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It can be conjectured that the colored Jones function of a knot can be computed in terms of
counting paths on the graph of a planar projection of a knot. On the combinatorial level,
the colored Jones function can be replaced by its weight system. We give two curious
formulas for the weight system of a colored Jones function: one in terms of the permanent
of a matrix associated to a chord diagram, and another in terms of counting paths of
intersecting chords.

1. Introduction
1.1. The goal

The paper provides a compact understanding of the weight system of the
colored Jones function, using graph-theory considerations rather than Lie
algebras, and proves conjectures of Bar-Natan and the second author.

1.2. The colored Jones function

A knot is an embedded circle in 3-space, considered up to ambient isotopy.
In 1985, V. Jones discovered a celebrated invariant of knots, the Jones poly-
nomial, [8].
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As soon as the Jones polynomial was discovered, it was compared with the
better-understood Alexander polynomial of a knot. The latter can be defined
using classical algebraic topology (such as the homology of the infinite cyclic
cover of the knot complement), and its skein theory can be understood purely
topologically; see for example [9,14].

On the other hand, the Jones polynomial appears to be difficult to under-
stand topologically, and its combinatorics hide its topological and geometric
meaning.

There is a good reason for this, as was explained by Witten, [19]. Namely,
the Jones polynomial can be thought of as a partition function of a 3-
dimensional quantum field theory (the Chern-Simons theory), and full par-
tition functions are hard to understand in general.

A little down-to-earth, one may ask if the Jones polynomial is stronger
than the Alexander polynomial, or vice-versa. It is known that the answer
to both questions are negative: in other words there exist distinct knots with
the same Jones but different Alexander polynomials and vice-versa.

This is an accident, as we will now explain. One may consider the Jones
polynomials of a knot and its parallels. This sequence of Jones polynomials
is essentially equivalent to the colored Jones function.

The latter is a 2-parameter formal power series > 77, o anmh"A™ which
determines (and is determined by) the Jones polynomial of a knot and its
parallels, [3]. The support of the colored Jones function lies in the triangle
0<m<n.

Similarly, one may consider the Alexander polynomial of a knot and
its parallels. In that case, one finds that this data is determined by the
Alexander polynomial alone.

About 10 years ago, Melvin—Morton and Rozansky independently conjec-
tured a relation among the diagonal terms Y, ap ,(h\)™ of the colored Jones
function of a knot and its Alexander polynomial, [13,15,16]. D. Bar-Natan
and the first author reduced the conjecture about knot invariants to a state-
ment about their combinatorial weight systems, and then proved it for all
weight systems that come from semisimple Lie algebras using combinatorial
Lie algebraic methods, [3].

This discussion explains the term ‘accident’ that we used above.

Over the years, the MMR Conjecture has received attention by many
researchers who gave alternative proofs, [4,10,11,17,18].

The subdiagonal terms h¥ 3", @, k.,(hA)" for a fixed k of the colored
Jones function, are (after a suitable parametrization) rational functions
whose denominators are powers of the Alexander polynomial. This was first
shown by Rozansky in [17], who further conjectured that a similar property
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should hold for the full Kontsevich integral of a knot. Rozansky’s conjecture
was recently settled by the first author and Kricker in [6]. This raises the
question of understanding each subdiagonal term of the colored Jones func-
tion (or the full Kontsevich integral) in topological terms. That said, not
much is known about the subdiagonal terms of the colored Jones function.
One can conjecture that each subdiagonal term is given in terms of a cer-
tain counting of random walks on a planar projection of a knot, see also Lin
and Wang, [12]. On a combinatorial level, the colored Jones function may
be replaced by its weight system. In [3] formulas for the weight system W;
of the colored Jones function and of its leading order term W;; were given
in terms of the intersection matrix of a chord diagram. In particular, Wy
is equal to the permanent of the intersection matrix of the chord diagram.
In the last section of [3] it was asked for a better understanding of the W
weight system, especially one that offers control over the subdiagonal terms
in Wj.

The purpose of the paper is to give two curious combinatorial formulas
for W; in Theorems 1 and 2 that answer these questions, and support the
conjecture that the colored Jones polynomial is a counting of random walks.

The notion of weight systems which we study here seems to be surrounded
by very exciting discrete mathematics, let us mention for instance [2]. We
hope our paper will stimulate more research of graph theory community in
this area.

