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Abstract The 3D index of Dimofte–Gaiotto–Gukov is a partially defined function on
the set of ideal triangulations of 3-manifolds with r tori boundary components. For
a fixed 2r tuple of integers, the index takes values in the set of q-series with integer
coefficients. Our goal is to give an axiomatic definition of the tetrahedron index and a
proof that the domain of the 3D index consists precisely of the set of ideal triangulations
that support an index structure. The latter is a generalization of a strict angle structure.
We also prove that the 3D index is invariant under 3–2 moves, but not in general under
2–3 moves.

Keywords 3D Tetrahedron index · Quantum dilogarithm · Neumann–Zagier
equations · Hyperbolic geometry · Ideal triangulations · Angle structures

Mathematics Subject Classification Primary 57N10 · Secondary 57M25

1 Introduction

In a series of papers [6,7], Dimofte–Gaiotto–Gukov studied topological gauge theories
using as input an ideal triangulation T of a 3-manifold M . These gauge theories play
an important role in
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574 S. Garoufalidis

• Chern–Simons perturbation theory (that fits well with the earlier work on quantum
Riemann surfaces [4] and the later work on the perturbative invariants [5]) and

• categorification and Khovanov Homology, which fits with the earlier work [28].

Although the gauge theory depends on the ideal triangulation T , and the 3D index
in general may not converge, physics predicts that the gauge theory ought to be a
topological invariant of the underlying 3-manifold M . When ∂ M consists of r tori,
the low energy description of these gauge theories gives rise to a partially defined
function

I : {ideal triangulations} −→ Z((q1/2))Z
r ×Z

r
, (1.1)

T �→ IT (m1, . . . , mr , e1, . . . , er ) ∈ Z((q1/2))

for integers mi and ei , which is invariant under some partial 2–3 moves. The building
block of the 3D index IT is the tetrahedron index I�(m, e)(q) ∈ Z[[q1/2]] defined
by1

I�(m, e) =
∞∑

n=(−e)+
(−1)n q

1
2 n(n+1)−

(
n+ 1

2 e
)

m

(q)n(q)n+e
, (1.2)

where

e+ = max{0, e}

and (q)n = ∏n
i=1(1 − qi ). If we wish, we can sum in the above equation over the

integers, with the understanding that 1/(q)n = 0 for n < 0.
Roughly, the 3D index IT of an ideal triangulation T is a sum over tuples of

integers of a finite product of tetrahedron indices evaluated at some linear forms in the
summation variables. Convergence of such sums is not obvious and thus not always
expected on physics grounds. For instance, the following sum

∑

e∈Z
I�(0, e)qve

converges in Z((q1/2)) if and only if v > 0. This follows easily from the fact that the
degree δ(e) of the summand is given by

δ(e) = ve +
{
0 if e ≥ 0,
e2
2 − e

2 if e ≤ 0.

Our goal is to

(a) prove that the 3D index IT exists if and only if T admits an index structure (a
generalization of a strict angle structure)—see Theorem 2.12;

1 The variables (m, e) are named after the magnetic and electric charges of [6].
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The 3D index of an ideal triangulation and angle structures 575

(b) give a complete axiomatic definition of the tetrahedron index I� focusing on the
combinatorial and q-holonomic aspects—see Sect. 3; and

(c) show that the 3D index is invariant under 3 → 2 moves, but not in general under
2 → 3 moves, and give a necessary and sufficient criterion for invariance under
2 ↔ 3 moves—see Sect. 6.

2 Index structures, angle structures, and the 3D index

2.1 Index structures

Consider two r × s matricesA and Bwith integer entries and a column vector v ∈ Z
r ,

and let M = (A|B|v).

Definition 2.1 (a) We say that M supports an index structure if the rank of (A|B) is
r and for every Q : {1, . . . , s} → {1, 2, 3} there exists (α, β, γ ) ∈ Q

3s that satisfies

Aα + Bγ = ν, α + β + γ = (1, . . . , 1)T , (2.1)

and Q(α, β, γ ) > 0. The latter means that for every i = 1, . . . , s the following
inequalities are satisfied:

⎧
⎪⎨

⎪⎩

αi > 0 if Q(i) = 1,

βi > 0 if Q(i) = 2,

γi > 0 if Q(i) = 3.

(2.2)

(b) We say that M supports a strict index structure if the rank of (A|B) is r and there
exists (α, β, γ ) ∈ Q

3s+ that satisfies (2.1), where Q
+ is the set of positive rational

numbers.

It is easy to see that ifM supports a strict index structure, then it supports an index
structure, but not conversely. As we will see in Sect. 2.2, ideal triangulations T give
rise to matrices M, and a strict index structure on M is a strict angle structure on T .
On the other hand, index structures are new and motivated by Theorem 2.4.

The next definition discusses two actions on M: an action of GL(r,Z) on the left
which allows for row operations onM and a cyclic action of order three at the pair of
the i th columns of (A|B).

Definition 2.2 (a) There is a left action of GL(r,Z) on M, defined by

P ∈ GL(r,Z), M = (A|B|v), PM = (PA|PB|Pv).

An index structure onM is also an index structure on PM. (b) There is a left action of
(Z/3)s onM acting on the i th columns (ai |bi ) of (A|B) (and fixing all other columns)
given by

(ai |bi |v)
S�→ (−bi |ai − bi |v − bi ) , (2.3)
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576 S. Garoufalidis

where

S(a|b|v) = (−b|a − b|v − b) (2.4)

satisfies S3 = Id. We extend S to act on an index structure (α, β, γ ) of M by

(αi , βi , γi )
S�→ (βi , γi , αi ) (2.5)

and fixing all other coordinates of (α, β, γ ). It is easy to see that if (α, β, γ ) is an
index structure onM and S ∈ (Z/3)s , then S(α, β, γ ) is an index structure of SM.

Definition 2.3 Given M, and m = (m1, . . . , ms), e = (e1, . . . , es) ∈ Z
s , consider

the sum

IM(m, e)(q) =
∑

k∈Zr

q
1
2 v·k

s∏

i=1

I�(mi − bi · k, ei + ai · k). (2.6)

Theorem 2.4 IM(m, e)(q) ∈ Z((q1/2)) is convergent for all m, e ∈ Z
s if and only if

M supports an index structure. In that case, IM is q-holonomic in the variables (m, e).

Remark 2.5 q-holonomicity in Theorem 2.4 follows immediately from [27]. Conver-
gence is the main difficulty.

Remark 2.6 By definition, IM is a generalized Nahm sum in the sense of [10], where
the summation is over a lattice.

Corollary 2.7 Applying Theorem 2.4 to the case r = 1, s = 3, M = (A|B|v) =
(1 1 1|0 0 0|2), and the strict index structure 2 = 2

3 · 1 + 2
3 · 1 + 2

3 · 1, it follows that
the right-hand side of the pentagon identity (3.6) is convergent in Z((q1/2)).

The next remark discusses the invariance of the index under the actions ofDefinition
2.2.

Remark 2.8 Fix M that supports an index structure. Then, for P ∈ GL(r,Z) and
S ∈ (Z/3)s , it follows that PM and SM also support an index structure. In that case,
Theorem 2.4 implies that IM, IPM, and ISM are all convergent. We claim that

IPM = IM, ISM = IM .

The first equality follows by changing variables k �→ Pk in the definition of IM
given by (2.6). The second equality follows from the fact that the tetrahedron index
I� satisfies Eq. (3.2); this is shown in part (a) of Theorem 3.7.

The next corollary follows easily from Theorem 2.4 and the definition of an index
structure on (A|0|v0).
Corollary 2.9 Fix an r × s matrix A with integer entries and columns vi for i =
1, . . . , s, and let v0 ∈ Z

r and M = (A|0|v0). The following are equivalent:
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The 3D index of an ideal triangulation and angle structures 577

Fig. 1 Angles of a tetrahedron

(a) IM(q) converges.
(b) rk(A) = r and there exists αi > 0 for i = 1, . . . , s such that v0 = ∑s

i=1 αivi .

Question 2.10 Compare the q-series I(A|0|v) with the vector partition functions of
Sturmfels [24] and Brion–Vergne [1], and the q-hypergeometric systems of equations
of [23].

2.2 Angle structures

In this section, we define the 3D index of an ideal triangulation. A generalized angle
structure on a combinatorial ideal tetrahedron � is an assignment of real numbers
(called angles) at each edge of � such that the sum of the three angles around each
vertex is 1.2 It is easy to see that opposite edges are assigned the same angle, and thus
a generalized angle structure is determined by a triple (α, β, γ ) ∈ R

3 that satisfies
α + β + γ = 1; see Fig. 1.

