dimension of primitives 0 1 1 1 2 2 3 4 5 6 8 9

2.2.3. Third property of Å. It computes the Le-Murakami-Ohtsuki (LMO)
invariant.

Theorem 3 (Proof in [Å-III]). Å and the invariant L̂MO defined in [LMO] are
equal.6

2.2.4. Fourth property of Å. It recovers the Rozansky and Ohtsuki invariants.
In [Ro1], [Ro3], Rozansky shows how to construct a “perturbative” invariant of
rational homology spheres, valued in the space of power series in some formal
parameter, which we call ~. His construction is associated with the Lie algebra
sl(2), but it can be easily extended (see [Å-IV]) for other semi-simple Lie algebras
g. We call the resulting Rozansky invariant Rg.

Theorem 4 (Proof in [Å-IV]). For any semi-simple Lie algebra g,

Rg = Tg ◦ ~deg ◦ Å

where Tg : A(∅) → C is the operation of replacing the vertices and edges of a
trivalent graph by the structure constants of g and the metric of g, as in Section 1
and as in [B-N2], and ~deg is the operator that multiplies each diagram D in A(∅)
by ~ raised to the degree of D.

Corollary 2.14. LMO recovers Rg for any g. In particular, by [Ro2], LMO re-
covers the “p-adic” invariants of [Oh1], [Oh2].

The last statement was proved in the case of g = sl(2) by Ohtsuki [Oh4].

6 We refer to the invariant Ω̂ of [[]Section 6.2]LMO. Le, Murakami, and Ohtsuki also consider
in [LMO] an invariant Ω, which we usually denote by LMO. The invariant LMO is defined

for general 3-manifolds, and on rational homology spheres it differs from L̂MO only by a
normalization.
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3. Frequently asked questions

Let us answer some frequently asked questions. More detailed answers to most of
these questions will be given in the the later parts of this series.

Question 3.1. Your construction uses the Chern-Simons path integral (at least
ideologically). In what way is your construction different than the original con-
struction of 3-manifold invariants by Witten [Wi]?

Answer. Our path integral is over connections on S3, rather than over connections
on an arbitrary 3-manifold. This means that we can replace the path integral by
any well-behaved universal Vassiliev invariant, and get a rigorous result.

Question 3.2. What is the relation between your construction and Witten’s?

Answer. One answer is that the Århus integral should somehow be related to the
k → ∞ asymptotics of the Witten invariants. A more precise statement is Theo-
rem 4; recall that Rozansky conjectures (and demonstrates in some cases) that his
invariant is related to the trivial connection contribution to the k →∞ asymptotics
of the Witten invariants (in their Reshetikhin-Turaev guise, see [Ro1], [Ro3]). But
perhaps a more fair answer is we do not know. There ought to be a direct path-
integral way to see the relation between integration over all connections on some
3-manifold, and integration over connections on S3 followed by “integration of the
holonomies” in the sense of Section 1.1. But we do not know this way.

Question 3.3. Which one is more general?

Answer. Neither one. Assuming all relevant conjectures, Å only sees the k → ∞
limit, and only “in the vicinity of the trivial connection”. But this means it sees a
splitting (trivial vs. other flat connections) that the Witten invariants do not see.
Also, by Vogel [Vo], we know that A(∅) “sees” more than all semi-simple super Lie
algebras see, while the k →∞ limit of the Witten invariants is practically limited to
semi-simple super Lie algebras. On the other hand, there are Witten-like theories
with finite gauge groups, see e.g. [FQ], which have no parallel in the Å world.

Question 3.4. What is the relation between the Århus integral and the Axelrod-
Singer perturbative 3-manifold invariants [AS1], [AS2] and/or the Kontsevich “con-
figuration space integrals” [Ko2]?

Answer. We expect the Århus integral to be the same as Kontsevich’s configuration
space integrals and as the formal (no-Lie-algebra) version of the Axelrod-Singer
invariants, perhaps modulo some minor corrections (in both cases).

Question 3.5. What is the relation between the Århus integral and the LMO
invariant of Le, Murakami, and Ohtsuki [LMO]?