1.3. Statement of the results

Although the colored Jones function of a knot is a power series invariant of
knots, most proofs of the MMR Conjecture involve not the colored Jones
function instead, but its weight system. The reader may think of the weight
system as the infinitesimal version of the knot invariant. Weight systems
are purely combinatorial objects. That is, they involve no knot theory at all.
They were introduced by Bar-Natan in [1], and heuristically one may think
of them by one of the following ways:

e Either as abstraction of the idea of an immersed knot. An abstractly
immersed knot is a circle, with a pair of points joined by chords. The
chords remember which points will be identified in an embedding of an
abstract knot in 3-space.

e Alternatively, one may think of chord diagrams as ways to encode con-
tractions of tensors, as is done in representation theory and differential
geometry.



654 STAVROS GAROUFALIDIS, MARTIN LOEBL

e Yet alternatively, one may think of chord diagrams as Feynman diagrams
of a 3-dimensional quantum field theory.

Algebraically, weight systems are linear functionals on a graded Hopf
algebra and they thmeselves form a commutative cocommutative Hopf al-
gebra. One way of producing weight systems is via Lie algebras and their
representations. For a thorough discussion on these matters, we refer the
reader to [1] and also to [3]. In particular, from now on, we will assume that
the reader is vaguely familiar with [1] or [3].

Consider the 0-framed colored Jones weight system

Wy : A— Q[M

where A is the vector space over Q spanned by chord diagrams on an oriented
line, modulo the 4-term and 1-term relations, see [3] and also below. We will
normalize W to equal 1 on the chord diagram with no chords (in [3] the
value of the empty chord diagram was M-1 instead). With this normalization,
it turns out that for a chord diagram D, W;(D) is a polynomial of X of degree
the number of chords of D. W (D) is defined to be the coefficient of A&
in WJ.

Given a chord diagram D, its chords are ordered (from left to right) and
we can consider its intersection matrix IM(D) as in [3, Definition 3.4] of size
the number of chords of D defined by

IM(D),; = sign(i — j) if the chords i and j of D intersect
Y0 otherwise.

We will consider a blown-up variant IM; of the intersection matrix, of size
3 times the number of chords of D, composed of blocks of 3 by 3 matrices
as follows:

Asign(i—j) if the distinct chords i and j of D intersect

Ao ifi=j
IM;(D)ij = { A, if chords 4,5 do not intersect
and 7 is completely contained in j
0 otherwise,
where
A+2 0 0 0 00 110 1 10
Ao=1] 0 A+2 1|, A_=|-1 -10], A,=]000|, A.=|-1 —1 0].
A =A—-21 0 00 000 0 00
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Example 1.1.
0 -1 —1 —1 Ao A- A A
B 1o o0 1 4y 40 0 AL
D=_ (AN . M) =1 o o s ™M)= 00 |
11 1 0 Ay Ay Ay Ao

Theorem 1. We have
Wy = Per(IM)

where Per(A) denotes the permanent of a square matrix A.

There is an alternative (and equivalent) formula of W in terms of count-
ing cycles. In order to state it, given a chord diagram D consider its labeled
intersection graph LIG(D) as in [3, Definition 3.4]. The vertices of LIG(D)
correspond to the chords of D (thus, are ordered) and the edges of LIG(D)
correspond to the intersection of the chords of D.

We will use a variation LID(D), the labeled intersection digraph of D
defined as follows. Orient each edge from the smaller vertex to the larger
and add an oriented loop on each vertex. The oriented loops are leaving the
vertices. Next add directed edges (ij) for each pair of chords 4,; such that
i is completely contained in j. In addition we color these new arcs red (and
we draw them as ——) to distinguish them from the original arcs.

Example 1.2. For the chord diagram D of Example 1.1, we have

3 4
LIG(D) = : LID(D) =
1 2

A bit more generally, consider a digraph G=(V, A) (i.e., a directed graph)
where V' is the set of vertices and A is the set of arcs. If e is an arc of A with
initial vertex uw and terminal vertex v then we write e=(u,v). We assume
that there is one loop at each vertex and a loop at a vertex is considered as
an arc leaving that vertex, and in addition some arcs which are not loops
are red. We will consider the arcs with variables associated with them: the
variable of an arc e is denoted by x.. We will need the following notion of
acceptable object, given G:

Definition 1.3. A collection K of arcs together with a thickening of one end
of each of the arcs of K is called acceptable for G if the following properties
are satisfied:



656 STAVROS GAROUFALIDIS, MARTIN LOEBL

e If (ij) is a red arc of G then both arcs (ij) and (ji) may appear in K,
but they must always be thickened at . If (ij) is an uncolored arc of G
then (ij) with any end thickened may appear in K, but (ji) may not.

e Each vertex of V is incident with 0, 2 or 4 thickened arcs of K. If a
loop belongs to K then we assume it contributes 2 to the degree of the
corresponding vertex. Moreover, a loop is always thickened at its initial
segment, i.e., in agreement with its orientation.

e Exactly half of the arcs incident with a vertex are thickened at the vertex.

o If there are two arcs thickened at a vertex, then one of them enters and
the other one leaves.

We will study the following partition function
J(G) = Z 2deg4(K)<)\+ 2)\V|*deg4(K)xK<_l)a(K)

K acceptable

of a digraph G, where g =[] ¢ ., deg,(K) denotes the number of vertices
of K incident with 4 arcs of K and a(K) is the number of arcs of K with
initial segment thickened, i.e., directed in agreement with the thickening.

The motivation for J(G) comes from the case of the intersection digraph
LID(D) of a chord diagram and the following:

Theorem 2. For a chord diagram D, we have
W;(D) = J(LID(D))|z,=1-

Corollary 1.4. After a change of variables d=\+2, let W ;(») denote the
coefficient of d4°8 =" in W . Then,

Wy (D) =23 (=1)")
K

where the sum is over all acceptable K such that deg,(K)=n.
Corollary 1.5 ([3]). We have:
Wy = Per(IM).
How fast can one compute permanents?

Corollary 1.6. For general matrices of size n we need n! steps. However, a
theorem of A. Galluccio [5] and the second author implies that W; can be
computed in 49 steps, where g is the genus of LIG(D), that is the smallest
genus of a surface that LIG(D) embeds.
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1.4. Plan of the proof

In Section 2, we review the weight system of the colored Jones function,
and reduce Theorem 2 to Theorem 3; the latter concerns digraphs. Sec-
tion 3, is devoted to the proof of Theorem 3 using a trip to combinatorics.
In Section 4, we translate our results using the language of permanents, and
deduce Theorem 1. In the final Section 5 we prove the corollaries that follow
Theorem 2.

1.5. Computer code

A computer code for the formula of Theorem 1 is given in an appendix
separate from the paper, as was suggested by the journal.

1.6. Acknowledgement

The authors wish to thank the Georgia Institute of Technology which invited
the second author and provided the environment of this research, and D. Bar-
Natan for providing independent checks to the output of the program.

2. A review of the W; weight system

The goal of this section is to reduce Theorem 2 to Theorem 3 stated below;
this will be achieved by a careful examination of the W; weight system.
Recall from [3, Section 4.2] that W can be computed as follows:

Step 1. Color each chord of a chord diagram D by the following operator:

B(’Uk (= vkl) = (k -+ 1)(/\ — K+ 1)1)k+1 & V1
+ ()\ —k+ 1)(]{7/ + 1)’[)]6,1 X Vg1
+ 1/2((A = 2k)(A = 2K") — A\ + 2))vp, @ v

from [3, p. 121].
The key calculation is the following elementary rearrangement of B, easily

checked:
Lemma 2.1.

B(vy @ vpr) = (A+2)T + BT + B™)(vy, @ vpr)
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where
B* =3 (-1)Bf, Bf = —(1+ k)M +1—K)vpee ® vpr_e
e=0,1
B~ =) (-1)°BZ, Br = —(1+ k) +1 - k)vp_e ® vprse.
e=0,1

This done, the coloring of chords of D may be viewed as a function
p:chords(D)—{I,By,B{, By, By }.

Step 2. The end-points of the n chords of D partition the base line into
2n +1 segments sq,...,So, listed from left to right. We associate number
m(s;) with each of these segments as follows:

1. Let m(so)=0.
2. If i >0 and last point of s; is left end-vertex of chord v then m(s;41) is
computed from m(s;) and p(v) using 2.1:
o If p(v)€{l,By,By } then m(sit1)=m(s;),
o If p(v)=Bi" then m(s; 1) =m(s;)+1,
o If p(v)=By then m(sj+1)=m(s;)—1.
3. If >0 and last point of s; is right end-vertex of chord v then m(s;11) is
computed from m(s;) and p(v) using 2.1:
o If p(v)€{l,By,By } then m(sit1)=m(s;),
o If p(v)=Bi" then m(s; 1) =m(s;)—1,
o If p(v)=By then m(sjt1)=m(s;)+1.