A generalized angle structure is strict if α, β, γ > 0. Let T denote an ideal tri-
angulation of an oriented 3-manifold M with torus boundary. A generalized angle
structure on T is the assignment of angles at each tetrahedron of T such that the sum
of angles around every edge of T is 2. A generalized angle structure on T is strict if
its restriction to each tetrahedron is strict. For a detailed discussion of angle structures
and their duality with normal surfaces, see [11,16,26]. Generalized angle structures
are linearizations of the gluing equations, which may be used to construct complete
hyperbolic structures, and intimately connected with the theory of normal surfaces on
M [12].

The existence of a strict angle structure imposes restrictions on the topology of M :
it implies that M is irreducible and atoroidal, and each boundary component of M is a
torus; see for example [16]. On the other hand, if M is a hyperbolic link complement,
then there exist triangulations which admit a strict angle structure [11]. In fact, such
triangulations can be constructed by a suitable refinement of the Epstein–Penner ideal
cell decomposition of M . Note that not all such triangulations are geometric [11].

2 The sum of the 3 angles around each vertex is traditionally π .
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578 S. Garoufalidis

Fig. 2 Shapes of a tetrahedron

2.3 The Neumann–Zagier matrices

Fix an oriented ideal triangulation T with N tetrahedra of a 3-manifold M with tori
boundary components. Assign variables Zi , Z ′

i , Z ′′
i at the opposite edges of each tetra-

hedron �i respecting its orientation as in Fig. 2.
Then we can read off matrices N × N matrices Ā, B̄, and C̄whose rows are indexed

by the N edges of T and whose columns are indexed by the Zi , Z ′
i , Z ′′

i variables.
These are the so-called Neumann–Zagier matrices that encode the exponents of the
gluing equations of T , originally introduced by Thurston [20,25]. In terms of these
matrices, a generalized angle structure is a triple of vectors α, β, γ ∈ R

N that satisfy
the equations

Āα + B̄β + C̄γ = (2, . . . , 2)T , α + β + γ = (1, . . . , 1)T . (2.7)

A quad Q for T is a choice of pair of opposite edges at each tetrahedron �i for
i = 1, . . . , N . Q can be used to eliminate one of the three variables αi , βi , γi at each
tetrahedron using the relation αi + βi + γi = 1. Doing so, Eq. (2.7) takes the form

Aα + Bγ = ν .

Thematrices (A|B) have some key symplectic properties, discovered byNeumann and
Zagier when M is a hyperbolic 3-manifold (and T is well adapted to the hyperbolic
structure) [20], and later generalized to the case of arbitrary 3-manifolds in [19].
Neumann and Zagier show that the rank of (A|B) is N − r , where r is the number of
boundary components of M ; all assumed tori. If we choose N −r linearly independent
rows of (A|B), then we obtain matrices (A′|B′) and a vector ν′, which combine to form
M = (A′|B′|ν′). In addition, the exponents of meridian and longitude loops (the latter,
divided by 2) at each boundary torus give additional matrices (aT , bT ) and (cT , dT )

of size r × 2N .

Definition 2.11 The 3D index of T is defined by

IT (m, e)(q) = IM(dm − be,−cm + ae)(q). (2.8)

Implicit in the above definition are a choice of quad Q and a choice of rows to remove.
However, the index is independent of these choices; see Remark 2.8. Keep in mind
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The 3D index of an ideal triangulation and angle structures 579

the action of (Z/3)N given by acting on the i th columns āi , b̄i and c̄i of Ā, B̄, and C̄
by

S(āi |b̄i |c̄i ) = (b̄i |c̄i |āi )

(and fixing all other columns) and on the i th coordinates of an angle structure by

S(αi , βi , γi ) = (βi , γi , αi )

(and fixing all other coordinates) and on the i th columns ai and bi of A and B by

S(ai |bi |ν) = (−bi |ai − bi |ν − bi )

(andfixing all other columns). Since the rank of (A|B) is N−r andA,B are (N−r)×N
matrices, it follows thatM admits a strict structure if and only if T admits a strict angle
structure. In addition, T admits an index structure if for every choice of quad Q there
exists a solution (α, β, γ ) of Eq. (2.7) that satisfies the inequalities (2.2). Theorem 2.4
implies the following.

Theorem 2.12 The index IT : Zr ×Z
r −→ Z((q1/2)) is well defined if and only if T

admits an index structure. In particular, IT exists if T admits a strict angle structure.

See Sect. 6.3 for an example of an ideal triangulation T of the census manifold
m136 [3] which admits a semi-strict angle structure (i.e., angles are nonnegative real
numbers), does not admit a strict angle structure, andwhich has a solution of the gluing
equations that recover the complete hyperbolic structure. A case-by-case analysis
shows that this example admits an index structure, and thus the index IT exists. This
example appears in [11, Example 7.7]. We thank H. Segerman for a detailed analysis
of this example.

2.4 On the topological invariance of the index

Physics predicts that when defined, the 3D index IT depends only on the underlying
3-manifold M . Recall that Hodgson et al. [11] prove that every hyperbolic 3-manifold
M that satisfies

H1(M,Z/2) → H1(M, ∂ M,Z/2) is the zero map (2.9)

(e.g., a hyperbolic link complement) admits an ideal triangulation with a strict angle
structure, and conversely if M has an ideal triangulation with a strict angle structure,
then M is irreducible and atoroidal, and each boundary component of M is a torus
[16].
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Fig. 3 A 2–3 move: a bipyramid splits into N tetrahedra for T and N + 1 tetrahedra for T̃

A simple way to construct a topological invariant using the index would be a map

M �→ {IT | T ∈ SM },

where M is a cusped hyperbolic 3-manifold with at least one cusp and SM is the set
of ideal triangulations of M that support an index structure. The latter is a nonempty
(generally infinite) set by [11], assuming that M satisfies (2.9). If we want a finite set,
we can use the subset SEP

M of ideal triangulations T of M which are a refinement of the
Epstein–Penner cell decomposition of M . Again, [11] implies that SEP

M is nonempty
assuming (2.9). But really, we would prefer a single 3D index for a cusped manifold
M , rather than a finite collection of 3D indices.

It is known that every two combinatorial ideal triangulations of a 3-manifold are
related by a sequence of 2–3 moves [17,18,22]. Thus, topological invariance of the
3D index follows from invariance under 2–3 moves.

Consider two ideal triangulations T and T̃ with N and N + 1 tetrahedra related by
a 2–3 move as shown in Fig. 3.

Proposition 2.13 If T̃ admits a strict angle structure, so does T and IT̃ = IT .

For the next proposition, a special index structure on T is given in Definition 6.2.

Proposition 2.14 If T admits a special strict angle structure, then T̃ admits a strict
angle structure and IT̃ = IT .

Remark 2.15 The asymmetry in Propositions 2.13 and 2.13 is curious, but also nec-
essary. The origin of this asymmetry is the fact that 3–2 moves always preserve strict
angle structures but 2–3moves sometimes do not. If 2–3moves always preserved strict
angle structures, then all ideal triangulations of a fixed manifold would admit strict
angle structures as long as one of them does. On the other hand, an ideal triangulation
that contains an edge which belongs to exactly one (or two) ideal tetrahedron(a) does
not admit a strict angle structure since the angle equations around that edge should
add to 2. Such triangulations are easy to construct, even for hyperbolic 3-manifolds
(e.g., the 41 knot).
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The 3D index of an ideal triangulation and angle structures 581

3 Axioms for the tetrahedron index

In this section, we discuss an axiomatic approach to the tetrahedron index. Let
Z((q1/2)) (resp., Z[[q1/2]]) denote the ring of series of the form

f (q) =
∑

n∈ 1
2Z

anqn,

where there exists n0 = n0( f ) such that an = 0 for all n < n0 (resp., n < 0). For
f (q) ∈ Z((q1/2)), its degree δ( f (q)) is the largest half-integer (or infinity) such that
f (q) ∈ qd( f )

Z[[q1/2]]. We will say that f (q) ∈ Z((q1/2)) is q-positive if δ( f (q)) ≥
0.

Definition 3.1 A tetrahedron index is a function f : Z2 −→ Z((q1/2)) that satisfies
the equations

q
e
2 f (m + 1, e) + q− m

2 f (m, e + 1) − f (m, e) = 0, (3.1a)

q
e
2 f (m − 1, e) + q− m

2 f (m, e − 1) − f (m, e) = 0 (3.1b)

for all integers m, e, together with the parity condition f (m, e) ∈ q
em
2 Z((q)) for all

m and e. Let V denote the set of all tetrahedron indices and V+ denote the set of all
q-positive tetrahedron indices.

