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Abstract. We continue the work started in [Å-I], and prove the invariance and universality in the
class of finite type invariants of the object defined and motivated there, namely the Århus integral
of rational homology 3-spheres. Our main tool in proving invariance is a translation scheme that
translates statements in multi-variable calculus (Gaussian integration, integration by parts, etc.)
to statements about diagrams. Using this scheme the straightforward “philosophical” calculus-
level proofs of [Å-I] become straightforward honest diagram-level proofs here. The universality
proof is standard and utilizes a simple “locality” property of the Kontsevich integral.
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1. Introduction

This paper is the second in a four-part series on “the Århus integral of rational
homology 3-spheres”. In the first part of this series, [Å-I], we gave the definition of
a diagram-valued invariant Å of “regular pure tangles”, pure tangles whose linking
matrix is non-singular,1 and gave “philosophical” reasons why Å should descend
to an invariant of regular links (framed links with non-singular linking matrix),
and as such satisfy the Kirby relations and hence descend further to an invariant
of rational homology 3-spheres. Very briefly, we defined the pre-normalized Århus
integral Å0 to be the composition

1 A precise definition of regular pure tangles appears in [Å-I, Definition 2.2]. It is a good idea to
have [Å-I] handy while reading this paper, as many of the definitions introduced and explained
there will only be repeated here in a very brief manner.
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Å0 :

{
regular

pure

tangles

}
=

= RPT Ž -
the [LMMO]

version of the

Kontsevich integral

A(↑X) σ -
formal

PBW

B(X)
∫ F G

-
formal

Gaussian

integration

A(∅).

In this formula,
• RPT denotes the set of regular pure tangles whose components are marked

by the elements of some finite set X (see [Å-I, Definition 2.2]).
• Ž denotes the Kontsevich integral normalized as in [LMMO] (check [Å-I,

Definition 2.6] for the adaptation to pure tangles).
• A(↑X) denotes the completed graded space of chord diagrams for X-marked

pure tangles modulo the usual 4T/STU relations (see [Å-I, Definition 2.4]).
• σ denotes the diagrammatic version of the Poincaré-Birkhoff-Witt theorem

(defined as in [B-N1], [B-N2], but normalized slightly differently, as in [Å-I,
Definition 2.7]).

• B(X) denotes the completed graded space of X-marked uni-trivalent dia-
grams as in [B-N1], [B-N2] and [Å-I, Definition 2.5].

• A(∅) denotes the completed graded space of manifold diagrams as in [Å-I,
Definition 2.3].

• ∫ FG is a new ingredient, first introduced in [Å-I, Definition 2.9], called
“formal Gaussian integration”. In a sense explained there and developed
further here, it is a diagrammatic analogue of the usual notion of Gaussian
integration.

Our main challenge in this paper is to prove that Å0 descends to an invariant of
links which is invariant under the second Kirby move. As it turns out, this depends
heavily on understanding properties of formal Gaussian integration, which are all
analogues of properties of standard integration over Euclidean spaces. We develop
the necessary machinery in Section 2 of this article, and then in Section 3 we move
on and use this machinery to prove two of our main results, Proposition 1.1 and
Theorem 1:

Proposition 1.1. The regular pure tangle invariant Å0 descends to an invariant
of regular links and as such it is insensitive to orientation flips (of link components)
and invariant under the second Kirby move.

Definition 1.2. Let U± be the unknot with framing ±1, and let σ+ (σ−) be the
number of positive (negative) eigenvalues of the linking matrix of a regular link L.
Let the Århus integral Å(L) of L be
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Å(L) = Å0(U+)−σ+Å0(U−)−σ−Å0(L), (1)

with all products and powers taken using the disjoint union product of A(∅).
Theorem 1. Å is invariant under orientation flips and under both Kirby moves,
and hence ( [Ki]) it is an invariant of rational homology 3-spheres.

Our second goal in this article is to prove that Å is a universal Ohtsuki invari-
ant, and hence that all Q-valued finite-type invariants of integer homology spheres
are compositions of Å with linear functionals on A(∅). We present all relevant
definitions and proofs in Section 4 below.

2. Formal diagrammatic calculus

In this section we study the theory of formal Gaussian integration, along with
a neighboring theory of formal differential operators. The idea is that monomi-
als can be represented by vertices of certain valences, and differentiation (almost
always) and integration (at least in the case of Gaussian integration) are given
by combinatorial formulas that can be viewed as manipulations done on certain
kinds of diagrams built out of these vertices. This extracts some parts of good
old elementary calculus, and replaces algebraic manipulations by a diagrammatic
calculus. Now forget the interpretation of diagrams as functions and operators,
and you will be left with a formal theory of diagrams in which there are formal
diagrammatic analogs of various calculus operations and of certain theorems from
classical calculus.

This diagrammatic theory is more general than what we need for this paper;
it is not restricted to the diagrams (and relations) that make up the spaces that
we use often, such as A and B. We are sure such a general formal diagrammatic
theory was described many times before and we make no claims of originality. This
theory is implicit in many discussions of Feynman diagrams in physics texts, but
we are not aware of a good reference that does everything that we need the way we
need it. Hence in this section we describe in some detail that part of the general
theory that we will use in the later sections.

2.1. The general setup

Our basic objects are diagrams with some internal structure (that we mostly do
not care about), and some number of “legs”, outward pointing edges that end in
a univalent vertex. The legs are labeled by a vector space, or by a variable that
lives in the dual of that vector space. We think (for the purpose of the analogy
with standard calculus) of such a diagram as representing a tensor in the tensor
product of the spaces labeled next to its legs. We assume that legs that are labeled
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the same way are interchangeable, meaning that our diagrams represent symmetric
tensors whenever labels are repeating. Symmetric tensors can be identified with
polynomials on the dual:

x

x

y

yx

7→ a polynomial of degree 3 in x
and degree 2 in y.

We also allow legs labeled by dual spaces or by dual variables. By convention,
the variable dual to x is denoted ∂x. Just as the symmetric algebra S(V ?) can be
regarded as a space of constant coefficient differential operators acting on S(V ),
diagrams labeled by dual variables represent differential operators:

x

x

x

∂y

∂y

7→
A second order differential operator
acting on functions of y, with a coef-
ficient cubic in x.

∂x ∂x ∂x ∂x

7→ A fourth order constant coefficient
differential operator.

We assume in addition that each diagram has an “internal degree”, some non-
negative half integer (0, 1

2 , 1, 3
2 , . . . ), associated with it. It is to be thought of as

the degree in some additional (small or formal) parameter ~ that the whole theory
depends upon. That is, the polynomials and differential operators that we imitate
also depend on some additional parameter ~.

We also consider weighted sums of diagrams (representing not necessarily homo-
geneous polynomials and differential operators), and even infinite weighted sums
of diagrams provided either their internal degree grows to infinity or their number
of legs grows to infinity. These infinite sums represent power series (in ~ and/or in
the variables labeled on the legs) and/or infinite order differential operators.

Finally, we allow some “internal relations” between the diagrams involved. That
is, sometimes we mod out the spaces of diagrams involved by relations, such as the
IHX and AS relation, that do not touch the external legs and the internal degree
of a diagram. All operations that we will discuss below only involve the external
legs and/or the internal degree, and so they will be well-defined even after moding
out by such internal relations.

We then consider some operations on such diagrams. The operation of adding
diagrams (whose output is simply the formal sum of the summands) corresponds
to additions of polynomials or operators. The operation of disjoint union of di-
agrams (adding their internal degrees), extended bilinearly to sums of diagrams,
corresponds to multiplying polynomials and/or composing differential operators (at
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least in the constant coefficients case, where one need not worry about the order
of composition). Once summation and multiplication are available, one can define
exponentiation and other analytic functions using power series expansions.