Step 3. We let

WJ(D):Z H wp(v)

p chordsv

where p is a coloring of the chords of D and w,(v) is a specific weight that
is computed using Lemma 2.1 again:

o w,(v)=A+2if p(v)=1,

0 (V) =~ (=) (1+k)(A+1—K) if p(v) = BY,
o wy(v)=—(=1)(1+K)A+1—k) if p(v)=B.
where k=m(sp(v)), ¥ =m(sg(v)), sp(v) is the segment ending at the left
end-point of chord v and sgr(v) is the segment ending at the right end-point
of chord v.

)

The reader is urged to look at [3, Chapter 4] for an explanation of the
above algorithm in terms of the representation theory of the sly Lie algebra.
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Example 2.2. For the following coloring of the chord diagram of Exam-
ple 1.1

+ L.
Vg, Vk+1 Vk+1 Vg VU, V-1 Uk Uk Uk
we have (assuming m(sg)=k) that
wo(l) =1+ k)X +1-k), wp(2) = A+2

w3 =1+ (k—1)A+1—(k+1)), wp(d)=—1+k)N+1—k).

Each coloring p of the chords is determined by a subset V'’ of chords such
that p(v) =1 for v¢ V' and by a coloring ¢ where ¢(v) is an assignment of
an element (€,,0,)€{0,1} x {+,—} for each v€V’. Hence we can write

Wy (D) = J'(LID(D))lz.=1

where

JG) =3 +2VVE ST T wiv).

v'cv c col of V' veV’

An important observation is that w/(v) can be computed in terms of the
local structure of the labeled intersection digraph LID(D). The next lemma
describes this.

Lemma 2.3. Let LID(D)=(V,A). Then
wh(v) = —(=1)% (1 + Z zv(e)> (/\+ 1- Z Zv(e))
e€A vEe

where z,,z, are defined as follows:

If e uncolored then

[ ]
o Ifc(v)=(+,€) and e=(w,v) then z,(e)=0dy€yTe,
o If c(v)=(+,€) and e=(v,w) then z,(e)=dy€yTe,
o Ifc(v)=(—,€) and e=(w,v) then z,(e)=0dy€yTe,
o Ifc(v)=(—,€) and e=(v,w) then z,(€)=0dy€yTe,
[ ]
[ ]

and z,(e)=Z,(e) =0 otherwise.
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Proof. If ¢(v)=(+,¢€) then c(v) corresponds to the operator B and hence
Wh(0)|go=1 = — (=) (1 +k)(A+1—k"). A moment’s thought reveals that
k=ky —ko+ks—kq and k' =k} — kb + ks — k4 where

k1 = {e = (w,v) uncolored; c(w) = (+,1)}|, k2 = |{e = (w,v) uncolored; c¢(w) = (—,1)}|

k1 = |{e = (v,w) uncolored; c(w) = (+,1)}|, kz = |{e = (v, w) uncolored; c(w) = (—,1)}|
ks = {e = (v,w)red; c(w) = (+, 1)}, ke = {e = (v, w)red; c(w) = (=, 1)}.

The reasoning is analogous for ¢(v)=(—,e€). 1

Thus, Theorem 2 follows from the following

Theorem 3. For all digraphs G with one loop at each vertex, we have

J(G) = J(G).

3. Understanding the state sums J(G) and J'(G)

In this section we prove Theorem 3, via a trip to combinatorics with curious
cancellations caused by applications of the binomial theorem.
Let us begin by rewriting J'(G). Let ey» =), ¢y €,. Then,

J/(G) = Z (_1)|Vl|(/\_|_2)\V—V/| Z (—1)v/

vicv c col of V/
Z (_1)|V2|()\+ 1)\V/_Vz\ H (Z zv(e)> H (Z Zv(€)>
Vicv/, VeV’ veV] \vee vEVL \vEe

where V; and V5 are possibly overlapping subsets of V.