Theorem 3.2 (a) V is a free q-holonomic Z((q))-module of rank 2.
(b) V+ is a free q-holonomic Z[[q]]-module of rank 1.
(c) If f ∈ V , then it satisfies the equation

f (m, e)(q) = ( − q
1
2
)−e

f (e,−e − m)(q) (3.2)

= ( − q
1
2
)m

f (−e − m, m)(q)

for all integers m and e.
(d) If f ∈ V , then it satisfies the equations

f (m, e + 1) + (
qe+ m

2 − q− m
2 − q

m
2
)

f (m, e) + f (m, e − 1) = 0, (3.3a)

f (m + 1, e) + (
q− e

2−m − q− e
2 − q

e
2
)

f (m, e) + f (m − 1, e) = 0 (3.3b)

for all integers m, e.
(e) If f ∈ V , then it satisfies the equation

f (m, e) = f (−e, −m) (3.4)

for all integers m, e.

Question 3.3 What is a basis for V ?

Remark 3.4 The proof of part (a) of Theorem 3.2 implies that if f (m, e) is a tetra-
hedron index, then f (m, e) is a unique Z[q±1/2]-linear combination of A and B
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582 S. Garoufalidis

where ( f (0, 0), f (0, 1)) = (A, B). For example, if C = ( f (m, e))−2≤m,e≤2, then
C = MA A + MB B, where

MA =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 − 1
q3 + 1

q2 + 1
q − q2 1

q − q −1 − 1
q − 1

q2 + 1
q

1 − 1
q2 + 1

q
1√
q 0 − 1√

q − 1
q

1 − 1
q 1 1 0 −1

−1 0 1 1√
q

1
q − q

−q −1 1 − 1
q 1 − 1

q2 + 1
q 1 − 1

q3 + 1
q2 + 1

q − q2

⎞

⎟⎟⎟⎟⎟⎟⎠
,

MB =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
q3 − 2

q2 − 1
q + q + 2q2 − q3 1 − 1

q + 2q − q2 2 − q −1 + 1
q

1
q2 − 2

q

−1 + 1
q2 − 2

q + q − 1√
q + √

q 1 1√
q −1 + 1

q

−2 + 1
q −1 0 1 2 − q

1 − q −√
q −1 − 1√

q + √
q 1 − 1

q + 2q − q2

2q − q2 1 − q −2 + 1
q −1 + 1

q2 − 2
q + q 1

q3 − 2
q2 − 1

q + q + 2q2 − q3

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Remark 3.5 The proof of part (b) of Theorem 3.2 implies that if f (m, e) is a tetra-
hedron index, then f (m, e) is uniquely determined by f (0, 0) = ∑∞

n=0 anqn . In
particular, if f (0, 1) = ∑∞

n=0 bnqn , then bn are Z-linear combinations of ak for
k ≤ n. For example, we have

b0 = a0

b1 = a0 + a1

b2 = 2a0 + a1 + a2

b3 = 4a0 + 2a1 + a2 + a3

b4 = 9a0 + 4a1 + 2a2 + a3 + a4

b5 = 20a0 + 9a1 + 4a2 + 2a3 + a4 + a5

b6 = 46a0 + 20a1 + 9a2 + 4a3 + 2a4 + a5 + a6

b7 = 105a0 + 46a1 + 20a2 + 9a3 + 4a4 + 2a5 + a6 + a7

b8 = 242a0 + 105a1 + 46a2 + 20a3 + 9a4 + 4a5 + 2a6 + a7 + a8

b9 = 557a0 + 242a1 + 105a2 + 46a3 + 20a4 + 9a5 + 4a6 + 2a7 + a8 + a9

b10 = 1285a0 + 557a1 + 242a2 + 105a3 + 46a4 + 20a5 + 9a6 + 4a7 + 2a8 + a9 + a10

b11 = 2964a0 + 1285a1 + 557a2 + 242a3 + 105a4 + 46a5 + 20a6 + 9a7 + 4a8 + 2a9 + a10 + a11

b12 = 6842a0 + 2964a1 + 1285a2 + 557a3 + 242a4 + 105a5 + 46a6 + 20a7 + 9a8 + 4a9 + 2a10

+a11 + a12.

In fact, it appears that bn is a N-linear combination of ak for k ≤ n, although we
do not know how to show this, nor do we know of a geometric significance of this
experimental fact.

The next lemma computes the degree of the tetrahedron index.

Lemma 3.6 The degree δ(m, e) of I�(m, e)(q) is given by

δ(m, e) = 1

2

(
m+(m + e)+ + (−m)+e+ + (−e)+(−e − m)+ (3.5)

+max{0, m,−e}).
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The 3D index of an ideal triangulation and angle structures 583

Fig. 4 The degree of the
tetrahedron index

It follows that δ(m, e) is a piece-wise quadratic polynomial as given in Fig.4.

The next theorem gives an axiomatic characterization of the tetrahedron index I�.

Theorem 3.7 I� is uniquely characterized by the following equations:

(a) I� ∈ V+, I�(0, 0)(0) �= 0
(b) I� satisfies the pentagon identity

I�(m1 − e2, e1)I�(m2 − e1, e2) (3.6)

=
∑

e3∈Z
qe3 I�(m1, e1 + e3)I�(m2, e2 + e3)I�(m1 + m2, e3)

for all integers m1, m2, e1, e2.

Remark 3.8 The unique part of Theorem 3.7 uses only the facts that I� ∈ V ,
δ(I�(0, e)) ≥ 0 for all e and I� satisfy the special pentagon

I�(0, 0)2 =
∑

e∈Z
I�(0, e)3qe .

4 Properties of a tetrahedron index

4.1 Part (d) of Theorem 3.2

Consider a function f (m, e) of two discrete integer variables e, m which satisfies
Eqs. (3.1a) and (3.1b). An application of the HolonomicFunctions.m computer
algebra package [15] implies that f (m, e) also satisfies Eqs. (3.3a) and (3.3b).

4.2 The rank of V : part (a) of Theorem 3.2

An application of the HolonomicFunctions.m computer algebra package [15]
implies that the linear q-difference operators corresponding to the recursions of
Eqs. (3.1a) and (3.1b) is a Gröbner basis and the corresponding module has rank 2.
Said differently, f (m, e) is a unique Z[q±1/2]-linear combination of A and B where
A = f (0, 0) and B = f (0, 1).
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584 S. Garoufalidis

4.3 The rank of V+: part (b) of Theorem 3.2

Consider a function f (m, e) of two discrete integer variables e, m which satisfies
Eqs. (3.1a) and (3.1b). Section 4.1 implies that f (0, e) satisfies the 3-term recursion

f (0, e) − (
2 − qe−1) f (0, e − 1) + f (0, e − 2) = 0 (4.1)

for all integers e. It follows that for every integer e, f (0, e) is a Z[q±1]-linear combi-
nation of A and B where f (0, 0) = A and f (0, 1) = B. An induction on e < 0 using
the recursion relation (4.1) shows that for all e < 0 we have

f (0, e) = q− e2
2 − e

2 (p1(e)A + p2(e)B) ,

where p1(e), p2(e) ∈ Z[q] are polynomials of maximum q-degree e2/2 + e/2 and
constant term (−1)e−1 and (−1)e, respectively. For example, we have

f (0,−1) = A − B,

q f (0,−2) = A(−1 + q) + B(1 − 2q),

q3 f (0,−3) = A
(
1 − q − 2q2 + q3

)
+ B

(
−1 + 2q + 2q2 − −3q3

)
,

q6 f (0,−4) = A
(
−1 + q + 2q2 + q3 − −2q4 − 3q5 + q6

)

+B
(
1 − 2q − 2q2 + q3 + 4q4 + 3q5 − 4q6

)
,

q10 f (0,−5) = A
(
1 − q − 2q2 − q3 + 5q5 + 3q6 + q7 − 3q8 − 4q9 + q10

)

+B
(
−1 + 2q + 2q2 − q3 − −2q4 − 7q5 + 3q7 + 6q8 + 4q9 − 5q10

)
.

Let us write

A =
∞∑

n=0

anqn, B =
∞∑

n=0

bnqn .

If we assume that f (0, e) ∈ Z[[q]], this imposes a system of linear equations on the
coefficients an and bn of A and B. In fact, for fixed e < 0, the system of equations
coeff( f (0, e), q j ) = 0 for j = −e2/2 − e/2, . . . ,−2,−1 is a triangular system of
linear equations with unknowns b j for j = 0, 1, . . . , e2/2−e/2−1where all diagonal
entries of the coefficient matrix are 1. For example, we have

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
−2 1 0 0 0 0
−2 −2 1 0 0 0
1 −2 −2 1 0 0
4 1 −2 −2 1 0
3 4 1 −2 −2 1

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

b0
b1
b2
b3
b4
b5

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

−a0
a0 − a1

2a0 + a1 − a2
a0 + 2a1 + a2 − a3

−2a0 + a1 + 2a2 + a3 − a4
−3a0 − 2a1 + a2 + 2a3 + a4 − a5

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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The 3D index of an ideal triangulation and angle structures 585

It follows that bn is a Z-linear combination of ak for k ≤ n. This proves that the rank
of the Z[[q]]-module V+ is at most 1. Since I� ∈ V+ (as follows from the proof
of Theorem 3.7), it follows that the rank of the Z[[q]]-module V+ is exactly 1. This
proves part (b) of Theorem 3.2. 
�
Corollary 4.1 The above proof implies that f ∈ V+ is uniquely determined by its
initial condition f (0, 0) ∈ Z[[q]]. It follows that if f, g ∈ V+, then

g(0, 0) f (m, e) = f (0, 0)g(m, e) (4.2)

for all integers m and e.