The most interesting operation we consider is the operation of contraction (or
“gluing”). Two tensors, one in, say, V ? ⊗ W and the other in, say, V ⊗ Z, can
be contracted, and the result is a new tensor in W ⊗ Z. The graphical analog of
this operation is the fusion of two diagrams along a pair (or pairs) of legs labeled
by dual spaces or variables (while adding their internal degrees). In the case of
legs labeled by dual variables, the calculus meaning of the fusion operation is the
pairing of a derivative with a linear function. The laws of calculus dictate that
when a differential operator D acts on a monomial f , the result is the sum of all
possible ways of pairing the derivatives in D with the factors of f . Hence if D is
a diagram representing a differential operator (i.e., it has legs labeled ∂x, ∂y, etc.)
and f is a diagram representing a function (legs labeled x, y, . . . ), we define

D [ f =


sum of all ways of gluing all legs labeled ∂x on D

with some or all legs labeled x on f (and same
for ∂y and y, etc.)


 .

(This sum may be 0 if there are, say, more legs labeled ∂x on D than legs labeled
x on f). For example,

x
∂x

∂x

D

=
x

x

x

y

y

+
f

+

+

+

+

x

y

y

x

y

y

x

y

y

x

y

y

x

x

x

x

x

x

x

y

y

x

y

y

[ .

(In this figure 4-valent vertices are not real, but just artifacts of the planar pro-
jection). If this were calculus and the spaces involved were one-dimensional, we
would call the above formula a proof that x(∂x)2 x3y2 = 6x2y2.

Remark 2.1. The reader may show that Leibniz’s formula, D [ (fg) = (D [ f)g +
f(D [ g) holds in our context, whenever D is a first order differential operator.
(Remember that multiplication is disjoint union. D can connect to the disjoint
union of f and g either by connecting to a leg of f , or by connecting to a leg of g.)

Remark 2.2. The reader may prove the exponential Leibniz’s formula, (expD) [∏
fi =

∏
(expD)[fi, where D is first order in x and has no coefficients proportional

to x (i.e., where D has one leg labeled ∂x and no legs labeled x).

Below we will need at some technical points an extension of this remark to the
case when the operators involved are not necessarily first order. The result we need
is a bit difficult to formulate, and doing so precisely would take us too far aside.
But nevertheless, the result is rather easy to understand in “chemical” terms, in
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which diagrams are replaced by molecules and exponentiations are replaced by
substance-filled containers. Notice that the exponentiation of some object O is the
sum

∑
kOk/k! of all ways of taking “many” unordered copies of O, so it can be

thought of “taking a big container filled with (copies of) the molecule O”.
A “homogeneous reaction” (in chemistry) is a reaction in which a homogeneous

mixture A of mutually inert reactants is mixed with another homogeneous mixture
B of mutually inert reactants, allowing reactions to occur and products to be
produced. The result of such a reaction is homogeneous mixture of substances,
each of which produced by some allowed reaction between one (or many) of the
reactants in A and one (or many) of the reactants in B.

In our context, the “mixture” A is the exponential exp
∑

αifi of some linear
combination of (diagrams representing) functions. The mixture B is the exponen-
tial exp

∑
βjDj of some sum of (diagrams representing) mutually inert differential

operators Dj . That is, all of the differentiations in the Dj ’s must act trivially on
all of the coefficients of the Dj ’s. That is, the diagrams occurring in the Dj ’s have
“coefficient legs” labeled by some set of variables X and “differentiations legs” la-
beled by the dual variables to some disjoint set of variables Y . Computing B [A is
in some sense analogous to mixing A and B and allowing them to react. The result
is some “mixture” (exponential of a sum) of compounds produced by reactions in
which the legs in some number of the diagrams in B are glued to some of the legs
in some number of the diagrams in A. These compounds come with weights (“den-
sities”) that are (up to minor combinatorial factors) the products of the densities
αi and βj of their ingredients.

Remark 2.3. It is possible to write (exp
∑

βjDj) [ (exp
∑

αifi) as an explicit
exponential using the above terms.

We sometimes consider relabeling operations, where one takes (say) all legs
labeled x in a given diagram f and replaces the x labels by, say, y’s, calling the
result D/(x → y). This corresponds to a simple change of variable in standard
calculus. We wish to allow more complicated linear reparametrizations as well, but
for that we need to add a bit to the rules of the game. The added rule is that we
also allow labels that are linear combinations of the basic labels (such as x + y),
with the additional provision that the resulting diagrams are multi-linear in the
labels (so a diagram with a leg labeled x + y and another leg labeled z + w is set
equal to a sum of four diagrams labeled (x, z), (x,w), (y, z), and (y, w)). Now
reparametrizations such as x → α + β, y → α− β make sense.

Remark 2.4. The reader may show that the operation of reparametrization is
compatible with the application of a differential operator to a function, as in stan-
dard calculus. For instance, in standard calculus the change of variables x → α+β,
y → α − β implies an inverse change for partial derivatives: ∂x → (∂α + ∂β)/2,
∂y → (∂α − ∂β)/2. Show that the same holds in the diagrammatic context:
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(D [ f)

/(
x → α + β
y → α− β

)
=

=

(
D

/(
∂x → (∂α + ∂β)/2
∂y → (∂α − ∂β)/2

))
[

(
f

/(
x → α + β
y → α− β

))
.

2.2. Formal Gaussian integration

In standard calculus, Gaussians are the exponentials of non-degenerate quadratics,
and Gaussian integrals are the integrals of such exponentials multiplied by poly-
nomials or appropriately convergent power series. Such integrals can be evaluated
using the technique of Feynman diagrams (see [Å-I, appendix]). The diagrammatic
analogs of these definitions and procedures are described below.

To proceed we must have available the diagrammatic building blocks for
quadratics. These are what we call struts. They are lines labeled on both ends,
they come in an assortment of forms (Figure 1) and they satisfy simple composi-
tion laws (Figure 2), that imply that the strut x

∂x
acts like the identity on

legs labeled by x, and that the struts x_x and ∂x
^∂x

are inverses of each other
and their composition is x

∂x
. Struts always have internal degree 0. To make

convergence issues simpler below, we assume that there are no diagrams of internal
degree 0 other than the struts, and that for any j ≥ 0 there is only a finite number
of strutless diagrams (diagrams none of whose connected components are struts)
with internal degree ≤ j.

y

∂x

∂x

x

∂x

∂x

∂y
∂y

y

x x

x

Figure 1. An assortment of struts.

x◦ =
∂x

xx

=◦ x

∂x∂x ∂x

◦ =
∂x

x

=◦ x

∂x

x x

∂x ∂x

Figure 2. The laws governing strut compositions. The informal notation ◦ means: glue the two

adjoining legs.

Definition 2.5. Let X be a finite set of variables. A quadratic Q in the variables
in X is a sum of diagrams made of struts whose ends are labeled by these variables:
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Q =
∑

x,y∈X

lxy
x_y,

where the matrix (lxy) is symmetric. Such a quadratic is “non-degenerate” if (lxy)
is invertible. In that case, the inverse quadratic is the sum

Q−1 =
∑

x,y∈X

lxy
∂x

^∂y
,

where (lxy) denotes the inverse matrix of (lxy).

Definition 2.6. An infinite combination of diagrams of the form

G = P · expQ/2

is said to be Gaussian with respect to the variables in X if Q is a quadratic (in
those variables) and P is X-substantial, meaning that the diagrams in P have no
components which are struts both of whose ends are labeled by members of X.
Notice that P and Q are determined by G. In particular, the matrix Λ = (lxy) of
the coefficients of Q is determined by G. We call it the “covariance matrix” of G.