Note that
11 (Z %(e)) = > 11 =o(elf.0))

veV; \vEe f veVy

where f:V; — A maps v to the arc denoted by e(f,v) such that v € e(f,v)
and moreover if e(f,v) red then e=(v,.), i.e. e starts in v. In other words,
f associates with each vertex v of V} an arc incident with it. Similarly, we

can rewrite [[,cy, (3 cc Zv(e)). Hence,

J(G) = > Mo Rl
Vicvvicv! VacVv!

> > DV T olelf, ) TT (Zolelg,v)) -

fVi—A,g:Vo—Ac col of V/ veV] veVy
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Let us rewrite the formula further. We fix W7 =ViNVy, Wy =V1UV, and we
let h to be disjoint union of f and g.

Remark 3.1. What exactly is h? Answer: h is a function that assigns to
each vertex of V' zero, one or two arcs incident with it (if the arc is red then
it must start in that vertex). Hence |h(v)| <2 for all v€ V' and if e € h(v)
then v € e. Here we slowly move towards the formalism of acceptable objects.
If e€ h(v) then thicken the end of e containing v. Hence h becomes a system
of thickened arcs of G so that there are at most two arcs in the system that
are thickened at each vertex of V', and red arcs are thickened always at the
start. [ |

If we have such an h, then Wi ={v:|h(v)|=2} and Wy ={v:|h(v)| >1}.
Hence, h determines the sets Wy and Ws. Fix an h as above, consider its
corresponding sets Wy, Ws, and let h(W3) denote the system of thickened
arcs determined by h. We have

JG) = 3 (=IO +2)VVIST AV b

v'cv h
where
AWV’ h)y = > > > B
¢ colof V! VICWa—W; g:WiUV]—h(Wa):g(v)eh(v)
and
B = (~1)v' (=) )VEIVIL TT 2, (e(g,0)) ] zo(e(f,0))

vEWIUV] veEWUVY

where V/ =Wy — (W1 UVY) and f: W1 UV] — h(Ws) is such that the disjoint
union of f and g is h.

The next two lemmas restrict the possible configurations of h that con-
tribute non-zero A(V’, h).

Lemma 3.2. Let ve Wa. If the only arcs of h(W2) incident with v are the
arcs of h(v), then A(V',h)=0.

Proof. veWy—W, veWl;

b

Fix V3, g and ¢(V'—{v}). If B#0, then the color ¢, € {—,+} of v may be
determined by g and the orientation of the arcs of h(v). However, there is
still the choice €, =0 or 1. This influences only (—1)“v’, hence the lemma
follows. |
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Lemma 3.3. Let veW;. If both arcs of h(v)
the same way with respect to v then A(V' h)=
arcs of h(Ws) incident with v then A(V' h)=0.

are uncolored and oriented in
0. If there are exactly three

Proof.

Since v € W; we have |h(v)| = 2. For the first part, if both arcs of h(v)
are uncolored and oriented in the same way, then there is no way to choose
color ¢, € {—,+} so that B#0. For the second part, if there are exactly three
arcs of h(Ws) incident with v then there is exactly one arc, say a, which is
incident with v and belongs to h(Ws)—h(v). Fix V3 and consider pairs g1, go
of functions g which differ only on v. If B0 and at least one of the arcs
of h(v) is uncolored, then the color 4, € {—,+} of v is determined by the
orientation of the arcs of h(v) and the choice between g; and go. This color
is opposite for g1 and g, and so the edge a is counted with different signs for
g1 and go while all the rest remains the same. Hence the total contribution
is 0. If both arcs of h(v) are red then both colors d, € {—,+} of v are possible
for B#0 and both ¢g; and go. Hence again the edge a contributes twice +1
and twice —1 and the total contribution is 0. |

Note that the second property of the above lemma assures that the system
h(W3) of thickened uncolored edges is a set for each h which contributes a
non-zero term to J'(G).

Corollary 3.4. (a) If e h(W3), then both vertices of e belong to Wi.

(b) Each vertex of Wy has degree (i.e., valency) 2 or 4 in h(W3) and if N (v)
is the set of edges of h(Ws) incident with v then |N(v)| =2|h(v)|. In other
words, the allowed configurations are

Proof. It follows from Lemmas 3.2 and 3.3 that |N(v)| > 2|h(v)| at each
vertex v. On the other hand, each edge of h(W5) has one thick end and one

thin end, and so there cannot be more thin ends than thick ends. Hence
|N(v)|=2|h(v)| and the corollary follows. |

Corollary 3.5. If Wy £V, then A(V',h)=0.