4.4 Proof of triality: part (c) of Theorem 3.2

In this section, we prove part (c) of Theorem3.2. Equation (3.2) concerns the following
Z/3-action on V .

Definition 4.2 Consider the action f �→ S f on a function f : Z2 −→ Z((q1/2))

given by

S f (m, e) = ( − q
1
2
)−e

f (e,−e − m) . (4.3)

Proposition 4.3 (a) We have S3 = I d.
(b) If f ∈ V , then S f = f , and of course, also S2 f = f .

Part (c) of Theorem 3.2 follows from part (b) of the above proposition.

Proof (of Proposition 4.3) Part (a) is elementary. For part (b), assume that f satisfies
Eq. (3.1a) for all (m, e). Replace (m, e) by (e,−1 − e − m) in (3.1a) and we obtain
that

− f (e,−1 − e − m) + q− e
2 f (e,−e − m) (4.4)

+q− 1
2− e

2− m
2 f (1 + e,−1 − e − m) = 0 .

Now, replace f by S f on the left-hand side of Eq. (3.1a), and the result is given by

(−1)e+1( − f (e,−1 − e − m) + q− e
2 f (e,−e − m)

+q− 1
2− e

2− m
2 f (1 + e,−1 − e − m)

)
.

The above vanishes from Eq. (4.4).
Likewise, assume that f satisfies Eq. (3.1b) for all (m, e). Replace (m, e) by (e, 1−

e − m) in (3.1b) and we obtain that

q
1
2− e

2− m
2 f (−1 + e, 1 − e − m) + q− e

2 f (e,−e − m) − f (e, 1 − e − m) = 0.

(4.5)

123



586 S. Garoufalidis

Now, replace f by S f on the left-hand side of Eq. (3.1b), and the result is given by

(−1)e+1
(

q
1
2− e

2− m
2 f (−1 + e, 1 − e − m) + q− e

2 f (e,−e − m) − f (e, 1 − e − m)
)
.

It follows that if f ∈ V , then the above vanishes from Eq. (4.5). In other words, if
f ∈ V , then S f ∈ V . To conclude that f = S f , it suffices to show (by part (a) of
Theorem 3.2) that f (0, 0) = (S f )(0, 0). If f (0, 0) = A and f (0, 1) = B, using
Remark 3.4, we have

(S f )(0, 0) = f (0, 0) = A,

(S f )(0, 1) = f (0, 1) + q− 1
2 f (1,−1) = B + q− 1

2
( − Bq

1
2
) = 0.

This concludes the proof of Proposition 4.3. 
�

4.5 I� is a tetrahedron index

Observe that by its definition

I�(m, e) =
∑

e∈Z
S(m, e, n)

is given by a one-dimensional sum of a proper q-hypergeometric term [21,27]

S(m, e, n) = (−1)n q
1
2 n(n+1)−

(
n+ 1

2 e
)

m

(q)n(q)n+e
.

It follows from [27] that I�(m, e) is q-holonomic in both variablesm and e. Moreover,
recursion relations for I�(m, e) can be found by the creative telescoping method of
[27]. For instance, S satisfies the recursion

q
e
2 S(m − 1, e, n) + q− m

2 S(m, e − 1, n) − S(m, e, n) = 0 (4.6)

which implies that I� satisfies Eq. (3.1b). To prove Eq. (4.6), divide it by S(m, e, n)

and use the fact that

q
e
2

S(m − 1, e, n)

S(m, e, n)
= qe+n, q− m

2
S(m, e − 1, n)

S(m, e, n)
= 1 − qe+n .

The proof of Eq. (3.1a) is similar. For an alternative proof, using the quantum diloga-
rithm, see Sect. 1.
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The 3D index of an ideal triangulation and angle structures 587

4.6 The degree of I�

Proof (of Lemma 3.6) Consider the fan F of R2 with rays (1, 0), (0, 1), and (1,−1).
Observe that the linear transformation (m, e) �→ (e,−e − m) (which appears in
Definition 4.2) rotates the three cones of the fan F and preserves the piece-wise
quadratic polynomial that appears in Lemma 3.6. Since I� ∈ V (by Sect. 4.5) and
V is pointwise invariant under S (by Proposition 4.3), it suffices to compute δ(m, e)
when (m, e) lies in the cone m ≤ 0, e ≥ 0. In that case, Eq. (1.2) gives

I�(m, e) =
∞∑

n=0

(−1)n q
1
2 n(n+1)−

(
n+ 1

2 e
)

m

(q)n(q)n+e
.

If δ(m, e, n) denotes the degree of the summand, using m ≤ 0, n ≥ 0 we get

δ(m, e, n) = 1

2
(n(n + 1)) −

(
n + 1

2
e

)
m ≥ −em

2
,

with equality achieved uniquely at n = 0. It follows that the degree of I (m, e) in this
cone is given by −em/2. 
�

4.7 Proof of Theorem 3.7

First we show that I� satisfies the required equations:

(a) I� ∈ V from Sect. 4.5. Lemma 3.6 and Eq. (3.5) manifestly imply that
δ(I�(m, e)) ≥ 0 for all integers m and e. Thus, I� ∈ V+. Moreover, I�(0, 0) =
1 + O(q).

(b) I� satisfies the pentagon identity from Sect. 1.

It remains to show theuniquepart inTheorem3.7. Suppose f ∈ V+ satisfies the pen-
tagon and f (0, 0)(0) �= 0. Corollary 4.1 implies that f (m, e)(q) = C(q)I�(e, m)(q)

for some C(q) ∈ Q((q)). Consider the special pentagon for f and I�:

f (0, 0)2 =
∑

e∈Z
f (0, e)3qe, I�(0, 0)2 =

∑

e∈Z
I�(0, e)3qe .

It follows that C(q)2 = C(q)3, and since C(q) �= 0, we get C(q) = 1. This concludes
the uniqueness part of Theorem 3.7. 
�

5 Convergence of the 3D index

5.1 Proof of Theorem 2.4

In this section, we prove Theorem 2.4.We begin by a well-known lemma due to Farkas
[30].
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Lemma 5.1 Fix finite collections A = {a1, . . . , ar } and B = {b1, . . . , bs} of vectors
in R

N . The following are equivalent:

(a) there does not exist v �= 0 such that ai · v ≥ 0 for i = 1, . . . , r and b j · v = 0
for j = 1, . . . , s.

(b) A ∪ B spans R
N and there exist αi > 0 for i = 1, . . . , r and γ j ∈ R for

j = 1, . . . , s such that 0 = ∑
i αi ai + ∑

j γ j b j .

Proof (a) is equivalent to

(c) there does not exist v �= 0 such that ai · v ≥ 0 for i = 1, . . . , r , b j · v ≥ 0 for
j = 1, . . . , s, and (−b j ) · v ≥ 0 for j = 1, . . . , s.

(c) implies (b). Let C denote the cone spanned by A ∪ B ∪ −B. (c) states that C is
not contained in any half-space through the origin. By Farkas’ lemma [30], it follows
that C = R

N . Thus, A ∪ B ∪ −B spans RN and −∑
i ai ∈ C . (b) follows.

(b) implies (c): consider v such that ai · v ≥ 0 and b j · v = 0 for all i, j . We know
there exist αi > 0 and γ j real such that 0 = ∑

i αi ai +∑
j γ j b j . Taking inner product

with v, it follows that 0 = ∑
i αi ai · v. Since αi > 0 and ai · v ≥ 0 for all i , it follows

that ai · v = 0 for all i . Thus, v is perpendicular to A ∪ B which is assumed to span
R

N . Thus v = 0 and (c) follows. 
�
The next lemma concerns super-linear polynomial functions on a cone.

Lemma 5.2 Suppose C is a closed cone in R
r and p : C −→ R is a polynomial that

satisfies p(nx) ≥ cx n for n > 0, x ∈ C \ {0}, and cx > 0. Then, there exist c > 0 and
c′ > 0 such that p(x) ≥ c|x | for all x ∈ C with |x | ≥ c′.