Definition 2.7. We say that a Gaussian G = P exp Q/2 is non-degenerate, or
integrable, if Q is non-degenerate. In such a case, we define the formal Gaussian
integral of G with respect to X to be∫ FG

P · exp Q/2 dX =
〈
exp−Q−1/2, P

〉
X

=
((

exp−Q−1/2
)

[ P
)/((

x → 0
∀x ∈ X

))
,

(2)

where

〈D,P 〉X :=




sum of all ways of glu-
ing the ∂x-marked legs of
D to the x-marked legs
of P , for all x ∈ X


 .




This sum can be non-zero
only if the number of ∂x-
marked legs of D is equal to
the number of x-marked legs
of P for all x ∈ X.




(Compare with [Å-I, Definition 2.9 and equation (6)]). The fact that P is X-
substantial guarantees that for any given internal degree and any given number of
legs, the computation of the Gaussian integral is finite.

Below we need to know some things about the relation between differentiation
and integration. If a certain infinite order differential operator D contains too many
struts, then the computation of (even a finite part of) D [ G may be infinite, or
else, the result may be non-Gaussian and thus outside of our theory of integration.
Both problems do not occur if D is “X-substantial”, defined below:

Definition 2.8. Let X be a set of variables and D an differential operator. We
say that D is X-substantial if it contains no struts both of whose ends are labeled
by members of X or their duals.
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2.3. Invariance under parity transformations

It is useful to know that formal Gaussian integrals, just like their real counterparts,
are invariant under negation of one of the variables:

Proposition 2.9. Let G = P expQ/2 be integrable with respect to X, let y ∈ X,
and let G′ = P ′ exp Q′/2 be G/(y → −y). Then

∫ FG
GdX =

∫ FG
G′ dX.

Proof. One easily verifies that P ′ = P/(y → −y), Q′ = Q/(y → −y) and Q′−1 =
Q′−1

/(∂y → −∂y). Thus in each (y ↔ ∂y)-gluing in the computation of
∫ FG

G′ dX

two signs get flipped (relative to the computation of
∫ FG

GdX). Overall we flip
an even number of signs, meaning, no signs at all. ¤
Remark 2.10. More generally, the reader may verify that Gaussian integration∫ FG is compatible with linear reparametrizations such as in Remark 2.4. (Note
that if the reparametrization matrix is M , then dual variables are acted on by
M−1. Each gluing in (2) is between one variable and one dual variable, and so
occurrences of M and of M−1 come in pairs.)

2.4. Iterated integration

The classical Fubini theorem says that whenever all integrals involved are well
defined, integration over a product space is equivalent to integration over one fac-
tor followed by integration over the other. We seek a similar iterated integration
identity for formal Gaussian integrals.

Let G = P expQ/2 be a non-degenerate Gaussian with respect to a set of
variables Z, and let Z = X ∪· Y be a decomposition of the set of variables into two
disjoint subsets. Write the covariance matrix Λ of G and its inverse Λ−1 as block
matrices with respect to this decomposition, taking the variables in X first and the
variables in Y later:

Λ =
(

A B
BT C

)
, Λ−1 =

(
D E
ET F

)
.

The blocks A, C, D, and F are symmetric, and the fact that Λ and Λ−1 are inverses
implies the following identities:

AD + BET = IX , AE + BF = 0,

BT D + CET = 0, BT E + CF = IY .
(3)

Proposition 2.11. If the block A is invertible, then the formula

∫ FG

GdZ =
∫ FG

(∫ FG

GdX

)
dY (4)
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makes sense and holds.

Proof. The left hand side of this formula is not problematic, and directly from the
definition of formal Gaussian integration and from the decomposition of Λ−1 into
blocks, we find that it equals

〈
exp−1

2


 ∑

x,x′∈X

Dxx′
∂x

^∂x′ +2
∑

x∈X, y∈Y

Exy
∂x

^∂y
+

∑
y,y′∈Y

F yy′
∂y

^∂y′


 , P

〉
.

We usually suppress the summation symbols, getting

〈
exp−1

2

(
Dxx′

∂x
^∂x′ +2Exy

∂x
^∂y

+F yy′
∂y

^∂y′

)
, P

〉
. (5)

We need to prove that the right hand side of (4) is well defined and equals (5).
Let us start with the inner integral. Rewriting the integrand in the form

(
P exp

1
2

(
2Bxy

x_y +Cyy′
y_y′

))
exp

1
2
Axx′

x_x′ ,

we find that the integrand is Gaussian with respect to X with covariance matrix
A. This matrix was assumed to be invertible, and hence the inner integral G′ is
defined and equals (denoting the inverse of A by Ā, and using (2))

G′ =
(

exp−1
2

(
Āxx′

∂x
^∂x′

)
[

(
P exp

1
2

(
2Bxy

x_y +Cyy′
y_y′

)))/
(x → 0).

Using Remark 2.3 and suppressing the automatic evaluation at x = 0, this becomes

(
exp−1

2

(
Āxx′

∂x
^∂x′ +2Āxx1Bx1y

y
∂x

)
[ P

)
·

· exp
1
2

(
Cyy′

y_y′ −BT
y′x′Ā

x′xBxy
y_y′

)
.

We are now ready to evaluate the dY integral of G′. In the above formula
G′ is already written in the required format P ′ exp 1

2Q′, with Q = Cyy′
y _y′

−BT
y′x′Ā

x′xBxy
y_y′ . Thus the covariance matrix is Λ′ = C − BT ĀB. The rela-

tions (3) imply that Λ′ is invertible, with inverse F . Thus the integral with respect
to Y of G′ is (suppressing the evaluation at y = 0)

(
exp−1

2
F yy′

∂y
^∂y′

)
[

(
exp−1

2

(
Āxx′

∂x
^∂x′ +2Āxx1Bx1y

y
∂x

)
[ P

)
.
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Again using Remark 2.3, this is

= exp−1
2


 Āxx′

∂x
^∂x′ + Āxx1Bx1yF yy′BT

y′x′1
Āx′1x′

∂x
^∂x′

− 2Āxx′Bx′y′F
y′y

∂y
^∂x

+ F yy′
∂y

^∂y′


 [ P.

Giving names to the coefficients and switching to matrix-talk, we find that this is

exp−1
2

(
Lxx′

∂x
^∂x′ +2Mxy

∂x
^∂y

+F yy′
∂y

^∂y′

)
[ P,

with L = Ā + ĀBFBT ĀT and M = −ĀBF . A second look at the relations (3)
reveals that L = D and M = E, proving that the last formula is equal to (5), as
required. ¤

2.5. Integration by parts

Let D be a diagram representing a differential operator with respect to the
variable z (that is, it may have “differentiation legs” labeled ∂z, “coefficient legs”
labeled z, and possibly other legs labeled by other variables). Assume D has l
differentiation legs labeled ∂z (“D is of order l”) and k coefficient legs labeled z.

Definition 2.12. The “divergence” divz D of D with respect to z is the result of
“applying D to its own coefficients”. That is,

divz D =




0 if l > k,(
sum of all ways of attaching all legs labeled
∂z with some or all legs labeled z

)
, if l ≤ k.

(Compare with the standard definition of the divergence of a vector field, where
each derivative “turns back” and acts on its own coefficient).