RANDOM WALKS AND THE COLORED JONES FUNCTION 663

Proof. We write

AV’ h) = Z (—1)V'=W2 (rest)

c col of V/—=Ws

where the ‘rest’ is not influenced by the colorings in V/ —W5. Hence,

A(V', h) = (rest) Z <_1)|C\2|V’7W2\
CCV'—Wsy

which vanishes unless V' =W5. ]

Summarizing, a function h such that A(V’,h)#0 determines a collection
of thickened arcs that is almost an acceptable object:

e cach vertex has degree 2 or 4 in V' and 0 in V -V,

e exactly half of the arcs incident with a vertex are thickened at that vertex,

e if there are two uncolored arcs thickened at a vertex then they have
opposite orientation with respect to the vertex,

e the red arcs are always thickened at the start.

Let us call such object good on V'. Note also that for each coloring of a good
object on V'’ which contributes non-zero to B we must have ¢, =1 for each
veV’ and hence (—1)¢v' =(—1)V'l. Collecting our efforts so far, we have

(1) JG) =3 v+ S AV K)

vicv K good on V’

where
A/(V/,K) _ Z (A 4 1)‘V’_(W1UV2’)\C(VQI’ V/,K),
ViCVI— W,

W7 is the set of vertices of V' of degree 4 in K and

C(‘/levlaK) = Z ( ‘Wl ‘Vl Z H Ev(e(gvv»

g Wi—K ¢ col vGWluV’

I z(e(f.0)),

veV/—VJ
and ¢, g, f have the following properties:

e if pe{qd,g,f} then p(v) is an arc of K incident with v and thickened
at v,

e g:W;UVJ— K is unique such function extending ¢,

e [:V'—V]— K is unique such function with fUg=K.
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Lemma 3.6. C(X,V',K) = C(Y,V',K) for arbitrary X,Y subsets of
V' —Wh.

Proof. Exactly half of the edges of K incident with each vertex are thickened
at that vertex and hence K may be regarded as a union of cycles Z1,...,Z,,
such that each Z; has the form

and such that each vertex of K lies in at most two of the cycles Z;. In other
words, we may think that K is pictured schematically as follows

(where for simplicity, we have drawn the cycles Z; as circles). As we observed
above,

CXVLE) = S (Ml S T -

g Wi1—K ¢ col veWuX

II z(elfv)

veV/—-X
It suffices to show the following

Claim.
CX, V' K) =Y (-1)"F gy
K/

where K’ is any collection of thickened arcs obtained from K by changing
orientation of some (possibly none) red arcs of K so that K’ is an acceptable
object (i.e. if two arcs are thickened at a vertex then they are oppositely
oriented with respect to that vertex). Moreover, a(K’) is the number of arcs
of K’ directed in agreement with the thickening.

Proof of the Claim. We can write

CX,V,K)= > D
g W1—K
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and

D=()"MI)XIST T zelgw) I z(elf,v).

¢ col veWjUX veV/—-X

First we observe that the Claim is true when K has a vertex of degree 2
where the thickened edge is red. Indeed, in this case both sides of the formula
in the Claim equal 0. Hence let K donot have such a vertex. Let S be the
set of vertices of K where two red arcs are thickened. Observe that exactly
215 colorings ¢ contribute a non-zero term to D: we observed before that
necessarily €(v) =1 for each veV’. Moreover, each color (v) contributing
non-zero to D is uniquely determined for each v where at least one uncolored
arc is thickened: explicitly, let v be a vertex of Z; and let e be the unique
arc of Z; thickened at v, and let e be uncolored. Then §(v) depends on the
orientation of e and whether e belongs to g or not. Hence there is at most one
coloring §(v) which contributes a non-zero term to D. Also observe that the
unique ‘non-zero coloring’ of these vertices of each Z; compose well together:
this follows from the fact that if v is a vertex of degree 4 in K then exactly
2 arcs are thickened at v, and if both are uncolored then they have different
orientation with respect to v and one belongs to g and the other belongs
to f. Finally observe that for vertex v where two red arcs are thickened, any
d(v) contributes a non-zero.