Proof Let S = {x ∈ R
r | |x | = 1} denote the unit sphere and let p = ∑d

k=0 pk(x)

denote the decomposition of p into homogeneous polynomials pk of degree k. Since
p(nx) = ∑

k nk pk(x), it follows that for every x ∈ S ∩ C there exists i such that
p j (x) = 0 for j > i and pi (x) > 0. In particular, pd : S ∩ C −→ [0,∞).

Case 1: pd(S ∩C) ⊂ (0,∞). By compactness, pd(x) ≥ c0 > 0 for x ∈ S ∩C and
|pk(x)| ≤ ck for x ∈ S∩C and k = 1, . . . , d−1.Thus p(x) ≥ c0|x |d−∑d−1

k=0 |x |kck ≥
c|x | for some c > 0.

Case 2: There exists x ∈ S ∩ C such that pd(x) = 0 and pd−1(x) > 0. Argue as
above using the complement of a neighborhood of x where p1 is strictly positive, and
conclude the proof by induction on the depth of a point. 
�

Consider the restriction

I ρ
M(m, e)(q) =

∑

n∈N
q

n
2 v·k0

r∏

i=1

I�(mi − nbi · k0, ei + nai · k0) (5.1)

of the sum that defines IM on a ray ρ = Nk0 for k0 ∈ Z
r , k0 �= 0. Consider the union

R of the 3 rays in R2 as shown in Fig. 5.
If ρ = Nk0 is a fixed ray, let x = BT k0 = (x1, . . . , xs) and y = AT k0 =

(y1, . . . , ys).
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Fig. 5 The degree of the
tetrahedron index

Fig. 6 Piece-wise quadratic and linear functions δ2 and δ1

Lemma 5.3 (a) If (−xi , yi ) /∈ R for some i = 1, . . . , s, then I ρ
M(m, e) converges for

all m, e.
(b) If (−xi , yi ) ∈ R for all i = 1, . . . , s. Then, there exists Q ∈ {1, . . . , s} →

{1, 2, 3} such that (−xi , yi ) ∈ ρQ(i) for all i = 1, . . . , s. Then I ρ
M does not

converge if and only if all of the following inequalities hold:

bi · k0 = 0, ai · k0 ≥ 0, (−v) · k0 ≤ 0 if Q(i) = 1,
(5.2a)

(ai − bi ) · k0 = 0, (−bi ) · k0 ≥ 0, (−v + bi ) · k0 ≤ 0 if Q(i) = 2,
(5.2b)

(−ai ) · k0 = 0, (−ai + bi ) · k0 ≥ 0, (−v + ai ) · k0 ≤ 0 if Q(i) = 3.
(5.2c)

Proof (a)Without loss of generality, let us assume m = e = 0. In that case, the degree
of the summand in Eq. (5.1) is given by

n2
s∑

i=1

δ2(−xi , yi ) + n
s∑

i=1

δ1(−xi , yi ) + n

2
v · k0,

where δ1 and δ2 are piece-wise quadratic and linear functions as given in Fig. 6.
If (−xi , yi ) /∈ R for some i = 1, . . . , s, it follows that the degree of the summand

is a quadratic function of n with nonvanishing leading term, and thus I ρ
M converges.

(b) The above computation shows that I ρ
M(0, 0) diverges if and only if δ2(−xi , yi ) =

0 for all i = 1, . . . , s and in addition the coefficient of n is less than or equal to zero.
The first condition is equivalent to (−xi , yi ) ∈ R for all i , and together with the second
one, they are equivalent to the inequalities (5.2). 
�
Proof (of Theorem 2.4) Lemma 5.2 implies that IM converges if and only if I ρ

M
converges for all rays ρ. This is true since the degree of the summand of IM is a piece-
wise quadratic polynomial. Lemma 5.3 gives necessary and sufficient conditions for
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the convergence of I ρ
M. It remains to match these conditions with the definition of an

index structure onM using Lemma 5.1.
The above discussion implies that IM is convergent if and only if for every

Q : {1, . . . , s} → {1, 2, 3}, there does not exist k0 �= 0 such that Eq. (5.2) holds.
Assume for simplicity that s = 1.

Case 1: If Q(1) = 1, Inequality (5.2) and Lemma 5.1 imply that there exist α1 > 0
and γ1 real such that v = α1a1 + γ1b1. Define β1 = 1 − α1 − γ1.

Case 2: If Q(1) = 2, Inequality (5.2) and Lemma 5.1 imply that there exist α′
1 > 0

and γ ′
1 real such that v − b1 = α′

1(−b1) + γ ′
1(a1 − b1). Letting (α1, β1, γ1) =

(γ ′
1, α

′
1,−γ ′

1 − α′
1 + 1), it follows that

v = α1a1 + γ1b1, β1 > 0.

Case 3: If Q(1) = 3, Inequality (5.2) and Lemma 5.1 imply that there exist α′
1 > 0

and γ ′
1 real such that v − a1 = α′

1(−a1 + b1) + γ ′
1(−a1). Letting (α1, β1, γ1) =

(1 − α′
1 − γ ′

1, γ
′
1, α

′
1), it follows that

v = α1a1 + γ1b1, γ1 > 0.

It follows that M admits an index structure.
The general case of s follows as above. Indeed for each Q : {1, . . . , s} → {1, 2, 3},

assume (−xi , yi ) ∈ ρQ(i) for i = 1, . . . , s. Then I ρ
M convergences if and only if

there exists (α, β, γ ) that satisfies Eq. (2.1) and inequalities (2.2). This completes the
convergence proof of Theorem 2.4. q-holonomicity follows from the main theorem of
Wilf-Zeilberger [27], using the fact that IM(m, e) is a 2r -dimensional sum of a proper
q-hypergeometric summand. 
�

5.2 An independent proof of convergence for strict index structures

Theorem 2.4 implies that IM converges whenM admits a strict index structure. In this
section, we give an independent proof of this fact without using the restriction of the
summand of the index to a ray.

Proposition 5.4 If M supports a strict index structure, then IM(m, e)(q) ∈ Z((q1/2))

is convergent for all m, e ∈ Z
s .

The proof of proposition 5.4 requires some lemmas.

Lemma 5.5 Fix positive real numbers α, β > 0 with α + β < 1/2 and let γ =
min{α, β, 1/2 − α − β}. Then for all integers m, e we have

δ(I�(m, e)q−βm+αe) ≥ γ max{|m|, |e|, |m + e|} .

Proof (of Lemma 5.5) Let L+(m, e) = max{|m|, |e|, |m + e|}. L+(m, e) is a piece-
wise linear function as given in Fig. 7.
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Fig. 7 A piece-wise linear
function L+

With the notation of Lemma 3.6, we need to show that

δ(m, e) − βm + αe ≥ γ L+(m, e). (5.3)

First, consider the three rays of δ(m, e):

Ray Left-hand side of (5.3) Right-hand side of (5.3)

m = 0, e ≥ 0 αe γ e
e = 0, m ≤ 0 −βm −γ m
m = −e ≥ 0 m(1/2 − α − β) γ m

This proves inequality (5.3) in the three rays and shows that the choice of γ is
optimal.Now, in the interior of each of the 6 cones of linearity of L+, δ(m, e)−βm+αe
is givenby aquadratic polynomial ofm, e. Thedegree 2 (resp. 1) part of this polynomial
is always greater than or equal to 1/2L+(m, e) (resp. (1/2 − γ )L+(m, e)) by a case
computation. For example, in the cone m ≥ 0, e ≤ 0, e + m ≥ 0 with rays R+(1, 0)
and R+(1,−1), we have δ(m, e) = m(m + e)/2 + m/2 and L+(m, e) = m and

δ(m, e) − βm + αe = m(e + m)

2
+ m

2
− βm + αe

≥ m

2
+ m

2
− βm + αe

= (1 − β − α)m + α(m + e)

≥ (1 − β − α)m ≥ (1 − β − α)L+(m, e).

The other cases are similar. 
�
The next lemma is well known [30].

Lemma 5.6 Consider the convex polytope P in R
r defined by

P = {x ∈ R
r |vi · x ≤ ci i = 1, . . . s},

where vi ∈ R
r and ci ∈ R for i = 1, . . . , s. Then P is compact if and only if the linear

span of the set {vi |i = 1, . . . , s} is Rr and 0 is a R≥0-linear combination of elements
of {vi |i = 1, . . . , s}.
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Proof (of Proposition 5.4) Let ai and bi for i = 1, . . . , s denote the columns of (A|B).
IfM admits a strict index structure, then there exist αi , γi > 0 that satisfy ai + γi < 1
for all i such that

s∑

i=1

αi ai + γiβi = ν .

It follows that

IM(m, e)(q) =
∑

k∈Zr

s∏

i=1

I (mi − bi · k, ei + ai · k)(q)q
βi
2 bi ·k+ αi

2 ai ·k .