In standard calculus, the following proposition is an easy consequence of inte-
gration by parts:

Proposition 2.13. Let X be a set of variables, and let z ∈ X. If G is a non-
degenerate Gaussian with respect to X and D is an X-substantial operator of or-
der l, then ∫ FG

D [ GdX = (−1)l

∫ FG

(divz D)GdX. (6)

Proof. Write G = P exp Q/2 with Q =
∑

x,y∈X lxy
x_y. Let us pick one leg marked

∂z in D, put a little asterisk (∗) on it, and follow it throughout the computation
of the left hand side of (6). First, in computing D [ G, the special leg gets glued
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either to one of the legs in P , or to one of the legs in expQ/2. The result looks
something like

D [ G =


 +

∑
y∈X

lzyD P...

∗∂z

more...

z

z

w

z

D P
∗∂z

... ...
more

z

z

w

z y z

activity activity


 exp Q/2.

The next step is integration. The factor expQ/2 is removed, and struts labeled
and weighted by the negated inverse covariance matrix are glued in. Of particular
interest is the strut y ^y′ glued to the marked leg in the right term. It comes
with a coefficient like −lyy′ from the negated inverse covariance matrix, which
multiplies the coefficient lzy already in place. The summation over y evaluates
matrix multiplication of a matrix and its inverse, and we find that y′ = z and the
overall coefficient is −1. The other end of this strut is glued to some leg (with
a label in X), either on P or on D. Following that, all other negated inverse
covariance gluings are performed. The result looks something like

∫ FG

D [ GdX =


exp−1

2

∑
x,y∈X

lxy
∂x

^∂y


 [


 − −D P...

...

∗∂z

more

zz

z

w
D P...

...

∗∂z

D P... ...

glue

∂z

∗

more more

zz

z

w

zz

z

w
activity activity activity


 .

In this formula the first term cancels the second, and we are left only with
the third. But the same argument can be made for all legs marked ∂z in D, and
hence in left hand side integral in equation (6) they all have to “turn back” and
differentiate a coefficient of D. Counting signs, this is precisely the right hand side
of equation (6). ¤

2.6. Our formal universe

Below we apply the formalism and techniques developed in this section in the
case where the diagrams are X-marked uni-trivalent diagrams modulo the AS and
IHX relations, for some label set X. The “internal degree” of a diagram is half the
number of internal (trivalent) vertices it has, and the struts are simply the internal
degree 0 diagrams — uni-trivalent diagrams that have no internal vertices. In the
Kontsevich integral, the coefficients of struts measure linking numbers between the
components marked at their ends (or self linkings, if the two ends are marked the
same way).
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The spaces of uni-trivalent diagrams that we consider are Hopf algebras, and
the formal linear combinations of uni-trivalent diagrams that we take as inputs
come from evaluating the Kontsevich integral, whose values are always grouplike.
Thus our inputs are always exponentials. Splitting away the struts, we find that
they are always Gaussian with the linking matrix of the underlying link as the
covariance matrix. If we stick to pure tangles whose linking matrix is non-singular,
our inputs are always integrable.

3. The invariance proof

Let us start with an easy warm-up:

Proposition 3.1. Å0 is insensitive to orientation flips.

Proof. Flipping the orientation of the component labeled x in some pure tangle L
acts on σŽ(L) by flipping the sign of all uni-trivalent diagrams that have an odd
number of x-marked legs (check [B-N1, Section 7.2] for the case of knots; the case
of pure tangles is the same). Namely, it acts by the substitution x → −x. Now use
Proposition 2.9. ¤

3.1. Å0 descends to regular links

Our first real task is to show that if two regular pure tangles have the same
closures then they have the same pre-normalized Århus integral and hence the
pre-normalized Århus integral Å0 descends to regular links. We first extend the
definition of Å0 to some larger class of “closable” objects (Definition 3.2), the class
of regular dotted Morse links. We then show that Å0 descends from that class to
links (Proposition 3.4), and finally that regular pure tangles “embed” in regular
dotted Morse links (Proposition 3.7). Taken together, these two propositions imply
that Å0 descends to regular links also from regular pure tangles.

We should note that the Århus integral can be defined and all of its properties
can be proved fully within the class of regular dotted Morse links, and that this is
essentially what we do in this paper. The only reasons we also work with regular
pure tangles are reasons of elegance.

Definition 3.2. A dotted Morse link L is a link embedded in R3
xyt so that the third

Euclidean coordinate t is a Morse function on it, together with a dot marked on
each component. We assume that the components of L are labeled by the elements
of some label set X. Notice that we do not divide by isotopies. The “closure” of
a dotted Morse link is the (X-marked) link obtained by forgetting the dots and
dividing by isotopies. These definitions have obvious framed counterparts.

Remark 3.3. Why so ugly a definition? Because all other choices are even worse.
We have to “dot” the link components because we want the Kontsevich integral to
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be valued in A(↑X) (see below). But then we have to give up isotopy invariance at
the time slices of the dots, and it is simpler to give it up altogether. See also the
comment about q-tangles/non-associative tangles above Proposition 3.7.

The framed Kontsevich integral Z, as well as the variant Ž due to Le, H. Mu-
rakami, J. Murakami, and Ohtsuki [LMMO], both have obvious definitions in the
case of framed dotted Morse links. The new bit is that each component has dot
marked on it, which can serve as a cutting mark for scissors. In other words, every
component can be regarded as a directed line, and thus the images of Z and Ž are
in A(↑X). But now we can compose Ž with σ and then with

∫ FG, and we find
that the pre-normalized Århus integral Å0 can also be defined on regular dotted
Morse links (framed dotted Morse links with a non-singular linking matrix).

Proposition 3.4. Å0 descends from regular dotted Morse links to regular links.

Proof. The usual invariance argument for the Kontsevich integral (see [Ko], [B-N1])
applies also in the case of (framed) dotted Morse links, provided the time slices
of the dots are frozen. So the only thing we need to prove is that Å0 is invariant
under sliding the dots along a component; once this is done, the frozen time slices
melt and we have complete invariance.

A different way of saying that a dot moves on a framed dotted Morse link L
is saying that we have two dots on one component (say z), cutting it into two
subcomponents x and y. Each time we ignore one of the dots and compute Ž,
getting two results G1 and G2, and we wish to compare the integrals of G1 and G2.
Alternatively, we can keep both dots on the z component and compute Ž in the
usual way, only cutting the resulting chord diagrams open at both dots, getting a
result G in the space2 A(↑x↑y↑E). From G both G1 and G2 can be recovered by
attaching the components x and y in either of the two possible orders. This process
is made precise in Definition 3.5 below, and the fact that

∫ FG
σG1 =

∫ FG
σG2

follows from the “cyclic invariance lemma” (Lemma 3.6) below. We only need to
comment that G is group-like like any evaluation of the Kontsevich integral. ¤
Definition 3.5. Let −→mxy

z : A(↑x↑y↑E) → A(↑z↑E) be the map described in Fig-
ure 3. The map −→myx

z is the same, only with the roles of x and y interchanged.

Lemma 3.6. (the cyclic invariance lemma). If G ∈ A(↑x↑y↑E) is group-like and
σ−→mxy

z G is an integrable member of Bn, then σ−→myx
z G is also integrable and the two

integrals are equal:

∫ FG

σ−→mxy
z GdzdE =

∫ FG

σ−→myx
z GdzdE.

2 The notation means: pure tangle diagrams whose skeleton components are labeled by the
symbols x, y, and some additional n− 1 symbols in some set E of “Extra variables”. Below
we will use variations of this notation with no further comment.
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x y

2

3

1
=

2

3

1
3

1

2

z

−→mxy
z

z

Figure 3. The map −→mxy
z in the case n = 2: Connect the strands labeled x and y in a diagram in

A(↑x↑y↑), to form a new “long” strand labeled z, without touching all extra strands.