Answer. They are the same up to a normalization whenever Å is defined. See
Theorem 3.
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Question 3.6. What did you add?

Answer. A conceptual construction, and (thus) a better understanding of the re-
lation between the LMO invariant/Århus integral and the Rozansky and Ohtsuki
invariants. See Section 2.2.4.

Question 3.7. Does it justify a new name?

Answer. It is rather common in mathematics that different names are used to
describe the same thing, or almost the same thing, depending on the context or
the specific construction. See for example the Kauffman bracket and the Jones
polynomial, the Reidemeister and the Ray-Singer torsions, and the Čech-de-Rham-
singular-simplicial cohomology. Perhaps the name “Århus integral” should only be
used when the construction is explicitly relevant, with the names “Axelrod-Singer
invariants”, “Kontsevich’s configuration space integrals”, and “LMO invariant”
marking the other constructions. When only the functionality (i.e., Theorem 2)
matters, the name “LMO invariant” seems most appropriate, as Theorem 2 was
first considered and proved in the LMO context.

Question 3.8. Did not Reshetikhin once consider a construction similar to yours?

Answer. Yes he did, but he never completed his work. Our work was done in-
dependently of his, though in some twisted way it was initiated by his. Indeed,
it was Reshetikhin’s ideas that led one of us (Rozansky) to study what he called
“the Reshetikhin formula”, and that led him to discover his “trivial connection
contribution to the Reshetikhin-Turaev invariants” (the Rozansky invariants, see
Section 2.2.4). The Århus integral was discovered by “reverse engineering” start-
ing from the Rozansky invariants — we first found a diagram-valued invariant that
satisfies Theorem 4 (working with the ideas we discussed in [BGRT]), and only
then we realized that our invariant has the simple interpretation discussed in Sec-
tion 1. The result, the Århus integral, still carries some affinity to Reshetikhin’s
construction.

Question 3.9. What is the relation between the Århus integral and the p-adic
3-manifold invariants considered by Ohtsuki [Oh1]?

Answer. See Corollary 2.14.

Question 3.10. How powerful is Å?

Answer. It is a “universal Ohtsuki invariant” (see Section 2.2.2). In particular, as
the Casson invariant is Ohtsuki-finite-type (see [Oh3]), Å is stronger than the Cas-
son invariant. In terms of the table following Corollary 2.13, the Casson invariant
is just the degree 3 primitive, and there are many more. But how powerful Å really
is, how useful it can really be, we do not know. Can anybody answer that question
for the Jones polynomial?
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Question 3.11. Can you say anything about 3-manifolds with embedded links?

Answer. Everything works in that case too. See [Å-II, Section 5.1].

4. Appendix: Gaussian integration: a quick refresher

Whether or not you’ve seen perturbed Gaussian integration before, you surely
do not want to waste much energy on calculus tricks. Hence we include here a
refresher that you can swallow whole without wasting any time (and insert all the
right factors of ±i, 2±1, π±1/2, etc. if you do have some time to spare).

Let V be a vector space and dv a Lebesgue measure on V . A perturbed Gaussian
integral is an integral of the form IT =

∫
V

eT dv, where T is a polynomial (or
a power series) on V , of some specific form — T must be a sum T = 1

2Q +
P , where Q is a non-degenerate ‘big’ quadratic, and P is some (possibly) higher
degree ‘perturbation’, which in some sense should be ‘small’ relative to Q. If the
perturbation P is missing, then IT is a simple un-perturbed Gaussian integral.

The first step is to expand the eP part to a power series,

IT =
∫

V

eT dv =
∞∑

m=0

1
m!

∫
V

P (v)meQ(v)/2dv.

Then, we use some Fourier analysis. Recall that the Fourier transform takes in-
tegration to evaluation at 0, takes multiplication by a polynomial to multiple dif-
ferentiation, and takes a Gaussian to another Gaussian, with the negative-inverse
quadratic form. All and all, we find that

IT ∼
∞∑

m=0

1
m!