Applying Lemma 5.5, it follows that for every k ∈ Z
d , the degree of the summand is

bounded below by

s∑

i=1

(βi mi − αi ei ) + γ ′
s∑

i=1

(| − mi + bi · k| + |ei + ai · k|) .

Now, Lemma 5.6 and admissibility imply that for fixed N0, there are finitely many
k ∈ Z

d such that the above degree is less than N0. Proposition 5.4 follows. 
�

6 Invariance of the 3D index under 2 ↔ 3 moves and 2 ↔ 0 moves

6.1 Invariance under the 3 → 2 move

Consider two ideal triangulations T and T̃ with N and N +1 tetrahedra, respectively,
related by a 2–3 move as shown in Fig. 8.

The above figure matches the conventions of [5, Sec. 3.6]. For a variable, matrix,
or vector f associated to T , we will denote by f̃ the corresponding variable, matrix,

x1 x1

x1

x2

x2

x2

x1x1

x1

x2x2

x2

w1

w1

w1

w1

w1

w1

w2

w2

w2

w2

w2

w2

w3

w3

w3

w3

w3

w3

Fig. 8 A 2–3 move
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or vector associated to T̃ . Let us use variables (Z , Z ′, Z ′′) and (Z̃ , Z̃ ′, Z̃ ′′) to denote
the angles of T and T̃ , respectively, where

Z := (X1, X2, Z3, ..., Z N ) , Z̃ := (W1, W2, W3, Z3, ..., Z N ) . (6.1)

We fix a quad type assigning these variables to T and T̃ as in Fig. 3. When calculating
the Neumann–Zagier matrices, we will assume that we keep the edge equation which
comes from the internal edge of the 2–3 bipyramid.

There are nine linear relations among the shapes of the tetrahedra involved in
the move—three come from adding dihedral angles on the equatorial edges of the
bipyramid:

W ′
1 = X1 + X2 , W ′

2 = X ′
1 + X ′′

2 , W ′
3 = X ′′

1 + X ′
2 , (6.2)

and six from the longitudinal edges:

X1 = W2 + W ′′
3 , X ′

1 = W3 + W ′′
1 , X ′′

1 = W1 + W ′′
2 ,

X2 = W ′′
2 + W3 , X ′

2 = W ′′
1 + W2 , X ′′

2 = W ′′
3 + W1 .

(6.3)

Moreover, due to the central edge of the bipyramid, there is an extra gluing constraint
in T̃ :

W ′
1 + W ′

2 + W ′
3 = 2π i . (6.4)

Let GA(T ) and A(T ) denote, respectively, the sets of generalized and strict angle
structures of T .

Lemma 6.1 Consider the map

μ3→2 : GA(T̃ ) → GA(T ), μ3→2(Z̃ , Z̃ ′, Z̃ ′′) = (Z , Z ′, Z ′′) (6.5)

defined by Eq. (6.3). It induces a map

μ3→2 : A(T̃ ) → A(T ).

Proof To check that μ3→2 is well defined, we need to show that Xi + X ′
i + X ′′

i = 1
is satisfied for i = 1, 2, assuming that Eq. (6.4) holds and Wi + W ′

i + W ′′
i = 1 for

i = 1, 2, 3. This is easy to check. If (Z̃ , Z̃ ′, Z̃ ′′) ∈ R
3(N+1)
+ (where R+ is the set of

positive real numbers), it is evident from the definition that (Z , Z ′, Z ′′) ∈ R
3N+ . In

other words, μ3→2 sends strict angle structures on T̃ to those on T . 
�
This proves the first part of Proposition 2.13. To prove the remaining part, we study

how the gluing equation matrices of T and T̃ are related. Let (Ā|B̄|C̄) denote the
matrix of exponents of the gluing equations of T . We will use column notation and
write

Ā = (ā1, ā2, āi ) , B̄ = (b̄1, b̄2, b̄i ) , C̄ = (c̄1, c̄2, c̄i ) ,
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where āi signifies (ā3, ā4, ..., āN ) and similarly for b̄i and c̄i . Eliminating the Z ′
variables, we obtain

A = Ā − B̄, B = C̄ − B̄ .

In other words,

(a1, a2, ai ) = (ā1 − b̄1, ā2 − b̄2, āi − b̄i ), (6.6)

(b1, b2, bi ) = (c̄1 − b̄1, c̄2 − b̄2, c̄i − b̄i ) .

To compute the corresponding matrices of T̃ , use

2 = ā1X1 + ā2X2 + āi Zi + b̄1X ′
1 + b̄2X ′

2 + b̄i Z ′
i + c̄1X ′′

1 + c̄2X ′′
2 + c̄i Z ′′

i

= ā1(W2 + W ′′
3 ) + ā2(W ′′

2 + W3) + āi Zi

+ b̄1(W3 + W ′′
1 ) + b̄2(W ′′

1 + W2) + b̄i Z ′
i

+ c̄1(W1 + W ′′
2 ) + c̄2(W ′′

3 + W1) + c̄i Z ′′
i .

Collecting the coefficients of Z̃ , Z̃ ′, Z̃ ′′, it follows that the matrix of exponents of the
gluing equations of T̃ is given by

˜̄A =
(

0 0 0 0
c̄1 + c̄2 ā1 + b̄2 ā2 + b̄1 āi

)
, ˜̄B =

(
1 1 1 0
0 0 0 b̄i

)
,

˜̄C =
(

0 0 0 0
b̄1 + b̄2 ā2 + c̄1 ā1 + c̄2 c̄i

)
.

Using a row operation via P =
(

1 0
b̄1 + b̄2 I

)
, it follows that

P˜̄A =
(

0 0 0 0
c̄1 + c̄2 ā1 + b̄2 ā2 + b̄1 āi

)
, P˜̄B =

(
1 1 1 0

b̄1 + b̄2 b̄1 + b̄2 b̄1 + b̄2 b̄i

)
,

P˜̄C =
(

0 0 0 0
b̄1 + b̄2 ā2 + c̄1 ā1 + c̄2 c̄i

)
.

Since Ã = ˜̄A − ˜̄B and B̃ = ˜̄C − ˜̄B, the above inequalities combined with Eq. (6.6)
imply that

PÃ =
( −1 −1 −1 0

b1 + b2 a1 a2 ai

)
, PB̃ =

(−1 −1 −1 0
0 a2 + b1 a1 + b2 bi

)
. (6.7)

Since the 3D index is invariant under row operations (see Remark 2.8), Eq. (6.7) and
the pentagon identity (3.6) conclude that IT̃ = IT . 
�
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6.2 Invariance under the 2 → 3 move

In this section, we will define what is a special angle structure on T and show the
partial invariance of the 3D index under a 2 → 3 move. We will use the same notation
as in Sect. 6.1. To define a map (Z , Z ′, Z ′′) �→ (Z̃ , Z̃ ′, Z̃ ′′), we need to solve for
Wi , W ′

i , W ′′
i for i = 1, 2, 3 in terms of Xi , X ′

i , X ′′
i for i = 1, 2 using Eqs. (6.2) and

(6.3). The answer involves one free variable (say, W1) and it is given by

(W1, W2, W3) = (W1, W1 + X1 + X2 + X ′′
2 − 1, W1 + X1 + X2 + X ′

1 − 1), (6.8a)

(W ′
1, W ′

2, W ′
3) = (X1 + X2, X ′

1 − X2 − X ′′
2 + 1, −X1 − X ′

1 + X ′
2 + 1), (6.8b)

(W ′′
1 , W ′′

2 , W ′′
3 ) = (−W1 + 1 − X1 − X2, −W1 − X1 − X ′

1 + 1, −W1 − X2 − X ′
2 + 1).
(6.8c)

If (Z , Z ′, Z ′′) is a strict angle structure on T , then (Z̃ , Z̃ ′, Z̃ ′′) is a strict angle
structure if and only if Eq. (6.8) has a strictly positive solution. It is easy to see that
this is equivalent to the following condition:

X1 + X2 < 1, X ′′
1 + X ′

2 < 1, X ′
1 + X ′′

2 < 1 . (6.9)

These conditions are precisely equivalent to the conditionsW ′
1, W ′

2, W ′
3 < 1, as follows

in Eq. (6.2). In other words, a special strict angle structure is an angle structure such
that all angles of the bipyramid are less than 1.

Definition 6.2 We will say that (Z , Z ′, Z ′′) is a special strict angle structure on T if
the inequality (6.9) is satisfied.

Let Asp(T ) denote the set of special strict angle structures on T . Then, we have a
map (more precisely, a section of μ3→2)

μ2→3 : Asp(T ) → A(T̃ ), μ2→3(Z , Z ′, Z ′′) = (Z̃ , Z̃ ′, Z̃ ′′) .