Proof. It is easy to verify that G1 = σ−→mxy
z G and G2 = σ−→myx

z G are both group-
like and hence Gaussian, and that they have the same covariance matrix (when we
apply this lemma as in Proposition 3.4, in both cases the covariance matrix is the
linking matrix of the underlying link). Thus if one is integrable so is the other, and
we have to prove the equality of the integrals.

The case of knots. If n = 1 then the fact that A(↑) is isomorphic to A(ª)
(namely, the commutativity of A(↑), see [B-N1]) implies that −→mxy

z = −→myx
z and

there’s nothing to prove.

The lucky case. If G1,2 are integrable with respect to E we can use Propo-
sition 2.11 and compute the integrals with respect to those variables first. The
results are diagrams labeled by just one variable (z) (namely, functions of just one
variable), and we are back in the previous case.

The ugly case. If G1,2 are not integrable with respect to E, we can perturb them
a bit by multiplying by some exp

∑
i,j εij

ei_ej to get Gε
1,2. The integrals of Gε

1,2

(with respect to all variables) depend polynomially on the ε’s in any given degree.
For generic ε’s we get Gε

1,2 that are integrable with respect to E, and we fall back
to the lucky case. Thus the integrals of Gε

1,2 are equal as power series in the ε’s,
and in particular they are equal at εij = 0. ¤

Every (framed) pure tangle L defines a class of associated (framed) dotted Morse
links, obtained by picking a specific Morse representative of L, marking dots at the
tops of all strands, and closing to a link in some specific way making sure that the
down-going strands used in the closure are very far (d miles away) from the original
pure tangle. An example is in Figure 4. What’s very far? In the infinite limit;
meaning that whenever we refer to an associated (framed) dotted Morse link, we
really mean “a sequence of such, with d →∞”. To remind ourselves of that, we add
the phrase “(at limit)” to the statements that are true only when this (or a similar,
see below) limit is taken. If one is ready to sacrifice some simplicity, all of these
statements can be formulated without limits if the technology of q-tangles ([LM1])
(or, what is nearly the same, non associative tangles ([B-N3])) is used instead
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of using specific Morse embeddings. Readers familiar with [LM1] and/or [B-N3]
should have no difficulty translating our language to the more precise language of
those papers.

dots
the

many miles away

Figure 4. A pure tangle and an associated dotted Morse link.

Proposition 3.7 (at limit). If L is a pure tangle and L• is an associated dotted
Morse link, then Ž(L) = Ž(L•).

Proof (at limit). The dotted Morse link L• is obtained
from L by sticking L within a “closure element” CX ,
shown on the right (for |X| = 3). Let C ′

X be CX with
the two boxes at its ends removed. These two boxes de-
note “adapters” A and A−1 that only change the strand
spacings to be uniform, from a possibly non-uniform
spacings in C ′

X .

goes
here

L

Inspecting the definitions of Ž for pure tangles (see [Å-I, Definition 2.6]) and
for dotted Morse links (see [LMMO]), we see that we only need to show that
Z(CX) = ∆Xν in the space A(↑X) (check [Å-I, Definition 2.6] for the definition of
∆X). Here CX is itself regarded as a dotted Morse link (with the dots at the space
allotted for L, which is assumed to be small relative to the size of CX itself) and Z
denotes the Kontsevich integral in its standard normalization. Clearly Z(C{x}) =
ν = ∆{x}ν, as C{x} is the dotted unknot and ν is by definition the Kontsevich
integral of the unknot. Theorem 4.1 of [LM2], rephrased for dotted Morse links,
says that doubling a component (so that the two daughter components are parallel
and very close) and then computing Z is equal to Z followed by ∆. In other words,
Z(C{x,y}) = ∆{x,y}(ν). Iterating this argument, we find that Z(C ′

X) = ∆Xν, for
some specific (at limit) choice of strand spacings in C ′

X . But ∆Xν is central and
hence Z(CX) = Z(A−1)Z(C ′

X)Z(A) = Z(A)−1(∆Xν)Z(A) = ∆Xν. ¤
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3.2. Å0 is invariant under the second Kirby move

Definition 3.8. A tight Kirby move L1 → L2 is a move between two framed
dotted Morse links L1 and L2 as in Figure 5, in which

• Before the move the two parallel strands in the do-
main S are “tight”. Namely, they are very close
to each other relative to the distance between them
and any other feature of the link.

• The doubling of the y component is done in a “very
tight” fashion. Namely, the distance between the
the copies of y produced is very small relative to
the scale in which the rest of the link is drawn, even
much smaller than the original distance between the
x and y components.

• The dots on the x and y components are inside the
domain S both before and after surgery, and they
are placed as in the picture on the right.

x

y

y

x

before surgery

after surgery

We extend the notion of “at limit” to mean that “tightness” is also increased ad
infinitum.

21 3

x y

S

L1 L2

x

y′

x

yy

Figure 5. The second Kirby move L1 → L2: (1) Some domain S in space in which some two
components of the link (denoted x and y) are adjacent and nearly parallel is specified. (2)
The component y is doubled (using its framing), getting a new component y′. (3) A surgery
is performed in S combining y′ into x, so that now the x component runs parallel to the y
component in addition to running its own course. We say that the component x “slides” over the
component y.

The following proposition is due to Le, H. Murakami, J. Murakami, and Oht-
suki [LMMO]. It holds for Ž and not for Z, and it is the reason why [LMMO]
introduced Ž. We present the “at limit” version, which is equivalent to the “q-
tangle” version proved in [LMMO].

Proposition 3.9 (at limit, proof in [LMMO]). Let L1 → L2 be a tight Kirby move
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between two framed dotted Morse links L1 and L2 marked as in Figure 5. Then

Ž(L2) =
−→
Υ Ž(L1),

where
−→
Υ = −→mxy′

x ◦∆y
yy′ and ∆y

yy′ denotes the diagram-level operation of doubling
the y strand (lifting all vertices on it in all possible ways, and calling the double
y′). (Compare with [Å-I, equation (1)]).

Proof of Proposition 1.1. After propositions 3.1, 3.4 and 3.7 have been proved, all
that remains is to show that Å0 is invariant under tight Kirby moves of framed
dotted Morse links. (Notice that every Kirby move between links has a presentation
as a tight Kirby move between dotted Morse links). Using Proposition 3.9 we find
that it is enough to show that whenever G is a non-degenerate Gaussian (think
G = σŽ(L1)), ∫ FG

GdE =
∫ FG−→

ΥGdE, (7)

where we re-use the symbol
−→
Υ to denote the same operation on the level of uni-

trivalent diagrams.
Let Υ be the same as

−→
Υ , only with mxy′

x replacing −→mxy′
x , where mxy′

x G :=
G/(y′ → x). The operation Υ is a substitution operation of the form discussed in
Section 2; ΥG = G/(y → x + y). Remark 2.10 shows that equation (7) holds if

−→
Υ

is replaced by Υ. So we only need to analyze the difference
−→
Υ −Υ. The difference−→mxy′

x −mxy′
x is given by gluing a certain sum D′ of forests whose roots are labeled

x and whose leaves are labeled ∂x and ∂y′ , followed by the substitution (y′ → x).
Hence,

(
−→
Υ −Υ)G = (D′ [ [G/(y → y + y′)]) /(y′ → x) = (D [ G)/(y → x + y),

where D is D′ with every ∂y′ replaced by a ∂y. (A precise formula for D can
be derived from the results of Section 5.3, but we don’t need it here). Clearly,
divy D = 0; the coefficients of D are independent of y and every term in D is of
positive degree in ∂y. Now

∫ FG

(
−→
Υ −Υ)GdE =

∫ FG

(D [ G)/(y → x + y) dE

=
∫ FG

D [ GdE by Remark 2.10

= 0 by Proposition 2.13.