Next we will observe that the contribution of each of these 2!5! colorings
to D is the same and equals (—1)*%)zy where K’ is any collection of
thickened arcs obtained from K by changing orientation of some (possibly
none) red arcs of K so that K’ is an acceptable object (i.e., if two arcs are
thickened at a vertex then they are opositely oriented with respect to that
vertex). This proves the Claim since the number of objects K’ equals 2181,
Hence it remains to confirm the contribution of each of the allowed colorings
to D.

First observe that it is true when X =(). Next, let us put a vertex v of
Z;— W7 into X and let e be the arc of Z; thickened at v. Then e is uncolored
by our assumption and we need to change §(v) in order to have a nonzero
contribution, hence the product of signs along Z; changes but (—1)‘X | also
changes and so the final total sign is the same. |

We let

CWV.K)= > >(-

g:W1—K K’

_ 2deg4(K) Z(_l)a(K
K/
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Equation (1) together with Lemma 3.6 implies that

JG) = S+ N o k) Y v+

VicVv K good on V’ ACV' =W,

= 2 a5 oK)+
V'cv K good on V’

= Y (+2VMiow k)
K good on V'’

= Z (A + 2)IVI—dega(K) gdegs (K) (_1)a(K) g
K acceptable

= J(G)

which concludes the proof of Theorem 3. ]

4. Converting to Permanents

The goal of this section is to convert the state sum J(D) into a permanent,
in the following way:

Theorem 4.
J(LID(D))[z.=1 = Per(IM;(D))

Note that Theorem 1 follows from Theorems 2 and 4.

We will achieve the conversion of J(LID(D)) into a permanent by a
local modification (we can say, a blow-up) of each of the vertices of the
original digraph LID(D). It turns out that the modification triples each of
the vertices of G. Why triple? Because in a sense J(LID(D)) has to do with
the slo-Lie algebra. Thus, we are back to Lie algebras, this time through a
common blow-up trick of combinatorics.

Proof of Theorem 4. We have that

J(LID(D))|z,=1 = Z (A + 2)IVI—dega(K)gdegs () (_1)a(K)

K acceptable

where a(K) equals the number of arcs of K thickened in agreement with
their orientation. A single loop of K is always leaving its vertex, and it is
directed in agreement with its thickening. Hence each single loop contributes
‘(=1)" to a(K). Let us now get rid of these single loops: an acceptable object
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without single loops will be called connected and a connected object where
each vertex of V' has degree at least 2 will be super. We have

J(LID(D))|z,=1 = Z (A + 2)VI=dega(K) gdeg,(K) (__1)a(K)
K acceptable
= Z (A + 2)IVI—dega(K) gdegs () (_1)a(K) Z (—1)lUl
K connected UCV-K
= Z (A + 2)VI—dega(K)gdeg, (K) (_q)a(K),
K super

We will use a variation TID(D)), the thickened intersection digraph of D
defined as follows. Double each of the arcs of LID(D) and:

1. if the arc is uncolored then thicken such pair at opposite ends,

2. if the arc is red then thicken each arc of the pair at the start, and then
change the orientation of one of them,

3. thicken each loop at its initial segment, i.e., in agreement with its orien-
tation.

In pictures, the thickening of LID is the substitution

-0 1-{ O-0

Now we can write

J(LID(D))|p.—1 = 3 (A -+ 2)lVI—dega(K) e () (1 )a(K).
K super subobject of TID(D)

Let us describe now how a thickened digraph D(IM ;) may be constructed
from TID(D). The construction easily follows from the definition of matrix
IM: it consists in replacing each vertex of TID(D) by a ‘gadget’ on three
vertices, as follows:

The construction goes as follows:
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1. For each vertex v of TID(D) introduce three vertices vy ,vq,vs for D(IM ).
2. Define the thickened arcs and their weights among each triple vy, v9,v3
as follows:
e add loop l; at each v; and let w(ly)=w(lz)=—(A+2) and w(l3)=—1,
e add arc (v3,v7) thickened at vs with weight —\,
e add arc (v3,v9) thickened at vz with weight A+ 2,
e add arc (va,v3) thickened at vo with weight —1.
3. For each thickened arc (u,w) of TID(D) do the following:
o If (u,w) is thickened at u then add (ug,w1),(us,ws2) thickened at ug
with weights equal to 1,
o If (u,w) is thickened at w then add (ui,w1), (u2,w;) thickened at w;
with weights equal to 1.