The conclusion is that if T admits a special strict angle structure, then so does T̃ . In
that case, IT and IT̃ both exist. An application of the pentagon identity as in Sect. 6.1
implies that IT = IT̃ . 
�
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6.3 An ideal triangulation of m136

Let T denote the ideal triangulation [11, Ex. 7.7] of the 1-cusped census manifold
m136 using 7 tetrahedra. Its gluing equation matrices around the edges are given by

Ā =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1
0 0 0 1 0 1 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 1 1 0 0 1
0 0 0 0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1
1 0 0 0 1 0 0
0 1 1 1 1 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 1
0 0 0 0 1 1 0
1 2 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A generalized angle structure is a solution to Eq. (2.7). In our example, the set of
generalized angle structures GA(T ) is an affine 8-dimensional subspace of R21 and
the intersection SA(T ) = GA(T )∩[0,∞)21 is the polytope of semi-angle structures.
Regina [2] gives that SA(T ) is the convex hull of the following set of 11 points
(α1, β1, γ1, . . . , α7, β7, γ7) in R21:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1
0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0
1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0
1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1
1/2 1/2 0 1 0 0 0 1/2 1/2 1/2 1/2 0 0 0 1 0 1 0 1/2 0 1/2
1/2 1/2 0 1 0 0 0 1/2 1/2 1/2 0 1/2 0 0 1 0 1 0 1/2 0 1/2
1/2 1/2 0 1 0 0 1/2 0 1/2 1/2 1/2 0 0 0 1 0 1 0 0 0 1
1/2 1/2 0 1 0 0 1/2 0 1/2 1/2 0 1/2 0 0 1 0 1 0 0 0 1
1/2 1/2 0 1/2 0 1/2 0 0 1 1 0 0 1/2 0 1/2 0 1 0 1/2 0 1/2
1/2 1/2 0 1/2 1/2 0 1/2 0 1/2 1 0 0 1/2 0 1/2 0 1 0 0 1/2 1/2
2/3 1/3 0 2/3 0 1/3 1/3 0 2/3 1 0 0 1/3 0 2/3 0 1 0 0 1/3 2/3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A computation shows that if (α, β, γ ) ∈ SA(T ), then (a6, b6, c6) = (t, 1,−t) for
some t ∈ R which explains why T has no strict angle structure. On the other hand,
Hodgson et al. [11, Example 7.7] mention that T has a solution

(z1, . . . , z6) =
(
2i,−1 + 2i,

3

5
+ 1

5
i,−1,

1

5
+ 2

5
i, 2,

1

2
+ 1

2
i

)

of the gluing equations which recover the complete hyperbolic structure on m136.
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6.4 An ideal triangulation of m064

There is an explicit triangulation of m064 that uses 7 ideal tetrahedra, communicated
to us by Henry Segerman. Its gluing equation matrices are given by

Ā =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 2 1 1 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0 0 1
2 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 0 0 1 1 0
0 0 0 0 1 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 1 0 0 1 1 0
0 0 1 1 0 0 1
0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

This triangulation has no semi-angle structure, and its gluing equations have the
following numerical shape solution:

(1.60 + 0.34i, 0.74 + 0.40i, 0.86 − 0.33i, 1.68 + 0.39i, 0.51 + 0.54i, 0.51 + 0.54i,−0.61 + 1.25i)

which gives rise to the discrete faithful representation of m064. An explicit computa-
tion shows that this triangulation admits an index structure.

6.5 An ideal triangulation with no index structure

Consider an ideal triangulation T which contains an edge e and a tetrahedron �1 that
goes around e five times with shapes Z , Z ′, Z ′, Z ′′, and Z ′′. Suppose that no other
tetrahedron touches e. Then the equation for a generalized angle structure around e
reads

α + 2β + 2γ = 2, α + β + γ = 1.

This forces α = 0, so no generalized angle structure has α > 0. Note that the corre-
sponding gluing equations around the edge e read

z(z′)2(z′′)2 = 1, zz′z′′ = −1, z′ = (1 − z)−1

which forces z = 1. Thus the gluing equations have no nondegenerate solution, i.e.,
no solution with shapes in C \ {0, 1}.

More complicated examples can be arranged using special configurations of two
or more edges and tetrahedra. In all examples that we could generate with no index
structure, the triangulation is degenerate.

Of course, the argument of a shape solution to the gluing equations is a generalized
angle structure. The latter, however, need not be an index structure if some of the
shapes are real, or have negative imaginary part; see for instance the triangulation of
m064 in Sect. 6.4.
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6.6 Invariance under the 2 ↔ 0 move

The next lemma implies the invariance of the index of an ideal triangulation under a
2 ↔ 0 move. Such a move is also known as a pillowcase move, described in detail in
[[9]Sec.6].

Lemma 6.3 For integers m, e, c, we have
∑

e

I�(m, e)I�(m, e + c)qe = δc,0 .

Proof Equations (6.14) and (6.15) imply that

∑

e

I�(m, e)xe = (q− m
2 +1x−1)∞

(q− m
2 x)∞

.

Since

(q− m
2 +1x−1)∞

(q− m
2 x)∞

· (q− m
2 +1(qx−1)−1)∞

(q− m
2 (qx−1))∞

= 1 ,

it follows that
∑

e,e′
I�(m, e)xe I�(m, e′)qe′

x−e′ = 1 .

Therefore,
∑

e,e′:e−e′=c

I�(m, e)I�(m, e′)qe′ = δc,0 .

This implies that
∑

e′
I�(m, e′ + c)I�(m, e′)qe′ = δc,0 .

The result follows. 
�
Acknowledgments The author wishes to thank Greg Blekherman, Nathan Dunfield, Christoph Koutschan,
Henry Segerman, and Josephine Yu for enlightening conversations. The author wishes to especially thank
Tudor Dimofte for explaining the 3D index, and for his generous sharing of his ideas. The work was
initiated during a Clay Conference in Oxford, UK. The author wishes to thank the Clay Institute and Oxford
University for their hospitality.

Appendix A: I� satisfies the pentagon identity

There are several proofs of the key pentagon identity of the tetrahedron index I�. The
proofs may use an integral representation of the quantum dilogarithm, or q-holonomic
recursion relations, or algebraic identities of generating series of q-series ofNahm type
[10].
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A generating series proof of the pentagon identity

In this section, we will prove that I� satisfies the pentagon identity using generating
series. We will abbreviate the Pochhammer symbol

(x; q)∞ =
∞∏

n=0

(1 − xqn)

by (x)∞ = (x; q)∞. The proof

• starts from an associativity identity

(z1z2)∞
(z1)∞(z2)∞

· (x1z−1
1 q)∞(x2z−1

2 q)∞
(x1x2z−1

1 z−1
2 q)∞

= (x1z−1
1 q)∞

(z1)∞
· (x2z−1

2 q)∞
(z2)∞

· (z1z2)∞
(x1x2z−1

1 z−1
2 q)∞

that uses four additional variables {x1, x2, z1, z2} in addition to the other four
variables {m1, m2, e1, e2},

• extracts coefficients with respect to (z1, z2), and
• specializes (x1, x2) = (q−m1 , q−m2). This last part is not algebraic and required
to show convergence. The latter follows from Corollary 2.7.

Let us now give the details. Consider

Fe(x) =
∑

n

(−1)n q
1
2 n(n+1)xn

(q)n(q)n+e
∈ Z[[x, q]] . (6.10)

Here and below, summation is over the set of integers, with the understanding that
1/(q)n = 0 for n < 0.

We will show that

qe1e2 Fe1(q
e2x1)Fe2(q

e1x2) =
∑

e3

(x1x2q)e3 Fe1+e3(x1)Fe2+e3(x2)Fe3(x1x2)

(6.11)

in the ring Z((x1, x2, q)). Since

Fe(q
−m) = q

em
2 I�(m, e) ,

the substitution (x1, x2) = (q−m1 , q−m2) (which converges by Corollary 2.7) implies
the pentagon identity of Eq.3.6.
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Lemma 6.4 For |q| < 1, we have

1

(x)∞
=

∑

n

xn

(q)n
, |x | < 1,

(xq)∞ =
∑

n

(−1)n q
1
2 n(n+1)xn

(q)n
,

(xy)∞
(x)∞

=
∑

n

(y)n xn

(q)n
, |x | < 1,

(xy)∞
(x)∞(y)∞

=
∑

r,s

qrs xr ys

(q)r (q)s
, |x | < 1, |y| < 1,

(xq)∞(yq)∞
(xyq)∞

=
∑

r,s

(−1)r+s q
1
2 (r−s)2+ 1

2 (r+s)xr ys

(q)r (q)s
, |xyq| < 1.