¤
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3.3. Å and invariance under the first Kirby move

Proof of Theorem 1. Flipping the orientation of a component negates all linking
numbers between it and any other component, and hence the linking matrix changes
by a similarity transformation. The second Kirby moves adds all linking numbers
involving the y-component (see Figure 5) to the corresponding ones with the x-
component. This again is a similarity transformation. Similarity transformations
do not change the numbers σ± of positive/negative eigenvalues. Thus Å is invariant
under orientation flips and under the second Kirby move.

All that is left is to show that Å is invariant under the first Kirby move. Namely,
that it is invariant under taking the disjoint union of a link with U±, the unknot
with framing ±1.

Let L be an n-component regular link. Adding a far-away U+ component to
L multiplies σŽ by σŽ(U+) (using the disjoint union product). The new linking
matrix is block diagonal, with an additional +1 entry on the diagonal, and the
same holds for the new inverse linking matrix. Thus the (n + 1)-variable Gaussian
integral of σŽ(L ∪· U+) factors as the n-variable integral of σŽ(L) times the 1-
variable integral of σŽ(U+). We find that Å0(L ∪· U+) = Å0(L) ∪· Å0(U+), and as
σ+ also increases by 1, Å(L ∪· U+) = Å(L) as required. A similar argument works
in the case of U−. ¤

4. The Universality of the Århus Integral

4.1. What is universality?

Let us first recall the definition of universality, as presented in [Å-I, Section 2.2.2]].

Definition 4.1. An invariant U of integer homology spheres with values in A(∅)
is a “universal Ohtsuki invariant” if

(1) The degree m part U (m) of U is of Ohtsuki type 3m ([Oh]).
(2) If OGL denotes the Ohtsuki-Garoufalidis-Le map, defined in Figure 6,

from manifold diagrams to formal linear combinations of unit framed alge-
braically split links in S3, and S denotes the surgery map from such links
to integer homology spheres, then

(U ◦ S ◦OGL)(D) = D + (higher degree diagrams) (in A(∅))
whenever D is a manifold diagram (we implicitly linearly extend S and U ,
to make this a meaningful equation).

Theorem 2. Restricted to integer homology spheres, Å is a universal Ohtsuki
invariant.

Some consequences of this theorem were mentioned in [Å-I, Corollary 2.13].
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Figure 6. The OGL map: Take a manifold diagram D, embed it in S3 in some fixed way of

your preference, double every edge, replace every vertex by the difference of the two local pictures

shown here, and put a +1 framing on each link component you get. The result is a certain

alternating sum of 2v links with e components each, where v and e are the numbers of vertices

and edges of D, respectively.

4.2. Å is universal

The proofs of the two properties in the definition of universality are very similar
and both depend on the same principle and the same observation. Both ideas have
been used previously; see [Le], [B-N1].

The observation is that the degree m part of Å(L) comes from the internal degree
m part of Ž+(L), the strut-free part of σŽ(L) in Bn. Formal Gaussian integration
acts by connecting all legs of a uni-trivalent diagram to each other using struts. All
univalent vertices disappear in this process, while the trivalent ones are untouched.
And so the degree m part of Å(L) is determined by the internal degree m part of
Ž+(L) (and the linking matrix).

The principle we use is a certain “locality” property of the Kontsevich inte-
gral. Recall how the Kontsevich integral of a link L is computed. One sprinkles
the link in an arbitrary way with chords, and takes the resulting chord diagrams
with weights that are determined by the positions of the end points of the chords
sprinkled. This means that if a localized site on the link get modified, only the
weights of chord diagrams that have ends in that site can change. Suppose one
marks k localized sites, designates a modification to be made to the link on each
one of them, and computes the alternating sum of Ž evaluated on the 2k links
obtained by performing any subset of these modifications. The result Z must have
a chord-end in each of the k sites, and this bounds from below the complexity
of any diagram appearing in Z and constrains the form of the diagrams of least
complexity that appear in Z. If more is known about the nature of the modifi-
cations performed, more can be said about the parts of a diagram D in Z that
originate from the sites of the modifications, and thus more can be said about D
altogether.
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A very simple application of this principle is the proof of the universality of the
Kontsevich integral in, say, [B-N1]. Two more applications prove Theorem 2.

Proof of Theorem 2. Å(m) is of Ohtsuki type 3m: Take a unit framed (k + 3m +
1)-component algebraically split link L. (That is, the linking matrix of L is a
(k + 3m + 1)-dimensional diagonal matrix with diagonal entries ±1). We think of
the first k components of L as representing some “background” integral homology
sphere, and of the last 3m + 1 components as “active” components, over which
the alternating summation in Ohtsuki’s definition of finite-type [Oh] is performed.
Let Lalt denote that alternating summation. Namely, it is the alternating sum of
the 23m+1 sublinks of L in which some of the active components are removed. We
have to show that Å(m)(Lalt) = 0. By the principle, every diagram in Ž(Lalt) must
have a chord-end on every active component of L. The map σ never ‘disconnects’
a diagram from a component, and so every diagram D in Ž+(Lalt) must have at
least one leg per active component. But the linking matrix is a diagonal matrix,
and hence the struts that are glued in the Gaussian integration are of form ∂x

^∂x

(both ends labeled the same way). So for the Gaussian integration to be non-trivial,
there have to be at least two legs per active component of L, bringing the total to
at least 2(3m + 1) = 6m + 2 legs. Each such leg must connect to some internal
vertex, and there are at most three legs connected to any internal vertex. So there
must by at least 2m + 1 internal vertices, and so the internal degree of D must be
higher than m. By the observation, this means that Å(Lalt) vanishes in degrees up
to and including m.

Å◦OGL is the identity mod higher degrees: Let D be a manifold diagram. We
aim to show that

(Å ◦OGL)(D) = D + (higher degree diagrams) (in A(∅)). (8)

If D is of degree m, it has 2m vertices and Lalt := OGL(D) is an alternating
summation over modifications in 2m sites. By the principle, there must be a con-
tribution to Ž(Lalt) coming from each of those sites. Had there been just one such
site, we would have been looking at the difference B between (a tangle presentation
of) the Borromean rings and a 3-component untangle. As the Borromean linking
numbers are equal to those of the untangle (both are 0), there are no struts in
Ž(B), and the leading term is proportional to a Y diagram connecting the three
components, looking like . A simple computation shows that the constant of
proportionality is 1 (cf. [Le]).

Thus, the leading term in Ž(Lalt) has a Y piece corresponding to every vertex
of D, and the overall coefficient is 1. The map σ into uni-trivalent diagrams drops
the loops corresponding to the link components and replaces them by labels on the
univalent vertices thus created. (It also adds terms that come from gluing trees;
these terms have a higher internal degree, so, by the observation, at lowest degree
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we can ignore them). Gaussian integration (with an identity covariance matrix, as
we have here) simply connects legs with equal labels using struts, and the result
is back again the diagram D we started with. This process is summarized in Fig-
ure 7. The renormalization in (1) doesn’t touch any of that, and hence equation (8)
holds. ¤

1

5

3
4

4

1 1

3

56

6

6 σ
∫ FG

4

Ž ◦OGL
5

2 3

2

2

Figure 7. The computation of the leading order term in Å0(OGL(D))

5. Odds and ends

5.1. Homology spheres with embedded links

Everything said in the invariance section of this paper (Section 3) holds (or has
an obvious counterpart) in the case of rational homology spheres with embedded
links. Most changes required are completely superficial — wherever “components”
are mentioned, of links, string links, dotted Morse links, skeletons of chord dia-
grams, etc., one has to label some of the components as “surgery components”
(indexed by some set Y ) and the rest as “embedded link” components (indexed by
X). Surgeries are performed only on the components so labeled, σ is only applied on
those components, and Gaussian integrations is carried out only with respect to the
variables corresponding to the surgery components. Only the surgery components
count for the purpose of determining σ± in (1). The embedded link components
correspond to the embedded link in the post-surgery manifold. The only action
taken on embedded link skeleton components (of chord diagrams in Ž(L)) is to take
their closures. The target space of the link-enhanced Århus integral is a mixture
A′(ªX) of the space A(∪· ªX) of chord diagrams (mod 4T/STU) whose skeleton
is a disjoint union of X-marked circles (see [Å-I, Figure 3]) and the space A(∅)
of manifold diagrams (modulo AS and IHX). The diagrams in A′(ªX) are the
disjoint unions of diagrams in A(ªX) and diagrams in A(∅), and the relations are
all the relations mentioned above.