It follows directly from the definition of the permanent that
Per(IMy) = > (-1)*@wy,

LeLl
where L is the set of all acceptable subobjects of D(IM ;) where each degree
equals 2.
We need to show that
Z (_1)a(L)wL = Z (A + Q)IV\—deg4(K)2deg4(K)(_1)a(K)_
L with each degree 2 K super subobject
acceptable subobject of D(IM y) of TID(D)

We will prove it by constructing a partition of acceptable subobjects of
D(IM) where each vertex has degree 2, and associating each partition class
which contributes non-zero to Per(D(IM)) with uniquely determined super
subobject of TID(D).

Let L be an acceptable subobject of D(IM ;) where each vertex has de-
gree 2. Denote by OL the set of all thickened arcs of type (u;jwj), u# w,
and let /L =L — OL. Note that if we forget the lower indices at vertices, OL
naturally corresponds to a set OK of thickened arcs of TID(D). Note that
no arc in OK is a loop and a(OL)=a(OK). It remains to be seen what to
do with the thickened arcs of IL. We may consider each triple of vertices
v1, V9,03 separately. Let ILv denote the set of thickened arcs of L among
v1,v9,v3. We distinguish four cases.

e [Lv consists of all three loops or the loop at w; and the arcs
(va,v3), (v3,v2). Let Cp be the class of all L which in at least one triple
v1,vV2,v3 behave in this way. Note that the total contribution of Cy to
Per(D(IMy)) is 0, and so we may assume that this case never happens
(it corresponds to single loop at v in TID(D) which is not allowed for
supersubobjects).
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e [Lv consists of loop at vy or loop at vy (but not both), and loop at vs.
Then let IKv={). Hence v will have degree 2 in K and contribute (A+
2) to J(LID(D)), which exactly equals to the contribution of ILv to
Per(D(IMy)).

e [Lv consists of {(ve,v3),(vs,v2)} or {(vs,v1), (v2,v3)}. Then v has degree
2 in OK and the edge of OK incident and thickened at v is entering v.
In this case let I Kv consist of the loop at v. Note that the total contri-
bution of ILv to Per(D(IMy)) is —(A+2)+A=—2 and 2(—1) is also the
contribution of I Kv to J(LID(D)).

e ILv=1{. Then v has degree 4 in OK and we let IKv={. In this case
each v;, i1=1,2 is incident with one arc of L not thickened at v;. Let L' be
obtained from L by exchanging the incidence of non-thickened arcs be-
tween v and vy. The total contribution of I Lv and I'L'v to Per(D(IMy))
is 2 and 2 is also the contribution of IKv to J(LID(D)).

It is easy to check that we have indeed partitioned the set of all acceptable
subobjects of D(IM ) where each vertex has degree 2 and that we exhausted
all super subobjects of TID(D). This finishes the proof of Theorem 4. |

5. Proof of the corollaries

Corollary 1.4 is immediate. For Corollary 1.5, observe that W;; = W ;)
is given by Corollary 1.4 for n=0. We claim that this formula equals to
Per(IM). This may be observed as follows: assume i < j. Associate IM(D);;
with the arc (,7) of LID(D) thickened at ¢ and IM(D);; with arc (4,7) thick-
ened at j. This associates, with each term of the expansion of Per(IM), an
acceptable object of uncolored arcs only, with each degree equal to 2 and no
loops. Denote the set of such acceptable objects by Kp. It is straightforward
to check that
Per(IM) = Y (—1)4.
KeKx,

On the other hand, W} ;o) = ZKG,C2(—1)’1(K), where Ko is the set of all
acceptable objects where each degree is 0 or 2 (loops are allowed and they
contribute 2 to the degree). First observe that the contribution of the ac-
ceptable objects of [Cy that contain a red arc cancels out since we can change
the orientation of a red arc in such an object, and get again an object of ICa,
with oposite contribution. Hence assume o has no objects with red arcs. If
K € Ky then let L(K') denote the acceptable subobject of K obtained from
K by deleting all loops. If L= L(K) let V(L) denote the set of vertices of
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L of non-zero degree and let £(L) = {K € K9; L(K) = L}. By the binomial
theorem,

Z (_1)G(K) _ (_1)G(L) Z (_1)\W| -0

Ke&(L) wWc(V-V(L))

whenever V' (L)#V. This proves the corollary.
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A. Numerical examples

Example codes (along with the informations required for running it) are
available from SpringerLink at http://dx.doi.org/10.1007/500493-005-0041-3.
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