Proof The first three identities are well known and appear in [29, Prop. 2]. The last
two follow from the first three:

∑

r,s

qrs xr ys

(q)r (q)s
=

∑

r

xr

(q)r

∑

s

(qr y)s

(q)s
=

∑

r

xr

(q)r

1

(qr y)∞

= 1

(y)∞

∑

r

(y)r xr

(q)r
= (xy)∞

(x)∞(y)∞
,

∑

r,s

(−1)r+s q
1
2 (r−s)2+ 1

2 (r+s)xr ys

(q)r (q)s
=

∑

r

(−1)r q
1
2 r2+ 1

2 r xr

(q)r

∑

s

(−1)r q
1
2 s2+ 1

2 s(q−r y)s

(q)s

=
∑

r

(−1)r q
1
2 r2+ 1

2 r xr

(q)r
(q1−r y)∞

= (yq)∞
∑

r

(y−1)r (xyq)r

(q)r
= (xq)∞(yq)∞

(xyq)∞
.


�
Remark 6.5 The identities of Lemma 6.4 also hold in the ring Z((x, y, q)).

Observe that Fe(x) is an analytic function of (x, q) when |q| < 1 and x ∈ C. With
|q| < 1 and |y| < 1, Lemma 6.4 gives

∑

e

Fe(x)ye =
∑

n

(−1)nq
1
2 n2+ 1

2 n xn

(q)n

∑

e

ye

(q)n+e

= 1

(y)∞

∑

n

(−1)nq
1
2 n2+ 1

2 n(xy−1)n

(q)n
= (xy−1q)∞

(y)∞
.
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Thus, the generating function of the left-hand side of Eq. (6.11) is

∑

e1,e2

qe1e2 Fe1(q
e2x1)Fe2(q

e1x2)z
e1
1 ze2

2

=
∑

n1,n2

(−1)n1+n2q
1
2 n21+ 1

2 n22+ 1
2 n1+ 1

2 n2xn1
1 xn2

2

(q)n1(q)n2

∑

e1,e2

qe1e2+n2e1+n1e2 ze1
1 ze2

2

(q)n1+e1(q)n2+e2

= (z1z2)∞
(z1)∞(z2)∞

∑

n1,n2

(−1)n1+n2q
1
2 (n1−n2)2+ 1

2 n1+ 1
2 n2(x1z−1

1 )n1(x2z−1
2 )n2

(q)n1(q)n2

= (z1z2)∞
(z1)∞(z2)∞

· (x1z−1
1 q)∞(x2z−1

2 q)∞
(x1x2z−1

1 z−1
2 q)∞

.

Likewise, the generating function of the right-hand side of Eq. (6.11) is the same

∑

e1,e2

(
∑

e3

(x1x2q)e3 Fe1+e3(x1)Fe2+e3(x2)Fe3(x1x2)

)
ze1
1 ze2

2

=
(

∑

e1

Fe1(x1)z
e1
1

) (
∑

e2

Fe2(x2)z
e2
2

)(
∑

e3

Fe3(x1x2)(x1x2z−1
1 z−1

2 q)e3

)

= (x1z−1
1 q)∞

(z1)∞
· (x2z−1

2 q)∞
(z2)∞

· (z1z2)∞
(x1x2z−1

1 z−1
2 q)∞

.

The above identities for each side of Eq. (6.11) hold when |q| < 1, |z1| < 1,
|z2| < 1, and |x1x2z−1

1 z−1
2 q| < 1. Remark 6.5 implies that they also hold in the ring

Z((x1, x2, z1, z2, q)). Extracting the coefficient of ze1
1 ze2

2 from the above concludes
the proof of Eq. (6.11). 
�

A second proof of the pentagon identity

In this section, we give a second proof of the pentagon identity using

1

(q)m(q)n
=

∑

r,s,t
r+s=m
s+t=n

qrt

(q)r (q)s(q)t
,

qmn

(q)m(q)n
=

∑

r,s,t
r+s=m
s+t=n

(−1)sq
1
2 s2− 1

2 s

(q)r (q)s(q)t
=

∑

s

(−1)sq
1
2 s2− 1

2 s

(q)m−s(q)n−s(q)s
. (6.12)

The first identity is well known [29, Eqn. (13)], and the second follows from the first

by replacing q with q−1 and multiplying both sides by (−1)m+nq− 1
2 (m−n)2− 1

2 (m+n).
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Using these equations, we will show here that

qe1e2 (−1)n1+n2q
1
2 n21+ 1

2 n22+ 1
2 n1+ 1

2 n2+e2n1+e1n2

(q)n1(q)n2(q)n1+e1(q)n2+e2

=
∑

r1,r2,r3,e3
r1+r3+e3=n1
r2+r3+e3=n2

(−1)r1+r2+r3q
1
2 r21+ 1

2 r22+ 1
2 r23+ 1

2 r1+ 1
2 r2+ 1

2 r3+e3

(q)r1(q)r1+e1+e3(q)r2(q)r2+e2+e3(q)r3(q)r3+e3
. (6.13)

The sum on the right actually only has a finite number of nonzero terms, so there
is no issue with convergence. If we multiply both sides by xn1

1 xn2
2 and sum over all n1

and n2, then we again find

qe1e2 Fe1(q
e2x1)Fe2(q

e1x2) =
∑

e3

(x1x2q)e3 Fe1+e3(x1)Fe2+e3(x2)Fe3(x1x2) .

To prove (6.13), we use Eq. (6.12) which gives

q(n1+e1)(n2+e2)

(q)n1(q)n2(q)n1+e1(q)n2+e2

=
∑

r1,r2,r3,e3
r1+e3=n1
r2+e3=n2

(−1)r3q
1
2 r23− 1

2 r3+r1r2

(q)r1(q)r2(q)n1+e1−r3(q)n2+e2−r3(q)r3(q)e3
.

Replacing e3 by e3 + r3 in this sum, we get

q(n1+e1)(n2+e2)

(q)n1(q)n2(q)n1+e1(q)n2+e2

=
∑

r1,r2,r3,e3
r1+r3+e3=n1
r2+r3+e3=n2

(−1)r3q
1
2 r23− 1

2 r3+r1r2

(q)r1(q)r2(q)n1+e1−r3(q)n2+e2−r3(q)r3(q)r3+e3

=
∑

r1,r2,r3,e3
r1+r3+e3=n1
r2+r3+e3=n2

(−1)r3q
1
2 r23− 1

2 r3+r1r2

(q)r1(q)r2(q)r1+e1+e3(q)r2+e2+e3(q)r3(q)r3+e3
.

Now multiplying both sides by (−1)n1+n2q
1
2 (n1−n2)2+ 1

2 n1+ 1
2 n2 gives Eq. (6.13).

Appendix B: The tetrahedron index and the quantum dilogarithm

Gukov–Gaiotto–Dimofte came up with the beautiful formula (1.2) for the tetrahedron
index from a Fourier transform of the quantum dilogarithm. For completeness, we
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include this relation here, taken from [6]. The quantum dilogarithm of Faddeev and
Kashaev is a fundamental building block of quantum topology [8,13,14]. The q-series
version of this analytic function is given by

L(m, x, q) = (q− m
2 +1x−1)∞

(q− m
2 x)∞

∈ Z((x))[[q1/2]]. (6.14)

We claim that

∑

e

I (m, e)(q)xe = L(m, x, q). (6.15)

To prove this, use the definition of I (m, e), shift e to e − n, and use the first two
identities of Lemma 6.4. We get

∑

e

I (m, e)(q)xe =
∑

n,e

(−1)n q
1
2 n(n+1)−

(
n+ 1

2 e
)

m
xe

(q)n(q)n+e

=
∑

n,e

(−1)n
q

1
2 n(n+1)

(
q− m

2 x−1
)n (

q− m
2 x

)e

(q)n(q)e

= (q− m
2 +1x−1)∞

(q− m
2 x)∞

.

Each of the recursion relations (3.1a), (3.1b), (3.3a), and (3.3b) is equivalent to the
corresponding relations (6.16a–6.16d) for the generating series L(m, x, q):

(−1 + q− m
2 x−1)L(m, x, q) + L(m + 1, q

m
2 x, q) = 0, (6.16a)

(1 − q− m
2 x−1)L(m, x, q) + L(m − 1, q

m
2 x, q) = 0, (6.16b)

(1 + x2 − (q
m
2 + q− m

2 ))L(m, x, q) + xq
m
2 L(m, qx, q) = 0, (6.16c)

L(m − 2, x, q) − (L(m − 1, q
1
2 x, q) + L(m − 1, q− 1

2 x, q) (6.16d)

−q1−m L(m − 1, q− 1
2 x, q)) + L(m, x, q) = 0

Equations (6.16a–6.16d) are easy to verify using the fact that L(m, q, x) is a proper
hypergeometric function of (m, q). This gives an alternative proof of part (a) of The-
orem 3.7.

Observe finally that the recursions (3.1a) and (3.1b) have a solution space of rank
2. On the other hand, the recursions (6.16a) and (6.16b) have a solution space of
rank 1.
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