The only (slight) difficulty is that one should also prove invariance under the
second Kirby move (Figure 5) in the case where an embedded link component x
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slides over a surgery component y. A careful reading of the proof of Proposition 1.1
shows that it covers this case as well, as it uses only the integration with respect
to y, the surgery component.

While the link-enhanced target space A′(ªX) suggests what universality should
be like in the case of invariants of integer homology spheres with embedded links,
the necessary preliminaries on finite-type invariants of such objects where never
worked out in detail. So at this time we do not attempt to generalize the results
of Section 4 to the case where embedded links are present.

5.2. The link relation

We (the authors) are not terribly happy about Section 3.1. Rather than showing
that Å0 descends to regular links, we would have much preferred to be able to
define it directly on regular links. The problem is that the Kontsevich invariant of
X-component links is valued in the spaceA(ªX) of chord diagrams (mod 4T/STU)
whose skeleton is a disjoint union of circles marked by the elements of X (see [Å-I,
Figure 3]). This space is not isomorphic to B(X), but rather to a quotient space
Blinks(X) thereof, and we don’t know how to define

∫ FG on Blinks(X). Let us write
a few more words. First, a description of Blinks(X):

Definition 5.1. A “link relation symbol” is an X-marked uni-trivalent diagram
R∗ one of whose legs is singled out and carries an additional ∗ mark. If the other
mark on the special leg of R∗ is, say, x, we say that R∗ is an “x-flavored link relation
symbol”. The “link relation” R corresponding to an x-flavored link relation symbol
R∗ is the sum of all ways of connecting the ∗-marked leg near the ends of all other
x-marked legs. It is an element of B(X). An example appears in Figure 8. Finally,
let Blinks(X) be the quotient of B(X) by all link relations.

x∗

y

z

x x z

x y

y

z

x x z

x y

y

z

x x z

x y

y

z

x x z

x y

+ +

Figure 8. An x-flavored link relation symbol and the corresponding link relation.

Theorem 3. The isomorphism χ : B(X) → A(↑X) descends to a well defined
isomorphism χ : Blinks(X) → A(ªX).

Proof (sketch). The fact that the link relations get mapped to 0 by χ composed
with the projection on A(ªX) is easy — after applying χ, use the STU relation
near every leg touched by the link relation. On a circular skeleton, the result is an
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ouroboros3 summation, namely, it is 0. Suppose now you have a pair of diagrams
in A(↑X) that get identified upon closing one of the skeleton components, say y.
Use STU relations as here,

x y x y x y x y x y

− = + + ,

to turn their difference into a sum S of diagrams with a lower number of y-legs.
Dropping the y component of the skeleton and forgetting the order of the y legs,
the result is a y-flavored link relation. If trees are glued (as σ = χ−1 dictates) after
the y component of the skeleton is dropped, then using the IHX relation one can
show that the result is still a link relation:

+ +
x

+
x x x

=
x x

∗y

yyyyyy

¤

Problem 5.2. Is there a good definition for
∫ FG on (a domain in) Blinks(X)?

It makes no sense to ask if
∫ FG is well defined modulo the link relation; if G is

a Gaussian and R is a link relation, G + R would no longer be a Gaussian. We are
mostly interested in integrating group-like G’s. Maybe there’s a more restrictive
“group-like link relation” that relates any two group-like elements of A(↑X) that
are equal modulo the usual link relation (namely, whose projections to A(ªX) are
the same)?

Problem 5.3. If G1,2 are group-like elements of A(↑z↑E) that are equal modulo
the link relation (applied only on the z component), is there always a group-like G ∈
A(↑x↑y↑E) so that G1 = −→mxy

z G and G2 = −→myx
z G? (notation as in Definition 3.5).

5.3. An explicit formula for the map −→mxy
z on uni-trivalent diagrams

Let x and y be two elements in a free associative (but not-commutative) completed
algebra. The Baker-Campbel-Hausdorf (BCH) formula (see e.g. [Ja]) measures the
failure of the identity ex+y = exey to hold, in terms of Lie elements, or, what is
the same, in terms of trees modulo the IHX and AS relation. The first few terms
in the BCH formula are:

3 The medieval symbol of holism depicting a snake that bites its own tail.
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log exey =

= x +y +
1
2
[x, y] +

1
12

[x, [x, y]] − 1
12

[y, [x, y]] − 1
24

[x, [y, [x, y]]] + · · ·

=

x

+

y

+
1
2

x y

+
1
12

x x y

− 1
12

y x y

− 1
24

x y x y

+ · · · .

(9)

The proposition below states that as an operation on uni-trivalent diagrams,
the map −→mxy

z : A(↑x↑y↑E) → A ↑z↑E) of Definition 3.5 is given by gluing the
disjoint-union exponential of the trees in the BCH formula (9). Precisely, let Λ be
the sum of trees in the BCH formula, only with ∂x replacing x, with ∂y replacing
y, and with a z marked on each root:

Λ =

∂x

z

+

∂y

z

+
1
2

∂x ∂y

z

+
1
12

∂x ∂x ∂y

z

− 1
12

∂y ∂x ∂y

z

− 1
24

∂x ∂y ∂x ∂y

z

+ · · · .
(10)

Proposition 5.4. For any C ∈ B({x, y}∪·E),

σn
−→mxy

z χn+1C = 〈exp∪· Λ, C〉x,y, (11)

where χn+1 denotes the standard isomorphism B({x, y}∪·E) → A(↑x↑y↑E) (whose
inverse is σn+1) and σn denotes the standard isomorphism A(↑z↑E) → B({z}∪·E)
(whose inverse is χn).

A noteworthy special case of this proposition is the case where n = 1 and C
is a disjoint union Cx ∪· Cy of a uni-trivalent diagram Cx whose legs are labeled
only by x and a uni-trivalent diagram Cy whose legs are labeled only by y. In this
case −→mxy

z is (up to leg labelings) the product ×A : B ⊗ B → B that B inherits
from A, and equation (11) becomes a specific formula for this product in terms of
gluing forests. The existence of such a formula is immediate from the definition of
σ : A → B, and this existence was used in several places before (see e.g. [B-N2]),
but we are not aware of a previous place where this formula was written explicitly.
A similar formula is the “wheeling formula” of [BGRT].

Proof of Proposition 5.4. Let Axy be the space of “planted forests” whose leaves
are labeled ∂x and ∂y, modulo the usual STU (and hence AS and IHX) relations.
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A planted forest is simply a forest in which the roots of the trees are “planted”
along a directed line:

∂x ∂y ∂y ∂x ∂x ∂y ∂x ∂x ∂x ∂y

.

Axy is similar in nature to A; in particular, it is an algebra by the juxtaposition
product ×A and it is graded, and hence an exponential expA and a logarithm logA

can be defined on it using power series.