∂P m exp
(
−1

2
Q−1(v?)

)∣∣∣∣
v?=0

. (5)

The notation here means:

∼ means equality modulo 2’s, π’s, i’s, and their likes.
Q−1(v?) is the inverse of Q(v). It is a quadratic form on V ?, and it is evaluated

on some v? ∈ V ?.
∂P m is Pm regarded as a differential operator acting on functions on V ?. To

see how this works, recall that polynomials on V are elements of the
symmetric algebra S?(V ?) of V ?, and they act on S?(V ), namely on
polynomials (and hence functions) on V ?, via the standard ‘contract as
much as you can’ action Sk(V ?)⊗ Sl(V ) → Sl−k(V ).

Here are two ways to look at the result, equation (5):
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(1) We can re-pack the sum as an exponential and get

IT ∼
〈
eP , e−Q−1/2

〉
, (6)

where 〈·, ·〉 denotes the usual pairing S?(V ?)⊗ S?(V ) → C.
(2) We can expand e−Q−1/2 as a power series and get

IT ∼
〈 ∞∑

m=0

Pm

m!
,
∞∑

n=0

(−Q−1/2)n

n!

〉
. (7)

This last equation has a clear combinatorial interpretation: Take an ar-
bitrary number of unordered copies of P and an arbitrary number of un-
ordered copies of Q−1. If the total degrees happen to be the same, you can
contract them and get a number. Sum all the numbers you thus get, and
you’ve finished computing IT .

For the sake of concreteness, let us play with the example T = 1
2Q+P2 +P4,1 +

P4,2, where Q is the big quadratic, P2 is another quadratic which is regarded as
a perturbation, and P4,1 and P4,2 are two additional quartic perturbation terms.
It is natural to represent each of these terms by a picture of an animal (usually
connected) with as many legs as its degree. This is because P4,1 (say) is in S4(V ?).
That is, it is a 4-legged animal which has to be fed with 4 copies of some vector v
to produce the number P4,1(v):

(P4,1, v) 7→ P4,1(v) is

(
, v

)
7→ .

v v vv

With this in mind, T is represented by a sum of such connected animals:

T = 1
2 +

Q P2 P4,1 P4,2

+ +

Exponentiation is done using power se-
ries. Each term in expT is some power
of T and hence an element of some sym-
metric power Sk(V ?). As such, it is rep-
resented by some sum of pictures, each
of which is some disjoint union of the
connected animals making T . Namely,
exp T is some sum of ‘clouds’ right.
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The next step, as seen from equa-
tion (7), is to separate Q from the rest,
negate it, and invert it. If we think of
legs pointing down as legs in V ? and
legs pointing up as legs in V , the result
is a sum of ‘split coulds’ like the one on
the left.

The final step according to equation (7) is to contract the (−Q−1)’s with the P ’s,
whenever the degrees allow that. In pictures, we just connect the down-pointing
legs to the up-pointing legs in all possible ways, and the result is a big sum of
diagrams that look like this:

Notice that in these diagrams (commonly referred to as “Feynman diagrams”)
there are no ‘free legs’ left. Therefore they represent complete contractions, that
is, scalars.
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Vol. 8 (2002) The Århus integral I: Introductions 339

D. Bar-Natan
The Hebrew University
Institute of Mathematics
Giv’at-Ram, Jerusalem 91904
Israel
e-mail: drorbn@math.huji.ac.il
http://www.ma.huji.ac.il/∼drorbn

S. Garoufalidis
Harvard University
Department of Mathematics
Cambridge, MA 02138
USA
current address:
Georgia Institute of Technology
School of Mathematics
Atlanta, GA 30332-0160
USA
e-mail: stavros@math.gatech.edu
http://www.math.gatech.edu/∼stavros

L. Rozansky
University of Illinois at Chicago
Department of Mathematics
Statistics and Computer Science
Chicago, IL 60607-7045
USA
current address:
UNC-CH
Department of Mathematics
CB 3250 Phillips Hall
Chapel Hill, NC 27599-3250
USA
e-mail: rozansky@email.unc.edu

To access this journal online:
http://www.birkhauser.ch

D. P. Thurston
University of California at Berkeley
Department of Mathematics
Berkeley, CA 94720-3840
USA
current address:
Harvard University
Department of Mathematics
Cambridge, MA 02138
USA
e-mail: dpt@math.harvard.edu