Let ξ and η be the elements
∂x

and
∂y

of Axy, respectively. Clearly,

−→mxy
z χn+1C = 〈(expA ξ)×A (expA η), C〉x,y

= 〈expA logA ((expA ξ)×A (expA η)) , C〉x,y .

But logA ((expA ξ)×A (expA η)) can be evaluated using the BCH formula (9). The
result is χxy

z Λ, where Λ was defined in equation (10) and χxy
z : Bxy

z → Axy is
the natural isomorphism (whose inverse is σxy

z ) of the space Bxy
z of forests with

trees as in equation (10) (modulo AS and IHX) and the space Axy. Therefore−→mxy
z χn+1C = 〈expA χxy

z Λ, C〉x,y, and hence

σn
−→mxy

z χn+1C = 〈σxy
z expA χxy

z Λ, C〉x,y. (12)

The only thing left to note is that Λ is a sum of trees, namely forests in which
z appears only once. On such forests expA ◦χxy

z = χxy
z ◦ exp∪·, and we see that

equation (12) proves equation (11). ¤

Corollary 5.5. (Compare with [Å-I, Remark 1.7]) Let dBCH be Λ with the first
two terms removed,

dBCH =
1
2

∂x ∂y

z

+
1
12

∂x ∂x ∂y

z

− 1
12

∂y ∂x ∂y

z

− 1
24

∂x ∂y ∂x ∂y

z

+ · · · ,

and let DBCH = exp∪· dBCH. Then

σn
−→mxy

z χn+1C = (DBCH [ C)/(x, y → z).
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Proof. Gluing the exponentials of the struts |∂x
z and |∂y

z is equivalent to applying
the change of variables (x, y → z). ¤

5.4. A stronger form of the cyclic invariance lemma

As stated and proved in Section 3.1, the cyclic invariance lemma holds only when
the integration is carried out over all the available variables. Otherwise, the argu-
ment given in the proof in the “lucky case” would not be a reduction to the case of
knots. Here is an alternative statement and proof, that apply even if integration is
carried out only over some subset F of the relevant variables.

Proposition 5.6 (Strong cyclic invariance). If G ∈ A(↑x↑y↑E) is group-like and
σ−→mxy

z G is integrable with respect to some set F of variables satisfying z ∈ F ⊂
{z}∪·E, then σ−→myx

z G is also integrable and the two integrals are equal:

∫ FG

σ−→mxy
z GdF =

∫ FG

σ−→myx
z GdF.

Proof. Let us describe the idea of the proof before getting into the details. Recall
from [Å-I, Section 1.3] that we like to think of A(↑x↑y↑E) as a parallel of Û(g)⊗n+1

and of B({x, y}∪·E) as a parallel of Ŝ(g)⊗n+1 or of the function space F (g?⊕· · · (n+
1) · · · ⊕ g?). In this model, −→mxy

z and −→myx
z become maps Û(g)⊗n+1 → Û(g)⊗n,

defined by multiplying the first two tensor factors in the two possible orders, using
the product ×U of U(g). If we had done the same with Ŝ(g), using its product
×S , the picture would have been a lot simpler. The product ×S is commutative,
and mxy

z and myx
z are the same. In fact, in the function space picture both maps

become the “evaluation on the diagonal” map m:

F (g? ⊕ · · · (n + 1) · · · ⊕ g?) → F (g? ⊕ · · · (n) · · · ⊕ g?)

m : G(x, y, . . . ) 7→ G(z, z, . . . ).

The difference between the two products ×U and ×S was discussed in [Å-I,
Claim 1.5]. From that discussion it follows that

−→mxy
z −−→myx

z = m ◦D,

where D is some differential operator acting on the variables x and y.
We wish to study the integral with respect to z of mDG; that is, the integral

of DG on the diagonal x = y. We do this below by changing coordinates to the
parallel coordinate α = (x + y)/2 and the transverse coordinate β = (x− y)/2. In
these coordinates the diagonal is given by β = 0, and z-integration can be replaced
by α-integration at β = 0. We show that this α-integral vanishes by showing that
the divergence (with respect to α) of D vanishes.
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Let us turn to the details now. Let σG denote the (sum of) uni-trivalent di-
agrams corresponding to G via the isomorphism σ : A(↑x↑y↑E) → B({x, y}∪·E).
By abuse of notation, we re-use the symbols −→mxy

z and −→myx
z to denote the maps

B({x, y}∪·E) → B({z}∪·E) corresponding to the original −→mxy
z and −→myx

z via the
isomorphism σ (really, σ and its homonymic brother σ : A(↑z↑E) → B({z}∪·E)).

Corollary 5.5 implies that −→mxy
z and −→myx

z both act on σG in the following man-
ner:

• Glue some forest of non-trivial trees4 whose leaves are labeled ∂x and ∂y

and whose roots are labeled z to the x- and y-labeled legs of σG, gluing
only ∂x’s to x’s and ∂y’s to y’s, and making sure that all leaves get glued.

• Relabel all remaining x- and y-labeled legs with z.

Gluing a forest of non-trivial trees does not touch the quadratic part of a group-
like element, and hence this description implies that −→mxy

z σG and −→myx
z σG have the

same quadratic part. Hence if one is integrable so is the other, and they can be
integrated together under the same formal integral sign, and we need to prove that

∫ FG

(−→mxy
z −−→myx

z )σGdF = 0.

Using Proposition 5.4, we see that (−→mxy
z −−→myx

z )(σG) = 〈D1, σG〉x,y, where D1 is
sum of forests of the general form

D1 = · · · +

∂y∂x ∂x

z z

∂y∂x ∂x∂y∂x ∂y

z z

+ · · · .

We now change variables to α = (x + y)/2, β = (x − y)/2, ∂α = ∂x + ∂y, and
∂β = ∂x − ∂y (see Remarks 2.4 and 2.10), and rename the dummy integration
variable z to be α. In the new variables, D1 becomes a sum of forests D2 of the
general form

D2 = · · ·+

∂β∂α ∂α ∂β∂β ∂α

α α α

+ · · · ,

4 That is, a forest in which each tree has at least one internal vertex.
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and the statement we need to prove is

∫ FG

〈D2, σG〉x,y dαd(F − {z}) = 0.

Notice that struts labeled ∂x or ∂y appear in D1 in a symmetric role, and hence
D2 has only struts labeled by ∂α and no struts labeled ∂β . This implies that if
D3 is the strutless part of D2, then 〈D2, σG〉x,y = D3 [ (σG). Using integration
by parts (see Section 2.5), we see that our job will be done one we can prove that
divα D3 = 0.

Each component of each forest in D3 must have at least one ∂α leaf, for otherwise
it would have only ∂β leaves and it would vanish by the AS relation. Forests in
which some tree has more than one ∂α leaf contribute nothing to divα D3, as their
∂α order is higher than their α degree. Thus we only care about forests of the form

∂α ∂α ∂α∂β ∂β ∂β ∂β ∂β∂β

α α α

,

in which each component carries exactly one ∂α.
The α-divergence of such a forest is obtained by having the α-derivatives act

on the coefficients — namely, by summing over all possible ways of connecting the
∂α’s at the top of the picture to the α’s at the bottom. The result is a sum W of
diagrams like

∂β ∂β ∂β ∂β∂β∂β

,

that are disjoint unions of ∂β-wheels.
The next thing to notice is that −→mxy

z −−→myx
z is odd under reversal of the roles

of x and y, and hence under flipping the sign of β. This means that ∂β appears an
odd number of times in each forest in D1, D2, and D3, and thus in each union of
wheels in W . But this means that every term in W contains a wheel with an odd
number of legs, and such wheels vanish by the AS relation. Hence W = 0 and thus
divα D3 = 0, as required. ¤
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